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Abstract: Measuring the quantity of people in a given space has many applications, ranging from
marketing to safety. A family of novel approaches to measuring crowd size relies on inexpensive
Wi-Fi equipment, taking advantage of the fact that Wi-Fi signals get distorted by people’s presence, so
by identifying these distortion patterns, we can estimate the number of people in such a given space.
In this work, we refine methods that leverage Channel State Information (CSI), which is used to train
a classifier that estimates the number of people placed between a Wi-Fi transmitter and a receiver,
and we show that the available multi-link information allows us to achieve substantially better results
than state-of-the-art single link or averaging approaches, that is, those that take the average of the
information of all channels instead of taking them individually. We show experimentally how the
addition of each of the multiple links information helps to improve the accuracy of the prediction
from 44% with one link to 99% with 6 links.

Keywords: Wi-Fi; CSI; crowd counting; Doppler spectrum

1. Introduction

In recent years, mainly due to the COVID-19 health crisis in 2020 and beyond, the im-
portance of technology capable of providing assistance to assess safety in crowds [1–4] has
been brought to mainstream awareness [5]. However, crowd assessment applications are
not limited to those that provide support for safety, and a new set of applications have
been envisioned in businesses [6,7], and in other practical scenarios [8,9]. Of particular
interest to the scientific community is the passive and device-free (meaning that the people
who are monitored do not need to carry a device such as a cellular phone) estimation of the
number of people in a given area. It is important to know the number of people in a room,
to monitor human queues or to track the volume of customers in a commercial location,
to provide valuable information in the context of smart space design, consumer marketing
and venue security [10–12].

Though some recent and some decades-old developments have used computer vision
for crowd measurement [1,13,14], nowadays visible light sensors are used with limitations
due to the need of a line-of-sight which is subject to variable lighting conditions and
coverage, as well as privacy concerns.

Recently, the increasing availability and descending costs of Wi-Fi equipment has
promoted its use even in applications other than digital communications, such as indoor
location [15,16]. In recent years it has begun to be the case of crowd measurement, given
that popular Machine Learning techniques [17] can be used to recognize the disturbance
patterns that human bodies produce when placed between a Wi-Fi transmitter and a
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receiver [10]. Notwithstanding the wide range of potential applications that Wi-Fi sensing
crowd analysis may reach, there are fundamental aspects of the subject (such as accuracy,
reproducibility, and scale) that remain as limitations to overcome the boundaries of the
current body of knowledge.

The aim of this work is to improve the results obtained from Machine Learning
analysis of the disturbance patterns produced by human bodies to the signal propagation
of individual channels of a Wi-Fi connection using the Doppler spectrum experienced in a
crowd [18]. The original contribution of this paper is the systematical use of the Channel
State Information (CSI) [19] of all the available channel links of a Wi-Fi communication (we
refer to this as the ’multi-link’ approach) rather than using indicators of just one link and
discard the rest or to apply summary operations on all the links to reduce them to a single
value (we refer to this as the ’single-link’ approach, which is the one that has been used
so far) to count the people present in one room, using a classification technique based on
supervised Machine Learning. We demonstrate in this paper that the use of our multi-link
approach improves accuracy in a dynamic environment with multiple wireless signals,
multi-path components in the signal propagation through the channel that cause fading
and absorption.

Many of recent works on this subject have used the Received Signal Strength Indicator
(RSSI) as an index of the channel quality. RSSI is processed for feature extraction and
the counting estimation is obtained after carrying out a learning phase [20–24]. For the
estimation of the exact number of people in a place, the best RSSI-based reported results
come from the work of Yoshida et al. [24], with a 77% of accuracy for up to 7 people.
A major drawback of this technique is that RSSI-based algorithms tend to ignore the multi-
path effects of the RF propagation, and as a matter of fact, its performance is greatly affected
by channel disturbances. A more recent approach uses the Channel State Information
(CSI) [19] that provides channel response information for Multiple Input Multiple Output
(MIMO) Wi-Fi systems. As a result, CSI offers better measurements of people activity by
capturing the disturbances the crowd cause in the channel.

Even with the use of CSI-based techniques, the performance of crowd-counting solu-
tions documented in the literature present accuracy challenges that typically worsen with
the group scale. The research carried out by Di Domenico et al. [25], which is commonly
used as an indicator of the state of the art, reports an accuracy of about 80% for counting
up to 7 people. The work from Xi et al. [26], is another common reference in the field, they
achieved a probability of 80% of having either a perfect count or failing by one person
when counting up to 30 people.

In this paper, we present a data driven work that takes advantage of the advances
in Machine Learning (ML) techniques and apply it to multi-link Wi-Fi CSI information
to produce better results than those reported in the literature for the recognition of the
characteristics of a crowd, and specifically its counting.

The proposed method takes the information extracted from a CSI pattern of commer-
cial off-the-shelf (COTS) Wi-Fi and translates it into the Doppler Spectrum where a set of
features that capture information provided by the multi-link nature of the MIMO system
is extracted to achieve high accuracy counting predictions. Furthermore, our approach
can be potentially useful to identify dynamic characteristics of the crowd, such as its size,
growth, dispersion and mobility, that could be applied to many relevant scenarios such as
offering services based on the occupation detected in an environment, trends of influx in
public spaces, occupancy predictions, mobility trends by region, and many more.

The method here presented reports several advantages with respect to other works
such as:

• Fewer features derived from the signal are required for an accurate counting estima-
tion. This results in reduced processing time since feature extraction requires less
computing power.

• It works seamlessly with COTS Wi-Fi access points.
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• Increased accuracy and other performance metrics as a result of using multiple links
instead of one or an average.

The remaining of this paper is structured as follows. In Section 2 we present the
background concepts for the sake of self-containment, as well as a review of the related
work. Then, our method is presented in Section 3, together with the experimental setup
and results description. Finally, in Section 4 we discuss the relevance of our contributions
and provide some ideas for future work.

2. Background and Related Work

The field of crowd dynamics refers to the analysis of the motion of people within a
defined group and its changes over a period of time. The topic has attracted an increasing
interest from the research community due to many potential applications, and more recently
the COVID-19 health crisis under way, makes clear that it is imperative to avoid crowd
concentrations, especially in indoor spaces, in order to avoid further contagion [27]. Crowd
applications are not limited to health issues though, and among other ones, we find crowd
security and management for emergency handling, where the ability to recognize patterns
in the crowd behavior allows better and faster responses or improvements to the space
design [3,28,29]. Hence, several frameworks coming from different disciplines have been
proposed in order to model the motion of a crowd.

The work of Helbing and Johansson [30], explores the analogies between the patterns
of a crowd and the properties of a fluid of particles. Their study provides a framework to
model the interactions of individuals in crowds, and the study of self-organized patterns
of motion they generate as a result of the emerged collective intelligence and the social
forces involved in the process. In a prior work, Helbing et al. [31], introduced the con-
cepts of attraction and repulsion forces to simulate the dynamics of crowds in panic or
evacuation situations.

In the following sections, it is also discussed how different authors put different levels
of emphasis in one or more attributes of the crowd in order to model, describe and predict
its dynamics; and each of them uses a set of metrics, either quantitative or categorical, as a
basis for their work.

2.1. Quantitative Characterization of a Crowd

Still [32] defines crowd speed as ‘the emergent speed of a group of individuals’ that is
a result of the non-linear interactions within the crowd in the local geometry. In his study,
the author describes how crowd speed is modulated by crowd density (number of people
by unit of area), being the flow volume a function of both.

Helbing et al. [33], analyze the relationships among numerical properties of crowds
to describe a motion model. In this study, Helbing defines key crowd parameters such as
density, speed, pressure and flow vectors. The research argues that even at highly dense
crowds the motion of the crowd continues, which in turn causes dangerous ‘turbulence’
spots where crowd pressure is beyond a critical threshold.

The work of Pathan et al. introduces a novel approach for crowd behavior analysis and
anomaly detection in coherent and incoherent crowded scenes [34]. The authors explore the
crowd problem from a data-driven perspective and propose a method to calculate social
entropy. The introduced metric is used as a descriptor of crowd behavior. Support Vector
Machines are used to train and classify the flow feature vectors as normal and abnormal.

2.2. Categorical Metrics of Crowd Dynamics

Vicsek et al. [35], provide a general classification of collective motion. They proposed
that any group of individuals can be categorized in five possible motion states: (i) disor-
dered state (individuals moving randomly); (ii) fully ordered state (individuals moving
at pace in the same direction); (iii) rotational (individuals moving in well-defined pat-
terns); (iv) critical (state very sensitive to perturbations); (v) velocity correlated (individuals
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behave as elongated particles). Saleem et al. proposed a simplified approach to these
categories by grouping them into coherent and incoherent crowds [34].

Interesting to our own work are crowd analysis studies that have been proposed in
the image processing and computer vision fields. In this context, Xu et al. proposed an
algorithm to detect the gathering and dispersing stages of a crowd in video recordings.
To achieve this, the authors combine techniques of crowd counting and group entropy
to estimate the spatial distribution of the individuals. These parameters are then used as
features for the classification process [36].

2.3. Sensing Crowds with Wi-Fi

Human sensing based on commodity Wi-Fi has gained attention in recent years mainly
because of the pervasive availability of Wi-Fi signals, that can be re-purposed sometimes
with little cost. Advances in device-free sensing, where neither special equipment nor
cooperation is required from the sensed subject, have been documented [37–39].

Amplitude and phase of Wi-Fi signals are very sensitive to the surrounded environ-
ment, and it has been shown that it is possible to extract patterns from such variations to
identify human-related activity [23,40–42]. This way of acquiring human or crowd data
is known as passive sensing. It refers to the family of sensing techniques that requires no
cooperation from the sensed subject (as opposite to active sensing that is based, for example,
in wearables or mobile apps used by the sensing target).

There are in the literature two different approaches to passive sensing with Wi-Fi
signals: the first one is passive device-present, here the sensing signals from client-to-Access
Point (AP) communication are exploited; the second one is Passive device-free, where sensing
signals from AP-to-receiver communication are used. Passive device-free sensing based
on commodity Wi-Fi has gained special attention due to the advantages of achieving
crowd sensing without requiring the collaboration of the sensed group. Also, in contrast to
device-present sensing, a device-free approach protects subjects privacy inherently.

2.4. Human-Centric vs. Crowd-Centric Sensing

Research work may also be classified according to the type of inputs it tries to detect:
while human-centric aims to detect events and activities at the person level, crowd-centric
aims to modeling properties of a group of people. Although a plethora of applications
have been subject of study, in practical terms, sensing research may be binary classified in
one of these two approaches.

As opposite to the human-centric perspective, crowd-centric sensing is not interested
on predicting or estimating properties from single individuals, but those that arise from a
group of people as an entity. Models in this category are designed to define crowd variables
such as the size, density, speed and direction.

While human-centric sensing has found applications especially in health care [40,43–45],
crowd-centric sensing has an important range of potential applications in public safety,
mobility planning and marketing [6,46–50].

2.5. Sensing Crowd Properties

As discussed above in this section, crowds present several properties of interest that
can be useful to prevent unwanted situations or stimulate desired behaviors. In this
context, research work on Wi-Fi-based sensing models that can deliver accurate results is
gaining attraction.

Wi-Fi-based crowd counting is the task of estimating the number of people gathered
in a specific area. An increasing amount of research work has been dedicated to crowd
counting with Wi-Fi signals in recent years. Xi et al. published a method to estimate the
size of a crowd of up to 30 people using a Grey Verhulst model [26]. Another important
crowd indicator is its density (i.e., the number of people per unit of area). While there
is few documented research on this subject, a recent work by Tang et al. uses a device-
present approach to calculate crowd density by capturing device’s request probes and RSSI
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signal [51]. Depatla et al. [52] proposed a framework to sense speed of a crowd in both
outdoor and indoor locations.

2.6. Rssi and Csi: The Sensing Signals

Wi-Fi is a commercial denomination for the IEEE 802.11 standard, which is the pre-
dominant technology used for Wireless Local Area Networks (WLAN) that operates in
the 2.4 GHz or 5 GHz frequency bands. The first version of the standard was released in
1997 [53]. A decade later, the idea of using Wi-Fi signals to identify, analyze or predict hu-
man activity started to be increasingly present in researchers’ work desks around the world.
Since then, several techniques have been proposed for capturing, denoising, processing
and classifying the hints of human activity that are intrinsically carried by the wireless
signals the Wi-Fi standard uses.

Estimation techniques are in general based on some kind of measurement of signal
parameters on the RF propagation channel as a function of the variables of interest. There
are two specific types of signal-related parameters that are commonly used in current Wi-Fi
sensing research, which are: RSSI and Channel State Information (CSI).

2.6.1. Rssi

Due to the simplicity of field strength measuring, RSSI has been commonly used
in many applications as those concerned to indoor localization. As its name describes,
RSSI is a measure of the power present in the signal at the time it arrives to the receiver.
According to signal propagation models and measurements, signal energy decreases with
distance. Because of this, RSSI is often used with multilateration methods to estimate
position [15,16]. This is a device-assisted approach, as it requires that the subject to be
localized carry a device with a Wi-Fi receiver. Human tracking with Wi-Fi can, however,
also be accomplished by device-free methods. This is achieved by analyzing the variance
and other statistical properties of the RSSI signal data [54,55]. Youssef et al. for example,
used the moving average of the signal strength values to track the location of a person [56].

Although RSSI can be easily implemented, its suitability as sensing vehicle in non-
controlled environments is limited, as RSSI presents several impairments when obstacles
are present in the area of interest. The strength of a single received signal is greatly affected
by multipath and shadowing effects that yield estimation errors. As a result of this, CSI
has been proposed as an alternative [57].

2.6.2. Csi

Modern Wi-Fi standards, powered with Orthogonal Frequency Division Multiplexing
(OFDM) modulation and MIMO capabilities, utilize CSI as an indicator of the properties of
the channel to dynamically optimize and adapt the transmission parameters to improve
performance. Therefore, CSI is an overall representation of the channel state that sums
up the signal’s propagation effects including scattering, fading and multipath [58]. Al-
though RSSI also offers an overall picture of the channel by providing time averaged total
power of the signal envelope at the receiver, CSI is an estimation of the channel coefficients
that represent either the impulse or the frequency response at the sub-carrier level [59].
Because of its granularity of sub-carrier frequencies and its vector representation, CSI data
provide more information of the channel impairment effects that the signal experiences in
contrast to the received power strength given by RSSI.

The proposed research work makes use of the advantages mentioned above and
employ CSI as the sensing signal. Hence, it is worth providing a more detailed description
of the nature of the CSI data and the context in which it is produced.

2.6.3. Mimo Systems

In wireless communications the information signals are transmitted through a channel,
ideally in line-of-sight (LOS) obstacle-free conditions, but in practical scenarios, the LOS
condition is not met and the transmission paths are not unique, so the beam uniqueness
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does not hold. The objects and subjects located in the surroundings of the channel may
reflect, refract, diffract and scatter the signal, producing multiple new paths the signal
traverse to the receiver, an effect called multipath propagation that exhibits deep fades
with high variance [60].

From the receiver point of view, multiple copies of the signal arrive with different time
delays, amplitudes and phase shifts. This aggregation of signal replicas produces fading, a
multipath-induced interference that results in variations of Signal-to-Noise Ratio (SNR)
of the emerging signal [61]. Such a behavior is traditionally considered as a problem the
wireless communication system has to solve.

A Multiple Input Multiple Output (MIMO) system uses multiple antennas at the
transmitter or the receiver to improve the overall communication performance. In con-
trast to single-antenna systems (SISO) that gather a single signal for reception, MIMO
systems are able to use simultaneously multiple signals carrying information. Then, signal
processing techniques such as space-time coding, beamforming, channel estimation and
symbol detection are used to take advantage of the various signals that are available at
the receiver. This results in significant improvements of spectral efficiency, data rate and
system capacity [62].

A typical configuration of a MIMO channel consisting of M number of antennas at
the transmitter and N antennas at the receiver is shown in Figure 1. The transmission is
expressed in terms of the received vector y, the transmitted vector x, the channel coefficient
matrix H and noise n, as follows:

y = Hx + n (1)

Similarly, each of the N antennas at the receiver, receives signals from all the M
transmitting antennas, creating S number of communications links according to:

S = MN (2)

The general expression for (1) in its matrix representation is


y1
y2
...
yN

 =


h11 h12 ... h1M
h21 h22 ... h2M
... ... ... ...

hN1 hN2 ... hNM




x1
x2
...

xM

+


n1
n2
...

nN

 (3)

For example, a 3× 2 MIMO system will have 3 transmitting antennas and 2 receiving
antennas, conforming a total of 6 communications links. Each link’s channel coefficient
hm,n represents the channel effects that the signal that travels to the m-th receiving antenna
from the n-th transmitting antenna undergoes. Thus, for the 3× 2 example, the received
vector is represented as follows:

[
y1
y2

]
=

[
h11 h12 h13
h21 h22 h23

]x1
x2
x3

+

n1
n2
n3

 (4)

Notice that, as previously mentioned, a CSI packet is a complex number representing
the amplitude and phase of the channel state; so in MIMO-enabled Wi-Fi, CSI signals
provide the estimated values of the channel coefficient matrix H.

2.6.4. Ofdm Transmission

The IEEE 802.11 standard adopted Orthogonal Frequency Division Multiplexing,
or OFDM, as part of its transmission technique to achieve higher data rates [62]. The idea
behind this technology is to increase data rate using parallelism by dividing the assigned
spectrum into several narrowband sub-carriers that are used for simultaneous transmission.
The OFDM sub-carriers are orthogonal in the mathematical sense, which implies that sub-
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carrier frequencies are selected to cancel out inter-symbol interference (ISI). Therefore,
additionally to delivering higher rates, OFDM offers immunity to the ISI effect caused
by multipath fading and it also requires relatively simple receivers to reconstruct the
transmitted data, since signal processing is done using the Fast Fourier Transform (FFT)
and the inverse FFT algorithms instead of hardware.

According to standard IEEE 802.11n, MIMO data are modulated into 52 sub-carriers
using Inverse Fast Fourier Transformation (IFFT) and transmitted as OFDM symbols in
discrete packets. The receiver measures the CSI for each packet and adapts parameters to
channel variations, the received signal is then demodulated by applying the direct FFT.
The tool provided by Halperin et al. [59], which was used to obtain our experimental data,
allows the extraction of CSI information from an Intel 5300 wireless card, exposing channel
information of 30 of the 52 Wi-Fi sub-carriers. The CSI for each sub-carrier is defined as

h =| h | ejθ (5)

where |h| and θ represent the magnitude and phase of the communication channel,
respectively.

Figure 1. Multiple Input Multiple Output System.

2.7. Related Work

In this section we briefly review relevant literature that documents the current state-
of-the-art of device-free Wi-Fi-based crowd counting. Each subsection corresponds to a
published article in the field. In the last subsection we provide a summary table with the
reported accuracy of each reviewed method for further reference and benchmark.

2.7.1. Trained-Once Device-Free Crowd Counting and Occupancy Estimation Using Wi-Fi:
A Doppler Spectrum Based Approach

The work from Di Domenico et al. [25], performs Doppler Spectrum transformation to
a CSI stream. The authors carried out a series of experiments where groups of people with
several participants (from 0 to 8) where sensed in 3 different locations. Due to the scope of
the experiments, the resultant dataset is of enormous value for the research community
and it is the one we use for the preliminary work of the present research.

Di Domenico also introduces a long list of features that can be extracted from the
Doppler spectrum matrices. Among all the possibilities the authors selected Spectral
Kurtosis as the unique descriptor for their model. The performed series of arithmetical
mean to the sub-carriers and links in order to get to a simpler parameter to work with.

Also, for the learning stage, the authors used a Naive Bayes classifier, because of its
simplicity as a probabilistic algorithm. With this setup, they achieve about 80% of accuracy
for crowd counting estimation. It is worth noticing that the main purpose of the work by
Di Domenico et al. is to show the advantages of their method for a ’training once’ scenario
where there is no need for dedicated training in every different location.
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2.7.2. Frog Eye: Counting Crowd Using Wi-Fi

The article from Xi et al. [26], is another often cited work in the Wi-Fi-based sens-
ing field. In this research the authors documented a sensing framework based on CSI
measurements from off-the-shelf Wi-Fi equipment.

Xi’s model introduces a feature called Percentage of non-zero elements (PEM), which
is a measurement technique based on the non-zero counting of the CSI dilated matrix.
The resulting dataset is classified with the help of a grey Verlhust model factor.

To measure the performance of their method, the authors utilized the probability that
an error equal or less than a defined threshold occurs for a particular counting estimation.
This indicator was reported to be 98% for a threshold of 2 or fewer person and about 80%
for a threshold error of 1 person.

2.7.3. Wicount: A Deep Learning Approach for Crowd Counting Using Wi-Fi Signals

The work from Liu et al. [63,64], explored the capabilities of a deep learning-based
method for crowd counting. It uses a fully connected neuronal network with two hidden
layers. It also implements regularization and exponential decay to improve performance.
The experimental results show that the introduced deep learning model is able to estimate
the number of crowd up to 5 with the accuracy of 82.3%.

The key contribution of the article for the Wi-Fi sensing field is that it documents a
Deep Learning model that is arguably the first in its kind to be applied for crowd counting.
Even if one can claim that the amount of time and computing resources required to train
a DL system are still very demanding and the outcome quality does not correspond to
the effort, the authors clearly pointed out a direction for future work. Similar works with
data coming from Wi-Fi CSI information, which use Deep-Learning, like Cheng et al. [65],
achieve slightly higher accuracy, with a reported 88.66%.

2.7.4. Occupancy Estimation Using Only Wi-Fi Power Measurements

The article from Depatla et al. [20] introduced, to the best of our knowledge, the most
cited RSSI-based method for crowd counting. Their framework is based in a model that
incorporates the pattern of both blocking LOS and scattering that human bodies produces
in the strength of the Wi-Fi signals.

The authors approached the problem from an analytical perspective to obtain a math-
ematical expression that relates the signal strength with the PDF of the number of people
in a crowd. Then, the method uses Kullback-Leiber divergence to estimate the size of a
crowd with up to 9 people.

As in other works in the literature, Depatla presented its results as probabilities of get-
ting errors of certain number of people. Specifically, their method reported P(e ≤ 1) = 55%
and P(e ≤ 2) = 63% for indoor experiments with off-the-shelf equipment. For the outdoor
scenario P(e ≤ 1) was 64%, while achieving 96% for a threshold of 2 or less people of
counting error.

2.7.5. Estimating the Number of People Using Existing Wi-Fi Access Point in
Indoor Environment

Yoshida et al. [24] published a relevant work where the counting estimation is made
using regression algorithms. The method uses RSSI data as feature and test both linear
regression and and SVM regression to make the classifications.

The experiment setup consisted in a single transmitter and four receivers, each of
them working as independent measuring point. A notable contribution of this research is
that it explores, with this kind of layout, additional crowd characteristics such as density
and presence/absence of people.

The accuracy rate of Yoshida’s method for estimating the number of people is 77%,
for estimating the degree of congestion (crowd density) is 95%, and for estimating the
presence/absence of people is 98%. This work was updated by Mabuchi [66] to achieve
93% in counting smalls groups of people.
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2.7.6. Freecount: Device-Free Crowd Counting with Commodity Wi-Fi

FreeCount [67] is a high-accuracy system for crowd counting that uses a set of features
of three kinds: statistics, frequency domain and shape. In their publication, Zou et al. focus
in the problem of temporal variation of the channel conditions and the unpractical need of
re-training the classifier every period of time.

By using a model based on SVM, the author reported a crowd counting accuracy of
99%, and P(e ≤ 1) = 97%. Moreover, FreeCount implements transfer kernel learning (TKL)
to cope with the changes in the channel condition with time. With TKL as the SVM kernel
FreeCount reported an accuracy of 96% two weeks after the actual trainning took place.

A downside of the FreeCount approach is that it requires to modify the Access Points
in the location. This means the solution is not “commercial off-the shelf”, in the sense that
it can not work seamless with currently installed infrastructure as the rest of the methods
reviewed above can. For this reason we considered it a non-COTS solution.

Table 1 shows a summary of the performance of crowd counting methods that use
COTS through Wi-Fi technology

Table 1. Performance summary of crowd counting methods using commercial off-the-shelf (COTS) Wi-Fi.

Accuracy Scale

Author Data Source Classifier Accuracy Rate P (e < 1) P (e < 2) Max # of People Sensing Area (m²)

Di Domenico CSI Naive Bayes 81% - 91% 8 30, 45, 70

Xi CSI Grey Verhulst - 80% 98% 30 -

Liu CSI Deep Learning 82% - - 5 -

Depatla RSSI Math. Exp. - 55% 63% 9 33

Yoshida RSSI SVR 77% - - 7 -

2.8. Theoretical Framework of Crowd Characterization with Wi-Fi Csi in the Doppler Spectrum

In a real propagation environment, a signal propagates along multiple paths, and the
receiver experiences multiple time-delayed replicas of the transmitted signal. Furthermore,
if the receiver is moving, a set of Doppler shifts occurs in the receiving end and a Doppler
spread spectrum arises. In a MIMO-OFDM transmission, random variations on the sub-
carriers frequency causes uncorrelated fading between the different received paths. If
a simple correlation receiver is applied to the received signal, delayed versions of the
transmitted signal will not correlate properly and thus cause self-interference [47].

For multipath communication, the radio signals arrive at the receiver device as the
sum of all the contributions produced by the scattering process. When the scatter objects
are static with respect to the radio source, the radio frequencies do not change in the
propagation channel. However, in the case of scatterers or source motion, there will be a
Doppler shift that depends on the speed and moving direction with respect to the signal
propagation path. At a single frequency level this phenomena is known as Doppler shift,
but in a time-varying scenario (as the scatter objects change direction and speed over time)
a set of Doppler shifts or Doppler spread is also referred to as “Doppler spectrum”.

The work of Yang et al. [68], provides a conceptual framework to analyze the Doppler
spectrum of a Wi-Fi transmission using the CSI signals. We will briefly summarize Yang’s
analytical model in the following lines for convenience. The scenario is illustrated in
Figure 2 and is described as follows: if a transmitter is at a distance d from a moving
receiver with velocity v at a given instant, then the Wi-Fi signal that will arrive at the
receiver is affected by a channel that is multipath and time-varying. Let’s suppose there
are a total of L independent paths l, each of them with different angles of arrival θl to the
receiver’s moving direction.
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Figure 2. Doppler shifts produced by moving scatterers in a Wi-Fi link.

In MIMO-OFDM Wi-Fi there are k sub-carriers and multiple links that will be affected
by the same multipath process, the channel response can be expressed as a function of the
time instant nTs

hk(nTs) =
L

∑
l=1

αle−jwk
dl
c ejwk

vl
c nTs + εk (6)

where αl is the amplitude of the l-th path, c is the propagation velocity of electromagnetic
wave, εk is the measurement error, and wk

vl
c is the Doppler shift.

From the Wi-Fi IEEE802.11n standard [69], we know that the center frequency for each
OFDM sub-carrier k in GHz is given by

fk = 2.4 + k∆ f k = 1, 2, ..., 30 (7)

where ∆ f is the frequency difference between sub-carriers, and it is extremely small
compared with the 2.4 GHz. The Doppler shift can be approximated as

wl = 2π
v1

c
(8)

Hence, a good approximation of the channel response can be given by the average of
the available individual channel responses of the subcarriers, as follows:

h(nTs) =
1
30

L

∑
i=1

30

∑
k=1

αle−jwk
dl
c ejwl nTs + εk (9)

Next, we obtain the frequency domain channel response by using the discrete Fourier
transform as follows:

H(m) =
N−1

∑
n=1

h(nTs)e−j( 2π
N )nm

=
1

30

L

∑
i=1

30

∑
k=1

αle−jwk
dl
c

1
30

30

∑
k=1

ej2π( fl Ts− m
N )n + Ek

(10)

Equation (10) is an analytical representation for Doppler Spectrum of WiFi CSI.
From this foundation, different authors take different approaches for crowd counting.
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For instance, Zou et al. [67], use a set of features coming from statistics of magnitude and
phase, Fourier transformation and shaped metrics, all combined to achieve predictors of
human motion. Di Domenico et al. [25], extract Average Spectral Kurtosis as the unique
feature they use for their model, while Yang et al. [68], use only the first link of the MIMO
grid for feature extraction.

3. Proposed Method and Results

The method here presented is based on the hypothesis that the diversity in channel
response information that multiple communication links of a MIMO system carry could
provide better descriptors of the number of people in a crowd than a single channel or a
channel average. While other authors average or discard the multi-link information [25,68],
our method exploits such information to produce high-quality features for the estima-
tion model.

The results presented in this paper follow a data-driven, quantitative approach. We
show how the data can be processed to get estimations of the crowd characteristics with
acceptable accuracy. The methodology followed in this paper includes:

• The use of a reference dataset (see Section 3). On using a public dataset instead of
collecting our own experimental data, we give up the possibility of adding information
we might find useful. However, there is the opportunity to directly compare our results
to the ones obtained by other researchers.

• Implementation of our method in MATLAB, and the further training of the model
with a set of learning algorithms.

• Performance assessment of our method in terms of accuracy and other results pro-
viding quality indices, and a comparison with state-of-the-art approaches by re-
implementing them in order to have a reliable comparison.

A high-level view of our method is illustrated in Figure 3. The data collection (which
we took from the public dataset of Di Domenico et al. referenced before) is on the dotted
box to the left, and our process appears inside the right dotted box. Our data-driven
method comprises the steps:

1. Doppler spectrum estimation: in this step we created a MATLAB script that trans-
forms the available CSI data points to the spectrum domain in order to obtain Doppler
spectrum data as described in Equation (10).

2. Feature extraction: From the CSI readings together with the Doppler spectrum esti-
mated parameters, a vector of signal features is derived, which is supposed to be a
good compact representation of the signal characteristics, at least for the classification
purposes that we have, that is, the estimation of the number of people in the room. We
used mainly statistical descriptors of the signal, which could be a good or bad idea,
and we can only assess this later on, when we obtain the classification performance
figures. The output of the figure extraction phase is a dataset, which is a table in which
rows are individual observations and columns are the features. The dataset is the
starting point of the Machine Learning process itself.

3. Train-test split: In order to assess the prediction quality of the trained Machine
Learning classifier in a fair way, we need that the data used for testing its performance
has not already seen by the classifier; so we make a separation or split of the dataset
into two subsets: the training dataset and the testing one. The relative size of each one is
critical for a good performance, and this will be discussed below in the corresponding
subsection.

4. Classifier training: Using the training part of the dataset, we adjust the parameters of
a standard classifier (like Random Forest and others, described below). All of those
classifiers are readily available in programming libraries, for the different platforms
(MATLAB in our case), so the real work is not to construct the classifiers but to choose
and configure them properly; whether or not it has been well done is only seen later,
when classification performance results are obtained.
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5. Prediction assessment: The already trained classifiers are used to obtain, for each row
in the testing part of the dataset, a predicted class (in this case a number of people
in the room). Once the prediction is done, its quality can be assessed by a number
of well-known metrics such as accuracy, precision, recall and others, which will be
discussed below when we present experimental results.

Figure 3. High-level diagram illustrating our method.

From the 4040-row features dataset to the classification assessment, everything is a
mostly standard Machine Learning process (for which there are even free ML software plat-
forms), so we do not claim to make any contribution there. Our contribution is the process
that goes from the instrumentation readings, available from the Di Domenico et al. public
data base [70] to the dataset construction from which the ML process is done, but of course
the usefulness of the Doppler spectrum information, as well as the features we proposed
can only be seen once the predictive power of the trained classifier is fully assessed.

3.1. Multi-Link Based Csi Crowd Counting Estimation

Our model calculates a set FS of p feature vectors F, each one of them being a combi-
nation function gi of a descriptor di ∈ Di applied to each one of the Tlk available links Hlk
in the MIMO Wi-Fi transmission. From the set of feature vectors our goal is to estimate,
for a given one not previously seen, the number of people in the room with an accuracy as
high as possible.

This set of feature vectors can be represented as follows:

FS =
{

F0, F1, ..., Fp
}

, where Fi = gi(Di) f or i = 0, 1, 2, . . . , p

and Di =
{

di(Hlk1), di(Hlk2), ..., di(HlkTlk
)
} (11)

The exact way of defining the features for Machine Learning prediction is entirely
domain-dependent, and some argue that it is as much an art as is a science. In this paper, we
explore the prediction performance of the model when di are standard statistical measures.
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3.2. Dataset

In order to experimentally test the performance of our multi-link method, we used
a publicly available dataset. The dataset from Di Domenico et al. [19] provides great
opportunities to explore and test our Wi-Fi-based crowd counting hypothesis in a data-
driven way. This dataset consists of the following:

• A 2-antenna Wi-Fi transmitter (an off-the shelf AP) and a 3-antenna Wi-Fi receiver (a
computer with an Intel 5300 NIC) are set in the experiment location.

• Groups from 1 to up to 8 people were sensed using the mentioned setup, additionally
to the ’empty room’ case.

• The volunteers are allowed to move freely, but the only meta-data being labeled is
crowd counting.

• A CSI trace is extracted every 20 ms, with a round lasting about 2 min for every
counting case.

• The whole experiment was repeated in 3 different locations, as follows: Room A
is a small size office room (5 m × 6 m), Room B is a medium size meeting room
(5 m × 9 m), and Room C is a large size meeting room (6 m × 12.5 m).

The Di Domenico’s dataset includes at least 5000 CSI measurements for each count-
ing class, for each type of Room. Also, each CSI trace consists of a channel response
representation for each of the 6 resulting links, and every link includes 30 RF sub-carriers.

3.3. Machine Learning Process for Crowd Counting

For crowd counting estimation, we used standard Machine Learning classifiers so that
each predicted number of people is considered as a class, so that the empty room is one
class, 1 person in the room is another class and so on. Obviously in most future practical
applications, classes would be numeric ranges, like 1-10 persons for one class, 11 to 50 for
another one, etc.

The Machine Learning process follows the following steps:

• Step 1: Shuffle randomly the dataset rows.
• Step 2: Use feature selection criteria depending on the experiment variant.
• Step 3: Train the model with 5-folds cross-validation using the following classifiers:

– Random Forest
– Weighted KNN
– Linear Discriminant
– SVM
– SVM with Gaussian Kernel

• Step 4: Test the model and report performance results (accuracy, AUC, etc.).

In the k-fold cross-validation process of step 3 we used a k = 5 instead of the more
popular k = 10 because of the relative abundance of data, and the absence of improvements
in more intensive computations resulting from increasing the k value.

3.4. Feature Extraction

A first selection of descriptor functions was made from a set of statistics commonly
used in signal processing [71]. Our first objective was to test our multi-link model with all
the descriptors listed in Table 2, and then to proceed to perform feature selection in order
to reduce dimensionality. A more complete list of these kinds of features is provided by Di
Domenico et al. [25].
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Table 2. Features and descriptor functions used in the experiment.

Feature Count Function g Multi-Link Descriptor d

1 Mean Mean

2 Mean Standard deviation (SD)

3 Mean Mean/SD

4 Mean Spectral Energy (E)

5 Mean Spectral Centroid (SC)

6 Mean 2nd Order Spectral Moment (SOSM)

7 Mean 2nd Order Spectral Central Moment (SOSCM)

8 Mean Spectral Kurtosis

9–14 NOP Mean

15–20 NOP Standard deviation (SD)

21–26 NOP Mean/SD

27–32 NOP Spectral Energy (E)

33–38 NOP Spectral Centroid (SC)

39–44 NOP 2nd Order Spectral Moment (SOSM)

45–50 NOP 2nd Order Spectral Central Moment (SOSCM)

51–56 NOP Spectral Kurtosis

All the descriptors are relative to the magnitude of Hlk. Notice that in the last 8 rows
of Table 2 NOP refers to multi-link features without any combination function. As we have
6 links in our setup, there are 6 instances of every descriptor. It is our aim to demonstrate
that this technique provides valuable information to the classification stage.

A MATLAB code was implemented to, first, obtain the Doppler spectrum from the CSI
data as given by Equation (10) and then, process the feature extraction from the frequency
domain function. At this time all the features where loaded into the model. The processed
dataset for each of the 3 reported locations have a total of 4040 vectors of 56 features each;
it also includes a class column with a labeled metadata specifying the number of people in
the crowd that correspond to the row.

3.5. Feature Selection

Our experiment had four variations relative to the features taken into account, each
with different criteria for feature selection, as listed below:

• Variant 1: All features-our first iteration was a ‘brute force’ approach to get a first
estimate of the classification power of the model. The purpose of this variant is to get
a “baseline” against which all other options should be compared: any subset of all
features must either perform better than this one, or else perform very similarly but
with less computing effort.

• Variant 2: Multicollinearity feature selection-a common approach to feature selection
is to find a pair of features that are highly-correlated (i.e., above a correlation threshold)
and drop one of them. We implemented this algorithm in MATLAB and applied to
our dataset. The selected features using a correlation threshold of 0.85 are listed in
Table 3.
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Table 3. Features selected by multicollinearity method.

Feature Count Link # Multi-Link Descriptor d

1 Mean Mean

2 Mean Standard deviation (SD)

3 Mean Spectral Energy (E)

4 Mean Spectral Centroid (SC)

5 Mean Spectral Kurtosis

6 1 Standard deviation (SD)

7 2 Standard deviation (SD)

8 3 Standard deviation (SD)

9 4 Standard deviation (SD)

10 5 Standard deviation (SD)

11 6 Standard deviation (SD)

12 4 Mean/SD

13 5 Spectral Energy (E)

14 1 Spectral Centroid (SC)

15 3 Spectral Centroid (SC)

16 6 Spectral Centroid (SC)

17 2 2nd Order Spectral Moment (SOSM)

• Variant 3: Mean descriptors vs multi-link descriptors-in this experiment we tested
our hypothesis about the quality of multi-link descriptors (those features with multi-
link descriptors without combination function). To achieve this, we compare the
classification performance when only multi-link descriptors are used vs the scenario
in which only multi-link mean descriptors feed into the model.

• Variant 4: Single descriptor analysis-At the opposite extreme of variant 1 we would
have the use of only one feature, which is not really of practical interest, but we find it
useful as another baseline. It answers the question of how well a single feature (per
channel) model can perform using a multi-link approach with respect to the accuracy.

3.5.1. Variant 1: All Features

As shown in Table 4, our model delivered an outstanding accuracy performance when
all the 56 selected features are used. Four out of the five classifiers were able to correctly
estimate the number of people in experiment location with 100% of accuracy. Only Random
forest performed just below perfect.

Table 4. Accuracy rate for model with all features used.

All Features

Training Accuracy Testing Accuracy

Random Forest 99.5% 99.7%

Weighted KNN 100.0% 100.0%

Linear Discriminant 100.0% 100.0%

SVM 100.0% 100.0%

SVM Gaussian 100.0% 100.0%
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3.5.2. Variant 2: Multicollinearity Feature Selection

With the correlation criteria our set of features decreased from 56 to 17. As expected,
many multi-link NOP descriptors were eliminated by the algorithm since of the strong
correlation among them. However, the complete set of multi-link Standard Deviation
descriptors remained. The results are shown in Table 5. All classifiers performed above
90% of accuracy.

Table 5. Accuracy rate for model with multicollinearity feature selection.

Collinear Selection

Training Accuracy Testing Accuracy

Random Forest 99.8% 100.0%

Weighted KNN 99.9% 100.0%

Linear Discriminant 92.8% 92.5%

SVM 98.9% 98.5%

SVM Gaussian 100.0% 100.0%

3.5.3. Variant 3: Mean Descriptors vs. Multi-Link Descriptors

As mentioned before, other authors have disregarded multi-link descriptors in favor
of either single-link descriptors [68], or mean descriptors [25]. In this experiment, we
compared both kinds of descriptors face to face. As shown in Tables 6 and 7 , while using
mean descriptors yield fairly good results, remarkably multi-link vectors provide perfect
accuracy for all the classifiers.

Table 6. Accuracy rate for model with mean descriptors only.

Mean Descriptors

Training Accuracy Testing Accuracy

Random Forest 98.1% 98.8%

Weighted KNN 97.5% 97.6%

Linear Discriminant 86.8% 87.1%

SVM 96.5% 96.8%

SVM Gaussian 99.4% 99.7%

Table 7. Accuracy rate for model with multi-link descriptors only.

Multi-Link Descriptors

Training Accuracy Testing Accuracy

Random Forest 100.0% 100.0%

Weighted KNN 100.0% 100.0%

Linear Discriminant 100.0% 100.0%

SVM 100.0% 100.0%

SVM Gaussian 100.0% 100.0%

3.5.4. Variant 4: Single Descriptor Analysis

Now that we have empirically demonstrated that multi-link descriptors have better
performance than single mean descriptors, our next step was focused on reducing the
dimensionality of the model.
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A hint for this task was provided by variant 2, where we applied multicollinearity fea-
ture selection. That process outlined the quality of multi-link standard deviation descriptor.
As show in Table 8 multi-link SD provides 100% accuracy for the SVM Gaussian classifier.

Table 8. Accuracy rate for every individual multi-link descriptor.

Classifiers SD Mean E SC SOSM SOSCM Kurtosis

Random Forest 99.7% 96.5% 98.7% 98.6% 97.8% 98.2% 98.5%

Weighted KNN 99.8% 98.5% 99.6% 99.1% 99.3% 99.2% 99.3%

Linear Discriminant 85.2% 67.6% 87.1% 77.0% 73.1% 73.1% 80.1%

SVM 90.5% 72.4% 91.8% 81.7% 79.3% 79.3% 83.6%

SVM Gaussian 100.0% 99.4% 99.9% 99.8% 99.4% 99.2% 99.8%

In order to further investigate the performance of each individual descriptor, we
implemented Neighborhood Component Analysis (NCA), a multi-class, high-dimensional
feature selection method initially proposed by Yang et al. [2]. This method maximizes the
expected leave-one-out classification accuracy using the gradient ascent technique.

An examination of the results of NCA shown in Figure 4 indicates that: (1) Multi-link
approach has higher prediction power than single-link based methods, and (2) Multi-link
SD is the best single-statistic feature vector among those under review. These observations
are in line with the outcomes of variants 2 and 3.

Finally, we were interested on knowing how many Wi-Fi links deliver an optimal trade-
off for accuracy in our multi-link model using SD as descriptor function. To accomplish
this, we ran several iterations of the model, including one additional link at each iteration
and repeating the process for every possible link combination. Results in Figures 5 and 6
show that the accuracy of our model increases logarithmically with the number of available
links, and this metric is near-to-perfect with a set of 6 available links (The specific numbers
in this figure are too small to be read; this figure is intended to have a bird’s eye view
comparing the quantity of green squares (good classification) against the pink ones, as well
as the way the AUC, marked in blue color, gets more and more of the area as it upper-left
side grows).

3.5.5. Summary of Results by Number of Features

Table 9 shows a summary of the results from the experiment variants sorted in
ascending order by the number of features for the model involved. It is worth noticing that
SVM with Gaussing kernel provides perfect accuracy in all scenarios. Hence, all scenarios
have at least one classifier with perfect accuracy.

Table 9. Accuracy rates for models with multi-link descriptors.

Classifiers Multi-Link SD Collinear Selection All Multi-Link All Features
6 Features 17 Features 48 Features 56 Features

Random Forest 99.7% 100.0% 100.0% 99.7%

Weighted KNN 99.8% 100.0% 100.0% 100.0%

Linear Discriminant 85.2% 92.5% 100.0% 100.0%

SVM 90.5% 98.5% 100.0% 100.0%

SVM Gaussian 100.0% 100.0% 100.0% 100.0%
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Figure 4. Relative Weights of Features using Neighborhood Component Analysis (NCA) (higher is
better).
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Figure 5. Accuracy of the model at incremental links.

Figure 6. ROC and Confusion Matrix for incremental links.

3.5.6. Results in All Rooms

The four initial scenarios were studied using the dataset of Room A. Now, our interest
was to investigate if the results in the other two rooms are similar to those we have obtained
so far.
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Of special interest was to validate the quality of the multi-link SD descriptor and
whether the high performance of SVM-Gaussian was also observed it in the rest of the loca-
tions.

Table 10 shows the results for Room A, Room B & Room C and provides evidence
that the results obtained in the first iterations with dataset of Room A extend well to the
other available datasets. Multi-link SD descriptor produces accuracies of more than 97%
for Random Forest, Weighted KNN and SVM-Gaussian classifiers in all rooms. We can see
that for SVM-Gaussian, the model delivered perfect accuracy in Room A and nearly perfect
in Room B (99.7%) and Room C (99.9%). The confusion matrices are shown in Figure 7.

Table 10. Accuracy rates for multi-link approach in all rooms.

Multi-Link SD

Room A Room B Room C

Random Forest 99.7% 97.0% 98.2%

Weighted KNN 99.8% 98.8% 99.7%

Linear Discriminant 85.2% 69.2% 64.8%

SVM 90.5% 74.2% 71.3%

SVM Gaussian 100.0% 99.7% 99.9%

Collinear Selection

Room A Room B Room C

Random Forest 100.0% 99.2% 100.0%

Weighted KNN 100.0% 100.0% 100.0%

Linear Discriminant 92.5% 87.2% 87.2%

SVM 98.5% 97.3% 99.4%

SVM Gaussian 100.0% 100.0% 100.0%

All multi-link

Room A Room B Room C

Random Forest 100.0% 100.0% 100.0%

Weighted KNN 100.0% 100.0% 100.0%

Linear Discriminant 100.0% 99.2% 98.4%

SVM 100.0% 100.0% 100.0%

SVM Gaussian 100.0% 100.0% 100.0%

All features

Room A Room B Room C

Random Forest 99.7% 99.7% 100.0%

Weighted KNN 100.0% 100.0% 100.0%

Linear Discriminant 100.0% 99.1% 98.2%

SVM 100.0% 100.0% 100.0%

SVM Gaussian 100.0% 100.0% 100.0%
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Figure 7. Confusion matrices for SVM-Gaussian with multi-link SD descriptors in all Rooms.

‘All multi-link’ feature set show an excellent performance since four out of five
classifiers estimated the size of the crowd present in the Room with perfect accuracy. This
was true for all the test cases in the available dataset.

4. Conclusions

In this paper, we have presented a novel method for crowd measuring (counting,
in particular) using recognition of patterns in the Channel State Information over multiple
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links, and showed that the use of multiple links, instead of a single one –or the aggregation
of several ones in an average– can be translated into an improved performance at least
for the people counting scenario considered in the dataset we used. This was the main
contribution of this work.

Using our method, based on data-driven Machine Learning supervised classifiers, we
empirically demonstrated that multi-link predictors yield better performance in terms of
accuracy than those that use the mean value for multi-link, or single-value of one link.

Another contributions of our work was to show that even reducing the number of
features used for training and predicting with the classifiers, the performance could be
maintained above that of other state-of-the-art methods. Also, we showed the prediction
power of the Standard Deviation when used over the channel response data given by the
Doppler Spectrum.

In Table 11, we summarize the comparison of our approach with other state-of-the-
art methods.

Table 11. Benchmark of accuracy rates for state-of-the-art Wi-Fi-based crowd counting.

Author Wi-Fi APs Features Classifier Accuracy Rate Max # of People

Di Domenico COTS Average Spectral Kurtosis Naive Bayes 0.81 8

Liu COTS - Deep Learning 0.82 5

Zuo Custom Statistics, FFT-based, Shape-based SVM-TKL 0.96 7

Kianoush COTS Statistics in Space Domain LSTM 0.99 5

Our Work COTS Multi-link SD in Doppler Spectrum SVM-Gaussian >0.99 8

For future work, we are interested in exploring the application of our method to less
restricted scenarios (for instance, by increasing the maximum number of people in the
crowd), and to take measurements in real-life situations. We also want to explore other
crowd properties like the direction of movement and cope with limitations imposed by
scale and a dynamic environment.
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