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Abstract-The growth of social networks and affordability of various sensing devices has lead to a 

huge increase of both human and non-human entities that are interconnected via various networks, 

mostly Internet. All of these entities generate large amounts of various data, and BI analysts have 

realized that such data contain knowledge that can no longer be ignored. However, traditional support 

for extraction of knowledge from mostly transactional data - data warehouse - can no longer cope with 

large amounts of fast incoming various, unstructured data - big data - and is facing a paradigm shift. 

Big data analytics has become a very active research area in the last few years, as well as the research 

of underlying data organization that would enhance it, which could be addressed as big data 

warehousing. One research direction is enhancing data warehouse with new paradigms that have 

proven to be successful at handling big data. Most popular of them is the MapReduce paradigm. This 

paper provides an overview on research and attempts to incorporate MapReduce with data warehouse 

in order to empower it for handling of big data. 

Keywords- BI analysts, hive, Hbase. 

I. INTRODUCTION 

Data-oriented systems have recently been faced with overwhelming amount of various-typed data. 

Data warehouses, core of all traditional decision-support systems, also have to face these challenges. 

It has become crucial to analyse almost all possible data to keep up with the competition by following 

the shift in data warehousing trends. Transactional data do not provide sufficient support anymore and 

other emerging data sources must be embraced. These new data sources are part of big data phenomena. 

Traditional data warehouses and RDBMSs are not an adequate storage for big data, and that needs to 

change because the quantity of unstructured data exceeds the quantity of structured data by four to five 

times [1]. In big data analytics, MapReduce programming framework has gained popularity because 

of its ability to effectively process large databases, as well as big data. For that reason, researchers have 

turned to application of MapReduce to overcome the gap between data warehouses and big data. 

 

Research approaches include integration of data storage systems, changing relational paradigm to non-

relational, and new algorithms and approaches to creating and storing data cubes. This paper presents 

an overview of some of the interesting work done in this field. The paper is organized as follows: 

section II presents the current data trends, features, storages and paradigms; section III 

 

Presents main issues of data warehouses with big data and unsuitability of Hadoop alone for solving 

them; section IV presents two research approaches to solving problems described in previous section 

through describing representative work that has been done; section V discusses the presented 

approaches; and the section VI concludes this paper. 
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                                                                II. DATA TRENDS 

 A. Big data 

The term big data was invented to describe new types of data that emerged with popularization of 

social networks and data-generating smart or simple devices. There are quite a few big data issues from 

analytical point of view: they may be unstructured and/or semi-structured and lack formal model and 

metadata; they arrive fast and in large quantities; they may be incorrect to a certain level. Most 

importantly, it is questionable if a certain set of big data holds any value at all, but that can only be 

known through data exploration. Big data features are usually described by 4Vs – volume, variety, 

velocity, and veracity– But, three more V features have been identified [2] variability (in ways to 

interpret same data), value (actual usefulness of extracted information), and visualization (need for 

illustrative visualization of big data sets to understand them). 

 

 B. Shared-nothing architecture 

Shared-nothing architecture is a distributed computing architecture that features a collection of 

independent and self-sufficient nodes. These nodes may be various (virtual) machines, where each one 

has a local disc and main memory. The nodes are connected via network and there is no contention 

point in it. The phrase shared-nothing came from the fact that nodes do not share any kind of memory. 

The most popular paradigm based on this concept is the MapReduce. 

 

 C. MapReduce 

MapReduce (MR) has recently become one of the most popular frameworks for processing large 

amounts of data. It is specially designed for scalability of data processing in the cloud environments. 

It hides the implementation of its main features from the programmer, e.g. fault tolerance, and load 

balancing, parallelization and data distribution. 

     

D. NoSQL 

The term NoSQL is interpreted as "Not Only SQL". In this case, having SQL as a synonym for 

relational databases, NoSQL does not imply the complete absence of relational. NoSQL databases are 

usually open-source and their main features are: data and processing distribution, horizontal scalability, 

fault tolerance, fast data access, simple APIs,   relaxed consistency and being schema-free [3] However, 

they also have their downsides. The current issue with NoSQL databases is that they do not offer a 

declarative query language similar to SQL and there is no single, unified model of NoSQL databases. 

 

There are multiple NoSQL database families, which differ significantly in their features. Main NoSQL 

database families (sometimes referred to as 4 true NoSQL database families) are: column-oriented, 

document-oriented, key-value stores, and graph. Also, there are less commonly mentioned families 

that had been present long before NoSQL term was used: object-oriented, XML-native, and other 

database families like multimodal, multivalve, and multidimensional databases. 

 

In attempts of big data warehousing, mostly used NoSQL systems were based on Hadoop’s 

implementation of MR, running on top of it or along with it, e.g. HBase, Hive, Pig, Spark, Sqoop, 

Impala, etc., but attempts have also been made without using a MR-based system. Those that best 

served for research purposes are briefly described below. 

 

1. HBase is a column-oriented distributed database that runs on top of Hadoop. It was modelled after 

Google BigTable. It features data compression and Bloom filters on column-level. Its tables can be 

used as input and output for MR. One of the most popular data-driven websites that uses HBase is 

Facebook, which uses it for its messaging platform. 
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2. Hive [4]  is a data warehouse infrastructure running on top of Hadoop. In Hive, data can be stored 

in various databases and file systems, all interconnected with Hadoop. It supports SQL-like commands 

in its language, HiveQL, which shifts the focus from low-level programming to a much more 

declarative level. Given queries are translated into MR jobs that are executed on Hadoop. Hive contains 

a system catalogue called metastore that stores metadata about tables, and that makes it a data 

warehouse. 

 

The idea behind Hive was to bring in well-known concepts of structuredness (e.g. tables, columns, 

partitions and subset of SQL) into unstructured Hadoop environment, but still keeping the flexibility 

and extensibility Hadoop has. Organization-wise, table is a one logical unit of data and is stored as a 

directory in HDFS; table partitions are stored as a subdirectory within table’s directory; buckets are 

stored as files within partition’s or table’s directory, depending on table being partitioned or not. 

 

Hive adopted one of the main changes in approaches to data (warehouse) modelling: schema-on-read 

approach rather than schema-on-write, meaning that the data are loaded more quickly because there is 

no validation against a pre-defined schema. The validation is performed during run-time, which 

impacts the query time to be slower. 

One of the main downsides of Hive’s design is its naive simple rule-based optimizer. The authors 

predicted optimizer improvements as the future research work, as well as exploring other data 

placement ways, e.g. column-oriented to improve data reading performance. 

 

1. Pig is a high-level platform that runs on top of Hadoop and serves for creating programs running on 

it. Unlike Hive, which is meant for exploring datasets, Pig is more appropriate for processing data 

flows [4]. Its language Pig Latin is more declarative comparing to MR programming in Java and also 

supports user-defined functions, written in Python, Java, etc. Pig Hadoop jobs cannot only be run in 

MR, but also in other frameworks, e.g. Spark. 

 

2. Google BigTable [5]  is a NoSQL database for unstructured data. It was built on a few Google 

technologies, including Google File System. In BigTable, data are mapped by triplets <row key, 

column key, timestamp> and each stored value is an uninterpreted array of bytes, while the timestamps 

are used for versioning. There is a false perception that BigTable is a column-store database, but its 

connection to column-oriented approaches lies in usage of column families. Column families are 

groups of column keys that are grouped into sets, i.e. columns are clustered by key. Usually, a column 

family contains data of the same type. 

 

3. Apache Spark is a cluster-computing framework featuring data parallelism and fault tolerance. It 

was made to overcome MapReduce's dataflow limitations and has proved to be faster than MR 

framework. For that reason it should be considered at the time of choosing the right technologies to 

deal with big data in general, as well as in OLAP. 

 

                                      III. DATA WAREHOUSE’S BIG DATA ISSUE 
There is a misconception that standard data warehouse architecture is not completely compatible with 

big data. One of the main arguments of this misconception is the notion that data warehouses are 

primarily focused on “stock” or fixed data supply oriented on the past and not suited for real time 

streaming analytics[2] , but real-time BI, which is supported by real-time data warehouses is its  

counterargument. The problem lies in the intensity of the data streaming, which has become too high 

with the emergence of big data. The hype around big data has even caused some vendors and analysts 

to foretell the death of data warehousing and even relational databases. Most popular BI platforms do 

not support integration with NoSQL databases, but some provide native access to them (e.g. Hive). 
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MapReduce is considered “appropriate to serve long running queries in batch mode over raw data”, 

which is exactly what ETL process does. However, integrating or replacing traditional systems with 

Hadoop is a challenging research topic. Despite Hadoop’s ability to provide instant access to large 

amounts of high quality data, the implementation of ETL processes in Hadoop is not simple. The users 

need to manually write custom programs, which are sometimes not effective and cannot compare to 

ETL tools for data cleaning, transformation and coordination. Authors in [6]  suggest that using ETL 

Tools is still suitable for small amounts of data, while design of custom programs in Hadoop is more 

feasible for larger amounts. Another important feature Hadoop lacks is adding dynamic indexes to the 

framework, which is still an open issue. 

 

                            IV.MAPREDUCE APPROACHES IN RESEARCH 

Research of MapReduce approaches in data warehousing can be grouped into two categories: 

 

i. system-level research: focused on system-level improvements and/or integration; 

ii. Data cube research: focused on an OLAP data cube component of data warehouse. 

 

A. System-level research 

 

1) Simple data warehouse augmentation 

The simplest way of data warehouse’s coexistence with new big data solutions was presented in [2], 

where big data are treated as an additional data source for the data warehouse. This idea does not 

include integration of data warehouse and big data system on any level, but the data sequentially going 

through processing systems based on their kind, and in the end - ending up in the data warehouse. 

Before loading, big data are processed (analysed) in a MR framework, while the rest go through 

standard cleaning and transformation processes. In this case, the resulting data from the MR processing 

enrich dimension tables by adding more attributes to them and thus enrich the overall analytical power 

of the data contained in the data warehouse. Authors pointed out that the good approach would be to 

leave the original data source intact to enable different types of analyses because the same data 

processed in different ways can yield different results. However, the issue with this solution is that the 

programmer or analyst needs skills and knowledge to write map and reduce functions, which may have 

a big span of complexity – from simple counting to using data mining algorithms and machine learning. 

 

2) Hadoop DB 

HadoopDB [7]  is a hybrid of parallel databases and MR. It is an open-source solution made of other 

open-source technologies like Hive, Hadoop and PostgreSQL, all organized in a shared-nothing 

architecture. The idea behind such integration was to benefit from scalability advantages of MR, and 

from performance and efficiency featured in parallel databases. Comparing its used storage systems 

with those used in Hive, HadoopDB uses relational databases in each of the nodes instead of distributed 

file systems. MR is used as communication layer; Hive serves as a translation layer (queries expressed 

in SQL are translated into MR jobs); on the database layer there can be multiple nodes running DBMS. 

The main research contribution was improving query optimization compared to optimization in Hive 

by pushing query processing logic maximally down to the databases (because Hive did not consider 

table data collocation in a single node, while HadoopBP does), and modifying Hive by adding four 

more components to it – database connector (for connecting to databases, executing queries and 

returning the result), catalog (for maintaining information about the databases), data loader (for 

Partitioning and re-partitioning of data and data loading), and SQL-to-MapReduce-to-SQL planner (for 

extending Hive query planner). So far, HadoopDB implemented filter, projection and aggregation 
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operators, while the authors expect that this system will benefit from future Hadoop improvements, 

despite of parallel databases currently still being faster. 

 

3) Starfish 

Starfish [8] is a self-tuning system for Hadoop for big data analytics: it tunes Hadoop parameters, but 

it does not improve its peak performance. Starfish is placed between Hadoop and MR job-submitting 

clients like Pig, Hive, command line interface, etc. MR jobs, workflows, or collections of workflows 

are expressed in language Last word (Language for Starfish Workloads and Data). The main focus of 

this system is its adaptation to user’s and system’s needs. Reasoning behind self-tuning approach lies 

in Hadoop’s suboptimal usage of resources and time. The problem with Hadoop is that there might be 

around 190 configuration parameters controlling its behaviour, and most of them need to be set 

manually, e.g. actions like adding and removing a node based on the needs, or rebalance of data. Even 

for a single MR Job, multiple parameters need to be set, e.g. number of mappers and reducers, controls 

for network usage, memory allocation settings. Higher-level languages for defining MR jobs – like 

HiveQL and PigLatin – do not consider cost-based optimization during the query compilation into MR 

jobs, but only rely on naive hard-coded rules or hints specified by the users. The basic endeavour is to 

move the computation to the data as much as possible to achieve minimal data movement. Starfish 

provides automatic system tuning throughout the whole data lifecycle: it is able to perform tuning at 

different levels of granularity – workload, workflow, and job-level –  and the interaction of these 

components provides Starfish’s tuning in whole. 

 

4) Olap4cloud 

Olap4cloud 1 is an open-source experimental OLAP engine built on top of Hadoop and HBase, 

designed to efficiently perform queries containing aggregations and grouping on large data sets, and 

to be horizontally linearly scalable. Its main features include data defragmentation, indexing, and 

preaggregations. Olap4cloud stores rows with the same dimensions close to one another. For 

preaggregations, aggregation cuboids are constructed using classic lattice modes, which help to achieve 

lower latency during execution of queries that use already calculated aggregations. For now, 

Olap4cloud is still in an early experimental stage: it is able to manage and query cubes (fact tables 

containing dimensions and measures), but it does not fully support dimension tables, hierarchies and 

measures: dimensions can only be Java data type long, and measures must be in Java data type double. 

 

5) HBase Lattice 

HBase Lattice [9] is an open-source solution that attempted to provide BI “OLAP-ish” solution based 

on HBase. Author argues that, in discussion of “Cassandra is for OLTP, HBase is OLAP mantra”, this 

system, based on HBase, has limited support for OLAP features: it does not directly support cube 

models and has no concepts of dimensions, hierarchies, measures and facts, nor has its own query 

language. It implements incremental OLAP-like cubes: by pre-building cuboids in a cube lattice model, 

it is able to cope with aggregate queries. 

 

6) HaoLap 

HaoLap  (Hadoop based OLAP) is an OLAP system designed for big data that has some common 

features with MOLAP tools. It uses simplified multidimensional model for mapping of dimensions and 

measures, and most importantly - it supports dimension operators (e.g. roll-up). In this system, 

optimization and speed-up are not achieved using indexes nor pre-computations, but by sharing 

(horizontal partitioning) and chunk selection. Instead of storing large multidimensional arrays, 

calculations are stored and that simplifies the dimension by having low storage cost and makes this 

system's OLAP efficient. 
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    Dimension and cube metadata are stored in XML format in a metadata server, while measures are 

stored in HDFS. Data cubes do not have to be instantiated in memory - OLAP algorithm and MR are 

used for that. MR jobs are consisted of four parts (input-formatter, mapper, reducer and output-

formatter) and are specified as such quadruplets. MR Job operates on the level of chunks, and at the 

end of the processing chunk is stored in the created chunk files, which are then logically combined into 

the result – a cube. 

 

7) Octopus 

Octopus [11] is a hybrid data processing engine. It is a middleware engine that integrates various 

backend systems and serves as a one access point (Figure 1.) Between the user and them. The reasoning 

behind building such integration system is that neither traditional warehousing systems, nor recent big 

data systems are able to fully leverage the power of the other – neither can fully take over the other’s 

role. 

 

Data are distributed in multiple locations of the system, while the system itself bases its optimization 

on minimizing the amount of data movement by making a query push-down, which is based on the 

data’s residence. Octopus takes a given query task in an SQL-like form from the user and divides it 

into multiple subqueries. The Initial query is processed with system components, parser and optimizer; 

parser produces a logical operator tree and optimizer produces an optimal set of query plans. 

Subqueries derived from the initial query are pushed down to the backend systems and processed inside 

of them. By sending the queries to systems where the data are physically stored and optimally 

processed, data movement costs are reduced. 

 

 
 

Authors have compared Octopus to Spark, because Spark also supports integration of external data 

sources and implements unnecessary data filtering for reducing data migration. Experiments proved 

Octopus to be faster than Spark in processing aggregation queries. Possible future development of 

Octopus lies in adding support for more types of NoSQL databases, as well as integrating more Spark 

modules, e.g. machine learning. 
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B. Data cube research 

 

1) Approach by Abello, Ferrarons and Romero 

An approach to building data cubes on BigTable was presented in [1]. BigTable is used for storing all 

the data together temporarily - data are just partially cleaned and integrated before they are stored - 

without having a concrete schema, so the schema may evolve easily over time. Also, the authors argue 

that column storage is good enough for data marts because they have well-defined columns, but for the 

entire data warehouse more flexibility is required because of unclear data structure and continuous 

schema evolution. 

 

 The basic idea is to have a non-formatted chunk of data just stored and associated to the key, which is 

later, once it is needed, retrieved and used according to the specific needs. That is the opposite from 

putting a lot of resources and effort into formatting and structuring the data according to the strict star 

schema, which after data import may not be used for a couple of months, or may even not be used at 

all. Upon having an analysis to perform, data quality is specified, suitable technology is selected (e.g. 

ROLAP or MOLAP), and then ETL is used to prepare the data according to needs. On demand, specific 

and customized data cubes are extracted and stored in a data mart, which may or may not reside in 

cloud. 

 

For building cubes three typical table access approaches (assuming denormalized data) have been 

applied in a way they could benefit from MR and BigTable: full scan, index access, and range index 

scan. 

 

2) MRDataCube 

A new cube computation algorithm MRDataCube (MapReduce Data Cube) was presented in. 

MRDataCube is a large-scale data cube computation algorithm that uses MR framework and uses 

concepts of cuboids and cells. Cuboid is considered an aggregated result of aggregate operations upon 

a cube with the goal of extracting each combination of attributes. Cells construct cuboids, and they 

represent the values stored in them and can be represented as m-membered tuple, where m is 

aggregation measurement of the cell. 

 

This algorithm computes the cube in two phases, MRSpread and MRAssemble. Its main feature is 

continuous data reduction through these two phases. The First phase produces partial cuboids cells, 

where one    Cuboid cell values may spread through outputs of several Reduce functions. In the second 

phase, complete cuboids  are generated by computing all partial cells, i.e. merging partial cuboids into 

one cell. Between two phases, result is stored in HDFS. This algorithm showed 2-16 times better  

performance compared to previous work in that area, algorithms MRNaive, MR2D, MRGBLP and 

MRPipeSort. 

 

      3) CN-cube 

An operator CN-CUBE (Columnar NoSQL cube) for computing OLAP cube from column-oriented 

data warehouse was presented and it proved to be faster than Hive. The main technology they used 

was HBase engine. By implementing CN-CUBE operator, authors have attempted to solve one of the 

most common obstacles of column-oriented databases – the lack of OLAP operators. The CN-CUBE 

reduces disk access by using a result on an extraction query as a view – based on attributed needed for 

the cube computation requested by analysts - and avoids re-accessing the data warehouse for 

performing different aggregations. Using this approach, authors have reduced input and output flows 

substantially. 
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This operator performs in three phases. During the first phase, attributes are identified and necessary 

columns (most recent values) are extracted into an intermediate result. In second phase, intermediate 

relation columns with the values are hashed to produce the lists of values’ positions. These lists allow 

some columns to be aggregated separately by each dimension. In the final phase, lists of dimensions’ 

positions of intermediate results are associated through the logical AND operator. 

 

4) MC-CUBE 

Similarly to [13], [14] presents an aggregation operator MC-CUBE (MapReduce Columnar cube) that 

uses HBase as main technology, and introduces a different approach to building OLAP cubes from 

columnar “big data warehouse”. In this approach, data are taken at a single, least aggregated level, and 

other aggregates – at other, higher granularity levels – are computed from it. To perform aggregation, 

this operator performs invisible join, typical in column stores, and extends the aggregation to cover 

“all possible aggregations at different levels of granularity of the cube”. 

 

MC-CUBE operator performs seven MR jobs during four phases. During the first phase, aggregations 

are produced from the data warehouse at lowest and highest granularity levels – joins between fact and 

dimension tables are materialized and aggregates are calculated. In the second phase, aggregations are 

performed of each dimension separately, and in the third, rest of the aggregates composing the cube 

are computed. The final phase replaces dimensions’ identifiers with dimensions’ attributes, and 

completes the cube. 

 

                                                            V.  DISCUSSION 

For big data warehousing solution, system integration approaches usually include integration of one or 

more MR-based technologies like Hive and Hadoop, and combine them with either NoSQL and/or 

traditional relational storage. Particularly interesting combination is the integration of MapReduce and 

parallel databases, where the best features are taken from both of them and combined complementarily 

because one does well what the other does not. 

 

One of the suggested scenarios [3] for big data analysis is to use Hive in Hadoop environment for 

OLTP, and ROLAP tool for data analysis. However, problems may occur in case when data arrive too 

quickly and are stored in real-time in Hive, because the existing aggregates in RDBMSs used for OLAP 

could in a very short time become inaccurate. Other problems are related to the volume of the data; 

when using partial aggregates, it still may affect the speed OLAP browsing in a negative way. The 

solution may lie in using MapReduce processing on both OLTP and OLAP side. 

 

In a few works [8], [15], [16] an acronym MAD appeared, denoting features expected from big data 

analytics systems: magnetism means that system attracts all kinds of data, regardless of possibly 

unknown structure, schema, or even partial values; agility stands for system's ability to adapt to data 

evolutions; depth means that the system supports analyses that go to bigger depths than just roll-ups 

and drill-downs. Authors in [8]  even went further and described three more features that would 

MADDER analytics systems need to have: data-lifecycle-awareness, elasticity, and robustness. In 

future data warehouse modifications and research, these features may prove to be a good guiding 

principle. It is noticeable that some of these features are found in NoSQL databases, but never all of 

them. This shows that NoSQL technologies are a good candidate for a data warehouse asset, but 

chances are small that a NoSQL database would ever completely replace data warehouse’s relational 

basis. 

 

Another potential problem that may affect the course of big data analytics and warehousing 

development is a large portfolio of technologies and implementations, even among open-source 
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products, and even industry has pointed out this as potential problem [17]. The vendors have 

approached this matter each in their own way, making new products most compatible with their 

existing ones. Analysing the general situation from the perspective of data warehousing future, the 

existing products from which data warehouses may eventually benefit - NoSQL databases and Hadoop 

implementations and tools - still have many downsides in terms of lacking concepts commonly used 

in data warehouses and relational databases (e.g. indexing, profound optimizer, ability of having OLAP 

operators, dimensions and hierarchies, etc.). All of these downsides combined together create obstacles 

that are being worked on by the current research. 

 

     Through the research overview presented in this paper, we can see various system integration 

approaches [2], [7], [8], [9], [10], [11] to overcoming these issues. System-level integration raises 

questions of middleware design, data localization, and computation locality i.e. amount data movement, 

etc. Much work has also been done on optimization issues: it included designing special tuning 

middleware; building better query and MapReduce job plans; preaggregations – most often in forms 

of cuboids that are stored in a lattice model; using views to access fewer data – but, one of the most 

applied approaches is the query push-down technique, i.e. moving the computation to the data, which 

is guided by the thought that the data should be stored and processed in the system that does suits their 

nature the best, whether that are RDBMSs, NoSQL databases or MapReduce environment. Possible 

progress is seen in designing new middleware, either from scratch or by modifying existing systems 

like Hive. 

 

     Presented research overview from the perspective of building data cubes [1], [13], [14]  describes 

representative approaches that have been made with various ways of data storage, especially with 

column-oriented. Approaches included: storing measures in HDFS while the metadata reside in simple 

format on server; storing whole data marts in column-oriented [13], [14] storage; collocating data by 

their type (rows) in column-oriented storage, etc. The diversity is significant, and further research of 

this matter is expected. 

 

      However, one of the most noticeable downsides in some of the presented approaches is 

considerable simplification – dimensional model is simplified to the extent that the system does not 

support dimensions and hierarchies, and sometimes even does not differ dimensions from facts. 

Simplification is an interesting approach, e.g. solving explosive dimension cardinality issue by using 

some aggregative calculations, but attention should be paid to not over-simplifying the model to the 

level of its inapplicability for OLAP. To bring big data into the data warehouse, ETL process may need 

to be loosened to ensure the flexibility for the warehouse and enable the schema to evolve. Still, the 

main focus remains on creating the much needed OLAP operators. 

 

VI. CONCLUSION 
    This paper gives an overview of latest research on bringing big data into data warehouses and 

organization of big data for OLAP analysis using the MapReduce framework. Big data were described 

by their main features, which are the main reason they cannot be easily let into the strictly structured 

and highly organized data warehouse environment. However, they are potentially greatly valuable and 

their share in available data pool is rapidly growing. Thus, they should not be treated as a distinct issue 

and completely separated from other data, but should be dealt with and made supportive for BI 

analytics along with traditional transactional data. 

 

     NoSQL databases show great potential for handling big data analytics, especially those that 

implement MapReduce framework. But, there are many issues with these two concepts. The industry 

has overwhelmed data analytics field with too many implementations that are still not mature enough, 
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mostly in terms of all the underlying supporting features that RDBMSs offer. NoSQL database families 

differ a lot and may not handle all types of data equally well, and having no unified database model 

nor does a clear data structure lead to great difficulties in design of analytical systems. 

 

    The most realistic future scenario is that the data warehouses will not be replaced by some 

completely different innovative systems. The more likely scenario is that they will continue to coexist 

in a symbiotic Relationship with the new, more suitable solutions for big data, where big data would 

serve as an additional analytical asset. 
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