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In recent years a number of calculative models based on protein-protein interaction
(PPI) networks have been proposed successively. However, due to false positives, false
negatives, and the incompleteness of PPI networks, there are still many challenges
affecting the design of computational models with satisfactory predictive accuracy
when inferring key proteins. This study proposes a prediction model called WPDINM
for detecting key proteins based on a novel weighted protein-domain interaction (PDI)
network. In WPDINM, a weighted PPI network is constructed first by combining
the gene expression data of proteins with topological information extracted from the
original PPI network. Simultaneously, a weighted domain-domain interaction (DDI)
network is constructed based on the original PDI network. Next, through integrating
the newly obtained weighted PPI network and weighted DDI network with the
original PDI network, a weighted PDI network is further constructed. Then, based on
topological features and biological information, including the subcellular localization
and orthologous information of proteins, a novel PageRank-based iterative algorithm
is designed and implemented on the newly constructed weighted PDI network to
estimate the criticality of proteins. Finally, to assess the prediction performance of
WPDINM, we compared it with 12 kinds of competitive measures. Experimental
results show that WPDINM can achieve a predictive accuracy rate of 90.19, 81.96,
70.72, 62.04, 55.83, and 51.13% in the top 1%, top 5%, top 10%, top 15%, top
20%, and top 25% separately, which exceeds the prediction accuracy achieved by
traditional state-of-the-art competing measures. Owing to the satisfactory identification
effect, the WPDINM measure may contribute to the further development of key
protein identification.

Keywords: essential proteins, protein-protein interaction network, computational model, domain-domain
interaction network, protein-domain interaction network
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INTRODUCTION

Accumulating evidence indicates that proteins have a
tremendous impact on almost all life activities. Essential
proteins cannot only maintain normal biological processes but
also ensure the integrity of cell functions. With the development
of biotechnology (Lu et al., 2019, 2020), more and more essential
proteins have been discovered by biological experiments in
recent years. However, because biological experiments are
quite costly and time-consuming, an increasing number of
computational models have been proposed to identify essential
proteins based on the topological features of PPI networks.
For instance, based on the rule of centrality-lethality (Jeong
et al., 2001), researchers have proposed a series of prediction
models, which have been designed successively to infer
potential critical proteins. These include Information Centrality
(IC) (Stephenson and Zelen, 1989), Degree Centrality (DC)
(Hahn and Kern, 2004), Subgraph Centrality (SC) (Ernesto
and Rodriguez-Velazquez, 2005), Closeness Centrality (CC)
(Wuchty and Stadler, 2003), Betweenness Centrality (BC)
(Jop et al., 2005), Neighbor Centrality (NC) (Wang et al.,
2012), and local average connectivity (LAC) (Li et al., 2015).
Wang et al. (2011) designed a predictive model named SoECC
by combining the features of edges and nodes and taking
advantage of the edge clustering coefficient effectively. Lin
et al. (2008) introduced two kinds of prediction models
such as the Maximum Neighborhood Component (MNC)
and the Density of Maximum Neighborhood Component
(DMNC) to infer essential proteins, respectively. However,
these prediction models cannot achieve high identification
accuracy owing to the incompleteness of current PPI networks
(Chen and Yuan, 2006).

Hence, to address this problem, some different methods
based on both biological information on proteins and the
topological properties of PPI networks have been proposed
to detect essential proteins. For example, Li et al. (2012)
proposed a calculation method called Pec by uniting the gene
expression data with the centrality-lethality rule to identify key
proteins from PPI networks. Zhang et al. (2013) presented
a method based on integrating the topological features of
PPI networks with the co-expressions of proteins. Peng et al.
(2012) designed a prediction method called ION based on
topological features extracted from the PPI network and the
orthologous information of proteins. Additionally, inspired by
the model of Degree Centrality, Tang et al. (2014) developed
an identification model for predicting essential proteins by
combining the Person correlation coefficient (PCC) and the
edge clustering coefficient (ECC) with the gene expression data
of proteins. Kim (2012) proposed a method for predicting
key proteins by implementing a machine learning algorithm
on both Gene Ontology and topological information of PPI
networks. Luo et al. (2015) developed a computational model by
integrating the local interaction density with protein complexes
to detect key proteins. Li et al. (2016) designed a method
for identifying essential proteins by adopting the subcellular
localization and orthologous information. Luo and Kuang
(2014) proposed a prediction model called CDLC to detect

essential proteins by employing the dynamic local average
connectivity and in-degree of proteins in complexes. Zhang
et al. (2018) introduced a calculative algorithm named TEO
for inferring essential proteins by integrating gene ontology
annotation information and the gene expression data with PPI
networks. Zhong et al. (2013) designed a learning algorithm
to predict essential proteins by combining the biological
information of proteins with PPI networks. Shang et al. (2016)
introduced a strategy to detect essential proteins through
integrating the RNA-Seq dataset and biological information
of proteins with dynamic PPI networks. Zhang et al. (2016)
introduced a prediction measure named PINs for identifying
essential proteins based on gene expression profiles and
PPI networks through integrating five approaches including
the DC, BC, SC, CC, and the eigenvector centrality (EC)
(Bonacich, 1987).

This study proposes a novel prediction model called
WPDINM that can be used to detect key proteins by combing
a weighted protein-domain interaction (PDI) network with the
biological information containing the subcellular localization
and orthologous information of proteins. WPDINM is based
on the original PPI network and the original PDI network,
obtained by known protein-protein interactions (PPIs) and
known protein-domain associations that have been downloaded
from benchmark databases. In this prediction model, a weighted
PPI network and a weighted domain-domain interaction (DDI)
network are established first, based on the gene expression data of
proteins and the topological information of the original networks
respectively. Then, a weighted PDI network is constructed by
combining these two newly constructed weighted networks.
Next, based on the weighted PDI network, initial scores are
assigned to proteins based on the biological information of
proteins such as the subcellular localization and orthologous
information of proteins, and a novel iterative method is
implemented to estimate the criticality of proteins.

Different from traditional prediction models, in WPDINM,
the Discrete Fourier transform (DFT) is applied to the gene
expression profiles of proteins to calculate the weight between
proteins, which can translate gene expression profiles from
the time domain to frequency domain effectively. A novel
weighted PDI network is then constructed by integrating a
weighted DDI network and weighted PPI network. Moreover,
by taking into account the associations between proteins, a
new directed distribution network is designed to calculate the
rankings of proteins iteratively, based on the weighted PDI
network. Finally, to evaluate the prediction performance of
WPDINM, the WPDINM is compared with other competitive
measures such as SC (Ernesto and Rodriguez-Velazquez, 2005),
DC (Hahn and Kern, 2004), IC (Stephenson and Zelen, 1989),
CC (Wuchty and Stadler, 2003), BC (Jop et al., 2005), NC (Wang
et al., 2012), EC (Bonacich, 1987), Pec (Li et al., 2012), CoEWC
(Zhang et al., 2013), TEGS (Zhang et al., 2019), ION (Peng
et al., 2012), and POEM (Zhao et al., 2014). Experimental results
indicate that WPDINM can achieve better prediction accuracies
than competing prediction models, achieving 90.19, 81.96, 70.72,
62.04, 55.83, and 51.13% in the top 1%, top 5%, top 10%, top 15%,
top 20%, and top 25% of predicted proteins separately.
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MATERIALS AND METHODS

Experimental Data
To construct original PPI networks, we first download known
PPIs from three different databases including the DIP database
(Xenarios et al., 2002), the Gavin database (Gavin et al., 2006),
and the Krogan database (Krogan et al., 2006), respectively.
After removing duplicated interactions, we finally obtain three
different datasets such as the DIP-based dataset, consisting of
24,743 known PPIs between 5,093 proteins, the Krogan-based
dataset, consisting of 14,317 known PPIs between 3,672 proteins,
and the Gavin-based dataset consisting of 7,669 known PPIs
between 1,855 proteins. Next, we further download known
domains from the Pfam database (Bateman et al., 2004), and
after preprocessing, obtain a dataset consisting of 1,107 different
domains. Based on these three kinds of datasets obtained from
the DIP database, the Gavin database, and the Krogan database,
we finally construct three kinds of original PPI networks and
corresponding matrices with dimensions of 5, 093 = 1, 107,
1, 855 = 1, 107, and 3, 672 = 1, 107 separately. The gene
expression data is provided by Tu et al. (2005), which consists
of 6,776 gene expression sequences with a length of 36.

In order to obtain the initial scores of proteins, we download
the subcellular localization data from the COMPART-MENTS
databases (Binder et al., 2014). As a result, we obtain a dataset
consisting of 11 kinds of subcellular localizations, including
the Extracellular, Peroxisome, Nucleus, Plasma, Endosome,
Mitochondrion, Vacuole, Cytosol, Golgi, Cytoskeleton
Endoplasmic, that are intimately linked with downloaded
known key proteins. We also download the orthologous
information of proteins from the InParanoid database (Gabriel
et al., 2010). Furthermore, the set of essential proteins existing
in Saccharomyces cerevisiae is was downloaded from four
different databases including DEG (Zhang and Lin, 2009), MIPS
(Mewes et al., 2006), SGD (Cherry et al., 1998), and SGDP
(Saccharomyces Genome Deletion Project, 2012).

As shown in Figure 1, the flowchart of WPDINM consists of
the following four major steps:

Step 1: Firstly, based on known PPIs downloaded from
any given benchmark database, an original PPI network is
obtained. Then, a weighted PPI network is further constructed
by implementing the DFT method on the gene expression
data of proteins and extracting topological features from the
original PPI network.
Step 2: Based on known PPIs and known protein-domain
interactions (PDIs) downloaded from given benchmark
databases, a weighted DDI network is then constructed.
Thereafter, a weighted PDI network is further established
by integrating the weighted DDI network with the
weighted PPI network.
Step 3: Then, by combining the weighted PDI network with
biological information, including the orthologous information
and subcellular information of proteins, each protein in the
weighted PDI network is assigned an initial score.
Step 4: Finally, a novel prediction method based on the Page
Rank algorithm is designed and applied on the weighted

PDI network to compute the final scores of criticality for all
proteins iteratively.

Construction of the Weighted PPI
Network
In this section, based on the datasets consisting of known PPIs
downloaded from three different databases, including the DIP
database (Xenarios et al., 2002), the Gavin database (Gavin et al.,
2006), and the Krogan database (Krogan et al., 2006), respectively,
we construct three original PPI networks simultaneously.
For convenience, let OppiN = {NP,EP} represent a newly
constructed original PPI network, where NP = {p1, p2....pO}
is the set of protein nodes in OppiN and EP is the set of edges
between protein nodes in OppiN. Here, for two given proteins pi
and pjin NP, there is an edge ed(pi, pj) between them in EP, if and
only if there is a known interaction between these two proteins.
Based on the original PPI network OppiN, we can further obtain
an O × O dimensional adjacency matrixOppiM as follows: for
any two protein pi and pj in NP, there is OppiM

(
i, j
)
= 1, only

if there is a known interaction between piand pj, otherwise there
is OppiM

(
i, j
)
= 0.

Next, based on OppiN, for any given protein p
with a known gene expression sequence in NP, let
Gep

(
p
)
=< Gep

(
p, 1

)
,Gep

(
p, 2

)
, ...,Gep

(
p,M

)
> represent

the gene expression sequence of p, where Gep
(
p, t
)

is
the degree of gene expression at tth time. As Gep(p) is a
time sequence with the length of M, then we can adopt
the DFT method to convert it from time domains to
frequency domains, since while N ≥ M, the N-point Discrete
Fourier can transform a 1 × M dimensional time series
vector Gep

(
p
)
to a 1 × N dimensional spectrum vector

DF
(
p
)
=<

∣∣DGep (0)
∣∣ , ∣∣DGep (1)

∣∣ , ... ∣∣DGep (N − 1)
∣∣>as

follows:

DGep(t) =
∑M

y = 1
Gep

(
p, y

)
∗Wty

M, where t = 0, 1, .....N-1

(1)

WM = e−i
2π
M (2)

Thereafter, through combining the above formulas with the
Gaussian kernel interaction profiles, for any two given proteins
pi and pjwith gene expression sequences in NP, we can estimate
the probability of association between them by calculating the
spectra similarity as follows:

GK
(
pi, pj

)
= exp

(
−αp

∣∣∣∣DF (pi)−DF (pj)∣∣∣∣2) (3)

Here, αp is the adjustment coefficient for the kernel bandwidth,
which is defined as follows:

αp =
α
′

p

1
|PGep|

∑|PGep|

k = 1

∣∣∣∣DF (pk)∣∣∣∣2 (4)

In the above formula (4), PGep is the set of proteins with gene
expression sequences in OppiN.
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FIGURE 1 | Flowchart of WPDINM.

Additionally, for any two given proteins pi and pj without gene
expression sequences in OppiN, we adopt the topological features
extracted from the original PPI network OppiN to calculate the
possibility of an association between them. Thus, the weight
between pi and pj can be calculated as follows:

TFP
(
pi, pj

)
=

∣∣Com (pi, pj)∣∣+ 1
(
∣∣Np (pi)∣∣+1) ∗ (

∣∣Np (pj)∣∣+1)
(5)

Here, Np
(
pi
)

and Np
(
pj
)

denote the set of neighboring protein
nodes of pi and pj in OppiN separately, Com

(
pi, pj

)
represents

the set of common neighbors between pi and pj in OppiN, and
|X|means the number of different elements in the set X.

Integrating formula (3) and formula (5) for any two given
proteins pi and pj in OppiN, we can calculate the possibility of
an association between them, b, as follows:

PA(pi, pj) =
{
GK

(
pi, pj

)
: if pi and pj have gene expression sequences

TFP
(
pi, pj

)
: Otherwise

(6)
Based on the above formulas (6), a weighted PPI network

WppiN can be constructed according to the following O × O
dimensional matrix WppiM:

WppiM
(
pi, pj

)
={

β ∗ PA
(
pi, pj

)
+ (1−β) ∗ OppiM

(
pi, pj

)
if OppiM

(
pi, pj

)
= 1

TFP
(
pi, pj

)
∗ GK

(
pi, pj

)
if OppiM

(
pi, pj

)
= 0

(7)

In the above formula (7), β is the scaling parameter with a
value from 0 to 1.

Construction of the Original PDI Network
In this section, based on the dataset consisting of known PDIs
downloaded from the Pfam database (Bateman et al., 2004), we
construct an original PDI network OpdiN = {NPD,EPD}, where
NPD = NP ∪ ND, ND = {d1, d2...dQ} is the set of domain nodes
in OpdiN, and EPD is the set of edges between protein nodes in
NP and domain nodes in ND. Here, for a given protein pi and a
given domain dj in NPD, there is an edge between them in EPD,
only if there is pi belonging to dj. Based on the original PDI
network OpdiN, we can further obtain an O × Q dimensional
adjacency matrix OpdiM as follows: for a given protein node pi
and a given domain node dj in NPD, there is OpdiM

(
i, j
)
= 1,

if and only if there is pi belonging to dj, otherwise, there
is OpdiM

(
i, j
)
= 0.

Construction of the Weighted DDI
Network
For any two given domains di and dj in OpdiN, in this section,
we further obtain a Q × Q dimensional matrix WddiM by
adopting the Gaussian kernel interaction profiles to estimate the
association between di and dj as follows:

WddiM
(
di, dj

)
= exp

(
−δd

∣∣∣∣IPd (di)−IPd (dj)∣∣∣∣2) (8)

Here, IPd
(
dl
)

denotes the vector at the lth column of the
matrix OpdiM, and δd is an adjustment coefficient for the kernel
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bandwidth based on the new bandwidth parameter δ
′

d, which is
defined as follows:

δd =
δ
′

d
1
Q
∑Q

k = 1

∣∣∣∣IPd (dk)∣∣∣∣2 (9)

Based on the above formula (8), it is easy to construct a weighted
DDI network WddiN.

Construction of the Weighted PDI
Network
In this section, through combining the weighted PPI
network WppiN and original PDI network OpdiN with the
weighted DDI network WddiN, we calculate two O × Q
dimensional matrices WpdiM and WdpiM as follows:

WpdM
(
ti, tj

)
=

WppiM
(
ti, tj

)
: if ti ∈ NP and tj ∈ NP

WddiM
(
ti, tj

)
: else if ti ∈ ND and tj ∈ ND∑O

k = 1 WppiM(ti,tk)OpdiM(tk,tj)∑O
k = 1 WppiM(ti,tk)

: else if ti ∈ NP and tj ∈ ND

(10)

WdpM
(
ti, tj

)
=

WppiM
(
ti, tj

)
: if ti ∈ NP and tj ∈ NP

WddiM
(
ti, tj

)
: else if ti ∈ ND and tj ∈ ND∑Q

k = 1 OpdiM(ti,tk)WddiM (tk,tj)∑Q
k = 1 WddiM(tk,tj)

: else if ti ∈ NP and tj ∈ ND

(11)

Thereafter, for any two given nodes ti and tj in OpdiN, we can
obtain a new O × Q dimensional matrix WPDIM as follows:

WpdiM
(
ti, tj

)
=

WpdM
(
ti, tj

)
+WdpM

(
ti, tj

)
2

(12)

According to the above formula (12), it is easy to construct a
weighted PDI network WpdiN.

Calculation of the Initial Scores of
Proteins
First, based on the weighted PDI network WpdiN, for a given
protein pi and a given domain dj in NPD, we can obtain a Q ×O
dimensional allocation probability matrix APM as follows:

APM
(
dj, pi

)
=

WpdiM
(
dj, pi

)∑
pk∈dj WpdiM

(
dj, pk

)
)

(13)

Next, for simplicity, let the initial score vector for all domains
in WpdiN be Sd = < 1, 1, 1 >T , we assign an initial score
of 1 to each domain in WpdiN, then based on the allocation
matrix APM, we can distribute the initial scores of domains to
all proteins in WpdiN in the following way:

PSD = APMT
∗ Sd (14)

PSD is an O dimensional vector, and PSD(i) denotes the score,
which is the ith protein node pi obtained from all domain nodes
in WpdiN.

To calculate the score of the subcellular localization feature,
let NSL represent the number of all subcellular localizations, and
NSL(j) denote the number of proteins related to the jth subcellular
localization. The s_avg means the average sum of the protein
associated with subcellular localization. Then, the score of jth
subcellular localization can be computed as follows:

SSL
(
j
)
=

NSL(j)
S_avg

(15)

Where:

S_avg =

∑NSL
j = 1 NSL(j)

NSL
(16)

Hence, for any given protein pi, its subcellular localization feature
score can be calculated as follows:

FSSL
(
pi
)
=

∑
j∈SL(pi)

SSL
(
j
)

(17)

Where SL(pi) is the set of subcellular localization related to
the protein pi.

In addition, because triangles have the characteristic of
stability, we further adopt the topological feature of triangles
extracted from the OppiN to calculate at biological feature score
for each protein pi. Here, for a given protein pi, its set of neighbor
nodes is represented as Np(pi), then there is:

Np
(
pi
)
=

{
q
∣∣ ed(pi,q) ∈ Ed} (18)

Therefore, the triangles for protein pi is computed as follows:

TRI
(
pi,q

)
=

{ ∣∣Np (pi) ∩ Np (q)∣∣+1 if ed
(
pi, q

)
∈ EP

1 if ed
(
pi, q

)
/∈ Ep

(19)

TRI
(
pi
)
=

∑
q∈Np(pi)

TRI
(
pi,q

)
(20)

AvgTRI
(
pi
)
=

TRI(pi)
|Np(pi)|

(21)

Where the TRI(pi) is the set of triangles related to the protein pi
and |Np(pi)| represents the degree of the protein pi. According
to the above calculated triangle numbers for each protein, we
compute the triangle feature score for pi;

FSTRI
(
pi
)
=

AvgTRI
(
pi
)

max1 ≤ j ≤ OAvgTRI
(
pj
) (22)

Based on the orthologous information obtained from the
InPaianoid database (Gabriel et al., 2010), for any given protein
pi, let foth(pi) be its score of orthologous information, then we
can calculate an orthologous feature score for pi as follows:

FSORT
(
pi
)
=

foth
(
pi
)

max1 ≤ j ≤ Ofoth
(
pj
) (23)

Based on the above formulas (14)∼(18), for any given protein pi,
we can obtain its feature score as follows:

FS
(
pi
)
= ϕ ∗ FSSL

(
pi
)
+ θ ∗ FSTRI

(
pi
)
+ τ ∗ FSORT

(
pi
)

(24)
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FIGURE 2 | (A) Top 1% ranked proteins, (B) Top 5% ranked proteins, (C) Top 10% ranked proteins, (D) Top 15% ranked proteins, (E) Top 20% ranked proteins,
(F) Top 25% ranked proteins. This bar chart shows the comparison of the number of essential proteins predicted by WPDINM and other models, such as SC, BC,
CC, DC, IC, EC, NC, Pec, CoEWC, POEM, ION, TEGS based on the DIP database.

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 645932

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-645932 March 11, 2021 Time: 17:1 # 7

Meng et al. Method for Essential Protein Prediction

FIGURE 3 | (A) Top 1% ranked proteins, (B) Top 5% ranked proteins, (C) Top 10% ranked proteins, (D) Top 15% ranked proteins, (E) Top 20% ranked proteins,
(F) Top 25% ranked proteins. This bar chart shows the comparison of the number of essential proteins predicted by WPDINM and other models, such as SC, BC,
CC, DC, IC, EC, NC, Pec, CoEWC, POEM, ION, TEGS based on the Krogan database.
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FIGURE 4 | Comparison of Jackknife curves of the WPDINM and 12 kinds of methods based on the DIP dataset. (A) Comparison of Jackknife curves of WPDINM
and 6 other methods including DC, IC, EC, BC, CC, NC. (B) Comparison of Jackknife curves of WPDINM and 6 other measures such as SC, Pec, CoEWC, POEM,
ION, TEGS.

FIGURE 5 | Comparison of Jackknife curves of the WPDINM and 12 kinds of methods based on the Krogan database. (A) Comparison of Jackknife curves of
WPDINM and 6 other methods including DC, IC, EC, BC, CC, and NC. (B) Comparison of Jackknife curves of WPDINM and 6 other measures such as SC, Pec,
CoEWC, POEM, ION, TEGS.

Where ϕ,θ and τ are proportion parameters, which are used
to adjust the ratio of feature score for proteins and satisfy
ϕ + θ + τ = 1.

Finally, according to the above formula (13) and formula (19),
for any given protein pi, we can obtain its initial score as follows:

S0
(
pi
)
= ω ∗ PSD

(
pi
)
+ (1−ω) ∗ FS

(
pi
)

(25)

Here, ω is a proportion parameter.

Construction of the Prediction Model
WPDINM
According to the weighted PPI network WppiN, let Npi and Npj
be the sets of neighboring nodes of pi and pj, respectively, then
Npi ∩ Npj = {p1, p2, ..., pT} is the set of common neighbors
of both pi and pj. Supposing that there is WppiM

(
p1, pj

)
≤ WppiM

(
p2, pj

)
≤ ... ≤ WppiM

(
pT, pj

)
, then we define the

allocation possibility of weight from pi to pj as follows:

WAP
(
pi, pj

)
= WppiM

(
pi, pT

)
∗WppiM

(
pT, pj

)
(26)
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TABLE 1 | The common and differences between the WPDINM and the top 500 proteins detected by other methods (DIP).

Methods (Me) |WPDINM ∩ Me| |Me-WPDINM| Percentage of essential
proteins in {Me-WPDINM}

(%)

|WPDINM-Me| Percentage of essential
proteins in{WPDINM-Me}

(%)

DC 168 332 22.89 332 68.98

IC 170 330 23.94 330 68.79

EC 139 361 24.65 361 69.81

SC 139 361 24.65 361 69.81

BC 134 366 21.31 366 69.95

CC 133 367 24.25 367 69.48

NC 225 275 36.36 275 64

Pec 213 287 38.68 287 60.98

CoEWC 226 274 39.05 274 60.22

POEM 243 257 40.86 257 58.37

ION 307 193 41.97 193 56.99

TEGS 265 235 52.76 235 57.02

TABLE 2 | The common and differences between the WPDINM and the top 500 proteins detected by other methods (Krogan).

Methods (Me) |WPDINM ∩ Me| |Me-WPDINM| Percentage of essential
proteins in{Me-WPDINM}

(%)

|WPDINM-Me| Percentage of essential
proteins in{WPDINM-Me}

(%)

DC 195 305 32.13 305 64.92

IC 196 304 30.59 304 65.79

EC 166 334 25.75 334 69.46

SC 166 334 25.75 334 69.46

BC 169 331 31.12 331 70.09

CC 158 342 23.98 342 69.01

NC 217 283 38.52 283 62.89

Pec 193 307 34.85 307 62.21

CoEWC 199 301 37.21 301 61.46

POEM 211 289 39.10 289 61.59

ION 305 195 36.41 195 61.54

TEGS 226 274 44.52 274 59.12

Similarly, supposing that there is
WppiM

(
p1, pi

)
≤ WppiM

(
p2, pi

)
≤ ... ≤ WppiM

(
pT, pi

)
,

then we define the allocation possibility of weight from pj to pias
follows:

WAP
(
pj, pi

)
= WppiM

(
pj, pT

)
∗WppiM

(
pT, pi

)
(27)

Hence, based on the above formulas, for any two given protein
nodes pi and pj in WppiN, we can obtain an allocation possibility
matrix of weights between them as follows:

WAPM
(
pi, pj

)
={

ρ ∗WAP
(
pi, pj

)
/
∑

k WAP
(
pi, pk

)
: if

∑
k WAP

(
pi, pk

)
6= 0

0 : Otherwise
(28)

Where ρ is the adjustment parameter with a value
between 0 and 1.

Based on the above allocation possibility matrix WAPM, let
a possibility vector St+1 denote the vector of scores of proteins
at the (t+1)th iteration, then we can calculate the proteins ranks

iteratively as follows:

St+1 = µ ∗WAPM ∗ St + (1−µ)S0 (29)

Where µ ∈ (0, 1) is a scale parameter for adjusting the
proportion of the current score vector St and initial
score vector S0.

Based on the above descriptions, the algorithm WPDINM can
be briefly described as follows.

Algorithm 1:WPDINM
Input: domain data, Original PPI network, original

protein-domain network, subcellular data, orthologous data,
iterative error value ε, the proportion regulation parameters
β, ϕ, θ, τ, ω, µ

Output: proteins score vector S

Step 1: Establishing weighted PPI network based on formulas
(1–7);
Step 2: Establishing weighted domain-domain network based
on formulas (8, 9);
Step 3: Establishing weighted protein-domain network based
on formulas (10–12);

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 645932

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-645932 March 11, 2021 Time: 17:1 # 10

Meng et al. Method for Essential Protein Prediction

Step 4: Initializing proteins scores based on formulas (13–25);
Step 5: Establishing allocation network based on formulas (26–
28);
Step 6: Calculating the St+1based on the formula (29),let
t = t+1;
Step 7: Repeating Step 6 until there is ||St+1−St||2<ε;
Step 8: Sorting the proteins scores for vector St+1 through
descending order.

RESULTS

Comparison of Twelve Essential Proteins
Prediction Measures
The data presented by the bar chart illustrates that the
identification performance of WPDINM exceeds the other
measures by comparing the forecast accuracy from top 1% to
top 25% proteins. It’s apparent from Figure 2 that, with the
comparison of prediction accuracy in the top 1% proteins, 90.19%
of the true key proteins are detected by the WPDINM method.
By deferring the top 5% of proteins, the identification precision
of WPDINM is up to 81.96%. The prediction result from the top
10% of proteins shows that the percentage of essential proteins
identified by WPDINM is 70.58%. The prediction accuracies of
WPDINM are 27.4, 19.6, 15.3, 13.2, 10.3, and 8.4% higher than
the NC method from the top 1% to top 25%. By comparing it
with the TEGS method, the precision of WPDINM increase by
3.6% from the top 25% of proteins.

Figure 3 shows the identification accuracy in the Krogan
database. By observing the top 1% of proteins, the true essential
proteins predicted by WPDINM make up 95%. With the top
5% proteins, 145 essential proteins detected. For the top 10%
proteins, the proportion of essential proteins detected by the
WPDINM is 5.7% observably higher than TEGS. For the top
15% and top 20% of proteins, the WPDINM can acquire
66.7% and 60% of the identification accuracy. In particular,
in the top 25% candidate proteins, the prediction accuracy of

TABLE 3 | The AUCs of WPDINM and nine different methods in the Krogan
database and DIP database.

Method AUC (DIP) AUC (Krogan)

DC 0.6704 0.6583

IC 0.6657 0.6573

EC 0.6384 0.6167

BC 0.625 0.6248

SC 0.6384 0.6167

CC 0.6291 0.6114

NC 0.6879 0.6584

Pec 0.6329 0.6316

CoEWC 0.6513 0.6404

POEM 0.6662 0.6726

ION 0.7522 0.7413

TEGS 0.7386 0.7287

WPDINM 0.7714 0.778

WPDINM is, respectively, enhanced by 5.9% by comparing
with TEGS. From what has been analyzed above, we can
conclude that, whether in the DIP dataset or the Krogan
database, the prediction performance of WPDINM is superior
to these methods.

Validated by Jackknife Methodology
To further assess the prediction effect for WPDINM, the
Jackknife Methodology is adopted to compare WPDINM with
other methods. Figure 4 shows the comparison results from
the top 600 ranked proteins in the DIP dataset between the
WPDINM method and other methods. As is revealed by
Figure 4A, we can see that the WPDINM has more advantages
than six prediction methods including IC, DC, CC, NC, BC,
and EC. Figure 4B indicates that the performance of WPDINM
exceeds the six methods: SC, Pec, CoEWC, POEM, ION,
TEGS, respectively.

Figure 5 indicates the comparison result from the top 600
ranked proteins between the WPDINM and other measures in
the Krogan dataset. From Figure 5A, it can be seen that the curve
of WPDINM is above the curves of other competitive methods,
containing DC, IC, EC, BC, CC, and NC. From Figure 5B, we
can observe that the WPDINM is superior to the six methods
including SC, Pec, CoEWC, POEM, ION, and TEGS.

Differences Between WPDINM and Other
Methods
To compare the differences between WPDINM and other
methods, we select the top 500 ranked proteins to compare the
WPDINM with the 11 methods. The results of the comparison
are shown in Tables 1, 2. The Methods (Me) is a series of
measures compared with the WPDINM methods. WPDINMMe
is a set of proteins identified by the WPDINM and one of the Me.
|WPDINMMe|denotes elements numbers of the WPDINMMe.
WPDINM−Me represents the proteins detected by WPDINM
except the proteins detected by both WPDINM and one of
Me. Similarity, Me−WPDINM denotes the the proteins detected
by one of Me except the proteins detected by both WPDINM
and one of Me. |WPDINM−Me| and |Me−WPDINM| are
the numbers of proteins in WPDINM−Me, Me−WPDINM,
respectively. The data provided in Table 1 shows the distinction
between the WPDINM method and the eleven kinds of methods
in the DIP dataset. It can be found from the second column of
the table that the numbers of proteins identified by WPDINM
and DC,IC, CC,BC,IC,EC are fewer than 200 proteins. In terms
of the data for NC, the numbers of common proteins detected by
both WPDINM and NC is just less than half. The proportions of
overlapping proteins predicted by WPDINM and Pec, CoEWC,
POEM are not more than half. Table 2 reflects the differences of
between WPDINM methods and other methods in the Krogan
database. From Table 2 we can see that the proportion of key
proteins in {WPDINM-Me} is higher than one of the methods.

We further employ the receiver operating characteristic curve
(ROC) and Precision-recall curve (PR) to test the prediction
ability of the WPDINM model. The larger the area under
the ROC curve (AUC), the better the prediction effect of the
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FIGURE 6 | Comparison of PR curves and ROC curves between WPDINM and the other competing methods based on the DIP database. (A) The PR curves of DC,
BC, SC, NC. (B) The ROC curves of DC, BC, SC, NC. (C) The PR curves of EC, IC, CC, PeC. (D)The ROC curves of EC, IC, CC, PeC. (E) The PR curves of
CoEWC, POEM, ION, TEGS. (F) The ROC curves of CoEWC, POEM, ION, TEGS.
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FIGURE 7 | Comparison of PR curves and ROC curves between WPDINM and the other competing methods based on the Krogan database. (A) The PR curves of
DC, CC, EC, NC. (B) The ROC curves of DC, CC, EC, NC. (C) The PR curves of IC, SC, PeC, BC. (D) The ROC curves of IC, SC, PeC, BC. (E) The PR curves of
CoEWC, POEM, ION, TEGS. (F) The ROC curves of CoEWC, POEM, ION, TEGS.

Frontiers in Genetics | www.frontiersin.org 12 March 2021 | Volume 12 | Article 645932

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-645932 March 11, 2021 Time: 17:1 # 13

Meng et al. Method for Essential Protein Prediction

TABLE 4 | Number of essential proteins identified by WPDINM and 11 methods based on the GAVIN database.

Methods Top 1% (19) Top 5% (93) Top 10% (196) Top 15% (279) Top 20% (371) Top 25% (464)

SC 0 17 87 130 190 240

EC 0 38 94 134 166 209

BC 9 40 85 122 162 201

DC 7 36 101 158 222 264

IC 16 55 119 163 213 254

CC 11 45 93 135 180 221

NC 11 51 123 170 213 259

Pec 15 69 142 193 238 285

CoEWC 16 69 136 190 237 275

POEM 17 74 148 199 249 296

ION 17 73 150 207 263 312

WPDINM 17 83 156 223 281 333

measure. The AUC data for all methods are collected in Table 3.
Figures 6, 7 show the ROC curves and PR curves of the
WPDINM method and various methods based on the DIP
database and the Krogan database, respectively. As depicted in
Figure 6F, although the ROC curves of WPDINM and ION
have a little overlap, the AUC of WPDINM from Table 3 is
higher than the ION model. Figure 7 shows that the ROC curve
of WPDINM is higher than other competitive measures in the
Krogan database.

As shown in Table 4, when comparing with the other 12
measures, the prediction accuracy of WPDINM is highest from
top1% to top 25%. This reveals that the indication effect of the
WPDINM model is better than 12 competing methods and that
the WPDINM method has applicability to a large extent.

The Analysis of Parameters
Because the prediction precision needs to be enhanced, we set
a proportions parameter µ ∈ (0, 1) in iterative formula (29). As
is demonstrated in Table 5, we can see that in the DIP dataset,
different values of parameter µ can have various influences on
the experiment result. The statistics show the prediction accuracy
in the top 1% to the top 25% proteins, when the parameter µ is
set to a different value. It can be seen that the forecast accuracy
slightly fluctuates, with the value of µ increasing. We repeat the
same operation in the Krogan database. The data in Table 6
presents the prediction performance from the Krogan database
when parameter changing. Finally, because the prediction result
is most competitive when the value of µ is 0.4, we choose to
compare it with other methods.

For the sake of achieving higher prediction accuracy, we
set a series of parameters. When calculating the weighted
protein-protein network, we add two parameters β, γ to the
computing formula (7). β and γ are adopted to regulate
the ratio of two kinds of similarity between proteins. When
the values of β and γ are set to 0.5, the WPDINM
method obtains the best prediction effect. In formula (19),
the parameters ϕ, θ and τ are employed to adjust the
proportion of three features such as subcellular localization,
orthologous information, and triangles features. The best
experimental result is obtained by setting ϕ, θ and τ to

TABLE 5 | Influence of the parameter µ on WPDINM’s predication accuracy (DIP).

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank

Top 1% 46 46 46 46 46 46 46 46 46

Top 5% 212 211 210 209 209 209 209 210 210

Top 10% 361 360 361 360 359 359 359 359 357

Top 15% 472 471 470 474 476 476 478 478 479

Top 20% 566 568 568 569 568 569 570 570 569

Top 25% 651 651 651 651 651 652 652 652 649

TABLE 6 | Influence of the parameter µ on WPDINM’s predication
accuracy (Krogan).

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank

Top 1% 35 35 35 35 35 35 35 35 35

Top 5% 147 147 146 145 146 146 145 145 148

Top 10% 268 267 268 267 267 265 264 264 264

Top 15% 369 369 367 368 366 367 369 367 365

Top 20% 440 441 441 441 439 436 437 436 437

Top 25% 500 502 502 504 503 504 504 503 501

0.25, 0.35, and 0.45, respectively. Moreover, in formula (25),
when the value of ω is set to 0.7, the WPDINM obtains the
best performance.

DISCUSSION

Essential proteins perform a crucial role in medicine and disease
research, which deepen understanding of biological life processes.
Accordingly, the prediction of key proteins has become a popular
topic in recent years and deserves close attention. Recently, most
computational models combining PPI networks and biological
information are designed so that simple use of PPI data is
unfavorable for achieving prediction accuracy.

The present study proposes a prediction algorithm to detect
key proteins by integrating a PPI network and series of protein
feature data. Firstly, we construct the weighted PPI network
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based on the original PPI network and gene expression data
processed by DFT. Next, the weighted domain-domain network
is established based on the original protein-domain network.
Then, by integrating the weighted domain-domain network with
the weighted PPI network, the new weighted protein-domain
network is further constructed. After that, we assign the initial
scores for each protein by combining the topological feature and
some biological information such as orthologous information,
and subcellular information. Finally, we design a novel iteration
algorithm based on the PageRank algorithm to compute protein
scores iteratively. As a result, to testify the performance of the
WPDINM algorithm, the WPDINM method is applied to three
datasets including the DIP database, the Krogan database, and
the Gavin database. The experimental result shows that the
WPDINM achieves better indication than competitive methods.
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