
Misusing TCP Timestamps

Veit Hailperin
Offense Department, scip AG

veha@scip.ch
https://www.scip.ch

Marc Ruef (Editor)
Research Department, scip AG

maru@scip.ch
https://www.scip.ch

Keywords: Block, Detect, Exploit, Fingerprinting, Firewall, GitHub, Google, IIS, Linux,
Master

1. Preface

This paper was written in 2015 as part of a research project
at scip AG, Switzerland. It was initially published online at
https://www.scip.ch/en/?labs.20150305 and is available in
English and German. Providing our clients with innovative
research for the information technology of the future is an
essential part of our company culture.

2. Introduction

Before any attack is launched an attacker tries to get as
much information about the target as possible. It will be
done by passive information gathering like Google dorking
[1] as well as active information gathering, like port
scanning [2]. Information gathering using TCP timestamps
is considered active information gathering, since it interacts
directly with the systems. First we will take a closer look at
what TCP timestamps are and how they work. Then we will
discuss ways how TCP timestamps have been used, to then
move on to how networks have changed and how that has
introduced new challenges to information gathering. Last
we will introduce a not previously published way to utilize
TCP timestamps and also how to mitigate these attacks.

3. TCP timestamps

If at any point in the article it states just “timestamp” then it
refers to TCP timestamps. TCP timestamps as defined in
RFC 1323 [3] are an extension of the original TCP Stack.
They were introduced to protect against wrapped sequence
numbers and to improve Round Trip-Time Measurement.
The timestamp echo reply is sent in any ACK or data
segment.

Quote RFC 1323:

The Timestamps option carries two four-byte
timestamp fields. The Timestamp Value field
(TSval) contains the current value of the timestamp
clock of the TCP sending the option.

The Timestamp Echo Reply field (TSecr) is only
valid if the ACK bit is set in the TCP header; if it is
valid, it echos a timestamp value that was sent by
the remote TCP in the TSval field of a Timestamps
option.

Figure: TSOPTS Request

Figure: TSOPTS Response

4. Information Gathering

There are two main ways TCP timestamps have been used
until today to help during attacks on systems:

1. Uptime calculation
2. Host identification using clock skew [4]

Most systems start with timestamp 0 when they are booted.
From multiple timestamps it is possible to infer the
frequency. Frequency and the actual timestamp then can be
used to calculate uptime. The tool hping3 does all of this
for you.

hping3 -c 4 -S -p <open port> --tcp-
timestamp <ip>

http://www.exploit-db.com/google-dorks/
http://nmap.org/man/man-port-scanning-techniques.html
http://www.ietf.org/rfc/rfc1323.txt
http://www.caida.org/publications/papers/2005/fingerprinting/KohnoBroidoClaffy05-devicefingerprinting.pdf

The output will give you the actual timestamp, the
frequency and the uptime:

len=56 ip=172.20.75.36 ttl=64 DF id=0
sport=80 flags=SA seq=0 win=14480 rtt=1.3 ms
 TCP timestamp: tcpts=500722

len=56 ip=172.20.75.36 ttl=64 DF id=0
sport=80 flags=SA seq=1 win=14480 rtt=1.1 ms
 TCP timestamp: tcpts=500972
 HZ seems hz=100
 System uptime seems: 0 days, 1 hours, 23
minutes, 29 seconds

len=56 ip=172.20.75.36 ttl=64 DF id=0
sport=80 flags=SA seq=2 win=14480 rtt=1.0 ms
 TCP timestamp: tcpts=501222
 HZ seems hz=100
 System uptime seems: 0 days, 1 hours, 23
minutes, 32 seconds

len=56 ip=172.20.75.36 ttl=64 DF id=0
sport=80 flags=SA seq=3 win=14480 rtt=1.0 ms
 TCP timestamp: tcpts=501472
 HZ seems hz=100
 System uptime seems: 0 days, 1 hours, 23
minutes, 34 seconds

Knowing the uptime can be utilized in various ways.

It can confirm if a DoS-Attack has been successful,
by comparing uptime before and after.
It can also help you determine the patch level of
the system.

If you have fingerprinted the system properly you have a
good chance of knowing if this system has to be rebooted
for applying patches. Keep in mind that it is not a
requirement of TCP timestamps to start at 0 at boot time. It
is theoretically possible to set a random start value.

5. Network Layout Information Gathering

Systems used to often connect directly to the internet.
Nowadays systems usually connect to the internet through
firewalls. Firewalls often use Network Address Translation
[5] , short NAT. NAT translates an IP address from one
network to an IP address of another network. For example:
the internal server DMZ to the Internet. This IP is then used
throughout the internet. But firewalls have more features,
one of which is that different servers can have one outgoing
IP address, by using different ports.

Figure: Example Network
[6]

Network mapping has been a topic of research that was
limited by the scenario above. My research has overcome
this problem using the attacks described below.

First, let’s gather some information about the network
layout despite the firewall. We will send valid TSOpts to
the server and there are three possible cases, if we’ve
received TSval in the <SYN,ACK> packet on two different
ports on the same IP:

1. Timestamps are different
2. Timestamps are the same
3. At least one port doesn’t answer with set TSopts

Since timestamps are continuously increasing (strong
monotony is required from the clock) and timestamps are
incremented somewhere in the range of milliseconds, it is
highly unlikely that two systems are having a timestamp
difference of less than a second, so we will call it “same”.
Knowing that we can determine which ports of an
externally facing IP belong to the same system behind the
firewall. Let us look at each case:

1. It is very likely that timestamps are coming from
different systems

2. It is likely that timestamps are coming from the
same system

3. If only one port responds without set TCP
timestamp options, it is safe to assume that two
different systems are responding. If TSopts are not
included in the answer or TSval = 0 on both ports,
then no knowledge can be gained, because it could
be the same system having timestamps disabled or
timestamps got disabled on all systems.

This information gives us an idea of how the target
structures their DMZ.

Second, one bit of information that is helpful if not
necessary before attacking is to know the running operating
system of a server. For that a technique called
fingerprinting [7] is used. Just like a human fingerprint, a
computer has a fingerprint based on the running services,
TTL, the way a server responds to a closed port during port
scanning, etc.

For example: A server is running Microsoft IIS. It has an
initial TTL guess of 80. Therefore it is likely a Microsoft
Windows.

Fingerprinting functionalities, as used in port scanners like
nmap [8], often assume that the IP being scanned is one
system only. The problem, depicted in scenario in figure 1
,is that multiple systems behind a firewall are NAT-ed to
one IP address and thus create an unusable fingerprint. As
shown, we can determine if one or multiple systems are
NAT-ed through one IP. Using only ports that belong to one
system, will likely eliminate closed ports as sources, but
will remove the noise from having other systems in the
fingerprint, und thus result in a clearer fingerprint.

There is a Proof-of-Concept (PoC)-Script [9] that reads the
tcp-timestamp and based on that returns if there are services
running on different servers.

http://en.wikipedia.org/wiki/Network_address_translation
https://www.scip.ch/labs/images/tcp_timestamps_beispiel_netzwerk_h_1200.png
http://nmap.org/book/os-detect.html
http://www.nmap.org/
https://github.com/luh2/timestamps/blob/master/identify-hosts.py

Figure: PoC-Script in Action

Known problems are that some firewalls end the tcp
connection and then build a new one – the timestamp is
then of the firewall or reverse-proxy and thus it is
impossible to find out more about the network behind the
firewall using timestamps. Another known problem: If
multiple servers are run virtually on the same machine, they
can have almost same timestamps.

5.1. Proof of concept:

The setup is a monowall [10] with one external facing IP
address, having port 80 and 443 binding to a Windows
2012 R2 Server with IIS 8.5 and port 22 and 8082 binding
to a Debian running SSH and Apache.

The first screenshot shows a garbled, useless fingerprint.
This occurs when all ports are used for fingerprinting. The
other two show fingerprints, one for each system that we
were able to identify using TCP timestamps.

Figure: Several Fingerprints
[11]

As side note: Don’t let nmap fool you – a closed port is a
good idea when fingerprinting a host directly. This is not
the case anymore when the device is behind a firewall.

A special way of network layout information gathering is
load-balance checking for a service. While there are several

ways of figuring it out, TCP timestamps offer us another
way to access that information. As seen in multiple systems
on multiple ports, if there are multiple timestamps on one
port, the service is likely to be active-active load-balanced.

6. Mitigation

Currently the best way to defend against all possible
information gathering done using TCP timestamps is
disabling them, which comes with the cost of lost
Protection Against Wrapped Sequence numbers (PAWS)
and less good Round-Trip Time Measurement (RTTM).

Disabling timestamps can be done under Linux using:

echo 0 > /proc/sys/net/ipv4/tcp_timestamps

On Windows servers they can be disabled by setting:

Tcp1323Opts = 0

A proper solution to the above described problems does not
currently exist.

Update May 8th, 2015: Update chapter Network
Layout Information Gathering to highlight that this
attack is new.

7. External Links

[1] http://www.exploit-db.com/google-dorks/
[2] http://nmap.org/man/man-port-scanning-
techniques.html
[3] http://www.ietf.org/rfc/rfc1323.txt
[4] http://www.caida.org/publications/papers/2005/fingerpri
nting/KohnoBroidoClaffy05-devicefingerprinting.pdf
[5] http://en.wikipedia.org/wiki/Network_address_translati
on
[6] https://www.scip.ch/labs/images/tcp_timestamps_beispi
el_netzwerk_h_1200.png
[7] http://nmap.org/book/os-detect.html
[8] http://www.nmap.org
[9] https://github.com/luh2/timestamps/blob/master/identify
-hosts.py
[10] http://www.m0n0.ch
[11] labs/images/tcp_timestamps_fingerprints_1800_en.png

http://www.m0n0.ch/
https://www.scip.ch/en/labs/images/tcp_timestamps_fingerprints_1800_en.png
http://www.exploit-db.com/google-dorks/
http://nmap.org/man/man-port-scanning-techniques.html
http://www.ietf.org/rfc/rfc1323.txt
http://www.caida.org/publications/papers/2005/fingerprinting/KohnoBroidoClaffy05-devicefingerprinting.pdf
http://en.wikipedia.org/wiki/Network_address_translation
https://www.scip.ch/labs/images/tcp_timestamps_beispiel_netzwerk_h_1200.png
http://nmap.org/book/os-detect.html
http://www.nmap.org/
https://github.com/luh2/timestamps/blob/master/identify-hosts.py
http://www.m0n0.ch/
https://www.scip.ch/en/labs/images/tcp_timestamps_fingerprints_1800_en.png

