This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Survey of Software Clone Detection
from Security Perspective

HAIBO ZHANG', and KOUICHI SAKURAI? (Member, IEEE)

' Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan (e-mail:

zhang.haibo @inf kyushu-u.ac.jp)

? Department of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, Japan (e-mail: sakurai @inf kyushu-u.ac.jp)

Corresponding author: Haibo Zhang (e-mail: zhang.haibo@inf kyushu-u.ac.jp).

This research was partially supported by Collaboration Hubs for International Program (CHIRP) of SICORP, Japan Science and

Technology Agency (JST).

ABSTRACT In software engineering, if two code fragments are closely similar with minor modifications,
or even identical as a result of copy-paste behavior, they are called software/code clones. Code clones
can cause trouble in software maintenance and the debugging process because identifying all copied
compromised code fragments in other locations is time-consuming. Researchers have been studying
code clone detection issues for a long time, and the discussion mainly focuses on software engineering
management and system maintenance. Another considerable issue is that code cloning provides an easy
way for attackers to maliciously inject code. A thorough survey of code clone identification/detection from
the security perspective is indispensable for providing a comprehensive review of previous related studies
and proposing potential research directions. This paper satisfies the above requirements. We review and
introduce previous security-related studies following three classifications and various comparison criteria.
We then discuss three further research directions: (i) deep learning-based code clone vulnerability detection,
(ii) vulnerable code clone detection for 5G-Internet of Things devices, and (iii) real-time detection methods
for more efficiently detecting clone attacks. These methods are more advanced and adaptive to technological

development and still have sufficient research space for future studies.

INDEX TERMS Code clone, security analysis, software clone, vulnerability detection

I. INTRODUCTION

N the field of software development, programmers prefer

to copy and paste a piece of source code directly from
another source code fragment, even if there are minor mod-
ifications, so that they look similar or even identical. This
is called software/code cloning [1], [2], some researchers
also call it code duplication [3]-[5]. Many reasons exist for
code cloning; the main reason is that code clones can help
programmers to finish their tasks more quickly. Programming
and maintenance issues occur because of this type of behav-
ior. For instance, if a bug is found in a cloned code fragment
of a software system, the programmer has to detect this bug
everywhere and fix it, which increases software maintenance
difficulties [1].

Furthermore, in terms of software system security, code
clones could lead to vulnerability propagation if a vulnerable
code fragment is cloned [6]. Even though software program-
mers are trying to write secure source code and minimize
vulnerabilities in the source code when developing their
systems [7], code clone behavior inevitably occurs during

VOLUME 4, 2016

the software programming process and propagates system
vulnerabilities [8], [9].

Code clone vulnerability detection has been studied in-
tensively. Jiang et al. [10] presented a scalable and accurate
approach for detecting code clones on the basis of identifying
similar subtrees. Yamaguchi et al. [11] proposed a method
called Chucky to statically taint source code, which can
identify anomalous or missing conditions linked to security-
critical objects. Farhadi et al. [12] presented a malicious
code clone detection technique for binary code based on
token normalization levels. Some researchers have also ap-
plied more advanced and efficient technologies to improve
the efficiency of vulnerability detection systems. Li et al.
[13] proposed a deep learning-based system for source code
vulnerability detection called VulDeePecker. For applications
based on code clone detection, Gao et al. [14] applied an
approach based on binary vulnerability search for cross-
platform Internet of Things (IoT) devices. Hum et al. [15]
proposed a system based on code evolution analysis and a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

clone detection technique to indicate cryptocurrencies that
might be vulnerable.

In this paper, we aim to provide a comprehensive review
of code clone detection methods based on vulnerable code
analysis. We compare previous studies following several
different analysis methods and detection techniques, and then
discuss open questions and future research trends in this field.
Our contributions are summarized as follows:

« We illustrate some key terminology, including related
definitions, code clone types, and techniques with code
samples.

« We comprehensively review and introduce previous
security-related studies following three classifications
and various comparison criteria.

« We discuss some open questions about deep learning-
based code clone vulnerability detection approaches,
which are more advanced and adaptive to technological
development than current technologies, and code clone
detection for 5G-IoT devices and real-time detection
methods that can detect clone attacks more efficiently.

To enable a better understanding of what we discuss in this
paper, it is organized to answer the following questions:

1) What is a code clone and why does it make software
vulnerable to cyberattacks?

2) What types of vulnerabilities can be detected by code
clone detection mechanisms?

3) What types of technologies can detect vulnerable code
clones and how do those technologies work?

4) What is the future research direction for vulnerable
code clone detection?

The remainder of the paper is organized as follows: In
Section II, we provide background information on why code
cloning occurs, and introduce several representative studies
and definitions of related terminology. In Section III, we
thoroughly review existing security-related code clone analy-
sis methods and detection techniques, and compare previous
studies. In Section IV, we discuss deep learning-based ap-
proaches, 5G-IoT-based code clone detection, and real-time
detection research directions. In Section V, we conclude this
paper and outline avenues for future studies

Il. BACKGROUND
In this section, we introduce the following:

« general background about why code cloning occurs; that
is, why programmers prefer to use copy-paste methods
during their programming work;

« issues arising from code cloning behavior; and

« definitions of several code clone-related terms, types
of code clones, and code clone detection phases and
detection techniques.

A. WHY CODE CLONING OCCURS

A good software engineering project should be developed
with thorough and mature programming; however, some-
times, programmers prefer to reuse a code fragment [16] to

2

finish their tasks, even if this is not encouraged. We analyzed
several reasons for code cloning.

1) Cost and time constraints

The main reason for code cloning is that it can help pro-
grammers to finish software development more efficiently
by reducing cost and time, particularly when meeting task
deadlines [2], [16], [17].

2) Limitations of programmers’ skills

Some junior, and even senior, programmers may receive
specific programming tasks beyond their capabilities. For ex-
ample, they may lack programming language proficiency or
have difficulty in understanding those tasks, which facilitates
code reuse [18].

3) Use of templates

Increasingly, code templates are providing more thorough
and mature code, algorithms, and frameworks for program-
mers to help them to finish software development more
efficiently. However, programs that use the same template
could include identical or closely similar code fragments,
which leads to code clones [2], [16].

4) Fear to bring in new ideas

Sometimes, new ideas or fresh code may result in a lengthy
software development life cycle, or even introduce new errors
to existing software [19], [20]. Hence, programmers fear
bringing new ideas or fresh code into their existing project

[2].

5) Accidental cloning

Sometimes, a programmer writes a piece of code that ac-
cidentally matches existing code, which leads to a type of
accidental code cloning [16].

B. ISSUES

As aresult of the reasons for code cloning mentioned above,
whether intentional or unintentional, code clones have led to
some issues in software development and maintenance.

+ Maintenance cost: Cloning a piece of code in soft-
ware can increase the post-implementation maintenance
effort. For instance, if one cloned code fragment is
modified, all other cloned code fragments have to be
located to maintain the consistency [21].

« Bugs propagation: Cloning a piece of code that in-
cludes a bug can propagate the bug to different locations
in the software system [2], [16], which also increases the
maintenance effort to identify this bug from all cloned
code fragments.

o Vulnerability propagation: If a piece of code that is
vulnerable to specific attacks is copied, it will lead
to vulnerability propagation across the entire software
system. In this paper, we mainly discuss vulnerability
detection approaches in software/code clones.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

C. CLONE DETECTION

Researchers have addressed clone issues by providing code
clone detection tools or approaches. Baker [22] developed
a program called dup, which can locate duplicate or near-
duplicate code sections in large software systems. Kamiya et
al. [23] proposed a token-based clone detection tool called
CCFinder, which extracts code clones in C, C++, Java,
COBOL, and other source files. Li et al. [19] proposed a tool
called CP-Miner, which can identify cloned code fragments
in large software systems using data mining techniques. Roy
and Cordy [24] proposed a lightweight application called
NiCad for a source code transformation system that can find
near-miss clones by applying an efficient text line compari-
son technique.

Several studies have also been conducted on clone detec-
tion approaches based on the application level. For Android
applications, Crussell et al. [25] presented a detection tool
called DNADroid, which can identify cloned applications
by computing the similarity between two applications. Chen
et al. [26] proposed an approach to measure the similarity
between code sections in two applications on the basis of
the method level. Similarly, Akram et al. [27] designed
DroidCC for detecting cloned Android applications based on
the source code level.

Meanwhile, many researchers have conducted excellent
surveys on the topic of code clone detection. Rattan et al.
[2] provided an extensive systematic literature review of
software clones in general and software clone detection in
particular, based on reviewing 213 articles from 2,039 arti-
cles published in 48 publication resources. Sheneamer and
Kalita [1] discussed details of code clones, such as types of
clones, detection phases of clones, detection techniques and
tools, and challenges faced by clone detection techniques, by
analyzing previous related studies. Saini et al. [16] discussed
code clone detection and management to help researchers
to start quickly on the basic concept of code clones and
detection techniques. Ain et al. [3] provided a comprehensive
review of the latest code clone detection tools and techniques,
and a systematic literature review of 54 studies.

In this paper, we focus on providing a comprehensive
literature review of vulnerability detection approaches in
code clone areas to help to provide researchers with a clearer
direction for future studies.

D. TERMINOLOGIES

We summarize several terms related to code cloning to help
readers to obtain a basic understanding of code clones [1],
(161, [28].

1) Code Fragment

A code fragment is a piece of source code, with or without
comments, in a software project. It can contain any number
of lines, statements, begin-end blocks, methods, or functions
needed to run a program. For instance, CODE FRAGMENT
1-5 are five different code fragments.

VOLUME 4, 2016

2) Code Clone Pair

If a code fragment is identical or similar with minor mod-
ifications to another code fragment, which means that they
are code clones, these two code fragments are called a code
clone pair. For example, the pair that consists of CODE
FRAGMENT 1 and CODE FRAGMENT 2 is a code clone
pair.

3) Clone Class

A clone class refers to a set of code clone pairs (more than
two code fragments) related to each other, with the same
equivalence relation. CODE FRAGMENT 1-5 could be a
clone class.

4) Clone Granularity

Clone granularity can be regarded as a research or detection
level. This means that the detection method can be executed
at the level of, for example, functions, classes, blocks, state-
ments, and files. Granularity can be predefined for directional
detection or not predefined, as for free granularity clones.

5) Precision and Recall

Precision and recall are two critical factors for evaluating
the system accuracy of detecting software clones. Precision
refers to the percentage of true negatives detected, and recall
refers to the percentage of total clones detected in the soft-
ware system, including false positives.

E. TYPES OF CLONES

To better understand what type of study belongs to code
cloning and analyze the target source code more efficiently,
the code clone issue could be classified into two main
groups: textual-level clone and semantic-level clone [1], [29],
[30]. CODE FRAGMENT 1-5 provide five code fragments
(Python) as examples of these two groups of clones. CODE
FRAGMENT 1 is an example of the original fragment.

Code Fragment 1: Original Code Fragment

Data: A string

Result: Count the number of one certain letter in the
string

1 def countElem (string, elem):

2 num = string.count(elem, 0, len(string))

3 # comment 1

4 print(num)

5 stri = "Hello world!"

6 sub="1"

7 countElem(stri, sub)

8 #comment 2

1) Textual-level Clone

This type of clone refers to two code fragments that perform
almost the same text task [31]. For a textual-level clone, this
can be further classified into three types of clone.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

Type-1: Exact clone A code fragment that is almost an
exact copy of the original code fragment except for whites-
pace, blanks, and comments is regarded as an exact clone.
Compared with the original code fragment, the Type-1 code
fragment simply modifies the layout of comments and deletes
one blank line, so it clearly belongs to the exact clone type.

Code Fragment 2: Type-1 Exact clone

Data: A string
Result: Count the number of one certain letter in the

string
1 def countElem (string, elem):
2 num = string.count(elem, 0, len(string)) #
comment 1

3 print(num)

4 stri = "Hello world!"
5 sub="1"
6 countElem(stri, sub) # comment 2

Type-2: Renamed clone A code fragment that is similar to
the original code fragment except for the names of variables,
functions, types, and literals is regarded as a renamed clone.
As shown in CODE FRAGMENT 3, compared with the
original code fragment, the Type-2 code fragment modifies
the function’s name from ‘countElem’ to ‘num_of_string,’
and some variables, such as ‘string’ to ‘a’ and ‘elem’ to ‘b.

Code Fragment 3: Type-2 Renamed clone

Data: A string
Result: Count the number of one certain letter in the
string
def num_of_string (a, b):
number = a.count(b, 0, len(a))
comment 1
print(number)

letter = "1"
num_of_string(string, letter)

1

2

3

4

5 string = "Hello world!"
6

7

8 #comment 2

Type-3:Near miss clone A code fragment that is almost
the same as the original code fragment except for some
modifications, such as added or removed statements, and a
different use of literals, variables, layout, and comments [1]is
regarded as a near miss clone. The Type-3 code fragment be-
longs to the near miss clone type because of the modification
that only replaces variables ‘string’ and ‘elem’ with ‘a’ and
‘b,” respectively.

2) Semantic-level Clone
The second group of code clones is based on the semantic
level, and is called the Type-4 clone.

Type-4: Semantic clone A code fragment that is similar
to the original code fragment based on their functions and

4

Code Fragment 4: Type-3 Near miss clone

Data: A string

Result: Count the number of one certain letter in the
string

1 def countElem (string, elem):

2 a = string

3 b =elem

4 num = string.count(b, 0, len(a))

5 # comment 1

6 print(num)

7 stri = "Hello world!"

8 sub="1"

9 countElem(stri, sub)

10 #comment 2

not syntax [32]is referred to as a semantic clone. The Type-
4 code fragment modifies the code using ‘for loop’ to im-
plement the same result achieved using the function ‘count,’
which refers to a semantic clone.

Code Fragment 5: Type-4 Semantic clone

Data: A string

Result: Count the number of one certain letter in the
string

1 def countElem (string, elem):

2 num = 0

3 for i in string:

4 # comment 1

5 ifi=="1"

5 num = num + 1

4 print(num)

5 stri = "Hello world!"

6 sub="I"

7 countElem(stri, sub)

8 #comment 2

F. CODE CLONE DETECTION PHASES

Fig. 1 shows the entire life cycle of code clone detec-
tion; some researchers prefer to call the process from pre-
processing to report clones clones the code clone detection
phases. The Code clone detector is the main component of a
clone detection system, and is in charge of acquiring copy-
pasted or duplicated source code and then processing the
major clone detection phases. For instance, Davey et al. [33]
provided a comprehensive illustration of the fundamental
process of developing SOM-based and DCL-based clone
detection tools.

1) Pre-processing
Pre-processing is the first step of code clone detection that
[28]:

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

copy&pasted/duplicated
programming (source code)

Code Clone Detector 4%> Pre-processing

~__]
d t VS. s target fil |
source coae segments . argetries .
g -— '8 |
C . Detection
onversion Matching
(Token) (" AST (" pDG)

Removing Clones

_ Report Clones

fe——

Post-processing Formatting

!

=

Processed files

code clone detection phases

FIGURE 1. Life Cycle of Code Clone Detection.

o removes all uninteresting or irrelevant parts of the
source code, such as whitespace and comments, to re-
duce unrelated comparisons and calculation;

« identifies the remaining source code as source units,
which are used for checking for the existence of direct
clones’ relations to each other after removing irrelevant
fragments [1]]; and

« divides sources units into smaller comparison units de-
pending on the comparison algorithm.

2) Conversion

Conversion, also called transformation, is used to convert
the source code acquired from the pre-processing step into
a corresponding intermediate representation for further com-
parison [16]. Types of intermediate representation are the To-
kens, Abstract Syntax Tree and Program Dependency Graph,
which we introduce in detail in Section III.

3) Detection Matching

This step compares the source code units with target files
using a particular comparison algorithm to identify similar
source code fragments. The output of this step is a list of
clone pairs or clone classes.

4) Formatting

This step formats the list of clone pairs obtained from the
previous step based on the comparison algorithm into a new
clone pair list related to the original source code.

5) Post-processing
Post-processing, also called filtering/manual analysis [34]],
is not required by all code clone detection systems, and is

VOLUME 4, 2016

used to filter out false positives or missed clones on the basis
of reanalysis by human experts or automated heuristics.

6) Report Clones

Clone results analyzed and confirmed by previous detection
phases can be reported to the system for further action, such
as correcting or removing the source code.

lll. SECURITY-RELATED WORKS

In addition to the maintenance and debug cost arising from
code clone behavior, software vulnerability propagation is
another serious issue. Programmers may use source code
files downloaded from websites that are intensively modified
by attackers that can help those attackers to infiltrate their
target systems easily. Islam et al. [35] proved that the security
vulnerabilities found in code clones have a higher severity
of security risk than those in non-cloned source code by
detecting code clones and vulnerabilities in 8.7 million lines
of code over 34 software systems based on quantitative
analysis with statistical significance. Karademir and Leblanc
[36] conducted an experiment that used the NiCad [37] clone
detector to identify JavaScript vulnerabilities in PDF files.
Nappa et al. [38] presented a systematic study of the effect of
shared/cloned code on vulnerability patching for client-side
applications.

In this section, we provide a comprehensive review of
recent security-related studies, analyze and discuss their pri-
mary purpose, present systems or architectures, and evaluate
results from different analysis methods and detection tech-
niques.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

A. STATIC ANALYSIS VERSUS DYNAMIC ANALYSIS

The code clone detector shown in Fig. 1 plays an essential
role during the entire life cycle of clone detection. Further-
more, analysis methods can be regarded as core functions of
clone detectors. Analysis methods of code clone detection
can be classified as static analysis and dynamic analysis,
in addition to hybrid analysis, which refers to the advanced
combination of both.

1) Static Analysis

Static analysis refers to analyzing a piece of source code to
detect possible defects in the early stage without any pro-
gram’s dynamic execution. Two types of static code analysis
methods exist: one uses a machine that can read and check
the source code automatically to detect possible clones, and
the other is performed by a human reviewing the source code,
also called code review [39]. The reviewer could be an expert
or peer developer who fully understands the source code and
manually reviews it to identify any missed clones or false
positives.

Vulnerability detection versus code clone detection:
Static code analysis is typically used for software/source
code vulnerability detection. Source code vulnerability de-
tection methods normally refer to the code or function simi-
larity comparison between detected and target files based on
normalizing or abstracting the source code into a represen-
tation. Code clone vulnerability detection can be regarded
as a type of special software vulnerability detection, where
the original code fragment is the target code fragment. De-
tection methods, particularly for vulnerability identification,
can be adopted as references in the detecting vulnerable
code cloning scenario. In this section, we discuss both of
vulnerability detection and code clone detection.

Table 1 provides a comparison of several vulnerable code
clone detection studies based on static code analysis methods.
It compares these studies by illustrating their primary re-
search purposes, detection techniques, and evaluation factors.

i) Source Code Vulnerability Detection

Zhang et al. [40] proposed an approach that uses trace-
based security testing methods to detect software vulnerabili-
ties in C programs. They generated a program constraint (PC)
and obtained a security constraint (SC) by applying symbolic
execution based on each hotspot mentioned above. The judg-

6

“ Hybrid Analysis >

Static Dynamic Analysis

Analysis
Integration & . Operations & |

i 1

. System Analysis . H
Devel t i

Planning & Requirements -[System Design H evelopment E|

FIGURE 2. Possible Analysis Methods during A System Development Life Cycle.

ment condition for a vulnerable hotspot was PCASC, which
means it satisfies PC but violates SC.

To enhance the accuracy of vulnerable source code similar-
ity analysis, Zhu et al. [44] proposed a solution that combines
the Simhash algorithm and MDS5 matching algorithm. The
authors considered the problem in which the traditional hash
algorithm cannot record the difference between similar files
by generating identical fingerprints with local sensitive hash-
ing. They used the Simhash algorithm to complement the file-
level homology analysis algorithm based on MD5 matching.

As mentioned previously, automatic static analysis has
some limitations, such as missing checks in the source code.
Yamaguchi et al. [11] introduced a method called Chuckythat
can identify missing checks (for vulnerability discovery) in
the source code automatically based on static analysis to
help to accelerate the manual code review. Their method
includes five major steps: (a) extract sources, sinks, condi-
tions, assignments, and API symbols from a function’s source
code using a robust parser; (b) identify functions in which
a similar context code operates; (c) determine only those
checks associated with a given source or sink; (d) embed a
selected function and its neighbors in a vector space using
the tainted conditions; and (e) perform anomaly detection
for missing checks based on identifying large distances from
the normality model over the functions. They also provided
suggestions for correcting potential fixes.

ii) Vulnerable Code Clone Detection Jang et al. [41]
proposed a detection system called ReDeBugthat focuses on
detecting unpatched source code flaws from code cloning.
Unpatched code clones refer to buggy codes that are cloned
by programmers but missed or unpatched when patches to
source files are debugged and installed. Compared with pre-
vious detection techniques, ReDeBug does not focus on the
number of detected clones but the scalability across the entire
operating system. ReDeBug performs as a language-agnostic
system to identify sequences of known vulnerable patched
code fragments that are extracted and normalized from the
diff files in the source code file to obtain the unpatched code
clone list.

Li et al. [42] proposed a software vulnerability detection
system by applying a backward trace analysis approach and
symbolic execution method. Their system considers only
vulnerability-related paths to mitigate the path exploration
problem. They implemented this system using backward

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

TABLE 1. Comparison of Static Analysis-based Code/Clone Vulnerability Detection

Code Manual
Authors Year Clone Purpose Technique Code Evaluation Ref.
Related Analysis
Quickly detected all reported
SecTAC: Trace-based symbolic vulnerabilities and 13 new
Zhang etal. | 2010 No Petecting vulnerabilities executif)n by judging programA Need ones that have not been . [40]
in C programs. constraint and security constraint detected before from applied
and satisfiability analysis. programs (14 benchmark and
3 open-source).
1) Good scalability
ReDeBug: 1dentifying sequences and language agnostic.
Detecting unpatched of known vulnerable patched code 2) Found a large amount of
Jang et al. 2012 Yes Yulnerabl.e: code cl(?nes fragmeflts, which is extracted ’c.ll’ld No vulnerable unpatched clones [41]
in the entire operating normalized from the diff files, in from all packages.
system distributions. the source code file to get the 3) Good performance for
unpatched code clone list. detecting real bugs in the real
world industry.
Detecting software Backward trace analysis & 1) Precision: 83.33%
Li etal. 2013 Yes clones by selecting only | symbolic execution by judging Need 2) Recall: 90.90% (42]
vulnerability related program constraint (PC) and 3) FI_Value: 86.95%
paths. security constraint (SC).
Detecting missing Identified 12 missing cloning
Yamaguchi clones (vulnerability Chucky: Parsing source code vulnerabilities in two (Pidgin
2013 No discovery) to help to extract sources and sinks and Need and LibTIFF) of five projects | [11]
et al. accelerate the manual then identifying similarities. (Firefox, Linux, LibPNG,
code reviewing. LibTIFF and PidPNG).
Detecting vulnerabilities | VUDDY: Generating fingerprint 1) Able to process a billion
in a large software dictionary through abstracting lines of code in 14 hours and
Kim et al. 2017 Yes programs and reducing and normalizing; comparing No 17 minutes. [43]
the number of signature fingerprint of vulnerabilities with 2) Detected 24% more
comparisons. target programs. unknown vulnerable clones.
Enhancing the accuracy Combining the Simhash algorithm Tested in three different
Zhu et al. 2019 No of code vulnerability and MDS5 matching algorithm No projects with all precision [44]
similarity analysis. based on utilizing LSH to generate values above 95%.
similar fingerprints.
VGRAPH: Comprising the code 1) Compared with four
property relationships between vulnerability detection
Bowman Identifying modified three graph-based components techniques: FlawFinder,
& 2020 Yes vulnerable code clones (triplet match) extracted from the No RATS, VUDDY, ReDeBug. [45]
Huang and all types of clones. contextual code,the vulnerable 2) Precision: 98%
code, and the patched code. Recall: 97%
Flyalue : 97%
1) Addressed dynamic
Defending against code arguments input limitations
reuse attacks with Saffire: function specialization while system running.
Mishra 2020 Yes specializing functions based on stfitic argument~bin‘ding Need 2) Low runtime and memory (46]
etal. with a restricted and dynamic argument binding. overhead.
interface. 3) Could prevent whole-

function reuse in critical

system functions.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

tracing of sensitive data used in a detected hotspot. They
then used a data flow tree to recover the program’s execution
paths, which helped them to focus only on sensitive related
data. Like Zhang et al.’s study, they also applied PC and SC
mechanisms to verify existing vulnerabilities. They also pro-
posed a software vulnerability discovery mechanism using
code clone verification (CLORIFI) [6]], which can discover
vulnerabilities in real-world programs in a scalable manner.

Kim et al. [43] proposed a scalable approach called
VUDDY for code clone vulnerability detection. Its extreme
scalability is achieved by leveraging function-level granular-
ity and a length-filtering technique to reduce the number of
signature comparisons. Their approach was divided into two
main sections: pre-processing and clone detection [47].

« The pre-processing section includes retrieving functions
from a given program using a robust parser, abstracting
the source code by replacing it with symbols, normaliz-
ing the code body by removing unnecessary parts, and
generating fingerprint dictionaries for the next detection
process.

« The detection section works by comparing the finger-
print dictionary of vulnerabilities with the fingerprint
dictionary of target programs by applying key lookup
and hash lookup algorithms.

Bowman and Huang [45] used software source code prop-
erties to implement a more robust vulnerable code clone
detection system called VGRAPH. Their system aims to
identify vulnerable code modification and all types of clone
attacks by comprising the code property relationships be-
tween three graph-based (code property graph) components
extracted from the contextual code, vulnerable code, and
patched code. They called it a Triplet Match. To evaluate
their detection technique, Bowman and Huang also compared
VGRAPH with four state-of-the-art vulnerability detection
techniques, that is, FlawFinder, RATS, VUDDY [43], and
ReDeBug [41]], in accordance with the true positive, false
positive, false negative, precision, recall and F1 values.

Another scenario may lead to missing clones, that is, the
dynamic argumentation of source code functions. Normally,
static code analysis focuses on the static arguments of source
code functions, and then the dynamic arguments passed to
the source code functions are ignored while the system is
running. Mishra and Polychronakis [46] recently presented
a compiler-level defense approach called Saffire against code
clone/reuse attacks. Saffire performs static code analysis by
eliminating the static arguments and restricting the accept-
able dynamic values of arguments (user input, file address,
and system status) during system runtime. This approach ap-
plies a narrow-scope form of data flow integrity to specialize
functions with a restricted interface.

Although static code analysis is efficient in the early
stage of the code clone detection life cycle, there are some
inevitable limitations, such as time consumption, person-
nel training, and vulnerabilities introduced during program
runtime. Goseva and Perhinschi [48] evaluated three widely
used commercial static code analysis tools to detect security

8

vulnerabilities based on C/C++ and Java programs. Their
experiment showed that a certain number of vulnerabilities
were missed by all three tools. Furthermore, they did not pro-
vide any assurance of software product security and required
further manual effort to classify reported warnings. Hence,
dynamic analysis is needed for the late stages, particularly
unit testing.

2) Dynamic Analysis

Opposite to static analysis, dynamic analysis is performed
by executing the program with real-time data to detect target
system cloning issues [39]. Dynamic analysis can proceed
on virtual machines, or even real processors, by monitoring
the system’s behavior while the system is running. This type
of analysis method helps to detect vulnerabilities introduced
during the entire system life cycle, particularly after static
code analysis.

A critical role of dynamic analysis is to detect the real-time
vulnerability introduced to avoid missing clones during the
entire system life cycle. It is not easy to provide an explicit
definition of dynamic analysis. Some researchers analyze
application similarity on a code/method/function level, but
we classify this kind of analysis as dynamic analysis after
the implementation phase. In Table 2, we summarize some
dynamic analysis studies for clone attack detection based
on various working environments with corresponding attack
methods, technologies, and evaluations.

a: Sensor Networks

Sensor networks provide a vulnerable environment for ad-
versaries to easily compromise and duplicate sensors, and
use them as weapons to obtain access to the entire network
using legitimate credentials [S0]. Parno et al. [S1] presented
a detection system to prevent the node replication attack in
a distributed sensor network environment. However, their
study did not mention further attacks that result from cloning
compromised sensors that spread to the entire network. Choi
et al. [49] provided a clone detection scheme called SETin
sensor networks. They modeled a sensor network as a set of
non-overlapping sub-regions, and assigned a unique identi-
fier to each sensor node. The subset of each node in each
sub-region is exclusive to other nodes. If adversaries capture,
compromise, and duplicate sensor nodes in the network,
the clone attack can be detected because of the intersecting
subsets of the cloned nodes. Xing et al. [50] proposed an
approach for the real-time detection of cloned-sensor attacks
in wireless sensor networks by computing the fingerprint of
each sensor to extract the neighborhood characteristics and
check the validity of the originator’s fingerprint for each
message. Their approach achieved high detection accuracy
based on a low computation and storage cost for node/sensor
cloning scenarios during fingerprint generation and the de-
tection phase. Furthermore, with no limitation on the number
of cloned sensors, their approach improved on the results of
related studies [49], [51].

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

TABLE 2. Comparison of Dynamic Analysis-based Software Clone Attacks Detection

a clone detection technique.

false positives.

Authors Year Environment Attack Method Real-ti.me Technique Evaluation Ref.
detection
SET operations on subset 1) Low communication
trees of all sensor nodes cost (O(N))
Choi et al. 2007 No to identify whether 2) Memory overhead need [49]
intersecting subsets (code further reduction
Cloned & clones) exists or not.
Sensor networks compromised 1) High detection accuracy
sensors 2) Low communication/
Xing et al. 2008 Yes Checking each sensor’s computation/storage cost [50]
fingerprint. 3) Improvement on number
limitation compared to [51],
[49]
1) Low false positive rate
DNADroid: Detecting 1 with identifying indeed
clone attacks by comparing similar clones.
Crussell etal. | 2012 No program dependency graphs | 2) May overlook cloned [25]
based on method-level. applications.
3) Need further comparison
to other approaches.
1) Good performance for
Type-1, type-2, cross-market app clone
type-3 clones Centroid: To measure the detection.
Android applications | and injected similarity between code 2) High accuracy for
Chen et al. 2014 vulnerabilities No fragments (method-level) distinguishing cloned [26]
during runtime. in two applications based methods.
on 3D control flow graphs. 3) Further improvement for
detecting Type-4 clones.
4) Not efficient for partial
cloning.
DroidCC: Detecting
APK source files based 1) Low cost, reliable and
Akram et al. 2018 Yes on excluding third-party scalable. [27]
libraries, normalization 2) High accuracy of 87%.
and feature extraction.
loTSeeker: labeled semantic
Compromised/ flow graph, semantic feature | High accuracy for both
Gao et al. 2019 IoT devices cloned IoT Yes extraction, neural network identifying code clone and [14]
devices model, calculating vectors vulnerability search.
distance.
Comparing similarities Successfully identified
between generated over 53% similar contract
Ethereum Cloned contact fingerprints of user-created pairs have the same
He et al. 2019 Smart Contract code Yes contracts code and contract- | vulnerability behaviors and [52]
created contracts code in over 46% have different
EVM run time to identify vulnerability behaviors.
vulnerable code clones.
Propagating Comparing given reported By answering:
vulnerable vulnerability with target 1) clone prevalence
Hum et al. 2020 Cryptocurrency cloned No cryptocurrency based on 2) approach accuracy [15]
cryptocurrency code evolution analysis and 3) true positives vs.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

b: Internet of Things

The rapid development of the IoT has triggered many security
issues, including various malicious code injections into IoT
devices. Program developers prefer to use the software clone
method to finish tasks quickly because of the large scale
and range of IoT devices. The consequent clone attacks need
more efficient corresponding detection approaches. To detect
code clones in [oT applications, Tekchandani et al. [53], and
Luo et al. [54] provided good results based on semantic-
level source code analysis; however, their studies were not
primarily on cloned vulnerability detection. Sachidananda et
al. [55] proposed a framework to detect various vulnerabili-
ties located in IoT devices using the static analysis method.
Their approach was efficient in terms of identifying many
types of attacks, such as memory leaks, code injection, buffer
overflow, and other code-related vulnerabilities. Liu et al.
[56] also proposed a similar vulnerability detection method
for IoT binary code, but not for code clone attack detection
in particular.

Gao et al. [14] presented an approach called loTSeeker for
cross-platform IoT device vulnerability detection based on
analyzing binary code at the semantic level. They constructed
a labeled semantic flow graph to capture both data flow
and control flow information from binary code. They then
extracted semantic features as numerical vectors and built a
detection neural network model for feature integration and
vulnerability search. Finally, loTSeeker calculated the cosine
distance between two embedding vectors to identify whether
vulnerable clones exist.

The supply chain provides another platform for introduc-
ing software clone attacks, such as cloned and compromised
RFID tags, which may help attackers to acquire confidential
credentials and authorization information to compromise the
supply chain system. Researchers [57]-[60] have proposed
several clone detection approaches for an RFID-embedded
supply chain system, and these approaches can be applied
to vulnerable RFID tag clone detection with the appropriate
improvement.

c: Android Applications

The Android operating system has become more popular and
widely used, and more security concerns have attracted re-
searchers’ attention. Some researchers have detected source
code similarities for Android applications, including Type-
1, Type-2, and Type-3 clones, and also injected vulnera-
bilities into applications during software runtime. Crussell
et al. [25] presented a cloning attack detection tool called
DNADroid, Chen et al. [26] presented a similarity/clone de-
tection approach called the centroid, both which are based on
comparing program dependency graphs between methods in
candidate applications. Crussell et al.’s study focused only on
identifying similar clones, thereby leading to a low false pos-
itive rate and missing clones. Chen et al.’s approach is more
accurate, has the explicit purpose of improving the detection
system’s accuracy and scalability, and has a greater focus on
cross-platform application clone detection. Akram et al. [27]

10

proposed a scalable clone detection approach called DroidCC
based on excluding third-party libraries, normalization, and
feature extraction, and evaluated their approach on a real-
time dataset.

d: Ethereum Smart Contract

With the rapid development of blockchain’s distribution
architecture, the Ethereum smart contract provides an en-
vironment for malicious code clones by injecting a piece
of contract code and propagating it to other blocks. He et
al. [52] focused on the ecosystem of the Ethereum smart
contract to characterize vulnerable code clones using the
fuzzy hashing technique to calculate the edit distance between
two fingerprints. Their approach compares the similarity
between generated fingerprints of user-created contract code
and contract-created contract code during Ethereum virtual
machine runtime.

e: Cryptocurrency

Cryptocurrency is another research topic of great interest
because of its novel security protection structure and wide
use in both academic research and industrial applications.
Hum et al. [15] proposed an approach called CoinWatch for
detecting code/system vulnerabilities in cryptocurrencies on
the basis of code clone detection technology. They provided
this type of approach because of the rapidly increasing use of
cryptocurrencies (e.g., Bitcoin) and their publicly readable
code structures [61], [62]. If one code fragment is vulnerable
to cyberattacks, the vulnerability is propagated into other
cloned code fragments or even cryptocurrencies.

CoinWatch has four main phases for vulnerabilities detec-

tion:

o CVE parsing linking it with commits: The first phase
involves CVE parsing and linking the result with possi-
ble commits. A target CVE is provided at input together
with data publicly obtainable from its structured details
[63]. After selecting a target CVE, CoinWatch performs
code evolution analysis of the parent project to obtain
bug fixing and bug introducing commits.

« Identification of vulnerable code: The bug introducing
and fixing commits are then manually annotated to
minimize the code responsible for the vulnerability and
improve the program.

« Initial filtering: This phase can be regarded as pre-
processing before moving to the detection process. To
narrow down the search space, which means to work
more efficiently, CoinWatch filtered the list of moni-
tored projects on the basis of the fork’s date before
running the clone detector.

o Detection process: The last phase is the core part of
CoinWatch: the clone detector. This part reports the
cloned projects that are likely to be affected by the vul-
nerability given the filtered source code of the monitored
cryptocurrencies.

Authors evaluated their approach by answering three re-

search questions about clone prevalence in cryptocurrencies,

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

the accuracy of CoinWatch, and the comparison of true
positives with false positives in the vulnerability detection
report.

3) Discussion

Malicious people typically target web applications as an
easy and flexible environment for code and script injec-
tion. However, few researchers have discussed this related
clone problem. Vineetha and Krishna [65] researched this
topic for code clone vulnerability analysis and detection in
web applications by analyzing the web page structure and
comparing the similarities. They did not propose a powerful
detection system, and further evaluation for their approach is
needed. Agrawal et al. [66] presented a detection framework
to identify web application clones based on the source code
level. They presented their framework following a detailed
process introduction involving executing and monitoring,
classifying and controlling, and refining and managing code.
Many security practitioners have adapted this framework;
however, the framework is limited to the source code level,
which is not flexible for dynamic detection.

Following recent technological improvements, static or
dynamic analysis per se cannot satisfy the requirement to
prevent various increasing cyberattacks. For example, it is
difficult and will take a longer time to trace back a piece of
vulnerable code to its exact location through dynamic anal-
ysis only. Static analysis cannot obtain access to some types
of source code files if the source code is not available or the
executable file has been packed by packer or protector tools.
Hybrid and advanced analysis methods, such as binary code-
level detection methods, are necessary for more efficient code
clone detection and source code fixing.

B. REPRESENTATIONS

Software clone detection techniques can be classified on
the basis of different representations as five types: text-
based, token-based, AST-based, program data graph-based,
and metric-based. In this section, we provide a review of
security analysis studies on these clone detection techniques.
In Table 3, we summarize several studies by comparing
their representations, purpose, possible detected clone types,
applied techniques, and evaluations.

1) Text-based
Text-based code clone detection technology simplifies the
source code to a sequence of characters by removing unnec-
essary parts, such as comments, whitespace, and new lines,
from the source code [72]—-[74]. It compares the similarity
between these character sequences individually, and then
returns the matching results [28]. Text-based code clone
detection can be used to detect Type-1 (exact clones), Type-
2 (renamed clones), and Type-3 (near-miss clones) code
clones, which are based on the textual level.

Karademir et al. [36] and Alalfi et al. [68] both presented
approaches for detecting vulnerable near-miss clones (Type-
3) based on a text-based technique. Karademir et al.’s ap-

VOLUME 4, 2016

proach identifies malware from JavaScript in Adobe Acrobat
(PDF) files. It compares the similarity between collected PDF
files that contain JavaScript malware and clear JavaScript.
Their approach uses the NiCad clone detector, which is par-
ticularly for near-miss clone detection. Alalfi et al.’s approach
identifies near-miss interaction clones in reverse-engineered
UML sequence diagrams. Their approach works at the XMI
level. They also used the NiCad clone detector to help to
process the detection in the reverse-engineered behavioral
model.

2) Token-based
Token-based code clone detection technology converts the
source code into an intermediate representation, that is, a
token sequence, using a certain token conversion tool before
the detection phase [1], [28]. One converted token sequence
can be compared with another converted token sequence
under a matching rule to obtain the matching results for
further processing. Representative token-based techniques
are CCFinder [23] and CP-Miner [75]. Compared with text-
based techniques, a token-based technique is more robust
against code changes, such as formatting and spacing [10].
Farhadi et al. [67] proposed a scalable code clone detection
approach called ScalClone for malware analysis on the basis
of their previous approach, which was for an assemble code
clone detection method [12], [76]. Their approach discovers
both exact and inexact clones at different token normalization
levels using a large-scale assemble code search. Akram et
al. [70] proposed a lightweight and scalable system called
VCIPR for vulnerability detection in unpatched source code
based on token normalization representation at function-level
granularity. They built a fingerprint index of the top critical
CVE’s source code to detect unpatched code fragments in
common open-source software.

3) Tree-based

Tree-based code clone detection technology also refers to
AST-based technology [1]. In the code parsing process, the
syntax tree-based method converts the source code into an
AST, and the representation is the tree node before the
matching and detecting phases [28]. The matching result is
returned by comparing two converted syntax trees.

In the code clone area, a source program can be parsed
into a parse tree or AST that represents the source code [10].
Subtrees can be compared through exact or close subtree
matches to detect whether any code clones exist [77]-[79].

Unruh et al. [64] proposed an approach to semi-
automatically detect vulnerable code snippets starting from
certain web tutorials and QA websites, which aim at assisting
programmers’ coding tasks. They applied AST-based graph
traversals to verify similarities in analyzed code snippets
that correspond to the original vulnerability. Unruh et al.
provided an example of an identified vulnerable code snippet
taken from a popular PHP tutorial and its corresponding AST
structure, and derived the template shown in Fig. 3. Shi et
al. [71] proposed a two-phase framework (training phase and

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

TABLE 3. Comparison of Detection-Techniques-based Code Clone Vulnerability Detection

Authors Year | Representation | Clone Type Purpose Technique/Tool Evaluation Ref.
Type-1 DECKARD: to cluster
Jiang et al. 2007 AST Type-2 Id.entif}./ing code. clon.ing characteris.tic vectors 1. Scalable a.l:ld accurate. [10]
Type-3 with minor modification. by comparing subtrees | 2. Language independent.
similarities.
Crussell 2012 PDG Type-4 Petectmg vulne'rablle clones Same as TABLE 2, entry 3. [25]
et al. in Android applications.
A small training set
Karademir 2013 XML file Type-3 Detecting near-miss clones NiCad clone detector produced 87% detection of [36]
et al. in a set of PDF files. previously known malware
with 1% false positives.
Chenetal. | 2014 PDG Type-4 | Detecting vulnerable clones Same as TABLE 2, entry 4. [26]
in Android applications.
ScalClone: applying 1) Support large-scale
Type-1 Identifying code clones of a | two assemble code assemble code search.
Frahadi 2015 Token Type-2 target malware from a clone search methods 2) Effectively identifying [67]
et al. Type-3 collection of previously for malware analysis assemble code clones for
analyzed malware binaries. at different token real-life scenarios.
normalization levels.
A semi-automated 1) Identified 117
Type-1 approach by applying vulnerabilities that have a
Unruhetal. | 2017 AST Type-2 Identifying vulnerabilities AST-based graph strong syntactic similarity [64]
Type-3 from tutorial-style snippets. traversals to verify to vulnerable code snippets.
similarities in code 2) Able to support large-
snippets. scale clone discovery.
Identifying near-miss clones Recall rate with 100% and
in reverse-engineered UML precision rate with 86%
Alalfi et al. 2018 XMI textual Type-3 sequence diagrams to NiCad clone detector compared to the previously [68]
representation characterize and abstract the published and validated
run-time behaviour of web SecureUML model [69].
applications.
Type-1 Detecting vulnerable code VCIPR: token-based Detecting unknown
Akrametal. | 2019 Token Type-2 clone in unpatched source approach for feature vulnerable clones with high | [70]
Type-3 code. extraction at function accuracy of almost 83%.
level granularity.
A two-phase approach
for comparing
Type-1 Finding vulnerable OS code | correlations by Improvement and higher
Shi et al. 2019 AST Type-2 clones. extracting function accuracy compared to [71]
Type-3 features derived from VUDDY and LSTM.

the AST structure at
the function level.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

<?php
include "db.php"; AST AST
$title=$_POST["title"];
$result=mysql_query("SELECT % FROM wp_posts where;
post_title like 'ftitlew’ (assien | [assieN (assieN | [assiaN | [assian | [assien |
and post_status='publish'");
$found-mysql_num_rows($result);
1 if ($found>0){ i DIM result CALL found CALL * bDIM * CALL * CALL
while ($row=mysql_fetch_array ($result)){ Stitle $ [] $ [J [] l] []
echo " $row[post_titlel</br>
) $row[guidl</1i>"; $_POST "itle” mysql_.. LIST mysql_.. $result $_POST * mysql_.. LIST mysql_.. *
Yelse{
echo " No Tutorial Found";
}

7

(a) Identified vulnerable tutorial

“...$title...” oo

(b) Abstract Syntax Tree

(c) Derived Template

FIGURE 3. SQL Injection and XSS Code Samples and corresponding Abstract Syntax Tree and Derived Template [64].

This code snippet (a) contains an SQL Injection vulnerability occurs on line 6 as the variable $title will be posted in an SQL query without first security processing.
Line 12 and 13 can result in the XSS attack by inserting database rows into the document directly. Part (b) describes an example of an abstract syntax tree
generated from the SQL Injection vulnerability of part (a), in which leaf nodes correspond to identifiers (variables), APl symbols or literals. Part (c) represents a
derived template from the abstract syntax tree by replacing all variables and literals using wildcard symbols and introducing edges between nodes to represent the

same variable.

detection phase) to identify vulnerable source code clones in
operating systems. The approach learns correlations on the
basis of AST normalization at function-level granularity.

4) PDG-based

PDG-based detection technology refers to converting source
code into a control flow and data flow graph, and then
returning the matching result by comparing the similarities
between the sub-graphs [28].

For Type-4 (semantic clones) code clones, the PDG-based
code clone detection method is efficient in terms of detecting
source code vulnerabilities because it preserves the semantic
features of the program [28]. Several research studies have
been conducted on the basis of this type of graph cooperation
method for vulnerability detection.

The final subsection (dynamic analysis) introduces some
studies that used program data graph abstraction for fea-
ture extraction. For instance, Crussell et al. [25] proposed
DNADroid, Chen et al. [26] proposed the centroid, both
for detecting Android application cloning vulnerabilities.
Their approaches are capable of identifying Type-4 (semantic
clones) code clones in a dynamic software operating environ-
ment.

5) Metric-based

The metric-based code clone detection method parses the
program by dividing the source code into several small code
segments, and then calculates the difference value among
these code segments and determines whether the calculated
values are the same (a clone) [28]. Mayrand et al. [80]
discussed using metric extraction techniques to automatically
detect function cloning in a software system. Their study
focused on analyzing and comparing control graph metrics
and data flow graph metrics on the basis of a previous AST
representation. Few researchers have primarily studied, or
specially mentioned, applying metric-based detection tech-
niques for vulnerable code clone detection. Therefore, a more
in-depth survey is needed regarding this aspect.

VOLUME 4, 2016

6) Discussion

As illustrated above, text, token, and AST-based detection
techniques can identify textual-based clone attacks, and the
PDG-based detection technique can detect semantic-based
clone attacks. However, (i) few researchers have aimed to
present a hybrid detection approach that is efficient in terms
of detecting both textual and semantic-based code/software
clone attacks; and (ii) it is not easy and obvious to select
a normalized source code representation while designing a
detection approach because there are no selection criteria.

C. BINARY-LEVEL DETECTION

When reviewing previous studies, we found that many re-
searchers focused on analyzing binary code-based similarity
comparison. The reason for binary-based analysis is that
software source code cannot be acquired at any time. Be-
cause of some privacy protection reasons, researchers have
to find another way to obtain software or application code, or
function information. Another reason might be the huge task
load of pre-processing, filtering, and feature extraction for
source code information. Khoo et al. [81] provided a search
system that identifies binary code by comprising instruction
mnemonics, control flow sub-graphs [89]], and data constants
extracted from binary code fragments. Lee et al. [83] intro-
duced a method for identifying software vulnerabilities from
assembly code using a deep learning mechanism. Hu et al.
[82] presented a semantics-based approach to identify binary
code clones.

Table 4 summarizes several binary-level-based code clone
detection techniques following a set of specific criteria. As
introduced in Table 4, some researchers have proposed effi-
cient binary-code reuse analysis and detection methods. For
instance, Frahadi et al. [12] introduced a method to identify
malicious cloned code binaries based on the token normaliza-
tion technique; Xue et al. [85] proposed a framework to de-
tect vulnerable code clones by slicing binary codes and iden-
tifying domain-specific code fragments; Azuma and Ishiura
[87] proposed detecting the loss of guards by comparing
binary-code pairs with or without problematic optimization;

13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3065872, IEEE Access

IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

TABLE 4. Summary of Binary-level Code Clone Detection.

Authors Year Static Dynamic Vector Technique Security Evaluation Ref.
Analysis | Analysis Generation
1. Time overestimate.
Rendezvous: to identify Not for 2. Need dynamic code
Khoo et al. 2013 X Control flow code clones using vulnerability instrumentation and (81]
sub-graphs. control flow sub-graphs detection. symbolic execution.
and data constants. 3. Threats to validity.
4. F2-measure: 86.7%.
To measure similarities 1. Accuracy: 82.6%.
Semantic of binary functions by Not for 2. Higher efficiency of
Hu et al. 2017 X signatures. emulating executions vulnerability pre-processing and [82]
and extracting detection. detection processing.
semantic signatures.
To compare vectored
assembly code with
Lee et al. 2017 X Instruction2vec. traml.ng dataset to Improved. Accuracy: 96.1%. [83]
classify whether
software weakness
exists or not.
BinClone: to identify the 1. Precision rate: higher
code clone fragments than 75%, recall rate:
Farhadi etal. | 2017 X Token o from a coll.ecti‘on of Improved. higher‘than 80%. [12]
normalization. malware binaries based 2. Avoided the non-
on the token-level. deterministic issue
as in LSH [84].
Clone-Slicer: To detect 1. 43.64% improvement
Domain-related | code clones by slicing Not for than Clone-Hunter [86].
Xue et al. 2018 X instructions. into and identifying vulnerability 2.32.96% time cut [85]
domain-specific binary detection. compared to Clone-
code fragments. Hunter.
To detect the loss of
guard by comparing
Azuma a pair of binary codes Can not detect Detected 2 instances
& 2019 X N/A generated from given vulnerability from 7 programs with [87]
Ishiura source codes, with or directly. one false positive.
without problematic
optimization.
Asm2Vec: To jointly
learn the lexical 1. More resilient to
semantic relationships code obfuscation and
Ding et al. 2019 X X Reprc.esentation of assembly functions Highly improved. compiler optimizations. (88]
learning. based on assembly code 2.0 FP and 100%
instead of manually recalls for vulnerability
specifying from prior detection.
knowledge.
To detect vulnerable 1. Accuracy: 83.93%.
binary code using 2. Precision: 79.7%.
Liu et al. 2020 X Binary function. | attention and LSTM Highly improved. | 3. TPR: 90.41%. [56]
mechanism. 4. FPR: 22.37%.

5. Fl-measure: 84.72%.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

IEEE Access

Ding [88] proposed learning lexical semantic relationships
and the vector representation directly from plain assemble
code instead of manually specifying it from prior knowledge;
Liu et al. [56] proposed a long short-term memory (LSTM)-
based approach to detect binary-level software vulnerabilities
automatically.

However, binary-level analysis still faces several chal-
lenges. For instance, the limitation of accurately determining
all valid control flow paths from the source code at system
runtime and performing accurate static data flow analysis
to identify argument values [46]. Mishra and Polychronakis
[90] proposed Shredder for statically analyzing Windows
applications at the binary level using backward dataflow
analysis to derive expected argument values and generate
application-wide policies for critical system functions. To
address limitations in binary-level analysis, after Shredder,
they proposed Saffire (section III). Hence, binary code-based
clone attack detection is an important future research direc-
tion.

IV. FUTURE RESEARCH DIRECTION

For security analysis, several important topics on software
clone detection remain, which we discuss here. Following the
discussion in Section III, we summarize a potential research
direction, which is an integration of intelligent detection
techniques, code clone detection for IoT devices and dynamic
detection mechanisms.

Some researchers have provided efficient results, for exam-
ple, Gao et al. [14], and Liu et al. [56] proposed an in-depth
learning-based approach for binary vulnerability detection at
the semantic level for IoT devices. They trained a neural
network model with numerical vectors transformed by the
semantic features of the captured data flow and control flow
information. We discuss three aspects of this type of research
topic; however, we believe that there is a wider research space
for this topic.

A. INTELLIGENT DETECTION

From Table 1, we found that some detection approaches
based on the static analysis method partially relied on man-
ually analyzing source code or generating representations,
which typically takes time and effort, and is not efficient
for solving the big-code problem [91]. Many researchers are
moving toward applying more intelligent technology, such as
deep learning and neural network models, to the research area
of vulnerable source code detection [92], [93].

Kim et al. [94] used obfuscation techniques for obfuscated
macro code detection based on training five machine learn-
ing classifiers and extracting 15 static discriminant features.
Wand et al. [95] researched the patch level for "O-day"
vulnerability detection by automatically identifying secret
security patches in open-source software. They trained the
identification model with extracted features from more than
4,700 security patches from a database to detect similar
patches or vulnerabilities.

VOLUME 4, 2016

Li et al. [13], [96], [97] proposed deep learning-based
approaches (VulPecker, VulDeePecker, SySeVR) for software
vulnerability detection. Their approaches were aimed at au-
tomatically detecting vulnerable source code fragments by
training a BLSTM neural network. They compared simi-
larities between source code fragments and target vulnera-
bilities by generating code gadgets and transforming these
code gadgets into vector representations, which were used
as the neural network input. Their approach performed well
in terms of finding vulnerabilities compared with similar
systems, and was able to find many types of vulnerabilities
simultaneously.

Although the series of VulDeePecker and Kim’s study
only focused on source code vulnerability detection based
on similarity comparison, it was an efficient and applicable
method for vulnerable code clone detection. The clone de-
tection system can be made more intelligent and automated
by training it using the original vulnerable code fragments
on the basis of deep neural network models and appropriate
feature selection.

B. 5G-IOT DETECTION

The IoT network provides an environment for attackers to
inject malicious code easily. [oT devices, particularly small
devices, such as baby monitors, can be attacked easily by ma-
licious code cloning without complicated or extensive code.
The cloned vulnerability can spread in a moment through a
network of a vast number of devices.

The global data volume is increasing, which makes 5G
technology indispensable. For existing technologies, it is
more challenging to meet the requirements of the rapidly
developing IoT world. Next-generation technology, that is,
5G, will provide IoT devices with unlimited connectivity in
the future internet world. Hence, code cloning is a primary
challenge for 5G-IoT technology. Ullah et al. [98] proposed
an approach to identify code clones in specific 5G-IoT appli-
cations using a control flow graph and deep learning model.

C. DYNAMIC DETECTION

From Table 2, we conclude that real-time clone attack de-
tection is another possible research topic that needs further
attention. Particularly for mobile applications and web en-
vironments, attackers can intrude on a running application
at any time by executing malicious software clone behavior
and controlling compromised applications. Applying real-
time detection techniques to platforms at the application
level is very necessary. As previously discussed, researchers
have proposed code clone vulnerability detection approaches
for 10T devices [14], [56], [99], and RFID-enabled supply
chain systems [57]-[60]. Thus, a real-time cloning detection
approach is needed to protect systems more efficiently.

V. CONCLUSION

In this paper, we provided a comprehensive review of pre-
vious studies on software/code clone detection from the se-
curity perspective. We compared and summarized several de-

15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

tection approaches based on static code analysis and dynamic
analysis, respectively. Additionally, we outlined different
representation-based studies and provided some meaningful
information to researchers, such as possible detected clone
types, the research purpose, and applied techniques or tools.
We also discussed vulnerable code clone detection issues at
the binary code level. Then we proposed a future research di-
rection, including three potential topics, intelligent detection,
5G-1oT-based clone detection and real-time detection, which
were generated from the literature review.

This survey provides a summary of previous vulnerable
code clone detection-related results to help researchers to
acquire basic knowledge of this topic, and select the correct
techniques or tools while identifying potential research issues
and future directions.

ACKNOWLEDGEMENT

We thank Dr. Yujie Gu and all the reviewers for their helpful
advice on this manuscript. We thank Dr. Maxine Garcia
from Edanz Group (https://en-author-services.edanz.com/ac)
for editing a draft of this manuscript.

REFERENCES

[1]1 A. Sheneamer and J. Kalita, “A survey of software clone detection tech-
niques,” International Journal of Computer Applications, vol. 137, no. 10,
pp. 1-21, 2016.

[2] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A sys-
tematic review,” Information and Software Technology, vol. 55, no. 7, pp.
1165-1199, 2013.

[3] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Magbool, “A
systematic review on code clone detection,” IEEE Access, vol. 7, pp.
86 121-86 144, 2019.

[4] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent ap-
proach for detecting duplicated code,” in Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Mainte-
nance for Business Change’(Cat. No. 99CB36360). 1EEE, 1999, pp. 109—
118.

[5] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” in International static analysis symposium. Springer, 2001,
pp. 40-56.

[6] H. Li, H. Kwon, J. Kwon, and H. Lee, “Clorifi: software vulnerability
discovery using code clone verification,” Concurrency and Computation:
Practice and Experience, vol. 28, no. 6, pp. 1900-1917, 2016.

[7] M. R. Islam and M. F. Zibran, “A comparative study on vulnerabilities
in categories of clones and non-cloned code,” in 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 3. IEEE, 2016, pp. 8-14.

[8] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in 2009 IEEE 31st International Conference on Software
Engineering. 1EEE, 2009, pp. 485-495.

[9]1 M. F. Zibran and C. K. Roy, “Conflict-aware optimal scheduling of code
clone refactoring: A constraint programming approach,” in 2011 IEEE
19th International Conference on Program Comprehension. 1EEE, 2011,
pp. 266-269.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th International Con-
ference on Software Engineering (ICSE’07). 1EEE, 2007, pp. 96-105.

[11] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
exposing missing checks in source code for vulnerability discovery,” in
CCS ’13,2013.

[12] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi, “Binclone: De-
tecting code clones in malware,” in 2014 Eighth International Conference
on Software Security and Reliability (SERE). 1EEE, 2014, pp. 78-87.

[13] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detection,”
arXiv preprint arXiv:1801.01681, 2018.

[14] J. Gao, Y. Jiang, Z. Liu, X. Yang, C. Wang, X. Jiao, Z. Yang, and
J. Sun, “Semantic learning and emulation based cross-platform binary
vulnerability seeker,” IEEE Transactions on Software Engineering, 2019.

[15] Q. Hum, W. J. Tan, S. Y. Tey, L. Lenus, I. Homoliak, Y. Lin, and
J. Sun, “Coinwatch: A clone-based approach for detecting vulnerabilities
in cryptocurrencies,” arXiv preprint arXiv:2006.10280, 2020.

[16] N. Saini, S. Singh et al., “Code clones: Detection and management,”
Procedia computer science, vol. 132, pp. 718-727, 2018.

[17] S. Wagner, “Software product quality control,” 2013.

[18] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in Proceedings. 2004
International Symposium on Empirical Software Engineering, 2004. IS-
ESE’04. IEEE, 2004, pp. 83-92.

[19] Z.Li,S.Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste and
related bugs in large-scale software code,” IEEE Transactions on software
Engineering, vol. 32, no. 3, pp. 176-192, 2006.

[20] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2007, pp. 55-64.

[21] C. J. Kapser and M. W. Godfrey, “Supporting the analysis of clones
in software systems,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 18, no. 2, pp. 61-82, 2006.

[22] B.S. Baker, “On finding duplication and near-duplication in large software

systems,” in Proceedings of 2nd Working Conference on Reverse Engineer-

ing. IEEE, 1995, pp. 86-95.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-

based code clone detection system for large scale source code,” IEEE

Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670, 2002.

[24] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss

intentional clones using flexible pretty-printing and code normalization,”

in 2008 16th iEEE international conference on program comprehension.

IEEE, 2008, pp. 172-181.

J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting cloned

applications on android markets,” in European Symposium on Research in

Computer Security. Springer, 2012, pp. 37-54.

[26] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing, 2014, pp. 175-186.

[27] J. Akram, Z. Shi, M. Mumtaz, and P. Luo, “Droidcc: A scalable clone
detection approach for android applications to detect similarity at source
code level,” in 2018 IEEE 42nd Annual Computer Software and Applica-
tions Conference (COMPSAC), vol. 1. IEEE, 2018, pp. 100-105.

[28] H. Min and Z. Li Ping, “Survey on software clone detection research,”
in Proceedings of the 2019 3rd International Conference on Management
Engineering, Software Engineering and Service Sciences, ser. ICMSS
2019. New York, NY, USA: Association for Computing Machinery, 2019,
p. 9-16. [Online]. Available: https://doi.org/10.1145/3312662.3312707

[29] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, techniques,”
Addison wesley, vol. 7, no. 8, p. 9, 1986.

[30] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64—
68, 2007.

[31] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic frame-
work for evaluating code clone detection tools,” in 2009 International
Conference on Software Testing, Verification, and Validation Workshops,
2009, pp. 157-166.

[32] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” in
Proceedings of the 30th international conference on Software engineering,
2008, pp. 321-330.

[33] N.Davey, P. Barson, S. Field, R. Frank, and D. Tansley, “The development
of a software clone detector,” International Journal of Applied Software
Technology, 1995.

[34] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470-495, 2009.

[35] M. R. Islam, M. F. Zibran, and A. Nagpal, “Security vulnerabilities in
categories of clones and non-cloned code: An empirical study,” in 2017
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1EEE, 2017, pp. 20-29.

[36] S. Karademir, T. Dean, and S. Leblanc, “Using clone detection to find
malware in acrobat files,” in Proceedings of the 2013 Conference of the

[23

[25

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

IEEE Access

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Center for Advanced Studies on Collaborative Research, ser. CASCON
’13. USA: IBM Corp., 2013, p. 70-80.

J.R. Cordy and C. K. Roy, “The nicad clone detector,” in 2011 IEEE 19th
International Conference on Program Comprehension. 1EEE, 2011, pp.
219-220.

A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The
attack of the clones: A study of the impact of shared code on vulnerability
patching,” in 2015 IEEE symposium on security and privacy. 1EEE, 2015,
pp. 692-708.

M. A. Bari and D. S. Ahamad, “Code cloning: The analysis, detection and
removal,” International Journal of Computer Applications, vol. 20, no. 7,
pp. 34-38, 2011.

D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, and W. Wang, “Detecting
vulnerabilities in ¢ programs using trace-based testing,” in 2010 IEEE/IFIP
International Conference on Dependable Systems & Networks (DSN).
IEEE, 2010, pp. 241-250.

J. Jang, A. Agrawal, and D. Brumley, “Redebug: finding unpatched code
clones in entire os distributions,” in 2012 IEEE Symposium on Security
and Privacy. 1EEE, 2012, pp. 48-62.

H. Li, T. Kim, M. Bat-Erdene, and H. Lee, “Software vulnerability
detection using backward trace analysis and symbolic execution,” in 2013
International Conference on Availability, Reliability and Security. TEEE,
2013, pp. 446-454.

S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for
vulnerable code clone discovery,” in 2017 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2017, pp. 595-614.

C. Zhu, Y. Tang, Q. Wang, and M. Li, “Enhancing code similarity analysis
for effective vulnerability detection,” in Proceedings of the 2nd Interna-
tional Conference on Computer Science and Software Engineering, 2019,
pp. 153-158.

B. Bowman and H. H. Huang, “Vgraph: A robust vulnerable code clone
detection system using code property triplets,” in Proceedings of the 5th
IEEE European Symposium on Security and Privacy (EuroS&P), 2020.

S. Mishra and M. Polychronakis, “Saffire: Context-sensitive function
specialization against code reuse attacks,” in Proceedings of the 5th IEEE
European Symposium on Security and Privacy (EuroS&P), 2020.

S. Kim and H. Lee, “Software systems at risk: An empirical study of
cloned vulnerabilities in practice,” computers & security, vol. 77, pp. 720—
736, 2018.

K. Goseva-Popstojanova and A. Perhinschi, “On the capability of static
code analysis to detect security vulnerabilities,” Information and Software
Technology, vol. 68, pp. 18-33, 2015.

H. Choi, S. Zhu, and T. F. La Porta, “Set: Detecting node clones in
sensor networks,” in 2007 Third International Conference on Security and
Privacy in Communications Networks and the Workshops-SecureComm
2007. 1EEE, 2007, pp. 341-350.

K. Xing, F. Liu, X. Cheng, and D. H. Du, “Real-time detection of clone
attacks in wireless sensor networks,” in 2008 The 28th International
Conference on Distributed Computing Systems. 1EEE, 2008, pp. 3-10.
B. Parno, A. Perrig, and V. Gligor, ‘“Distributed detection of node replica-
tion attacks in sensor networks,” in 2005 IEEE Symposium on Security and
Privacy (S&P’05). IEEE, 2005, pp. 49-63.

N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing
code clones in the ethereum smart contract ecosystem,” arXiv preprint
arXiv:1905.00272, 2019.

R. Tekchandani, R. Bhatia, and M. Singh, “Semantic code clone detection
for internet of things applications using reaching definition and liveness
analysis,” J. Supercomput., vol. 74, no. 9, p. 41994226, Sep. 2018.
[Online]. Available: https://doi.org/10.1007/s11227-016-1832-6

Z. Luo, B. Wang, Y. Tang, and W. Xie, “Semantic-based representation
binary clone detection for cross-architectures in the internet of things,”
Applied Sciences, vol. 9, p. 3283, 2019.

V. Sachidananda, S. Bhairav, and Y. Elovici, “Over: overhauling vul-
nerability detection for iot through an adaptable and automated static
analysis framework,” in Proceedings of the 35th Annual ACM Symposium
on Applied Computing, 2020, pp. 729-738.

S. Liu, M. Dibaei, Y. Tai, C. Chen, J. Zhang, and Y. Xiang, “Cyber
vulnerability intelligence for internet of things binary,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 3, pp. 2154-2163, 2020.

J. Shi, S. M. Kywe, and Y. Li, “Batch clone detection in rfid-enabled supply
chain,” in 2014 IEEE International Conference on RFID (IEEE RFID).
IEEE, 2014, pp. 118-125.

J. Huang, X. Li, C.-C. Xing, W. Wang, K. Hua, and S. Guo, “Dtd: A novel
double-track approach to clone detection for rfid-enabled supply chains,”

VOLUME 4, 2016

[59]

[60]

[61]

[62]

[63]

[64]

[65

[66]

[70]

[75]

[76]

[77]

[78]

[79]

[80]

IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 1, pp.
134-140, 2015.

H. Maleki, R. Rahaeimehr, and M. van Dijk, “Sok: Rfid-based clone
detection mechanisms for supply chains,” in Proceedings of the 2017
Workshop on Attacks and Solutions in Hardware Security, 2017, pp. 33—
41.

H. Kamaludin, H. Mahdin, and J. H. Abawajy, “Clone tag detection in
distributed rfid systems,” PloS one, vol. 13, no. 3, 2018.

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and cryp-
tocurrencies,” in 2015 IEEE symposium on security and privacy. 1EEE,
2015, pp. 104-121.

M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and
privacy issues of bitcoin,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3416-3452, 2018.

M. Corporation, “Common vulnerabilities and exposures (cve0,” 2020.
[Online].

T. Unruh, B. Shastry, M. Skoruppa, F. Maggi, K. Rieck, J.-P. Seifert,
and F. Yamaguchi, “Leveraging flawed tutorials for seeding large-scale
web vulnerability discovery,” in 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 17), 2017.

K. Vineetha and N. S. Krishna, “Efficient code clone analysis to detect
vulnerability in dynamic web applications,” International Journal of Com-
puter Sciences and Engineering, p. 57, 2016.

A. Agrawal, M. Alenezi, R. Kumar, and R. A. Khan, “A source code
perspective framework to produce secure web applications,” Computer
Fraud & Security, vol. 2019, no. 10, pp. 11-18, 2019.

M. R. Farhadi, B. C. Fung, Y. B. Fung, P. Charland, S. Preda, and
M. Debbabi, “Scalable code clone search for malware analysis,” Digital
Investigation, vol. 15, pp. 46-60, 2015.

M. H. Alalfi, E. P. Antony, and J. R. Cordy, “An approach to clone
detection in sequence diagrams and its application to security analysis,”
Software & Systems Modeling, vol. 17, no. 4, pp. 1287-1309, 2018.

M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Automated verification
of role-based access control security models recovered from dynamic
web applications,” in 2012 14th IEEE International Symposium on Web
Systems Evolution (WSE). 1EEE, 2012, pp. 1-10.

J. Akram, L. Qi, and P. Luo, “Vcipr: vulnerable code is identifiable when
a patch is released (hacker’s perspective),” in 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST). 1EEE, 2019, pp.
402-413.

H. Shi, R. Wang, Y. Fu, Y. Jiang, J. Dong, K. Tang, and J. Sun, “Vulnerable
code clone detection for operating system through correlation-induced
learning,” IEEE Transactions on Industrial Informatics, vol. 15, no. 12,
pp. 6551-6559, 2019.

S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of clone
detection by string matching,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 1, pp. 37-58, 2006.

J. H. Johnson, “Substring matching for clone detection and change track-
ing.” in ICSM, vol. 94, 1994, pp. 120-126.

A. Marcus and J. I. Maletic, “Identification of high-level concept clones
in source code,” in Proceedings 16th Annual International Conference on
Automated Software Engineering (ASE 2001). 1EEE, 2001, pp. 107-114.
Z.Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: A tool for finding copy-
paste and related bugs in operating system code.” in OSdi, vol. 4, no. 19,
2004, pp. 289-302.

M. R. Farhadi, “Assembly code clone detection for malware binaries,”
Ph.D. dissertation, Concordia University, 2013.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier, “Clone detec-
tion using abstract syntax trees,” in Proceedings. International Conference
on Software Maintenance (Cat. No. 98CB36272). 1EEE, 1998, pp. 368—
3717.

V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in
source code by frequent itemset techniques,” in Source Code Analysis and
Manipulation, Fourth IEEE International Workshop on. 1EEE, 2004, pp.
128-135.

K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bernstein,
“Pattern matching for clone and concept detection,” Automated Software
Engineering, vol. 3, no. 1-2, pp. 77-108, 1996.

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics.” in icsm,
vol. 96, 1996, p. 244.

17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE Access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3065872, IEEE Access

H. Zhang et al.: A Survey of Software Clone Detection from Security Perspective

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search engine
for binary code,” in 2013 10th Working Conference on Mining Software
Repositories (MSR). 1IEEE, 2013, pp. 329-338.

Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). 1EEE,
2017, pp. 88-98.

Y.J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, and K.-W. Park, “Learning binary
code with deep learning to detect software weakness,” in KSII The 9th
International Conference on Internet (ICONI) 2017 Symposium, 2017.

A. Szbjgrnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the eighteenth
international symposium on Software testing and analysis, 2009, pp. 117—
128.

H. Xue, G. Venkataramani, and T. Lan, “Clone-slicer: Detecting domain
specific binary code clones through program slicing,” in Proceedings of
the 2018 Workshop on Forming an Ecosystem Around Software Transfor-
mation, 2018, pp. 27-33.

——, “Clone-hunter: accelerated bound checks elimination via binary
code clone detection,” in Proceedings of the 2nd ACM SIGPLAN Inter-
national Workshop on Machine Learning and Programming Languages,
2018, pp. 11-19.

Y. A. N. ISHIURA, “Detection of vulnerability guard elimination by
compiler optimization based on binary code comparison.”

S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 472-489.

G. Erdélyi and E. V. Carrera, “Digital genome mapping: ad-vanced binary
malware analysis,” 2004.

S. Mishra and M. Polychronakis, “Shredder: Breaking exploits through
api specialization,” in Proceedings of the 34th Annual Computer Security
Applications Conference, 2018, pp. 1-16.

J. Akram, Z. Shi, M. Mumtaz, and P. Luo, “Dccd: An efficient and scalable
distributed code clone detection technique for big code.” in SEKE, 2018,
pp. 354-353.

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection in
source code using deep representation learning,” in 2018 17th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA).
IEEE, 2018, pp. 757-762.

J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta, A. Ranga-
mani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Ellingwood
et al., “Automated software vulnerability detection with machine learn-
ing,” arXiv preprint arXiv:1803.04497, 2018.

S. Kim, S. Hong, J. Oh, and H. Lee, “Obfuscated vba macro detection
using machine learning,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2018,
pp. 490-501.

X. Wang, K. Sun, A. Batcheller, and S. Jajodia, “Detecting" 0-day"
vulnerability: An empirical study of secret security patch in oss,” in 20/9
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). 1EEE, 2019, pp. 485-492.

Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an auto-
mated vulnerability detection system based on code similarity analysis,”
in Proceedings of the 32nd Annual Conference on Computer Security
Applications, 2016, pp. 201-213.

Z.Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework
for using deep learning to detect software vulnerabilities,” arXiv preprint
arXiv:1807.06756, 2018.

F. Ullah, M. R. Naeem, L. Mostarda, and S. A. Shah, “Clone detection
in 5g-enabled social iot system using graph semantics and deep learning
model,” International Journal of Machine Learning and Cybernetics, pp.
1-13.

P. Lee, C. Yu, T. Dargahi, M. Conti, and G. Bianchi, “Mdsclone: Mul-
tidimensional scaling aided clone detection in internet of things,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 8, pp.
2031-2046, 2018.

HAIBO ZHANG received her B.S. degree in soft-
ware engineering from Anhui Unversity, China
in 2015, and the M.S. degree in cyber security
engineering from the Viterbi School of Engineer-
ing, University of Southern California, the U.S. in
2018. She is currently pursuing the Ph.D degree
in cyber security with Kyushu University, Japan.
She is currently working as a research assistant
of SICORP (Strategic International Collaborative
Research Program) for internet of things related
research work. Her research interests include internet of smart things secu-
rity, digital supply chain security and vulnerable software clone detection.

KOUICHI SAKURAI received the B.S. degree in
mathematics from the Faculty of Science, Kyushu
University in 1986. He received the M.S. degree
in applied science in 1988, and the Doctorate in
engineering in 1993 from the Faculty of Engi-
neering, Kyushu University. He was engaged in
research and development on cryptography and
information security at the Computer and Infor-
mation Systems Laboratory at Mitsubishi Electric
Corporation from 1988 to 1994. From 1994, he
worked for the Dept. of Computer Science of Kyushu University in the
capacity of associate professor, and became a full professor there in 2002.
He is concurrently working also with the Institute of Systems Infor-
mation Technologies and Nanotechnologies, as the chief of Information
Security laboratory, for promoting research co-operations among the indus-
try, university and government under the theme "Enhancing IT-security in
social systems". He has been successful in generating such co-operation
between Japan, China and Korea for security technologies as the leader
of a Cooperative International Research Project supported by the National
Institute of Information and Communications Technology (NICT) during
2005-2006. Moreover, in March 2006, he established research co-operations
under a Memorandum of Understanding in the field of information security
with Professor Bimal Kumar Roy, the first time Japan has partnered with
The Cryptology Research Society of India (CRSI). Dr. Sakurai directs the
Laboratory for Information Technology and Multimedia Security and he
is working also with CyberSecurity Center of Kyushu University. He is
now working also with Department of Advanced security of Advanced
Telecommunications Research Institute International and involved in a
NEDO-SIP-project on supply chain security. Professor Sakurai has pub-
lished about 400 academic papers around cryptography and cybersecurity.
(See http://dblp.uni-trier.de/db/indices/a-tree/s/Sakurai: Kouichi.html)

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

