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Abstract: The popularity of social networks (SNs), amplified by the ever-increasing use of smart-
phones, has intensified online cybercrimes. This trend has accelerated digital forensics through SNs.
One of the areas that has received lots of attention is camera fingerprinting, through which each
smartphone is uniquely characterized. Hence, in this paper, we compare classification-based methods
to achieve smartphone identification (SI) and user profile linking (UPL) within the same or across different
SNs, which can provide investigators with significant clues. We validate the proposed methods by
two datasets, our dataset and the VISION dataset, both including original and shared images on
the SN platforms such as Google Currents, Facebook, WhatsApp, and Telegram. The obtained results
show that k-medoids achieves the best results compared with k-means, hierarchical approaches,
and different models of convolutional neural network (CNN) in the classification of the images.
The results show that k-medoids provides the values of F1-measure up to 0.91% for SI and UPL
tasks. Moreover, the results prove the effectiveness of the methods which tackle the loss of image
details through the compression process on the SNs, even for the images from the same model of
smartphones. An important outcome of our work is presenting the inter-layer UPL task, which is
more desirable in digital investigations as it can link user profiles on different SNs.

Keywords: camera fingerprint; smartphone identification; user profile linking; digital investigations;
social network; classification

1. Introduction

In recent years, different social networks (SNs) have revolutionized the web by pro-
viding users with specific types of interaction, for instance by sending texts and sharing
images and videos. Different SNs meet different needs of users. This means that users
are usually active across multiple SNs. It has been reported that on average an Internet
user used 8 different SNs at the same time in 2017 [1]. Moreover, many SNs have provided
their own dedicated applications for major mobile devices (e.g., smartphones), which
has introduced changes in user habits with respect to multimedia content on SNs [2]. In
particular, it has led users to take more and more digital images and share them across
various SNs [3], making it a challenging task to control the production and propagation of
the images and to use the images as digital evidence. From the forensics point of view, the
images shared by users on SN platforms could be considered as complementary clues to
detect the evidence referenced in a digital crime [4]. In a real scenario, once a digital crime
is reported on an SN platform, the police may identify a number of suspects (e.g., friends,
relatives and most active users) and collect the electronic devices and the respective profile
information on the SNs. With a set of “original images” coming directly from a specific
number of the collected devices and the “shared images” taken from suspects’ profiles,
smartphone identification (SI) and user profile linking (UPL) could be achieved. These tasks
represent an orthogonal work compared with the work presented in [5] and can provide
the police with significant findings and the opportunity to update their dataset to apply to
future investigations by creating new fingerprints of the criminals’ smartphones.
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More specifically, SI is the task used to identify the source camera generating a given
set of images, while UPL is the task used to find the links among the suspects’ profiles. It is
worth mentioning that a user would be linked to other profiles even if there is not a direct
friendship between the profiles on the same or different SN platforms. In recent years,
methods based on camera sensor imperfections have been known as a robust approach for
smartphone fingerprinting applied to digital investigations due to their stability against
environmental conditions [6–8]. The photo-response non-uniformity (PRNU) approach
is most suitable for defining the pattern noise (PN) of camera sensor imperfections [9,10].
The PN can be approximated as the average of residual noises (RNs) present in each image
captured by the camera. The RN is estimated as the difference between the image content
and its denoised version obtained through a denoising filter [10]. Due to the effectiveness
of PRNU, in this paper, we take advantage of PRNU in the classification of both “original”
(or native) and “shared images” within a set of investigated profiles on SNs to achieve SI
and UPL.

1.1. Problem Statement

Given a set of images, “original” or “shared images”, taken by a given number of
smartphones, and a set of user profiles, as shown in Figure 1a, we aim to perform SI and
UPL tasks based on classification of smartphones’ camera fingerprints. In particular, a
visual example of the proposed methods for two smartphones and two SNs, Facebook and
WhatsApp, is provided in Figure 1b,c. For SI, we consider the following cases:

1.1 Original-by-original SI is the task used to detect the source cameras from which a set of
“original images” directly coming from smartphones have been taken, see the arrow
labeled “Classification (1)” in Figure 1b.

1.2 Social-by-original SI represents the task used to identify the source cameras of a given
set of “shared images”, see the arrow labeled “Classification (3)” in Figure 1c. In this
case, the “original images” are input data and allow one to define the smartphone
camera fingerprints.

(a) (b) (c)

Figure 1. A visual example of the proposed methods: (a) domain of the problem, (b,c) classification-
based approaches for smartphone identification (SI) and user profile linking (UPL) by “original” and
“shared images”, respectively. The labels (1) to (4) refer to Figure 2 presenting all the combinations of
“original” and “shared images”.

Moreover, the UPL task is categorized into two cases: within the same SN and across
different SNs, resulting in the following:
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2.1 Intra-layer UPL is the task used to link a given set of user profiles within the same SN
using “shared images”, see the arrows labeled “Classification (2)” on Facebook and
WhatsApp in Figure 1b. Through this task, the profiles that share images from the
same source are linked within the same SNs.

2.2 Inter-layer UPL represents the task used to link a set of user profiles across different
SNs by using “shared images”, see the arrow labeled “Classification (4)” in Figure 1c.
Through this task, the profiles from different SNs that share images from the same
source are linked.

1.2. Contribution

In this paper, we apply both “original” and “shared images” to fingerprint smart-
phones. We assume that the number of smartphones is known. Figure 2 shows all the
combinations of both types of images. Labels (1)–(4) make a connection with Figure 1b,c,
presenting the same meaning. We investigate different approaches, such as pre-trained
CNN and clustering methods, for original-by-original SI and intra-layer UPL tasks, and
we apply a neural network model for the social-by-original SI and inter-layer UPL tasks.
According to the comparison results (see Sections 4.1 and 4.2 for more details), k-medoids
technique [11] effectively classifies “original” and “shared images” and achieves original-by-
original SI and intra-layer UPL (i.e., the green and magenta rounded arrows in Figure 2). In
addition, a classification approach based on artificial neural networks (ANNs) effectively
achieves social-by-original SI and inter-layer UPL (i.e., the blue and red straight arrows in
Figure 2). In particular, we classify the “shared images” by exploiting the fingerprints
derived from the obtained classes, refer to Section 3.4 for more details.

Figure 2. All the possible combinations of “original” and “shared images” in the proposed methods.
The green and magenta rounded arrows from A to A imply classifying images of A, while the blue and
red straight arrows from A to B mean that we use the classified images of A to classify the images of B.

Analyzing a huge number of images on all SN platforms is an unfeasible task; for
this reason, in a real-world scenario investigators identify a restricted number of suspects
and collect the relative devices and user profile information. Accordingly, to evaluate
the proposed methods, we use our real dataset that consists of 4500 images captured
by 18 different smartphones. The dataset was uploaded and downloaded on 4 of the
most popular SNs, namely Google Currents (Google+ was discontinued in April 2019
and enterprise accounts were transitioned to Google Currents ), Facebook, WhatsApp, and
Telegram. In addition, we validate our proposed methods by the VISION image dataset [12].
The obtained results show the effectiveness of the proposed methods, even for the images
degraded through the compression process on the applied SNs. Moreover, the methods are
device-independent and able to distinguish the same model of smartphones. An important
result of our work is applying the inter-layer UPL task to link a given set of user profiles on
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different SN platforms. This is more desirable in digital investigations because on average,
users are active on multiple SNs [1].

The rest of the paper is organized as follows. Section 2 provides a summary of the SI
and UPL tasks proposed in the literature. In Section 3, we describe the proposed methods.
Experiments and their results are discussed in Section 4. In Section 5, limitation and
significance of the proposed methods are presented. Some concluding remarks are made
in Section 6.

2. Related Works

Smartphones have several built-in sensors that measure motion, orientation, and
various environmental conditions. All of these components present hardware imperfections
created during the manufacturing process that uniquely characterize each smartphone.
The smartphone fingerprint formed by these imperfections has been known as a reliable
characteristic making a smartphone trackable [7–9].

A lot of attempts have been made to get smartphone fingerprints using a variety of
sensors such as accelerometers [13], gyroscopes [14], magnetometers [15,16], cameras [17],
and paired microphones and speakers [18]. The camera could be considered a built-in
sensor that is less invasive and more suitable for source camera identification [6]. A
pioneering work [9] introduced the PRNU technique to obtain camera sensor noise. A
significant advantage of the PRNU is that it remains stable under different environments.
In addition, it is considered a reliable fingerprint that efficiently characterizes the digital
device that generated the image [19,20].

Most of the works proposed for SI and smartphone image classification were imple-
mented on the “original images”, e.g., [20–23]. However, identification by “shared images”
is challenging because of the images’ compression. Only a few works, e.g., [12,24,25],
applied shared images or videos from, for example, Facebook, YouTube, and Twitter. All the
mentioned works used “shared images” for only SI not UPL.

Different approaches have been proposed for the UPL task. For example, [26] exploited
user activities on SNs. They collected logs filed within the device through a manual
investigation and used them to match user profiles. Their experiments showed that the
method failed for BlackBerry devices. Similarly, reference [2] monitored user activities
and collected a variety of artifacts, such as usernames, passwords, login information,
personal information, uploaded posts, and exchanged messages. All of this information
was gathered for the digital investigations. The authors of [27] used the Jaro–Winkler
distance algorithm [28], to compare the account information of users, such as username,
friends, and interests, from accounts on different SNs for profile matching. Iofciu et al. [29]
introduced a method based on the combination of user IDs and tags to recognize users
through the social tagging system.

The works of [30,31] presented a framework for UPL across SNs considering profile
attributes. The framework assigns a different similarity measure to each attribute. The
authors of [32] introduced a method that was not dependent on login credentials. The
behavioral traits of users were applied to link users. Zafarani et al. [33] applied behavioral
patterns to establish a mapping among identities of individuals across social media sites.
The authors of [34] used datasets such as call records and matched the obtained histograms
of users’ data representing their fingerprints to identify users. In [35], user activities on SNs
were analyzed to find trust interactions between the users. However, there are still some
problems with these approaches. The information of users’ identities could be diverse
on different SNs [36]. The users may select different nicknames and E-mail addresses,
resulting in incorrect matching between the real person and the accounts [33].

Hence, in this paper, we use a different approach based on supervised and unsuper-
vised classification techniques, extending our previous works [37–39]. What makes our
work innovative is using images from one SN to identify smartphones applied on another
SN, which provides user profile linking across different SN platforms. In addition, we
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apply our proposed methods to larger datasets covering images from different or even
identical models of smartphones.

3. Methodology

We first provide a brief background on RN extraction and PN computation, namely
smartphone camera fingerprinting. Then, we describe the pre-processing phase that enables
definition of several parameters, such as the orientation, size, and channel of the images.
Finally, we explain SI and UPL across SNs based on classification techniques. To evaluate
our methods, we gathered a dataset including 4500 images from 18 different smartphones.
Through the paper, we call our dataset “Lab Dataset”, i.e., DL. Based on our previous
work [40], the minimum number of images per samrtphone to get a reliable fingerprint
is 50. Hence, for each smartphone, we collected 250 images. Then, we kept a subset of 50
“original images” (O) and uploaded and downloaded 50 images on each of the four selected
SNs: Google Currents (G), WhatsApp (W), Facebook High Resolution (FH), and Telegram (T).
Correspondingly, we have the datasets DO

L , DG
L , DW

L , DFH
L , and DT

L . The characteristics
of the applied smartphones in DL are shown in Table 1. We use also the VISON image
dataset including a different number of images taken by 35 smartphones. The images are
divided into flat, which is a set of images of walls and skies, and generic, which is a set of
images without limitations on orientation or scenario. The images were shared through
WhatsApp and Facebook (in both high and low resolutions). We use only generic images
in our experiments. We call the datasets DO

V , DW
V , DFH

V , and DFL
V corresponding to the O,

W, FH, and Facebook Low Resolution (FL) images. The lowest and the highest resolutions of
images for each SN in the datasets DL and DV are presented in Table 2.

Table 1. Characteristics of smartphones in DL.

Phone ID Brand Model Resolution

S1 LG Nexus 4 3264× 2448
S2 Samsung Galaxy S2 3264× 2448
S3 Apple iPhone 6+ 3264× 2448
S4 LG Nexus 5 3264× 2448
S5 Huawei Y550 2592× 1944
S6 Apple iPhone 5 3264× 2448
S7 Motorola Moto G 2592× 1456
S8 Samsung Galaxy S4 4128× 3096
S9 LG G3 4160× 3120

S10 LG Nexus 5 3264× 2448
S11 Sony Xperia Z3 5248× 3936
S12 Samsung Samsung S3 3264× 2448
S13 HTC One S 3264× 2448
S14 LG Nexus 5 3264× 2448
S15 Apple iPhone 6 3264× 2448
S16 Samsung Galaxy S2 3264× 2448
S17 Nokia Lumia 625 2592× 1456
S18 Apple iPhone 5S 3264× 2448
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Table 2. The lowest and highest image resolution in different datasets.

Dataset Lowest Resolution Highest Resolution

DO
L 960× 544 5248× 3936
DG

L 960× 544 5248× 3936
DW

L 960× 544 1600× 1200
DFH

L 960× 544 2048× 1536
DT

L 960× 544 1280× 960

DO
V 960× 720 5248× 3936
DW

V 960× 720 1280× 960
DFH

V 960× 720 2048× 1536
DFL

V 1040× 584 1312× 984

3.1. Smartphone Fingerprinting

We use the PRNU approach, proposed by [41], to extract the RN left by sensor imper-
fections in each image. Let I and d() be, respectively, an image and a denoising filter. The
RN is computed as follows:

RN = I − d(I) (1)

Then, the PN (i.e., the smartphone camera fingerprint) is approximated by averaging
the RNs of n images of camera k as follows:

PNk =
1
n

n

∑
j=1

RNj (2)

According to (1) and (2), n and d() are the two main factors that affect the quality of
the PN. In particular, the more images taken by a certain source are provided, the higher
the quality of PN is acquired [42]. We use Block-matching and 3D filtering (BM3D) as the
denoising filter d(). It has shown promising effectiveness regarding the peak signal-to-noise
ratio and visual quality, even for high levels of noise and scaled images [7,43,44].

3.2. Pre-Processing

The collected images come from different smartphones with different characteristics,
such as orientation and size. We do the pre-processing phase to make a coordination
between images in terms of orientation, size and channel. The aim is to balance a trade-off
between the computational cost and the effectiveness of the proposed methods.

The image orientation depends on the rotation of the acquisition smartphone, which
could be either portrait or landscape. Smartphone fingerprinting based on camera sensors is
dependent on the orientation of images. Accordingly, the orientation has to be normalized
for all the applied images. Although for “original images”, the metadata, which are
available through Exchangeable Image File Format (EXIF) [45], could be a solution to
obtain the right orientation, this is not applicable to “shared images”. The reason is that
the SN platforms usually remove the metadata, such as orientation, during the uploading
and downloading of the images. Hence, for the “shared images”, we only align the images
to either portrait or landscape orientation based on the spatial resolution [12]. This may
not entirely resolve the orientation problem and affects the classification, but it can be
alleviated.

In our previous work [38], in fingerprinting smartphones, we tested different channels
of images, i.e., R, G, and B in RGB color space, and Y in YCbCr color space, among which
the Y channel led to the best results. Therefore, we use the Y channel (gray-scale version)
of images in this paper.

Unlike most of the presented works in the literature, which mostly cropped the central
block of the extracted RNs, we use resizing. Generally, resizing the images involves
up-scaling or down-scaling the images to a specific resolution. After extracting the RNs
from gray-scale images, the obtained RNs are resized to an optimal size based on bicubic
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interpolation [46]. We will present some experiments in Section 4 to show the impact of
resizing compared with cropping RNs.

3.3. Original-By-Original Smartphone Identification and Intra-Layer User Profile Linking

We apply supervised and unsupervised classification to images (see Figure 1b). More
specifically, we do supervised classification using different pre-trained convolutional
neural networks (CNN) such as GoogleNet [47], SqueezeNet [48], Densenet201 [49], and
Mobilenetv2 [50]. In particular, we have added a convolutional layer to adapt the size of
the images to the network input, retaining the weights from the previous training on the
ImageNet dataset. As an unsupervised classification, we use k-means, k-medoids, and
hierarchical techniques, which are performed based on a similarity measure in such a way
that the objects in the same class have more similarity compared with those in different
classes [51]. In the hierarchical classification technique, the objects are typically organized
into a dendrogram (tree structure), where leaf nodes represent the individual data and the
root is the whole dataset. The middle nodes show merged groups of similar objects [52].
In partitional classification such as k-means [53], and k-medoids the objects are divided
into some partitions, each of which is considered as a group. The partitional classification
starts by initializing a set of k class centers. Then, each object is assigned to the class
whose center is the nearest [11,54]. K-medoids is an expensive approach, but it is a more
reliable technique in the presence of noise and outliers compared to the other unsupervised
classification methods [55].

We compare the CNN, hierarchical, k-means, and k-medoids techniques to classify
the “original images” and achieve original-by-original SI and select the best technique for
classification of smartphone camera fingerprints. Then, in a similar way, we classify the
“shared images” to achieve intra-layer UPL. Figure 3 shows the task of original-by-original
SI. Through the proposed methods, the number of smartphones under investigation has
to be provided. Let I be a set of the “original images”, and S = {S1, S2, . . . , Sm} be a
set of m camera sources. We aim to classify the images of I into the right sources of S,
where each camera source Si has its own set of images, that is I〈1,i〉, . . . , I〈j,i〉, . . . , I〈n,i〉 ∈ Si.
Thus, we have the full dataset I =

⋃
I〈i,j〉, ∀ i = 1, . . . , n and j = 1, . . . , m, where n is

the number of the collected images for each of the m smartphones. Firstly, we extract
the RNs of the “original images” such that RN<i,j> is the RN corresponding to ith image
taken by jth smartphone. Then, we use correlation as the similarity measure because it is
the optimal metric for multiplicative signals such as PRNU [41]. The correlation between
RN〈a,b〉 = [x1, . . . , xl ] from I〈a,b〉 and RN〈c,d〉 = [y1, . . . , yl ] from I〈c,d〉, such that l is the total
number of pixels forming images I〈a,b〉, I〈c,d〉 and the two related RN vectors, is defined
as follows:

ρ =
∑l

i=1(xi − RN〈a,b〉)(yi − RN〈c,d〉)√
∑l

i=1(xi − RN〈a,b〉)2 ∑l
i=1(yi − RN〈c,d〉)2

(3)

where RN〈a,b〉 and RN〈c,d〉 represent the means of the two RN vectors. We create a matrix ζ
containing correlations between each pair of the extracted RNs. As a result of the varying
qualities of PNs of different cameras, the average correlation between the RNs from one
camera may differ from that of other camera [20]. This problem makes the classification
of PNs more challenging. To address this problem, an alternative similarity measure is
calculated based on shared κ-nearest neighbors (SNN) proposed by [56]:

W(di, dj) = |N(ρi) ∩N(ρj)| (4)

where ρi and ρj are two elements in the correlation matrix ζ, and N(ρi) and N(ρj) are the
SNN of ρi and ρj, soW(ρi, ρj) results in the number of κ-nearest neighbours shared by ρi
and ρj. Then, we apply classification to the resulted matrixW from SNN.
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Figure 3. Original-by-original SI: the “original images” are classified according to the smartphone’s
source camera.

Smartphone identification deals with 1-to-m matching problem and determines which
smartphone out of m took a given image. Therefore, the stopping criterion in hierarchical
classification and the parameter k in k-means and k-medoids are set to the number of
smartphones, i.e., m = 18 and m = 35 for DL and DV, respectively. The number of
smartphones represents the number of classes as the output of various networks used. All
the classification approaches associate each RN with a label that represents the related
source of the image. Similarly, we address the intra-layer UPL task, as shown in Figure 4.

Figure 4. Intra-layer UPL task: profiles P1 and P2 are linked since they share images taken from the
same smartphone S1.

Let D x be a set of images where x ∈ {G, W, FH, FL, T}. Each image in D x has a
specific profile tag Pi that represents the ith user’s profile on the SN x the image comes
from. Like original-by-original SI, we exploit the full pairwise correlation matrix of the
extracted RNs to classify D x images into the right sources of S. Then, by using the resulted
classes and profile tags, we are able to link profiles. Moreover, we can determine whether
a user uploaded images taken by one or more smartphones. In the first case, if within
two different profiles there are images that are in the same class Si, these profiles could
be linked. For instance, in Figure 4, identification of smartphone S1 leads to a matching
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between the profiles P1 and P2. In the second case, if the images belonging to the same
profile are grouped in different classes, it means that the user uploaded the images from
different smartphones. In Figure 4, the user of profile P4 has shared images taken by two
different smartphones, namely S2 and Sm.

3.4. Social-By-Original Smartphone Identification and Inter-Layer User Profile Linking

Here, we exploit the obtained classes, from original-by-original SI and intra-layer UPL
tasks, as ground truths of the fingerprinted smartphones to classify “original” or “shared
images” into m classes. Generally, ANNs, inspired by the biological form of the human
neural system, have proven their effectiveness in classification tasks [57]. They are very
flexible in learning features and can solve non-linear problems. Compared with the other
classifiers such as support vector machine, extreme learning machine, and random forest,
ANNs are more fault tolerant [58]. As a mathematical model, an ANN consists of a set of
attached neurons called processing units. Neurons are organized in layers. The output of a
neuron is stated as f (h), where f () is the activation function, and h is computed as follows:

h =
s

∑
i=1

wixi + b (5)

where xi and wi are the input data and weight of the neuron, respectively; b is the bias; and
s is the total number of input connections of the neuron [59]. For a desirable classification,
the weights of the ANN should be tuned. This process is called training or learning [60]. A
multi-layer perceptron (MLP) is a kind of ANN composed of one or several hidden layers
of neurons [61]. An MLP is trained by using a back propagation (BP) algorithm such that it
minimizes the mean squared error (MSE), which is formulated by:

MSE =
1
N

N

∑
i=1

(Ti −Oi)
2 (6)

where O and T are matrices representing the labels predicted by ANN and the class labels
of the inputs, respectively, and N is the number of samples. We will use the classified
images that are the outcome of the previous task and ANN to perform both social-by-original
SI and inter-layer UPL. The social-by-original SI task is shown in Figure 5. We first define
the fingerprint PNi corresponding to the obtained classes from the set I, such that PNi
transitively identifies the smartphone Si. Then, by (3), we calculate the correlation values
between each pair of RNs extracted from the images in D x, and the obtained PNs. For
example, a correlation matrix of the size 900× 18 is formed corresponding to 900 RNs in
DG

L to be classified according to 18 smartphones in DO
L which have already been identified

in the classification. The matrix is used for training and test the ANN through a 10-fold
cross-validation model [62]. In particular, in every 10 iterations, the ANN is given 90% of
the rows in the correlation matrix and corresponding class labels (smartphone labels by
which the RNs in DG

L were generated) as the ground truth. In the test, the trained ANN is
provided by 10% of the rows in the correlation matrix to classify each image in DG

L , called
social-by-original SI. By using the 10-fold approach, all the samples in the correlation matrix
are tested as there is a swap between training and test in each iteration.

In inter-layer UPL task, as shown in Figure 6, the profile tag Pi, where i represents the
ith profile on a given SN, allows one to link user profiles across different SNs. The PNi
is defined by using the classes obtained from Google Currents, and the ANN is trained to
classify the WhatsApp images. After the classification, the profile P1 on WhatsApp is linked
to the profiles P1, P2, and P3 on Google Currents because they share images taken from the
same smartphones S1 and S2. Similarly, the profile P5 on WhatsApp is linked to the profiles
P4 and P5 on Google Currents.
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Figure 5. Social-by-original SI task based on classification approach: the classified “original images”
are used to train the ANN and classify the “shared images”.

Figure 6. Inter-layer UPL task based on classification approach: to classify the “shared images” on
a given social network (SN) (e.g., WhatsApp), the ANN is trained by using the obtained classes of
“shared images” on a different SN (e.g., Google Currents).

We tested different topologies for the applied ANNs in terms of training method, acti-
vation function, and the number of hidden layers. As a result, an appropriate effectiveness
of social-by-original SI and inter-layer UPL is achieved by the simple ANN’s architecture
shown in Table 3. In particular, we use trainscg as the training function that updates weight
and bias values based on the scaled conjugate gradient training algorithm, and the logistic
sigmoid as activation function that provides an appropriate convergence in the training. In
particular, the applied activation function is defined as follows:

f (h) =
1

1 + e−h (7)
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where h is obtained by (5).

Table 3. ANN’s architecture.

Type Multi-Layer Perceptron (MLP)

Number of layers 2

Neurons in input layer
{

900 for DL
7480 for DV

Neurons in hidden layer 50

Neurons in output layer
{

18 for DL
35 for DV

Learning rule Back Propagation (BP)
Training function trainscg
Activation function logsig
Error Mean Squared Error (MSE)

4. Experimental Results

In this section, the results of SI and UPL are presented. In particular, the results of
original-by-original SI, social-by-original SI, intra-layer UPL, and inter-layer UPL are provided,
respectively. The proposed methods were implemented in MATLAB R©, version R2019a on
a laptop with the following characteristics: Intel Core i7-6500U (2.93 GHz), 16 GB of RAM,
and Windows 10 operating system. In each of these tests, to evaluate the classification
processes, we calculate several measures. Let TP be a set of images to which the method
has correctly assigned class labels, while that it has correctly not assigned is represented by
TN. In addition, FP is the set of images to which the method has wrongly assigned class
labels and FN is the set of images that the method has wrongly not assigned. Accordingly,
Sensitivity (SE ), Specificity (SP), Rand Index (RI), Adjusted Rand Index (ARI), F1-
measure (F ), and Purity (P) are defined as follows:

SE =
|TP|

|TP|+ |FN| (8)

SP =
|TN|

|TN|+ |FP| (9)

RI =
|TP|+ |TN|

|TP|+ |FP|+ |TN|+ |FN| (10)

where |.| denotes cardinality of the related set, i.e., True Positive (TP), True Negative (TN),
False Positive (FP), or False Negative (FN). The value of RI varies between 0 and 1, re-
spectively showing no agreement and full agreement between the classification results and
the ground truth. For two random classes, the average ofRI , i.e.,RI is a non-zero value.
To get rid of this bias, ARI was proposed by [63]:

ARI =
RI −RI

1−RI
(11)

F =
2.|TP|

2.|TP|+ |FP|+ |FN| (12)

P =
∑
|C|
i=1

|ĉi |
|ci |

|C| (13)

where C = {c1, c2, . . . , cm} is the set of the obtained classes corresponding to m smartphones
in dataset, ĉi denotes the number of RNs with the dominant class label in the class ci, and
|ci| is the total number of RNs in ci.

As described before, we evaluate the effectiveness of the ANN in the training phase
as well as its generalization capability by using 10-fold cross-validation. Firstly, a matrix
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including the correlations between the extracted RNs and the obtained PNs are calculated
based on (3). The ith row of the matrix includes the similarities between the ith RN and
all the resulted PNs from the classification. The rows related to the same smartphone
are shuffled to have an order-independent evaluation. Then, they are divided into 10
folds so that each of them includes an equal number of samples for each smartphone. In
each of 10 iterations of the cross-validation, nine folds and one independent fold are used
respectively for “training set” and “test set”. For example, in DO

L we have 50 images for
each smartphone, so we use 850 and 50 rows, respectively, in training and test at each
iteration. The 10-fold cross-validation process is repeated 10 times, and finally, the average
values obtained from the measures in (8)–(13) are considered as the ANN results.

4.1. Original-By-Original Smartphone Identification Results

In this experiment, we use “original images” to identify their acquisition smartphones,
which is called the original-by-original SI task. As shown in Table 1, these images have a
high resolution, so the results can be considered as a benchmark for the capability of the
classification in the best case. Furthermore, we exploit this experiment to perform some
pre-processing in terms of size for all the applied images in the datasets. In particular,
in the pre-processing phase, we use the k-medoids method because it is a more reliable
technique in the presence of noise and outliers.

Based on Table 4, to obtain the optimal resolution in resizing, we resize the extracted
RNs form the images in DO

L with different resolutions, i.e., 128 × 128, 256 × 256, 512 × 512,
960 × 544, 1024 × 1024, 1280 × 1024, and 1536 × 1536. Then, we do classification by
k-medoids. We choose the size of 1024× 1024 as it results in the highest values of all the
measures, i.e., SE , SP , RI , ARI , F , and P compared with the other resolutions. In
addition, Figure 7 shows the impact of SNN on the pairwise correlation matrices of the
datasets DO

L and DO
V . Comparing the subfigures (c) and (d) with (a) and (b), it can be

seen that the average of intra-camera correlations, i.e., the diagonal parts, has increased
while the average of the inter-camera correlations has decreased. This improvement in the
correlations between RNs produces better results for k-medoids. The value of κ in SNN for
each dataset was experimentally determined. Different values were tested and κ = 20 and
κ = 70 generated the best results in the classification for DO

L and DO
V , respectively.

Table 4. Results (%) of resizing versus cropping the RNs in original-by-original SI on DO
L , by testing

different image resolution.

Resizing Cropping *

Size SE SP ARI F P SE SP ARI F P
1536× 1536 0.91 0.99 0.88 0.88 0.95 —— —— —— —— ——
1280× 1024 0.89 0.99 0.85 0.86 0.94 —— —— —— —— ——
1024× 1024 0.91 0.99 0.90 0.91 0.96 —— —— —— —— ——
960× 544 0.90 0.99 0.87 0.88 0.95 0.91 0.99 0.89 0.90 0.95
512× 512 0.90 0.99 0.87 0.88 0.94 0.85 0.98 0.81 0.82 0.89
256× 256 0.58 0.97 0.55 0.57 0.75 0.76 0.98 0.74 0.75 0.87
128× 128 0.18 0.94 0.12 0.17 0.37 0.43 0.96 0.39 0.42 0.66

* The highest resolution for cropping RNs is 960× 544 px, based on Table 2.

The comparison results among CNN models, hierarchical clustering, k-means, and
k-medoids techniques applied to DO

V are shown in Figure 8. The results confirm that
k-medoids is the best to classify RNs, even for RNs extracted from images from identical
models of smartphones. According to Table 5, the results of k-medoids on both the datasets
DO

L and DO
V show the effectiveness of the classification with the resolution 1024× 1024.
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(a) (b)

(c) (d)

Figure 7. Pairwise similarities of residual noises (RNs): (a,b) without and (c,d) with using shared
κ-nearest neighbor, respectively from left to right for DO

L , κ = 20, and DO
V , κ = 70.

Figure 8. Results (%) of original-by-original SI by using different methods on DO
V with the RN

resolution 1024× 1024.
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Table 5. Results (%) of original-by-original SI on different datasets.

Dataset SE SP ARI F P

DO
L 0.91 0.99 0.90 0.91 0.96
DO

V 0.84 0.99 0.84 0.85 0.894

4.2. Social-By-Original Smartphone Identification Results

In this test, we use both “original” and “shared images” to present social-by-original SI.
Firstly, we exploit Google Currents images in DL to set up the architecture of the applied
ANNs as Google Currents images provide the highest resolution. Accordingly, the test could
also be considered as a benchmark for the ANNs used for the other SNs. In particular, to
tune the number of neurons in the hidden layer, we consider the classes of the “original
images” from the previous test and classify the Google Currents images.

Based on Figure 9, by systematically increasing the number of neurons, the classifi-
cation results are improved in terms of SE , SP , ARI , F and P . Although the highest
values are resulted in the cardinality of 35, up to the cardinality of 50, there are still some
fluctuations in the values. For this reason, we set the number of the neurons to 50 in our
experiments. The tuning phase of the ANNs can also be used as a benchmark for the
capability of the classification in the best case because the “original images” and Google
Currents images have the highest resolution in the dataset.

Figure 9. Results (%) of social-by-original SI for systematically increasing the number of neurons in
the hidden layer of ANN. The images in DG

L are classified by the obtained classes of images in DO
L

and the trained ANN.

The results of social-by-original SI for both datasets DL and DV are shown in Table 6.
The social-by-original SI enables identification of smartphones in spite of the fact that the
pictures get downgraded during the uploading and downloading process.

Table 6. Results (%) of social-by-original SI on different datasets.

Dataset SE SP ARI F P

DG
L −D

O
L 0.92 0.99 0.91 0.91 0.97

DW
L −DO

L 0.85 0.99 0.82 0.83 0.92
DFH

L −DO
L 0.85 0.99 0.82 0.83 0.92

DT
L −DO

L 0.86 0.99 0.83 0.84 0.93

DW
V −DO

V 0.81 0.99 0.79 0.80 0.91
DFH

V −DO
V 0.80 0.99 0.77 0.77 0.90

DFL
V −DO

V 0.78 0.99 0.75 0.75 0.89
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4.3. Intra-Layer User Profile Linking Results

In this section, we discuss the results of intra-layer UPL. In particular, this test exploits
“shared images” to determine whether a given set of user profiles within the same SN
are linked. Table 7 shows the results on the “shared images” in both DL and DV. The
best results are related to DG

L . The reason is that Google Currents images have the same
resolution as the “original images” confirming that the compression algorithm on this SN
results in less elimination of image details, (see Table 2). Although the other SNs compress
the images more than Google Currents, the method has returned good results confirming
the effectiveness of the method in the task of intra-layer UPL.

Table 7. Results (%) of intra-layer UPL on different datasets.

Dataset DG
L DW

L DFH
L DT

L DW
V DFH

V DFL
V

SE 0.91 0.87 0.88 0.87 0.75 0.73 0.43
SP 0.99 0.98 0.99 0.99 0.99 0.99 0.98
ARI 0.88 0.84 0.86 0.86 0.74 0.71 0.40
F 0.89 0.86 0.85 0.85 0.75 0.71 0.42
P 0.96 0.94 0.93 0.92 0.84 0.80 0.58

4.4. Inter-Layer User Profile Linking Results

This last test is the most challenging. We demonstrate that the proposed method is
able to link a restricted set of user profiles across different SNs. In other words, we verify
whether two sets of images from different user profiles on different SNs are linked, that
is inter-layer UPL. The strengths of our method include the possibility to exploit images
from different SNs, not only the “original images”, but also the robustness in spite of the
fact that some SNs degrade the resolution of the images more than others. We consider all
the different combinations of the selected SNs for each dataset, as shown in Figure 2. The
results for all the possible pairs of SNs are presented in Tables 8 and 9.

It is worth mentioning that the images in DL used for experiments of inter-layer UPL
on different SNs are not from the same scenes, making a more similar real-life situation.
Among the results in Table 8, using Google Currents images to classify the images on
the other SN datasets, i.e., DW

L , DFH
L , and DT

L produce the highest values of SE , SP ,
ARI , F , and P , as shown in the first rows of Table 8. For DV, using images in DW

V to
classify the images in the other datasets, i.e., DFH

L and DFL
L concluded the best results. It is

interesting that the classification of the images in DFL
L in inter-layer UPL compared with

the classification of the images in intra-layer UPL generates better results. Given the results,
it is proven that the proposed methods are reliable enough to match user profiles on the
selected SNs.

Table 8. Results (%) of inter-layer UPL on DL.

Dataset SE SP ARI F P

DW
L −DG

L 0.90 0.99 0.87 0.88 0.96
DFH

L −DG
L 0.90 0.99 0.87 0.87 0.95

DT
L −DG

L 0.92 0.99 0.90 0.91 0.96

DG
L −D

W
L 0.91 0.99 0.90 0.90 0.96

DFH
L −DW

L 0.86 0.99 0.83 0.83 0.94
DT

L −DW
L 0.90 0.99 0.88 0.87 0.95

DG
L −D

FH
L 0.90 0.99 0.88 0.88 0.95

DW
L −DFH

L 0.86 0.98 0.82 0.83 0.94
DT

L −DFH
L 0.87 0.99 0.84 0.85 0.93

DG
L −D

T
L 0.90 0.99 0.88 0.90 0.95

DW
L −DT

L 0.87 0.98 0.85 0.85 0.94
DFH

L −DT
L 0.87 0.98 0.85 0.86 0.94
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Table 9. Results (%) of inter-layer UPL on DV.

Dataset SE SP ARI F P

DFH
V −DW

V 0.80 0.99 0.78 0.79 0.90
DFL

V −DW
V 0.80 0.99 0.78 0.78 0.88

DW
V −DFH

V 0.78 0.99 0.76 0.77 0.87
DFL

V −DFH
V 0.77 0.99 0.76 0.76 0.87

DW
V −DFL

V 0.61 0.99 0.58 0.59 0.72
DFH

V −DFL
V 0.61 0.99 0.59 0.60 0.73

5. Discussion

We have presented smartphone identification (SI) and user profile linking (UPL). Analyzing
a huge number of images on all SN platforms is an unfeasible task. In addition, the digital
investigation is operated on a restricted set of devices, suspects’ profiles, and a given
set of investigated images. Hence, we considered a scenario in which the number of
smartphones has to be provided. Although in some applications it is not and clustering
is used instead [5,23], applying classification is preferable which provides more accurate
results compared with clustering.

Based on our work, it can be implied that despite the advances in deep learning
techniques in classification with different CNN models, traditional techniques like k-
medoids can still achieve high performing smartphone image classification tasks. K-
medoids only needs one parameter to be set that is the number of smartphones in our
application, while for CNN models lots of parameters have to be set which makes the
classification more challenging and computationally expensive.

An important outcome of our work is presenting the inter-layer UPL task, which is
more desirable in digital investigations as it links user profiles on different SNs. The
proposed methods in the combination of the other types of information such as GPS, users’
E-mail addresses, and login information can also help for user profile linking.

6. Conclusions

In this paper, we have compared different classification methods to achieve SI and
UPL. The methods can help forensic investigators to find significant information from
digital crimes when a set of images captured by a specific number of smartphones and
shared on a set of investigated user profiles are provided. We have evaluated our methods
on different datasets, i.e., our dataset and VISON dataset. The obtained results show
that with an acceptable error margin, k-medoids achieves the best results compared with
k-means, hierarchical approaches, and different models of convolutional neural network
(CNN) in the classification of the images. In particular, the results indicate that even in
the worst case k-medoids can provide the values of F1-measure 75% and 77%, for SI and
UPL tasks, respectively. The results confirm the effectiveness of the methods, even with
the same models of smartphones. The methods are applicable to images compressed on
SNs, and there is no need to hack the user’s smartphone for fingerprinting. An important
outcome of our work is presenting the inter-layer UPL task, which is more desirable in
digital investigations because it links user profiles on different SNs. The methods will
become even more powerful when considering other types of information such as GPS,
users’ E-mail addresses, and login information, to name a few. Through the proposed
methods, the number of smartphones under investigation has to be provided. However,
in our future work, we plan to present an algorithm to classify all shared images on
the suspect’s profile, without prior knowledge of the source cameras. In addition, the
relationship between the two parameters of the number of smartphones and the number
of images needed per smartphone can be investigated to handle the uncertainty of these
two parameters.
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