
Fault-Tolerant Optimal Broadcast Algorithm for the
Hypercube Topology
Lokendra Singh Umrao, Ravi Shankar Singh

Abstract—This paper presents an optimal broadcast algorithm
for the hypercube networks. The main focus of the paper is the
effectiveness of the algorithm in the presence of many node faults.
For the optimal solution, our algorithm builds with spanning tree
connecting the all nodes of the networks, through which messages
are propagated from source node to remaining nodes. At any given
time, maximum n − 1 nodes may fail due to crashing. We show
that the hypercube networks are strongly fault-tolerant. Simulation
results analyze to accomplish algorithm characteristics under many
node faults. We have compared our simulation results between our
proposed method and the Fu’s method. Fu’s approach cannot tolerate
n − 1 faulty nodes in the worst case, but our approach can tolerate
n− 1 faulty nodes.

Keywords—Fault tolerance, hypercube, broadcasting, link/node
faults, routing.

I. INTRODUCTION

EFFICIENT broadcast of information is a critical issue and
affect the performance of a multicomputers. Broadcast

is an important service for transmitting information from
one node, called the source node, to all other nodes in a
system and used to implement many parallel and distributed
algorithms [1]. However, if a component (nodes or links) fails
before the transmission completes, hours of work may be
wasted. So, an optimal fault-tolerant broadcast algorithm is
needed for faulty components.

The n-dimensional hypercube topology [2] is a most
popular architecture for parallel computing because of
high symmetry, strong hierarchical structure, maximal
fault-tolerance, and low diameter. Existence of alternate
paths between any pair of nodes provides the maximal
fault-tolerance and small diameter (which is the maximum
shortest path between any two nodes) for efficient
communication. For a hypercube network the diameter
is identical to the degree of a node n = log2N . The
binomial tree is used to implement optimal broadcasting
in hypercubes. Optimal broadcasting means the broadcast
information reaches its destination through a shortest path.
The binomial-tree-based broadcasting guarantees that the
broadcast information is propagated to each destination once
and only once through a shortest path [3].

In this paper a fault-tolerant optimal broadcast algorithm
is proposed. This algorithm uses spanning tree rooted at any
node. Both nodes and links may be faulty. However, we will
consider only node faults, link faults can be tolerated by
assuming that there is an alternative path from one node to

L. S. Umrao, and R. S. Singh are with the Department of Computer Science
& Engineering, Indian Institute of Technology (BHU), Varanasi-221 005,
India. E-mail: {lokendra.rs.cse12,ravi.cse}@iitbhu.ac.in.

another node. It will be assumed that faulty nodes can not
perform any computation. The terms node and process are
used interchangeably. Processes can fail only by crashing and
a crash is permanent. A process is correct if it sends the
information from one node to another correctly during the
execution, otherwise, it is faulty.

An n-dimensional hypercube consists of 2n nodes, which
are labeled 0, 1, . . . , 2n−1; two nodes are adjacent if their
labels differ in exactly one bit position. This property highly
facilitates the routing of messages through the network. In
addition, the regular and symmetric nature of the network
provides fault tolerance. The hypercube has been widely used
as the interconnection network in a variety of parallel systems
such as nCUBE-4, Intel iPSC/860 [4], Connection Machine
CM-5 [5], and SGI Origin 2000 [6].

The paper is organized as follows: Section II reviews the
concepts of hypercubes, binomial-tree-based broadcasting, and
fault-tolerance. In Section III we describe some previous work
and their related results. In Section IV we present the routing
scheme in the presents of faults. Section V presents the optimal
fault-tolerant broadcasting algorithm. Simulation results are
discussed in Section VI. Finally, Section VII concludes this
paper.

II. PRELIMINARIES

For an n-dimensional hypercube, Hn, each node has n
links. Since there are 2n nodes in the system, so there
are a total of n.2n−1 links. Every node have the address
of form (an−1, an−2, . . . , a0), where ai ∈ {0, 1} for i =
0, 1, 2, . . . , n − 1. The ith bit is denoted to ith dimension or
dimension i. The proportional address of two nodes, a and
b, is the bitwise exclusive-or operation of the addresses of
these two nodes, i.e., a ⊕ b = c = (cn−1, cn−2, . . . , c0),
where ci = ai ⊕ bi for i = 0, 1, 2, . . . , n − 1. If a link
connecting two nodes a and b in dimension i, and link denoted
by (an−1, an−2, . . . , ai+1,−, ai−1, . . . , a0), where the address
of node a is (an−1, an−2, . . . , a0). For example, the nodes
01000 and 01010 are connected by link 010-0 in dimension
1. The relative address of two links l and m is also bitwise
exclusive-or of their addresses, i.e., li ⊕mi = 1.

For the construction of spanning tree of the hypercube,
the binomial spanning tree is well-known spanning tree. The
binomial tree [7] Bn in a n-dimensional hypercube is an
ordered tree defined recursively. A tree consisting of a single
node is called a B0 binomial tree. The binomial tree Bn

consists of two binomial trees Bn−1 that are linked together:
the root of one is the leftmost child of the root of the other.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:2, 2015 

576International Scholarly and Scientific Research & Innovation 9(2) 2015 scholar.waset.org/1307-6892/10001401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

14
01

http://waset.org/publication/Fault-Tolerant-Optimal-Broadcast-Algorithm-for-the-Hypercube-Topology/10001401
http://scholar.waset.org/1307-6892/10001401


Normally an incomplete binomial tree [8] is used
to implement an optimal broadcast process. A spanning
incomplete binomial tree Bn in an offended hypercube is a
connected subtree with the same root node that connects all
the non-faulty nodes in the hypercube. If a Hn is divided along
k dimensions (d1, d2, . . . , dk), then the size of subcubes will
be Hn−k.

Errors in any system are caused by faults and those errors
ultimately result in failure. Fault is nothing but a defect within
the system where error is detected by a deviation from the
expected behaviour of the system. When the system can no
longer perform as desired output, failure is said to occurred.
To provide a service even with errors in a system, an ability
of fault-tolerance is required [9].

There are two distinct feature of fault-tolerance in a
network: tolerance in links and nodes faults. Link faults may
be tolerated because there are redundant paths in the hypercube
topology. Hamming distance is used for shortest path from
source to destination in the network and given by the number
of bits position changed.

III. RELATED WORK

Blough et al. [10] developed a routing algorithm using a
directed depth-first search technique. The algorithm routes
messages provided there exists at least one non-faulty
path between sender and receiver. The algorithm takes the
shortest path when there are no faulty elements in the cube.
Paper [11] considers the problem of fault-tolerant routing in
multiprocessor systems when incomplete, or partial, diagnostic
information is available.

Several fault-tolerant algorithms for hypercube topology
for routing and broadcasting have been proposed in [12],
[13], [14], [15], [16], [17], [18]. Actually we are interested
in broadcasting information from any node to other nodes
non-redundantly. Paper [13] describes routing scheme based
on local safety information is proposed and the extra cost
to obtain local safety information is comparable to the one
based on global safety information. The proposed algorithm
guarantees to find a minimum feasible path if the spanning
subcube is contained in a maximal safe subcube and the source
is locally safe in the maximal safe subcube.

Chen et al. [19] proposed hypercube networks with a very
large number of faulty nodes. The algorithms are distributed
and local-information-based in the sense that each node in
the network knows only its neighbors’ status and no global
information of the network is required by the algorithms.
For a locally subcube-connected hypercube network that may
contain up to 37.5% faulty nodes, this algorithm runs in linear
time and, for any two given non-faulty nodes and finds a
routing path of length bounded by four times the Hamming
distance between the two nodes.

Huang et al. [20] present three kinds of broadcasting tree
for the even dimensional uni-directional hypercube (UHC)
and some applications (ASCEND/DESCEND algorithms and
bitonic sorting). They propose an all-port fault-tolerant
broadcasting tree (a family of arc-disjoint spanning trees)
whose height is no more than 3

2n+ 1.

Paper [21] presents a method to cope with reliable
broadcasting in faulty hypercubes using local safety
information. Local safety information is well used in the
fault-tolerant broadcast algorithm by considering only safety
of the broadcast subcube.

Paper [22] developed new techniques that enable to
analyze a more realistic fault tolerance model and derive
lower bounds for the probability of hypercube network fault
tolerance in terms of node failure probability. Results are
both theoretically significant and practically important. From
the theoretical point of view, this method offers very general
and powerful techniques for formally proving lower bounds
on the probability of network connectivity, while from the
practical point of view, the results provide formally proven
and precisely given upper bounds on node failure probabilities
for manufacturers to achieve a desired probability for network
connectivity.

Chen and Yu-Wei [23] proposed one-to-all broadcasting
algorithms that can tolerate �3n/2� − 1 faulty nodes. The
sequence of dimensions used for broadcasting in each
algorithm is the same regardless of which node is the source.
The fault-tolerance improvement of this paper is about 50%.

Paper [24] proved that a fault-free cycle of length at least
2n − f − (n − 5) can be embedded in an n-dimensional
restricted hypercube-like network with f faulty nodes, where
n ≥ 5 and f ≤ 2n − 7. They show that cycle-structured
parallel algorithms can be efficiently executed in restricted
hypercube-like networks with faulty nodes.

IV. ROUTING IN THE HYPERCUBE

In a faulty hypercube, it is necessary for message delivery
to find a path of non-faulty nodes from the source to the
destination. For this purpose, each node can store some
information about neighbors to select one of them for message
sending by using it with the address of the destination. In
addition, a detour must be detected even if any shortest path
can not be found by using the information. An algorithm to
perform these operations is called a routing algorithm. In this
situation, a good algorithm finds as many shortest paths as
possible while it holds as simple information as possible

If there are no faulty links in a dimension, then it is called
fault-free dimension. Suppose Hn is divided into Hn−1 and
H ′

n−1 along d dimension and there exist faulty links l in Hn−1

and l′ in H ′
n−1 that differ only in the dth bit. This type of

dimension called unsafe. If there are no faulty link exists,
then the dimension d is called safe. For example, suppose
there are two faulty links, 00-0 and 00-1, then dimension 0 is
unsafe. Remaining dimensions are safe. So, we can say that
if a dimension is unsafe, then there exist two faulty links l
and l′ such that l ⊕ l′ = 1. If a dimension is fault-free and
safe, then it is called fault-free safe dimension. Dimension 0
in 0-00 and 00-1 is fault-free safe.

Let the set of faulty links are F = {f1, f2, . . . , fm} and all
these faulty links are in the same dimension. In this situation,
if there exists two faulty links fi and fj such that they differ
only in the dth bit and are in same dimension, then dimension
d is unsafe. Let, F = {00011−, 00010−, 00111−, 00110−},

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:2, 2015 

577International Scholarly and Scientific Research & Innovation 9(2) 2015 scholar.waset.org/1307-6892/10001401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

14
01

http://waset.org/publication/Fault-Tolerant-Optimal-Broadcast-Algorithm-for-the-Hypercube-Topology/10001401
http://scholar.waset.org/1307-6892/10001401


then a list of unsafe dimension is {00001−, 00100−}. So,
dimensions 1 and 3 are unsafe, other dimensions are safe.

This approach is based on the use of spanning trees to
configure a given hypercube in order to bypass faulty nodes.
The algorithm starts by constructing the spanning tree (ST)
of the hypercube. This is followed by a reconfiguration phase
which requires two steps. During the first step, a faulty node
is removed from the ST. During the second reconfiguration
step, a new ST is constructed by reconnecting the children of
the removed node.

For example, consider the hypercube shown in Fig. 1. The
ST of the hypercube shown in Fig. 1 is shown in Fig. 2.

Fig. 1. A 4-dimensional hypercube

Fig. 2. A Spanning tree (ST) of the hypercube in Fig. 1

Since node (1010) is faulty, then it should be removed from
ST and its children be reconnected as shown in Fig. 3. The
reconfiguration process defines a new parents and new children
in order to circumvent faulty node(s). For example, in Fig. 3
the new children of node (1100) become node (1110) and
(0100) while the parent of node (0010) becomes node (0011).

Fig. 3. The modified ST under faulty node

V. BROADCASTING IN THE HYPERCUBE

A spanning tree for an undirected graph G = (V,E) is a
subgraph that is a tree containing every vertex of G. Spanning
tree provides an efficient method for nodes to communicate
in a distributed system by cutting down the links that the
information must reach all the processes. The broadcasting
of Hn is done at source node with the help of dimension
based partitioning of the subcubes. The binomial-tree are built

using the coordinate set (CS) of the hypercube network. The
coordinate set are based on the sequence of ternary symbols
(tn−1, tn−2, . . . , t0), ti ∈ {0, 1, ∗} for 0 ≤ i ≤ n− 1, where ∗
is a don’t care condition. In Fig. 1, the CS at 0000 is 0123.
Therefore, the dimension order is dimension 0, dimension 1,
dimension 2, and dimension 3. First, the 4-cube ∗∗∗∗ at 0000
is partitioned into ∗ ∗ ∗0 and ∗ ∗ ∗1 along dimension 0. ∗ ∗ ∗0
is then partitioned into ∗ ∗ 00 and ∗ ∗ 10 along dimension 1.
Then ∗∗00 is partitioned into ∗000 and ∗100 along dimension
2. Finally ∗000 is partitioned into 0000 (root) and 1000. That
is, ∗ ∗ ∗∗ = ∗ ∗ ∗1, ∗ ∗ 10, ∗100, 0000, 1000. B3, B2, B1, and
B0 are incomplete spanning binomial trees of subcubes ∗∗∗1,
∗∗10, ∗100, and 1000, respectively. Fig. 4 shows the broadcast
process rooted at node 0000 based on the binomial tree of
Fig. 1.

Fig. 4. A spanning binomial tree rooted at 0000

Let n=6, the source node is 110101 and 101111 is the
destination node. Let {a1 = 101101, a2 = 110110, a3 =
111111} are the faulty nodes, other nodes are non-faulty. a1
and a2 are different at 0th bit and 1st bit of a1 and a3 are also
different. Hence the two bits (0th and 1st) of a1, a2, and a3
are all distinct. If we divide H6 along the 4th and 5th bits, the
subcube will be {00∗∗∗∗, 01∗∗∗∗, 10∗∗∗∗, 11∗∗∗∗}. Any
CS will be of the form ∗∗a3a2a1a0 where the bits a3, a2, a1,
and a0 are fixed. Because the faulty nodes have distinct bits in
the lowest significant bits of their addresses, in this case each
CS can have at most one faulty node. If Hn is divided along
one more dimension that is not part of the distinguishing bits
of the faulty node address bits, each CS still contains at most
one faulty node. Any process in hypercube topology can be
the root.

We present a new way of construction of optimal spanning
tree and show its strong relation with the binomial tree. We
have n spanning trees that are disjoint in an n-cube in which
every edge consists of two directed links, hence the trees are
actually Edge-disjoint. Here we will assume that the n-cube
consists of undirected edges.

Before the spanning tree algorithm proposed, we will
defined some functions, considering a process i as the root.
The first level of the tree is determined by the function
neighborhoodi. From the first level, each process i can define
the subsequent level in the tree of the root j using the function
neighborhoodi(j). Using the function clusteri(j), a process
i can get the upper level process in the tree of the root j
recursively.

Function clusteri(j) = s gives the index of the cluster
of process i that contains process j, 1 ≤ s ≤ d, where s =
1, . . . , log2n and n is the total number of nodes in a system.
For example, considering the 4-cube of Fig. 1, cluster8(0) =
4, cluster4(0) = 3, cluster2(0) = 2, cluster1(0) = 1.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:2, 2015 

578International Scholarly and Scientific Research & Innovation 9(2) 2015 scholar.waset.org/1307-6892/10001401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

14
01

http://waset.org/publication/Fault-Tolerant-Optimal-Broadcast-Algorithm-for-the-Hypercube-Topology/10001401
http://scholar.waset.org/1307-6892/10001401


Function neighbori(s) = j identifies the first fault-free
process j in cluster s of process i. For example, considering
Fig. 1 that shows all clusters in a 4-cube, neighbor4(1) =
5, neighbor4(2) = 6, neighbor4(3) = 0, neighbor4(4) = 12.

Function neighborhoodi = {j|j ∈ neighbori(s), 1 ≤ s ≤
d} gives the set of all neighbori(s) for s = 1...log2n. For
example, considering all nodes are fault-free in a 4-cube,
neighborhood0 = {1, 2, 4, 8}. If process 8 alone is faulty,
then neighborhood0 = {1, 2, 4, 9}.

Function neighborhoodi(j) = {k|k = neighbori(s), 1 ≤
s < clusteri(j)} is used by process i to identify to which
processes a message received from process j should be sent.
For example, considering the spanning tree with root at process
0 in Fig. 4, neighborhood1(0) = φ, neighborhood2(0) =
{3}, neighborhood4(0) = {5, 6} and neighborhood8(0) =
{9, 10, 12}.

The use of independent spanning trees has scientific
applications in fault-tolerant protocols for distributed
computing networks. Broadcasting in a hypercube network is
sending a message from source node to all the remaining nodes
in the network. In this paper, we proposes a fault-tolerant
broadcasting algorithm with the help of independent spanning
trees. We can achieve fault-tolerance by sending n copies of
the message rooted at the source node along n independent
spanning trees. If the source node is faultless, our broadcast
algorithm can tolerate up to n− 1 faulty nodes. Algorithm 1
shows a pseudo-code for the fault-tolerant broadcast at
process pi.

Algorithm 1: Broadcasting procedure
Input: an n-dimensional hypercube Hn with faulty

processes and at least one non-faulty process pi in
Hn

Output: the broadcast paths from pi in Hn of non-faulty
processes

1. It is easy to construct a spanning tree taking pi as the
root node and the same time broadcast its information
through the tree.
2. At the same time, it sends the information to all its
neighbor processes.
if some of its neighbor node has already received the
information then

discard the information and don’t pass it on;
else if there are faulty nodes in its neighbor nodes then

find the adjacent non-faulty nodes, pass information
to them and return to step 2.

3. Repeat the algorithm until all the non-faulty nodes has
received this information.

VI. SIMULATION RESULTS

We have simulated our work on CPN (Colored Petri
nets) tool to validate the performance of the improved
algorithm in hypercube topology. Fig. 5 shows the simulator’s
configuration. Firstly, service requests are sent to the client
from the users, then the service requests are transferred to
the scheduler. The scheduler receives the service request and

decides its sequence according to the schedule rules and
dispatches these results to processor and further it decides
which one processor to execute the service request. The main
purpose of our algorithm is to realize fault-tolerance. Our
simulations are based on exponential distribution of node
failures, i.e., every node has an continuous and independent
failure probability.

((c,sit),str,tsi,at,wt,pt) ((c,sit),str,tsi,at,wt,pt)

New SubpageRES ASSIGNFault
GenerationFAULT GENERATION

MonitoringMONITORING TASK 
SCHEDULERTASK SCHEDULER

PROCESSORPROCESSOR

CLIENTCLIENT

USERUSER

sub_Work_status
sub_Work

sub_Work_status
Work_status

Work_status

sub_Work_Fstatus

Failed

Job
End

Job

Work

Job

request Job

USER

CLIENT

PROCESSOR

TASK SCHEDULERMONITORING

FAULT GENERATION RES ASSIGN

Fig. 5. CPN model for computing

Fig. 6 represents the monitoring of service where the
complete service having no fault is sent to client and then
to user. If there is any fault in the execution of service,
then service is sent to task scheduler from where it is either
rescheduled or is aborted.

((((c,sit),str,tsi,at,wt,pt),p),s,pod_it)

((((c,sit),str,tsi,at,wt,pt),p),s,pod_it)

sub_Work

Work_status

Work_status

TASK
SCHEDULER

OutOut

InIn

STATUS
CHECKING

CLIENT
OutOut

if ps=executed
then 1`((((c,sit),str,tsi,at,wt,pt),p),s,pod_it) 
else empty
sub_Work_status

if ps=fault_occurred
then 1`((((c,sit),str,tsi,at,wt,pt),p),s,pod_it) 
else empty

if st=not_completed
then 1`((((c,sit),str,tsi,at,wt,pt),p),st)
else empty

((((((c,sit),str,tsi,at,wt,pt),p),s,pod_it),proctime),ps)

((((c,sit),str,tsi,at,wt,pt),p),complete) Work_status

sub_Work ((((c,sit),str,tsi,at,wt,pt),p),aborted)

((((c,sit),str,tsi,at,wt,pt),p),st)

if st=aborted orelse st=complete
then 1`((((c,sit),str,tsi,at,wt,pt),p),st)
else empty

Fig. 6. CPN model for monitoring

We have compared our simulation results between the
improved method and the Fu’s method [25]. Fu’s approach
cannot tolerate n − 1 faulty nodes in the worst case, but our
approach can tolerate n − 1 faulty nodes. Hence, our result
is optimal. The simulation results are given in Table I. The
simulation results show that the proposed method provides
the better results in comparison of Fu’s method.

VII. CONCLUSION

This paper introduced an optimal broadcast algorithm for
the hypercube networks using spanning trees. For the optimal
solution, our algorithm builds with spanning tree connecting
all the nodes, through which messages are propagated from
source node to the remaining nodes. Simulation results were
analyzed to accomplish algorithm characteristics under many
node faults. We have compared our simulation results between
our proposed method and the Fu’s method. Fu’s approach

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:2, 2015 

579International Scholarly and Scientific Research & Innovation 9(2) 2015 scholar.waset.org/1307-6892/10001401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

14
01

http://waset.org/publication/Fault-Tolerant-Optimal-Broadcast-Algorithm-for-the-Hypercube-Topology/10001401
http://scholar.waset.org/1307-6892/10001401


TABLE I
SIMULATION RESULTS ON THE 8-CUBE

No. of faults Fu’s method (%) Our method (%)

0 100.0 100.0

1 99.8 100.0

2 99.6 99.8

3 97.2 98.4

4 92.4 95.2

5 87.4 91.6

6 76.8 83.4

7 n/a 72.8

cannot tolerate n − 1 faulty nodes in the worst case, but our
approach can tolerate n−1 faulty nodes. As future work, other
broadcast algorithms will be developed.

REFERENCES

[1] Lin, Jeng-Wei, “Broadcast scheduling for a p2p spanning tree”, IEEE
International Conference on Communications. ICC’08, pp. 5614–5618,
2008.

[2] Saad, Youcef and Schultz, Martin H, “Topological properties of
hypercubes”, IEEE Transactions on Computers, vol. 37, no. 7, pp.
867–872, 1988.

[3] Figueira, Silvia M and Mendes, Christine, “Dynamically adaptive
binomial trees for broadcasting in heterogeneous networks of
workstations”, High Performance Computing for Computational
Science-VECPAR 2004, pp. 480–495, 2005.

[4] Dunigan, Thomas H., “Performance of the Intel iPSC/860 and Ncube
6400 hypercubes”, Parallel Computing, vol. 17, no. 10, pp. 1285–1302,
1991.

[5] Palmer, John and Steele Jr, Guy L, “Connection Machine model CM-5
system overview”, Fourth Symposium on the Frontiers of Massively
Parallel Computation., pp. 474–483, 1992.

[6] Whitney, Steve and McCalpin, John and Bitar, Nawaf and Richardson,
John L and Stevens, Luis, “The SGI Origin software environment
and application performance”, IEEE Proceedings, Compcon’97., pp.
165–170, 1997.

[7] Lee, Tze Chiang and Hayes, John P., “A fault-tolerant communication
scheme for hypercube computers””, IEEE Transactions on Computers,
vol. 41, no. 10, pp. 1242–1256, 1992,

[8] Wu, Jie and Fernandez, Eduardo B, “Broadcasting in faulty hypercubes”,
Microprocessing and microprogramming, vol. 39, no. 1, pp. 43–53,
1993.

[9] Lee, Peter Alan and Anderson, Thomas, “Fault tolerance”, 1990.
[10] Blough, Douglas M and Bagherzadeh, Nader, “Near-optimal message

routing and broadcasting in faulty hypercubes”, International Journal
of Parallel Programming, vol. 19, no. 5, pp. 405–423, 1990.

[11] Blough, Douglas M and Wang, HY, “Cooperative diagnosis and routing
in fault-tolerant multiprocessor systems”, Journal of Parallel and
Distributed Computing, vol. 27, no. 2, pp. 205–211, 1995.

[12] Krull, Jace W and Wu, Jie and Molina, Andres M, “Evaluation of a fault
tolerant distributed broadcast algorithm in hypercube multicomputers”,
Proceedings of the 1992 ACM annual conference on Communications,
pp. 459–466, 1992.

[13] Xiang, Dong, “Fault-tolerant routing in hypercube multicomputers using
local safety information”, IEEE Transactions on Parallel and Distributed
Systems, vol. 12, no. 9, pp. 942–951, 2001.

[14] Xiang, Dong and Chen, Ai, “Partial path set-up for fault-tolerant routing
in hypercubes”, International Proceedings on Parallel and Distributed
Processing Symposium, pp. 8–18, 2003.

[15] Xiang, Dong and Chen, Ai and Wu, Jie, “Local-safety-information-based
fault-tolerant broadcasting in hypercubes”, J. Inf. Sci. Eng., vol. 19, no.
3, pp. 467–478, 2003.

[16] Liu, Fangai and Song, Ying, “Broadcast in the locally
k-subcube-connected hypercube networks with faulty tolerance”,
Networking and Mobile Computing, pp. 305–313, 2005.

[17] Xiang, Dong, “Fault-tolerant routing in hypercubes using partial path
set-up”, Future Generation Computer Systems, vol. 22, no. 7, pp.
812–819, 2006.

[18] Jiang, Zhen and Wu, Jie and Wang, Dajin, “A new fault-information
model for adaptive & minimal routing in 3-D meshes”, IEEE
Transactions on Reliability, vol. 57, no. 1, pp. 149–162, 2008.

[19] Chen, Jianer and Wang, Guojun and Chen, Songqiao, “Locally
subcube-connected hypercube networks: Theoretical analysis and
experimental results”, Computers, IEEE Transactions on, vol. 51, no.
5, pp. 530–540, 2002.

[20] Huang, Huang-Ming and Yang, Chang-Biau and Tseng, Kuo-Tsung
and others, “Broadcasting on uni-directional hypercubes and its
applications”, J. Inf. Sci. Eng., vol. 19, no. 2, pp. 183–203, 2003.

[21] Xiang, Dong and Chen, Ai and Wu, Jie, “Reliable broadcasting
in wormhole-routed hypercube-connected networks using local safety
information”, IEEE Transactions on Reliability, vol. 52, no. 2, pp.
245–256, 2003.

[22] Chen, Jianer and Kanj, Iyad A and Wang, Guojun, “Hypercube network
fault tolerance: A probabilistic approach”, Journal of Interconnection
Networks, vol. 6, no. 01, pp. 17–34, 2005.

[23] Chen, Yu-Wei, “Improved one-to-all broadcasting algorithms on faulty
SIMD hypercubes”, Journal of Parallel and Distributed Computing, vol.
65, no. 12, pp. 1596–1600, 2005.

[24] Dong, Qiang and Yang, Xiao-Fan, “Fault-Tolerant Cycle Embedding in
Restricted Hypercube-like Networks with More Faulty Nodes”, Journal
of Information Science and Engineering, vol. 28, pp. 419–426, 2012.

[25] Fu, Jung-Sheng, “Longest fault-free paths in hypercubes with vertex
faults”, Information Sciences, vol. 176, no. 7, pp. 759–771, 2006.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:2, 2015 

580International Scholarly and Scientific Research & Innovation 9(2) 2015 scholar.waset.org/1307-6892/10001401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
2,

 2
01

5 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

14
01

http://waset.org/publication/Fault-Tolerant-Optimal-Broadcast-Algorithm-for-the-Hypercube-Topology/10001401
http://scholar.waset.org/1307-6892/10001401

