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Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in
medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR
systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional
neural network- (CNN-) based framework to learn concise feature vector for medical image retrieval. The medical images are
decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way
with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000
X-ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average
precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best

result compared with existing literature for this dataset.

1. Introduction

Imaging through different kinds of medical devices plays a
fundamental role in clinical diagnosis [1], treatment plan-
ning [2], and treatment response assessing [3] in the process
of medical care. In modern hospitals, different modalities and
protocols of digital imaging techniques have been used to
generate diagnostic images for each patient, including com-
puted tomography (CT), X-ray, ultrasound, hybrid positron
emission tomography and computed tomography (PET-
CT), and magnetic resonance imaging (MRI). These medical
images with multiple dimensions (e.g., 2D, volumetric 3D,
and time series) reflect anatomic and functional aspects of
organs and tissue types that require domain experts’ analysis
and interpretation. These volumes are usually formed in the
Digital Imaging and Communications in Medicine
(DICOM) format and stored in picture archiving and com-
munication systems (PACS) [4]. A domain expert can search
PACS through patient’s ID, study ID, time range, or other
textual keywords, which is labor intensive and time consum-
ing. As an important part of computer-aided diagnostics

(CAD), content-based medical image retrieval (CBMIR) [5-
8] can retrieve medical images mainly via visual contents
(e.g., same modality, same body orientation, same anatomi-
cal region, or same disease condition) in an existing dataset
for more accurate comparative diagnosis.

In the CBMIR domain, there are two major directions in
research works. One kind of methods focuses on automatic
retrieving images from PACS-like databases, which search
images of the same imaging modality, body orientation, body
region, and the like [9-11]. Another kind of methods put
their efforts into retrieving images that characterize the sim-
ilar disease convenient for diagnostic comparing [12, 13]. In
this study, we follow the former methods to propose an eftec-
tive CBMIR system for 2D slice retrieval. That is because vol-
umetric 3D medical images are formed by a series of 2D slices
acquired from the target body organ, and physicians mainly
rely on these 2D slices when they are analyzing and interpret-
ing images on hand [8].

Unlike similarity defined in generic image retrieval
domain, the retrieved medical images by directly comparing
features using some similarity measure may not be in
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accordance with what a physician would want for diagnosis,
which formed a “semantic gap” in medical image retrieval
[5]. To reduce this gap, CBMIR systems are generally
designed under a classification-driven strategy. That is, a
CBMIR system is trained using supervised approaches with
labeled images. When a query image is submitted to the
CBMIR system, the query image is classified first, and then,
some visual features and similarity measures are used for
similarity retrieval [9, 10, 14]. Deep learning is a break-
through in machine learning research. Using artificial neural
networks with many hidden layers to represent digital images
has been proven to be a very effective method to describe
low-level, mid-level, and high-level semantic features of an
image for recognition and other purposes [15-17]. Among
different deep learning architectures, deep convolutional
neural networks (CNNs) have proven to be powerful tools
that achieved very high precision results in many natural
image classification contests [18-20]. In the medical field,
deep CNNss are also quickly applied for different tasks, and
promising results are emerging [9, 10, 21-24]. Training deep
CNNs need a large number of labeled images to choose the
huge number of parameters. Note that in the medical
domain, such large image datasets are quite rare, due to the
unbearable high cost of domain experts’ manual image label-
ing and annotations [5, 21, 24]. And in contrast to generic
image databases, medical image datasets usually are unbal-
anced because of uneven incidence rates of different malig-
nancies. Dropout [25], data augmentation, and transfer
learning [26] are the most common techniques used to pre-
vent overfitting in the process of training deep CNNs on
small and unbalanced image datasets. However, for medical
image analysis tasks, these techniques meet various problems
[5, 9, 24]; the requirement for a more effective and more
robust CBMIR system is still urgent.

In this paper, inspired by pioneering research works [9, 10,
14], we focus on 2D medical image retrieval and put forth an
effort to alleviate the two main difficulties in CBMIR (i.e., (1)
the labeled medical image datasets are commonly not large
enough for training deep CNNs and (2) the imbalance prob-
lem is naturally attached to medical image datasets from clinic
diagnosis). A new deep CNN-based 2D medical slice retrieval
method is proposed, which can be effectively trained on rela-
tively small labeled and unbalanced medical image dataset
and promote the retrieval precision. First, in addition to com-
monly used methods for training deep CNNs on small and
unbalanced datasets, e.g., dropout [25] and data augmenta-
tion, we supplement nonlinear components by using empirical
mode decomposition (EMD) on 2D medical images to
enhance effective information and reduce the image noise
for training deep CNNs. Second, as for deep CNN architecture
in this work, we employ residual network (ResNet) [19] as the
backbone network adapted for learning different level features
from medical images, which is combined with an attention
mechanism to focus on the most relevant features by integrat-
ing local and global features in different scales [27]. And center
loss function is combined with softmax loss function as a
supervision signal in a deep CNN training process to facilitate
nearest-neighbor similarity retrieval performance. The contri-
butions of this paper are given as follows:
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(1) Nonlinear empirical mode decomposition on 2D
medical images is proposed for supplementing effec-
tive information to original 2D medical images for
better distinctively expressing 2D medical images

(2) A residual network-based deep CNN model with
attention and center loss modules is employed and
trained on publicly available medical image datasets.
The learned concise feature vectors are suitable for
both classification-based and nearest-neighbor
similarity-based medical image retrieval and show
the great potential to handle large-scale medical
image retrieval

2. Related Work

Among CBMIR literatures, there are two crucial factors that
determine the performance of systems: (1) Feature vector
construction: medical image features such as texture, shape,
etc., should be extracted and formed into a vector to repre-
sent the query image and the images in datasets. (2) Retrieval
strategy: classification-based retrieval strategy, nearest-
neighbor search strategy, or their combination should be
carefully chosen for different medical retrieval task.

2.1. Hand-Crafted Features. Hand-crafted features including
texture features, keypoint-based features, local features, and
global features are commonly used in CBMIR systems [5, 6,
8, 28, 29]. Jiang et al. [30] proposed a retrieval strategy that
used mammographic region of interest (ROI) as query input,
then retrieve breast tumor based on SIFT features. Caicedo
et al. [31] used SIFT features to retrieve basal-cell carcinoma.
Haas et al. [32] used SURF to capture the local texture of lung
CTs for retrieval. Local Binary Patterns (LBPs) as local tex-
ture features were successfully used in ImageCLEFmed, 2D-
Hela, and brain MRI retrieval tasks [33-35]. Xu et al. [36]
proposed a corner-guided partial shape matching method
that can dramatically increase the matching speed for spine
X-ray image retrieval. Holistic features such as global GIST,
global HOG, global color histogram, and moments were also
used in medical image retrieval [37-41].

2.2. Learned Features Using Deep CNNs. In recent years,
using features get through deep CNNs has achieved impres-
sive results in generic image classification, object recognition,
detection, retrieval, and other related tasks. But in the medi-
cal field, there is not much attention on exploring deep neural
networks CBMIR task, partially because the amount of
labeled medical images is typically limited. Qayyum et al.
[10] proposed a CNN framework and trained the CNN on
the medical image set they collected. Khatami et al. [9, 14]
tried two retrieval strategies for medical image retrieval: the
first method used one CNN model with transferred weights
to shrink the search space and then used Radon projection
to do similarity search. The second method employed multi-
ple CNN models trained in a parallel way to get the shrunk
search space. Bar et al. [42] used a pretrained CNN model
from natural images for chest X-ray retrieval. Semedo and
Magalhaes [43] trained their CNN models on provided med-
ical images in ImageCLEFmed 2016; they employed dropout
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FIGURE 1: The proposed deep CNN-based content-based medical image retrieval flowchart.

and data augmentation to avoid overfitting. Hofmanninger
and Langs [44] trained CNN using clinical routine images
and radiology reports and carried out fine-tuning on current
medical image retrieval task.

3. Methodology

There are pioneering studies that have been performed on
deep CNNs for medical image retrieval and have shown
promising results [9, 10, 14]; the problems of short of labeled
images and highly imbalanced data distribution are still two
main challenges for applying deep CNNs in medical image
retrieval task [5]. There are also needs for more accurate
and faster image retrieval methods for CBMIR [5]. To tackle
these problems, in this work, we propose a multicomponent
combined deep CNN framework for 2D medical image
retrieval. The flowchart of content-based medical image
retrieval is shown in Figure 1. This deep convolutional neural
network is trained by a supervised learning way for classifica-
tion and gets a concise feature vector for efficient nearest
neighbor searching similar medical images. A brief descrip-
tion of the proposed framework is presented in the following
sections.

3.1. Processing 2D Medical Image with Empirical Mode
Decomposition (EMD). Empirical mode decomposition was
originally introduced for the adaptive analysis of nonstation-
ary and nonlinear time-domain signals and has become one
of the most powerful tools for analyzing time-frequency (T-
F) signal [45]. Then, EMD was extended to handle multidi-
mensional data and acquired successful application in image
tasks [46-49]. For image analysis, EMD is a fully data-
adaptive multiresolution data analysis technique to decom-
pose the multispatial resolution  spatial-frequency-
amplitude components of the image into a set of intrinsic
mode functions (IMFs) [50, 51]. By advantage of the EMD
principle, we can get multifrequency components (i.e., IMFs)
of 2D medical images, and these frequencies are not prede-
signed; these frequencies can self-adapt to different content
of an image. Thus, we acquire nonstationary and nonlinear

multiresolution components of 2D medical images, which
can provide supplementary information to commonly used
spatial filter sets in image processing. EMD is implemented
in an iterative process. First, a sifting process is used to find
IMFs. Given a signal x(t), Equation (1) is the process to get
one IMF.

k
x(t) = Zmi=hk=>hk=cp (1)

i=1

where m; is the local mean of the maxima and minima enve-
lopes. These two envelopes are formed by connecting all local
maxima or minima with a cubic spline. With the IMFs, the
data x(t) can be decomposed by another sifting process:

x(t) - ilcj +7,, (2)

where ¢ (j=1 to n) is the IMFs and r,, is the final residual

component. Figure 2 shows an example of a 2D X-ray image
decomposed using EMD.

3.2. The Proposed Medical Image Retrieval Method. In this
section, we introduce a deep CNN framework for medical
image retrieval on a rather small dataset and with highly
imbalanced data distribution. First, we discuss the network
architecture employed in this work. Second, the supervision
signal combining softmax loss function with center loss func-
tion to train deep CNN is discussed. Third, the training pro-
cess is detailed. The proposed deep CNN framework is
illustrated in Figure 3. For the input of the network, we
employ original image and its IMF2, IMF3, and IMF4 com-
ponents, because IMF1 contains mainly noise with quite high
spatial frequency, and IMF5 contains the overall image inten-
sity trend with very low spatial frequency. For medical image
classification, IMF1 and IMF5 cannot provide useful struc-
ture information.
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FIGURE 2: An example of a medical X-ray image is decomposed into five IMFs using empirical mode decomposition.
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3.2.1. The Network Architecture. The proposed deep CNN  The attention mechanism was implemented as multiple
architecture employs Residual Attention Network (RAN) attention modules, and each module consisted of a mask
[27] as the backbone network. In RAN, mixed attention acti- branch and a trunk branch, in which the mask branch was
vation function is used for both spatial and channel attention. ~ used to select good properties of original features and
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TaBLE 1: The details of deep CNN used for medical image retrieval.

Layer name Output size Layer
Convl 128 x 128 7 X 7, 64, stride 2
Max pooling 64 x 64 3 x 3 stride 2
1x1,64
3x3,64 | x1
Residual attention unit 64 X 64
1x1,256
Attention mask block x 1
1x1,128
3x3,128 | x1
Residual attention unit 32x32
1x1,512
Attention mask block x 1
1x1,256
3% 3,256 x 1
Residual attention unit 16 x 16
1x1,1024
Attention mask block x 1
1x1,512
Residual unit 8x8 3x3,512 | x3
1x1,2048
Conv2 8x8 3 x 3, 32, stride 1, padding: same
Max pooling 4x4 2 x 2 stride 1
Average pooling Ix1 4 x 4 stride 1

FC, softmax, Center loss
Trunk depth

116
57

suppress noises from trunk features. Residual learning was
introduced in the learning process of RAN; the mask branch
was constructed as identical mapping. With the residual
learning, Residual Attention Network can go very deep, and
the training process was much efficient. For medical image
retrieval task, the nearest-neighbor similarity search is the
most common way used to rank retrieved images. If the
length of vector used to compute the similarity between two
compared medical images is too long, the retrieval process
will be very time consuming and cannot be used in practice.
Thus, a dimensionality reduction model is added to get con-
cise while strong distinguishing features. Table 1 details the
CNN structure used in this work.

3.2.2. Joint Loss Function. Wen et al. [52] firstly introduced
center loss function in deep CNN for face recognition task.
In their work, center loss function was linearly jointed with
softmax loss function to form a mixture supervision signal
to train deep CNN. These two loss functions that were used
in conjunction with each other can achieve discriminative
feature learning, that is, the deeply learned features contained
intraclass compactness and interclass dispersion. Discrimi-
native features are very suitable for medical image classifica-
tion and retrieval task in which nearest-neighbor similarity

search is most commonly used to accomplish the retrieve.
Equation (3) formulates this joint loss function.

T
m eWyix,+b),i
Lossmixture = Losssoftmax + /\Losscenter - Z 10g n Wiy

EEED Y S

+b}’i

(3)

where the left part is the original softmax loss and the right
part is the center loss. The c,; denotes the y;th class center
in the form of a feature vector. The parameter A is empirically
set as 0.002 in this paper’s experiments.

3.2.3. Network Training Setting. As shown in Figure 3, the
input of the network is the original medical image with its
EMD components that contain IMF2, IMF3, and IMF4 got
from EMD. The network training is developed and trained
by using Keras on TensorFlow. The training processes are
performed on a workstation with Ubuntu 18.04, having
Intel(R) Xeon(R) Gold 6154 CPU with 256G RAM, and NVI-
DIA TITAN V graphic card with 12G RAM. Data
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FIGURE 4: A sample image (arm) with the corresponding IRMA code.

argumentation and dropout are employed in the training
process. The number of epochs is 500, the batch size is 16,
the initial learning rate is 0.0001, and early stopping is on.
When the network accuracy is not improved within 20 train-
ing iterations, the early stopping mechanism will be trig-
gered. The 500 epoch setting is to make sure that in most
cases, the network training is stopped by the early stopping
mechanism.

4. Experimental Results

In this paper, the very challenging IRMA dataset is chosen to
evaluate the proposed framework and compare with other
methods reported in the literature. The proposed CNN
model is evaluated in terms of classification performance
and retrieval performance, respectively.

4.1. Database Description. IRMA (Image Retrieval in Medical
Applications) database is a well-known medical image data-
set for content-based medical image retrieval research, which
was made by Aachen University of Technology (RWTH)
[53]. This dataset was arbitrarily selected from a routine at
the Department of Diagnostic Radiology, Aachen University
of Technology. IRMA code is used to specify each image’s
class along four independent hierarchical axes: TTTT-
DDD-AAA-BBB. In this code, T represents the technical
code (imaging modality), D represents the directional code
(body orientations), A represents the anatomical code (the
body region examined), and B represents the biological code
(the biological system examined). This dataset contains a
total of 12,000 images divided into 116 classes, 11,000 image
radiographs with known categories for training, and the rest
1000 radiographs as test. Figure 4 illustrates a sample image
with the corresponding IRMA code.

4.2. Classification Performance

4.2.1. IRMA Error. ImageCLEF07 proposed the error evalua-
tion procedure for IRMA Medical Image Annotation to cal-

culate the retrieval error [54, 55]. The total IRMA error can
be computed by the following formula:

0, ifl=1Yj<i,
lé(li,fi)with(?(liji): 0.5, ifl;=#3j<i,

| —

1

I
=1 "i

S

1

L, ifL#13j<i.
(4)

Here, I! =1,,1,,---,1, -, I;is the correct code (for one
axis) of an image, and‘lq1 =11, 1,1 is the classified
code (for one axis) of an image. I is the depth of the tree to
which the classification is specified. If there is an incorrect
classification at position 7,, all succeeding decisions will be
considered as wrong decisions.

4.2.2. Commonly Used Classification Performance Measure.
To evaluate the performance of different methods for classi-
fication task, commonly used performance evaluation indica-
tors include average precision (AP), average recall (AR), and
F1 measure. These indicators are calculated as the following:

14 TP, (5)
AR= — L
M;TPI+TNI
AP x AR
Flmeasure=2x ———,
AP + AR

where TP is true positive, indicating the number of images
correctly classified as class k; FP is false positive, indicating
the number of images misclassified as class k; TN is true neg-
ative, indicating the number of images correctly classified as
not class k; FN is false negative, indicating the number of
images misclassified as not class k; and M means the total
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TaBLE 2: Comparison of our classification performance to other
CNN reported in the literature for IRMA images. The IRMA error
with * was the best test value selected from the literature.

Methods IRMA error
Proposed method 68.48
Parallel shrink CNN+Radon [9] 165.55*
Sequential shrink CNN+LBP [14] 168.05*
CNN-+Radon [56] 210.35
CNNC+RBC [57] 224.13

TaBLE 3: Comparison of classification performance of the proposed
framework with other deep models and state-of-the-art on IRMA
images.

Methods IRMA AP AR Fl
error measure
VGGI16 [18] 115.08 0.56 0.56 0.53

ResNet50 [19]
AttentionResNet56 [27]

AttentionResNet56+center
loss [52]

Proposed method

80.80  0.65 0.64 0.63
76.83  0.65 0.66 0.64

73.85 0.68 0.66 0.66

68.48 0.67 0.67 0.66

number of classes that is 116 IRMA classes in this paper. As
the F1 measure is more sensitive to data distribution, it is a
suitable measure for classification problems on imbalanced
datasets [10].

4.2.3. Classification Performance and Comparison. The per-
formance of the proposed single-model framework for med-
ical image classification is evaluated by the IRMA error and
commonly used measures for image classification methods,
which are detailed in Sections 4.2.1 and 4.2.2. Table 2 com-
pares the IRMA error got by the proposed framework and
several deep CNN-based methods reported in the literature
[9, 14]. Table 2 shows that with the fast development of the
deep CNN technique, much better classification accuracy
(i.e., lower IRMA error score) can be gotten by employing a
more powerful CNN model as a backbone network. In terms
of the IRMA error, our proposed framework gets a much
lower score than referenced deep CNN-based methods
reported in the literature.

Considering the relative lag of the technology applied on
IRMA dataset and the rapid development of the deep CNNs
in computer vision area, Table 3 compares the classification
accuracy measures on the IRMA dataset including IRMA
error, AP, AR, and F1 measure of the proposed method with
various state-of-the-art deep CNNs including VGG [18],
ResNet [19], and AttentionResNet [27] that have achieved a
very high recognition score on large image dataset challenges
(such as ImageNet [58] and CoCo [59]). Table 3 shows that
the proposed framework performs better in classifying IRMA
images. The proposed framework and the compared deep
CNNs are trained under the same condition, that is, using
the same training dataset, same image argumentation strat-
egy, same number of epochs, same learning rate, and so on.

7
Normalized confusion matrix
0 1.0
20 A 0.8
40 :
= L5 . 0.6
§ . -
2 60 -
= - 0.4
80
- 0.2
100
T T T T T i —- 0.0
0 20 40 60 80 100

Predicted label

F1Gure 5: Confusion matrix of IRMA image classification with 116
classes using the proposed deep CNN.

TaBLE 4: Comparison of our retrieval performance to other CNN
reported in the literature for IRMA images. The proposed method
used Cosine similarity measure to get the IRMA error in this table.

Methods IRMA error
Proposed method 4321
SVM-+multiscale LBP [61] 146.55
Parallel shrink CNN+LBP, HOG, Radon [9] 165.55
Sequential shrink CNN+LBP [14] 168.05
TAUbiomed [60] 169.5
Diap [60] 178.93
CNN-+Radon [56] 210.35
CNNC+RBC [57] 224.13
FEITIJS [60] 242.46
SuperPixel [57] 249.34
VPA [60] 261.16
SP-R [57] 311.8
MedGIFT [60] 317.53
SP-RBC [57] 356.57
IRMA [60] 359.29
MedGIFT [60] 420.91

For classification-based medical image retrieval, the retrieval
performance depends entirely on the accuracy of classifica-
tion, the higher classification accuracy means the better
retrieval performance. As in Table 3, our proposed frame-
work achieved the lowest IRMA error and the best F1
measure.

The confusion matrix is shown in Figure 5, where most
classes can be classified rightly. There are 38.2% classes with
accuracy better than 90%, 51.2% classes with accuracy better
than 80%, and 59.1% classes with accuracy better than 70%.
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FIGURE 6: mAP vs. recall for medical retrieval on IRMA images.

4.3. Retrieval Performance

4.3.1. Retrieval Performance Measure. Precision and recall are
two measures commonly used as retrieval performance eval-
uation measures [5].

_ Numberofrelevantimagesretrieved

Totalnumberofimagesretrieved ©)

_ Numberofrelevantimagesretrieved
Totalnumberofrelevantimages

Besides precision and recall, mean average precision
(MAP) is a very popular evaluation metric for algorithms
that do search in medical image sets [5]. MAP combines pre-
cision and recall in one number. It is defined as the mean of
average precision (AP) metric over all queries that can allevi-
ate the bias during precision evaluation. The AP and mAP
can be formulated as the following:

a(R)> (7)

where P,(R,) is the precision value when the recall value is

R, and Ny indicates the top Ny-ranked relevant images for
the query image q.

mAP= - Y AP(g), (8)
| |q€Q

where Q is the query image set and |Q| is the number of the
query image set.

4.3.2. Retrieval Performance and Comparison. In the pro-
posed deep CNN framework, the feature vector for nearest-
neighbor similarity searching of medical images is gotten
from the last fully connected layer. For comparison, the pro-
posed framework retrieval performance on the IRMA dataset
is evaluated using both the IRMA error and the mean average
precision (mAP). The calculation of the IRMA error in image
retrieval follows the nearest-neighbor rule, that is, the query
image’s class label is determined by the most similar image
returned in the retrieval process. Table 4 compares the
retrieval performance achieved by the proposed framework
with the other methods reported in the literature [9, 14, 56,
57, 60, 61] on the IRMA dataset with the IRMA error. The
proposed deep CNN framework gets the lowest IRMA error
in nearest-neighbor similarity retrieval. Table 5 compares
the proposed framework with state-of-the-art deep CNNs
on the IRMA error and mAP. For mAP, we test three usually
used distance/similarity measures in image retrieval: Euclid-
ean distance, Manhattan distance, and Cosine similarity,
and the IRMA error is evaluated by using the best distance/-
similarity measure: Cosine similarity. Table 5 shows that the
proposed deep CNN framework gets the best mAP and the
lowest IRMA error on these three distance/similarity mea-
sures and gets the highest score on Cosine similarity. In
Table 5, we also list the vector length used for similarity
retrieval. The feature vector for retrieval gotten from the pro-
posed framework is just 32 dimensions that are much shorter
than output vectors reported in literatures and state-of-the-
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TaBLE 6: Comparison of classification and retrieval performance of the proposed framework with other deep models and state-of-the-art on

IRMA images with and without EMD components.

Classification Retrieval (on Cosine similarity)
Methods IRMA error F1 measure IRMA error mAP
With Without With Without With Without With Without
EMD EMD EMD EMD EMD EMD EMD EMD
VGGI16 [18] 115.08 98.29 0.53 0.52 65.53 57.18 0.53 0.54
ResNet50 [19] 80.8 92.62 0.63 0.55 47.53 62.2 0.73 0.70
AttentionResNet56 [27] 76.83 81.54 0.64 0.59 49.66 55.03 0.62 0.61
gtzt]en“onReSNetS Otcenterloss 5 o 74.81 0.66 0.62 47.76 47.13 0.54 0.54
Proposed method 68.48 77.45 0.66 0.59 43.21 46.81 0.86 0.85

art deep CNNs, which illustrate the great potential of our
method to implement large-scare medical retrieval. Suppose
a and b are two feature vectors representing two medical
images, the three distance/similarity measures are formulated
as the following:

Euclidean distance(a, b) = (a; - bi)z,
V i1

Manhattan distance(a, b) = Z|ai - by, ©)
i=1
b
Cosine similarity(a, b) = D

[[a]]«[b]

Figure 6 summarizes the retrieval performance of the
proposed framework and state-of-the-art deep CNNs by the
mAP-recall curve. And all these curves are calculated using
the Cosine similarity measure.

4.4. Performance Comparison with and without EMD
Components. To illustrate the effect of EMD components,
Table 6 details the classification and retrieval measures
between the proposed framework and the state-of-the-art
deep CNNs with and without using EMD components. The
results show that with EMD components, we can get higher
performance in both classification and retrieval applications.
With EMD components, deep CNNs can consistently
achieve better classification and retrieval performance than
without EMD components except for VGG16 on the IRMA
error. This may be because the ResNet backbone is deeper
than VGG16, so the CNNs based on the ResNet backbone
can effectively handle more image information.

5. Conclusions

This paper has proposed a deep convolutional neural net-
work for medical image retrieval task. By training deep
CNN with input medical image and its multifrequency com-
ponents (i.e., IMFs get from empirical mode decomposition
(EMD)) in a supervised classification way, we have got a
scheme that is very suitable for similarity-based medical
image retrieval. Using an imbalanced IRMA medical image
dataset, the proposed framework has surpassed existing algo-

rithms with the highest classification accuracy and lowest
retrieval error. The concise and distinguishable feature vector
output from the proposed deep CNN has also shown great
potential to handle large-scale medical image retrieval. We
intend to further examine CBMIR on other medical datasets,
different modalities, and 3D volumetric applications.
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