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ABSTRACT Smart cities exploit emerging technologies such as Big Data, the Internet of Things (IoT),
Cloud Computing, and Artificial Intelligence (AI) to enhance public services management. The use of IoT
allows detecting and reporting specific parameters related to different domains of the city, such as health,
waste management, agriculture, transportation, and energy. LoRa technologies, for instance, are used to
develop IoT solutions for several smart city domains thanks to its available features, but sometimes people
(i.e., citizens, information technology administrators, or city managers) might think that these available
features involve cybersecurity risks. This study explores the cybersecurity aspects that define an assessment
model of cybersecurity maturity of IoT solutions to develop smart city applications. In that sense, we
perform a systematic literature review based on a top-down approach of cybersecurity incident response
in IoT ecosystems. Besides, we propose and validate a model based on risk levels to evaluate the IoT
cybersecurity maturity in a smart city.

INDEX TERMS Bayesian network, cybersecurity, IoT, maturity model, risk assessment, smart city.

I. INTRODUCTION

THE cities try to maintain their sustainability and re-
silience capabilities in front of social, environmental,

technological, and economic changes inherent to human
evolution. Cities face more significant pollution, more traffic
congestion, higher demand for energy and sanitation services
due to urban growth. To resolve the problems associated with
urbanization, the cities should incorporate smart solutions
that involve human capital, creativity, and collaboration with
various stakeholders [1]. For this reason, several cities in
the world have adopted the development an urban planning
model called smart city based on the digitization of services,
automation of processes, and data-based decision making [2].

Adopting smart city model allows cities to improve the
city’s administrative and operational processes, aiming to
generate sustainable environments for citizens. The smart
city model includes a sensing layer and data analytics pro-
cesses to understand in real-time the patterns of the city
services in different areas such as health, energy, trans-
port, waste management, and environment. In recent years,
the development of smart cities has been supported by the
evolution of communication systems and the inclusion of

emerging technologies such as the Internet of Things (IoT),
Big Data, and Cloud Computing [3]–[5]. The integration of
these technologies and their direct application to the urban
space has promoted urban computing development. Today,
sensors, persons, vehicles, buildings, among other elements
of the urban space, can be used as components for providing
service to people and the city [1].

From a technical perspective, the smart city could be
considered as a model to abstract the physical and behav-
ioral aspects of the different elements of the city (citizens,
services, and physical infrastructure) to the digital environ-
ment through the interoperability of technological subsys-
tems made up of sensors, actuators, and processing capa-
bilities. This allows identifying patterns of the city’s social,
environmental, and economic aspects for executing real-time
decision-making by the city’s actors to maintain the city’s
sustainability and resilience. Related to the objective of digi-
tization of the physical aspects of a city, IoT especially allows
obtaining data of several parameters and components of it;
for instance, it is feasible to obtain the temperature of a house,
the air quality on the streets, or the humidity in an agricultural
plantation [6]–[8]. IoT solutions are increasing worldwide,
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and the projections related to IoT for the following years are
still promising. The number of IoT devices is expected to
grow between 25 to 30 billion by 2022 [9]. Gartner indicates
that only in the automotive sector, IoT presents a 21% in-
crease by 2020 compared to 2019; this represents 5.1 billion
endpoints more in the world [10]. Nevertheless, IoT solutions
have fueled economic growth and have also contributed to
social, environmental, and commercial aspects. According to
the World Economic Forum, IoT projects have contributed
to the 17 sustainable development goals (SDG) [11]. This
hyper-connectivity and continuous availability of IoT solu-
tions allow the development of smart cities, but they also
increment cybersecurity threats and attacks [12]. A Forbes
analysis of security events shows that cyberattacks on IoT
devices increased by around 300 % in 2019, and according to
Hassija [13], the development of IoT solutions raised privacy
and security issues. Some cyberattacks that can occur in a
smart city are:

• Controlling traffic lights: attackers can manage city
lights causing accidents; traffic signals have become
susceptible to attacks because of wireless networks [14];

• Attacks against smart vehicles: attackers can inject false
routes or simulate other vehicles in the environment to
cause collisions [15];

• Collapsing the power grid: attackers can cause power
outage in the city [16];

• Water supply: attackers can modify the levels of chemi-
cal additives in the water and cause public health prob-
lems [17];

• Surveillance cameras: attackers can spy on people and
access to personal data [18].

Cities have been targets of security attacks worldwide for
some years. For example, in 2015, Kyiv (a Ukraine city) had a
power outage caused by cyberattacks; this deprived the peo-
ple of electricity for one hour approximately [19]. In 2019,
the city of Baltimore, USA, was attacked with ransomware
infecting the city government’s computers and demanding
13 bitcoins in exchange for encrypted files [20]. When cities
lose control of their systems due to cyberattacks, it can
impact the technological axis, the city’s economy, quality of
life, and even more, can put in danger people’s lives. The
inclusion of information and communication technologies
(ICTs) has generated concerns for citizens regarding security.
Cybersecurity aspects could be one of the limitations in the
use of smart city services. Citizens could prefer, in some
instances, do not use technological resources for the city
services. The study developed by Lytras and Visvizi [21]
identified seven factors that are concerned by citizens in the
smart city adoption with their corresponding percentages (see
Fig. 1). According to such a study, citizens’ main concerns
are security and protection with 45%, data privacy with 25%,
and transparency of services with 8%. The other concerns are
equal or below to 5%.

In this context, city managers should consider strategies
to improve cybersecurity mechanisms (e.g., policies, guide-

FIGURE 1. Concerns associated with smart city adoption.

lines, controls) and support strengthening cybersecurity in
the smart city domain. Under this premise, we have raised the
following research question at a macro level that motivates
the development of this study: Is there an adequate IoT
cybersecurity level for smart city scenarios?

Six important pillars of smart cities are the social impact,
cognitive intelligence, policy awareness, benchmarking and
best practices, smart cities ecosystem, and creation and inno-
vation [1]. This context raises our second research question
in this study: Does IoT cybersecurity level affect to the key
pillars of the smart city?

This study aims to analyze the cybersecurity state from
a perspective of IoT inclusion in smart city scenarios. For
this, we first performed a systematic literature review (SLR)
that allows establishing a baseline to evaluate the cyberse-
curity maturity of IoT solutions used in a smart city. Then,
we propose a Cybersecurity Maturity Model for a smart
city based on five phases: (i) Research context, (ii) Design
strategy framework, (iii) Conceptualization and specification
framework, (iv) Mapping features of the cybersecurity matu-
rity model based on expert panel ranking, and (v) Validation
of the initial cybersecurity maturity model. The proposed
model aims to cover the cybersecurity aspects produced by
the inclusion of IoT to develop the smart city, contemplating
the economic, social, and environmental impacts. Applying
the cognitive security techniques will allow assessing cyber-
security risk levels in the face of complexity, diversity, and
large volumes of data in IoT ecosystems.

The remainder of this paper is structured as follows.
Section II presents an overview of works related to the
issues of cybersecurity in IoT ecosystems within smart cities.
Section III presents the research methodology of the SLR
and qualitative analysis. Section IV presents an analysis of
the results obtained from the SLR to determine the main
aspects of cybersecurity to assess the IoT usage in smart city
applications and then discusses cybersecurity proposals for
IoT in smart cities. Section V introduces the cybersecurity
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maturity model development for a smart city. Finally, Sec-
tion VI concludes this study.

II. OVERVIEW OF CYBERSECURITY IN IOT
ECOSYSTEMS
IoT devices communicate among them, using various com-
munication technologies and different kinds of protocols. In
IoT ecosystems, the application of cybersecurity methodolo-
gies has some challenges due to this heterogeneity. Addition-
ally, the physical capacity of IoT devices and the amount of
information generated by IoT devices increase the challenge
of cybersecurity.

Attackers take advantage of vulnerabilities to execute
cyber-attacks. Recent attacks have taken advantage of IoT
systems’ vulnerabilities in smart cities. Liu et al. [22] iden-
tified five primary layers in the IoT system susceptible to
vulnerabilities: the network layer, the operating system, soft-
ware, firmware, and hardware. Capellupo et al. [23] mention
that IoT devices are compromised because they have de-
fault configurations, easy passwords, and unencrypted traffic.
Vulnerabilities related to default or trivial passwords in IoT
devices that are publicly visible can be detected using tools
like SHODAN [24]; this increases the number of attacks. Yu
et al. [25] mention that the firmware identification method
to detect the device type and brand of IoT solutions could
be based on weak passwords. English et al. [26] contribute
to this field, indicating that attackers could develop memory
buffer attacks to gain access to the entire system using weak
default passwords. Hsu et al. [27] mention that an attacker
could trigger a privilege escalation attack to change the
behavior of IoT systems. IoT systems generally use rules for
developing specific actions, but the attacker could manipulate
these rules to affect the IoT device. Mishra et al. [28] suggest
that if an attacker gains access to an IoT device, he/she could
obtain privileged information. If the device is part of a mesh
network, the attacker could compromise the entire network’s
confidentiality. Benkahla et al. [29] mention that the attacker
could take advantage of services implemented in the IoT
ecosystem using the spoofing attack. The problem is that
the elements’ identity is unprotected and transmitted while
registering the devices in the server. Benkahla also suggests
that some IoT networks (i.e., LoRa Network) can suffer from
flipping attacks where the message is modified without being
decrypted and can disable data transmission. Ling et al. [30]
developed a case study for a smart plug system and identified
four possible types of attacks to gain access to the entire
system: device scanning attack, brute force attack, spoofing
attack, and firmware attack.

According to Moustafa et al. [31], IoT services operate
via network protocols, such as DNS, HTTP, and MQTT,
and attackers try to exploit vulnerabilities in such protocols
using techniques like polymorphic code, DNS Spoofing,
DNS cache poisoning, Denial of Service (DoS), Distributed
DoS (DDoS) and URL interpretation. Metongnon et al. [32]
mention that attackers can obtain successful login on telnet,
and once they reached this goal, they can write shellcodes

or download script files containing commands. Additionally,
IoT solutions consider UPnP for automatic discovering IoT
devices connected to a network [33], but this service can
become a vulnerability since an attacker can get important
information using the UPnP’s service discovery protocol
[32]. Iacono et al. [34] mention that API-keys share the same
drawbacks as HTTP basic authentication. The API-key is
transferred to the server in plain-text. Additionally, Iacono
comments that OAuth v2 (an authorization framework for
granting access to end-users’ resources for third party appli-
cations) does not include any security on its own; instead, the
security is merely based on TLS. However, OAuth v2 can be
augmented through the OAuth MAC tokens by extending a
method for signing an HTTP request. OAuth is used to reduce
user privacy exposure, but OAuth v2 could have security
vulnerabilities taken advantage of by attackers through replay
attacks and Cross-Site Request Forgery (CSRF) [35].

Table 1 shows some relations to explain how attack vectors
take advantage of IoT vulnerabilities. The IoT vulnerabilities
were selected based on the OWASP IoT Top Ten attacks clas-
sification and security requirements of OWASP Application
Security Verification Standard.

It is worth noting that the IoT ecosystem is complemented
by data analytics and cloud solutions to generate information
for decision-making. Nowadays, Microsoft Azure, Google
Cloud, or Amazon AWS are the most recognized cloud
platforms in the field due to their easy integration with IoT
solutions. However, despite being robust commercial solu-
tions, they expand the surface of cybersecurity attacks. Cloud
solutions present a shared security management scheme; on
the one hand, cloud companies are responsible for securing
the infrastructure, storage, and cloud networks. On the other
hand, the user or client is responsible for other aspects such
as authentication, authorization, or continuous monitoring. In
August 2019, there was an attack in which customer data
was stolen from a bank cloud infrastructure. It was said
that a misconfiguration error at the application layer caused
the problem allowing a Server-Side Request Forgery (SSRF)
attack. However, the judicial process investigation revealed
that there were default configurations that could enable this
type of attack [39]. As can be seen, the interaction of
various actors increases the complexity of the cybersecurity
strategy. In this aspect, it is essential to consider the aspect
of a shared security scheme generated by the use of cloud
infrastructure to analyze security risks. Figure 2 illustrates
the most relevant security problems that we have identified in
our complementary study about cloud environments that can
be used in conjunction with IoT. The attack vectors expand
the attack surface in a smart city.

The metadata on cloud services gives information about a
computational instance, e.g., service name or security group
that retrieves a cloud resource. This metadata may contain
sensitive information, so it is essential not to have informa-
tion such as a password because it would allow attackers to
access resources more quickly. Attackers seek to identify cre-
dentials in the metadata using the SSRF vulnerability in the
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TABLE 1. Attack vectors based on IoT vulnerabilities

Security
requirements

Vulnerability Attack vector IoT
Layer

Owasp Classification Ref.

Lack of the implementation of cryptographic
algorithms.

Attacker can discover the
password using brute force
or dictionary attacks.
Attacker can eavesdrop the
wireless communication.

Authentication Lack of password policy management. Attacker can gather con-
figuration and authentica-
tion credentials from a
non-tamper-proofed node,
and can replicate it in the
network.

Device
Layer

Weak, Guessable, or Hard-
coded password

[23]–
[26],
[36],
[37]

The average password length on IoT devices
is short.

Impersonation attack in
which an adversary is
disguised as a legitimate
party in the system.

Bypassing authentication and authorization. Device scanning attack.
Default passwords and credentials.

Bypassing access control checks

Misconfiguration.

Attacker can emulate the
communication behavior
of a real IoT node
(Spoofing attacks).

Device
Layer.

Insufficient Authentication
or Authorization.

Access Control Metadata manipulation.

Elevation of privilege.

The attacker can install a
malicious firmware on the
IoT device and control it
remotely.

Network
Layer.

Insecure Software and
Firmware.

[27]–
[30]

Input and Output Vulnerabilities on HTTP, Telnet and DNS. DNS Spoofing, DNS
cache poisoning, Denial of
Service (DoS), Distributed
DoS (DDoS) and URL
interpretation

Application
Layer.

Insecure Network
Services.

[31]

Communications Vulnerabilities on MQTT, CoAP, UPnP, and
HNAP.

MQTT does not provide
any data encryption by
default. The attacker can
sniff the data in transit.

Service
Layer.

Insecure Network
Services.

[32]

Cryptographic Communication protocols do not rely on
cryptographic mechanisms.

Eavesdropping attacks al-
low to analyze plain-text
transmissions between IoT
nodes.

Network
layer.

Lack of Encryption and In-
tegrity Verification.

[30]

APIs Security misconfiguration
improper asset management
security injection
access exposure to data
broken authentication.

Replay attacks and Cross-
Site Request Forgery
(CSRF)

Service
layer.

Insecure Network
Services.

[38]

FIGURE 2. Security problems in cloud environments.

public frontend. A misconfiguration can allow an attacker to
access cloud resources, read or overwrite configurations, and
access sensitive data. Misconfigurations can occur in both the
cloud components and the configuration of third-party solu-
tions used in the cloud (e.g., GitHub or dockers). Errors such
as not activating the multiple-factor authentication, not using
encryption, or having credentials in files of local directories
of the systems can allow the attacks to succeed. By default, a
cloud resource’s information is private, but users may allow
the information to be accessible. Some errors are related to
the snapshot’s publication in an open way that will allow
the attacker to access the information. Attackers can send
fake emails trying to get credentials from cloud resources,
bypassing security protections such as firewalls, since they
could generate exceptions or install some malware. Table 2
presents the security techniques that cloud providers offer to
reduce security vulnerabilities.
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TABLE 2. Security Techniques that Cloud Providers Offer

Technique AWS Google Cloud Azure

Logging trail CloudTrail Cloud Audit Logs Azure Search.

Multi-factor
authentication

Amazon Identity
and Access
Management
(IAM)

Cloud identity plat-
form

Azure
multi-factor
authentication.

Sensitive data Cloud Data Loss Prevention (DLP).

Encryption key
management

AWS Key
Management
Service (KMS)

Customer-supplied
encryption keys

Azure key vault

Cloud KMS

Single Sign-on
functionality

Yes Yes Yes

Logging trail Yes Yes Yes

Multi-factor
authentication

Yes Yes Yes

Sensitive data pro-
tection (DLP)

Yes Yes Yes

Encryption end to
end (motion data)

Yes Yes Yes

Encryption in
Rest-data

Yes Yes Yes

Encryption keys Yes Yes Yes

Data masking Yes Yes Yes

From this review, we can observe that security problems
look for having a more significant extension than the plat-
forms’ security configuration. It is essential to use a Role-
based Access Control (RBAC) to access cloud resources.
This prevents unauthorized users from accessing sensitive
data. Access policies must be configured appropriately, con-
sidering that in the future, a user may change roles and thus
access sensitive data that was not initially allowed. Cloud
infrastructures have some tools to manage data security;
for instance, Microsoft Azure stores sensitive data in the
MS-SQL database and has security tools that encrypt the
database’s information. Cloud solutions have firewalls that
allow restricting authorized IP addresses. Microsoft Azure
recommends using firewalls at the database level instead of
server firewalls since the former allows more granularity than
the latter. Azure, Google, and AWS allow end-to-end encryp-
tion using TLS or HTTPs; however, data-rest encryption can
be more challenging, and other tools should be configured
in this context. AWS history produced by CloudTrail enables
security analysis, resource change tracking, and compliance
auditing. On the other hand, Azure Search allows fine-tuned
ranking models [40]–[42].

As can be seen in Table 2, the different infrastructures have
alternatives to improve security in the deployment of solu-
tions that use the cloud; the importance of shared provider
and customer security is again highlighted. There may be
limitations in the provider’s proposed cloud security solu-
tions; also, the user’s security configuration may be little or

insufficient. Some cloud providers may have security features
disabled by default, which can also create risks since the user
does not perceive this status. An in-depth investigation of the
security risks from the mechanisms or tools mentioned in this
study can model the attack surface in a smart city.

A structured approach to reduce cybersecurity incidents’
impact is the prioritization of cybersecurity activities and
cybersecurity risk assessment efforts. Organizations such as
Computer Emergency Response Team Coordination Center
(CERT/CC), National Institute of Standards and Technology
(NIST), European Network and Information Security Agency
(ENISA), SysAdmin Audit, Networking and Security Insti-
tute (SANS), International Organization for Standardization,
and International Electro-technical Commission proposed a
set of phases for incident response.

For instance, NIST, in its special publication SP 800-
61, defines five phases: (i) preparation, (ii) detection and
analysis, (iii) containment, (iv) eradication and recovery, and
(v) post-incident [43], [44]. In particular, the post-incident
phase constitutes the final phase once an incident has been
resolved. It is beneficial in improving security measures. It
provides a chance to achieve closure concerning an incident
by reviewing what occurred, what was done to intervene,
and how well the intervention worked. The degree of pro-
activeness is switched to high as the relevant personnel must
take the initiative to recognize and reflect new threats and
improve protection mechanisms. Results from this phase
will be used as feedback to improve cybersecurity incident
management. The principal activities in this phase include
the following [45]:

• Identify the lessons learned from the cybersecurity inci-
dent;

• Identify and make improvements to the organization’s
security architecture;

• Review how effectively the incident response plan was
executed.

III. RESEARCH METHODOLOGY
A. RESEARCH QUESTIONS
From our main research question of this study (i.e., Is there
an adequate IoT cybersecurity level for smart city scenar-
ios?), three secondary research questions have been derived
as follows.

RQ1 Are IoT cybersecurity aspects a limitation in the
development of a smart city?

RQ2 What is the role of policymakers to strengthen IoT
cybersecurity in a smart city?

RQ3 How to measure the level of IoT cybersecurity in a
smart city?

B. QUALITATIVE ANALYSIS
Forensics is a procedure in the cybersecurity incident re-
sponse process related to the post-incident phase specifi-
cally. This process allows determining the root-cause of an
attack. Knowing the root-cause allows improving security
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controls in gaps of cybersecurity infrastructure in smart
cities. IoT forensics has been defined as a branch within
digital forensics; it requires unique methods and perhaps is
more complicated than those traditionally used in computer
architecture [46].

To understand cybersecurity aspects in a smart city in the
context of IoT solutions, we propose a top-down analysis.
Determining the root-cause is useful for improving network
security and identifying vulnerabilities [47]. In this study, we
perform an SLR of the post-incident phase in IoT ecosystems
to identify cybersecurity management’s critical aspects. We
follow the Prisma methodology [48] that consists of four
stages: identification, screening, eligibility analysis, and in-
clusion. To perform these phases, we have used the Rayyan
QCRI tool [49], which is designed to carry out a systematic
review of the files uploaded to a system. The tool allowed
us to execute the screening and eligibility, analysis, and
inclusion through the blind peer review process to reduce
subjectivity in the research process. Subsequently, with the
selected articles, a qualitative analysis was carried out using
the Atlas TI tool [50].

1) Stage 1: Identification

a: Study selection

The world population is expected to exceed 60% in urban
areas [51], so city planning must consider the problems
of social, economic, and environmental growth. The ur-
ban agenda for sustainable development, published in 2015,
defines the guidelines to cover the social and ecological
aspects until 2030, based on the achievement of 17 SDG
objectives [11], [52]. In this aspect, IoT represents a critical
element in the deployment of smart cities as a strategy for
SDG compliance [53]. Based on this context, it is our interest
to understand the importance of IoT in the development
of smart cities and the security aspects generated with this
technology’s inclusion. For this reason, we selected research
articles from the year 2015, when the Urban Agenda was
defined, until May 2020, the date on which this study was
presented.

For selecting the research articles, we have used the fol-
lowing databases: Springer, Scopus, IEEE Xplorer, Associ-
ation for Computing Machinery (ACM), Web of Science,
and Science Direct. These databases were chosen since they
are the most relevant sources of information correspond-
ing to “Information Systems” and “Technology.” We have
included the keywords “(IoT OR smart city)” AND
“(Forensics OR post-incident)” in the search
string.

b: Inclusion and exclusion criteria

The inclusion criteria consist of: (i) documents published in
academic sources after peer-review, and (ii) documents that
considered the use of IoT for application development.
The exclusion criteria were: preview surveys about IoT foren-
sics (these works were included in the related works section

but were not considered for the quality analysis process). We
found 302 papers related to IoT forensics.

2) Stage 2: Screening
a: Titles and abstracts
We have conducted a screening process of the 302 remaining
papers for selecting the main contributions. After reading
each paper’s title and abstract carefully, we have excluded
those papers in which the title and abstract did not comply
with the inclusion criteria. We also have deleted duplicates
articles. At the end of this stage, 176 articles that fulfill the
criteria remained in the selected group.

3) Stage 3: Eligibility Analysis
a: Full text reading
After performing the previous stages, a full-text review of
each article was done. If the article included cybersecurity
aspects in greater detail about vulnerabilities, attacks, and
protection mechanisms in IoT environments, they were con-
sidered for further qualitative analysis. At the end of this
process, 28 articles were considered relevant to structure
the initial contextual basis of our study. Table 3 details the
selected articles; for each of them, we present the aspects
that could generate cybersecurity issues and the main con-
tribution.

4) Stage 4: Inclusion
a: Data extraction
For each selected paper, we have summarized the follow-
ing information: (i) IoT component or device, (ii) model-
ing proposal, (iii) forensics process, and (iv) future works.
Therefore, this information was analyzed for each research
objective that was presented in the following sections.

IV. RESULTS OF THE ANALYSIS OF THE SELECTED
PAPERS
Research objective 1: Are IoT cybersecurity aspects a
limitation in the development of a smart city?
The perspective of cybersecurity issues is one of the limita-
tions for the development of smart city solutions. According
to Ijaz et al. [81], three factors affect information security in
a smart city: technological, governance, and socio-economic
factors. The technological factor includes IoT, semantic web,
cloud computing, databases, software, and artificial intelli-
gence. The governance factor includes city domains such as
health, education, infrastructure, transport, energy, environ-
ment. Finally, the socio-economic factor includes communi-
cation, privacy, business, finance, and commerce.

Technology plays a crucial role in making a smart city
functional [81]. However, technologies such as smart grids,
biometrics, smartphones, and M2M communications present
security issues. These technologies are often used in IoT
ecosystems; hence IoT is one of the essential technologies
in the development of smart cities; its importance lies in its
accelerated growth and its applicability in different smart city
domains to implement smart infrastructures [82].
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TABLE 3. Results of the SLR. Selected Papers to Review

Journal Year Title Aspects that could generate cybersecurity
issues

Contribution Reference

2017 Strategic Trust in Cloud-Enabled Cyber-
Physical Systems with an Application to
Glucose Control

Advanced persistent threats (APTs) can in-
filtrate in the network and use obfuscation to
remain undetected

Game theory to capture the adversarial and
strategic nature of CPS security

[54]

2018 A Game Theory Based Collaborative Secu-
rity Detection Method for IoT Systems

IoT systems tend to be established in a
distributed manner for saving resource con-
sumption,

Game theoretical analysis framework to col-
laborative security detection

[55]

2018 MDSClone: Multidimensional Scaling
Aided Clone Detection in IoT

Attacker to gather configuration and authen-
tication credentials from a non-tamper-proof
node, and replicate it in the network

Algorithm for clone detection probability [56]

2018 Deep Abstraction and Weighted Feature Se-
lection for Wi-Fi Impersonation Detection

Impersonation attack in which an adversary
is disguised as a legitimate party in a system

Deep-feature extraction and selection (D-
FES), which combines stacked feature ex-
traction and weighted feature selection to
attack detection

[57]

2019 Modeling, Analysis, and Mitigation of Dy-
namic Botnet Formation in Wireless IoT
Networks

Software vulnerabilities in devices, due to
low cost and short time-to-market.

An analytical model to study the D2D prop-
agation of malware in wireless IoT networks

[58]

2019 IoT-NUMS: Evaluating NUMS Elliptic
Curve Cryptography for IoT Platforms

Timing and simple side-channel attacks Evaluating NUMS Elliptic Curve Cryptogra-
phy

[59]

IEEE
Transactions
on Information
Forensics and
Security

2019 Towards Efficient Fine-Grained Access Con-
trol and Trustworthy Data Processing for
Remote Monitoring Services in IoT

User data privacy attacks by unauthorized
parties

Robust and lightweight “heartbeat” protocol
to handle the difficult key revocation prob-
lem

[60]

2019 Interdependent Strategic Security Risk Man-
agement With Bounded Rationality in the
Internet of Things

Users cannot be aware of the security poli-
cies taken by all its connected neighbors,
so user makes security decisions based on
the cyber-risks that perceives by observing
a selected number of nodes

Proximal-based iterative algorithm to com-
pute the Gestalt Nash equilibrium (GNE)
to characterize the decisions of agents and
quantify their risk

[61]

2019 SafeChain: Securing Trigger-Action Pro-
gramming From Attack Chains

Attack-privilege escalation and privacy leak-
age

SafeChain can efficiently and accurately
identify attack chains

[62]

2019 Trust Evaluation Mechanism for User Re-
cruitment in Mobile Crowd-Sensing in the
Internet of Things

Unintentionally corrupted and falsified data
or intentionally spreading disinformation for
malevolent purposes

A novel trust model called experience-
reputation (E-R) is proposed for evaluating
trust relationships between any two mobile
device users

[63]

2020 A GLRT-Based Mechanism for Detecting
Relay Misbehavior in Clustered IoT Net-
works

Dropping the packets transmitted by the IoT
devices and/or by corrupting the packets to
be forwarded by the relay

Hybrid intrusion detection systems with
semi-analytical approach

2020 SLATE: A Secure Lightweight Entity Au-
thentication Hardware Primitive

Lightweight cryptography for resource con-
strained systems

Secure lightweight entity authentication
hardware primitive called SLATE

[64]

2020 SARA: Secure Asynchronous Remote Attes-
tation for IoT Systems

Remote attestation is particularly important
for securing Internet of Things (IoT) systems

A novel Secure Asynchronous Remote At-
testation (SARA) protocol that exploits
asynchronous communication capabilities
among IoT devices and verifies that each IoT
device is not compromised

[65]

2020 An Attack-Resilient Architecture for the In-
ternet of Things

A single vulnerable device can undermine
the security of the entire network

An architecture that prevents deceitful mes-
sages generated by compromised devices
from affecting the rest of the network

[66]

Digital Investiga-
tion

2017 Future challenges for smart cities: Cyber-
security and digital forensics

Smart city data is generated in vulnerable
environments by all data sources, for storage
in a back-end Cloud

A holistic view of the security landscape of
a smart city, identifying security threats and
providing deep insight into digital investiga-
tion in the context of the smart city.

[67]

2019 Leveraging Electromagnetic Side-Channel
Analysis for the Investigation of IoT Devices

User’s personal information and cloud com-
munication data can be stored in the device
directory. Some AI speaker stored all the
voice response data without any deletion.

Analysis methodologies for data acquisition
through of legitimate analysis process.

[68]

2019 IoT forensic challenges and opportunities for
digital traces

Extraction of user cloud credentials from the
application settings.

Extending existing methods for extracting
and examining traces from smartphones to
IoT device.

[69]

2019 Comprehending the IoT cyber threat land-
scape: A data dimensionality reduction tech-
nique to infer and characterize Internet-scale
IoT probing campaigns

The resource-constrained and heterogeneous
nature of IoT devices coupled with the place-
ment of such devices in publicly accessible
venues complicate efforts to secure these
devices

Identify the issues related with open re-
solvers that have been specifically generated
from IoT devices.

[70]

Advances in In-
telligent Systems
and Computing.

Attack Detection and Forensics Using Hon-
eypot in IoT Environment.

IoT networks are vulnerable to various secu-
rity attacks by remote login (like SSH and
Telnet).

Employ various machine learning algo-
rithms, namely, Naive Bayes, J48 decision
tree, Random Forest and Support Vector Ma-
chine (SVM) to classify IoT attacks.

[71]

2018 Acquiring RFID Tag Asymmetric Key from
IOT Cyber Physical Environment.

Radio Frequency Identification (RFID) al-
low identify and locate objects and record
metadata.

A methodology for acquisition of RFID tag
asymmetric key for IoT forensic purpose.

[72]

Lecture Notes
in Computer
Science

2017 Privacy verification Chains for IoT Privacy and Security by Design for Internet
of Things (IoT)

A Privacy Verification Chains (PVC) to
enforce a strict separation between data
providers and data controllers.

[73]

2019 Digital Forensics and Privacy-by-Design:
Example in a Blockchain-based Dynamic
Navigation System.

In a centralized system, insurance companies
have access to all the information collected
from the user.

Model for Data privacy compatible with
General Data Protection Regulation
(GDPR).

[74]

IEEE Internet of
Things Journal

2019 IoT Forensics: Amazon Echo as a Use Case Complexity, diversity, and heterogeneity of
IoT devices and ecosystems.

IoT-based forensic model that supports the
identification, acquisition, analysis, and pre-
sentation of potential artifacts of forensic
interest.

[75]

2019 Treasure collection on foggy islands: Build-
ing secure network archives for internet of
things.

Unprecedentedly huge volumes of network
traffic from massive IoT devices.

Trusted hardware and searchable encryption
for building trustworthy.

[76]

ACM
International
Conference
Proceeding
Series.

2018 IoT forensic: Identification and classification
of evidence in criminal investigations.

Heterogeneous nature of the IoT device, lack
of IoT standards and the complex IoT ar-
chitecture affect to the identification of an
incident and its evidence.

Tools and techniques to identify and locate
IoT devices with the concept “digital foot-
print.”

[77]

2018 I know what you did last summer: Your
smart home internet of things and your
iPhone forensically ratting you out

Smart home IoT devices have already been
used as culpatory evidence.

Forensic Evidence Acquisition and Analysis
System (FEAAS) that can infer user events
(like entering or leaving a home) and what
triggered an event.

[78]

IEEE Access 2018 IoT Device Forensics and Data Reduction. The growing volume of devices and data will
require newly developed data structures to
analyze cyberattacks.

Bulk digital forensic data analysis for dis-
parate device data.

[79]

2019 Forensics and Deep Learning Mechanisms
for Botnets in Internet of Things: A Survey
of Challenges and Solutions

Handle diverse data in large volumes, requir-
ing near real-time processing.

Investigate the applicability of deep learning
in network forensics.

[80]
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We can observe that cybersecurity attacks in IoT ecosys-
tems are versatile, and different attack vectors are possible
due to smart city solutions’ components or technologies.
Smart cities need to establish cybersecurity strategies to re-
duce the impact of attacks. The first phase at a strategic level
that the smart city must raise is to develop a cybersecurity
situational awareness that allows it to know the strengths and
weaknesses concerning the different factors that may affect
its cybersecurity. Considering that one of the limitations is
the technological factor and that the technological pillar in
the development of the smart city is IoT, in what follows,
we establish the cybersecurity situation awareness of this
technology [83].

According to security organizations like OWASP (see Ta-
ble 4) and some researches such as Alkeem et al. [84] and
Liu et al. [22], the following attacks on IoT ecosystems are
defined:

• Eavesdropping: This allows attackers to intercept data
and help them to obtain sensitive information;

• Data modification: Attackers try to replace the informa-
tion or modify it with minor changes;

• Replay Attack: A part of the valid information can be
sent back by the attacker to the original receiver after
some time;

• Denial of service: Attackers try to flood the system with
traffic that is higher than the system’s capacity;

• Man-in-the-middle attack: It is the type of attack where
the attacker positions himself between two parties.

Table 5 shows specific attacks on technologies used with
IoT solutions. Building on this, Aydos et al. [85] propose a
classification of the attacks according to the layers defined in
the IoT architecture. Burhan et al. [86] mention that security
is a critical issue in IoT applications and describe some
security mechanisms that can be used in the technologies that
enable IoT, as shown in Table 6.

Regarding IoT forensics models, the following were iden-
tified:

• FoBI: fog-based IoT forensic framework;
• Forensics-aware IoT (FAIoT) model;
• Forensic State Acquisition from the Internet of Things

(FSAIoT);
• FIF-IoT: a forensic investigation framework using a

public digital ledger.

In the IoT forensics process [97], at least three layers are
considered: Device-level forensics, network forensics, and
cloud forensics. At the device-level layer, the data stored in
the IoT device memory is considered; at the network level,
the aspects related to network logs are considered; and at the
cloud level, the stored data of the IoT devices are considered.
The model developed in [97] establishes a Secure Evidence
Preservation Module. This module will continuously monitor
all the registered IoT devices and store evidence securely
in an evidence repository. Hossain et al. [98] mention some
limitations to the forensics process in IoT ecosystems due to

TABLE 4. Attack Vectors in the IoT Ecosystem

Technology Attacks

Weak, guessable,
or Hardcore pass-
words

Attacker uses default passwords which have
not been changed or set account passwords
that they choose.

Insecure network
services

The communication technology and channel
must be secured. When there is weak negoti-
ation, poor handshake practices, or incorrect
versions of SSL, the communication is not
secure.

Insecure ecosys-
tem interfaces

Components such as Secure Shell (SSH),
BusyBox, or web servers are not kept up
to date; the threat actor might expose these
vulnerabilities and gain access.

Lack of
secure update
mechanism

Updates and patches to devices are usually
done remotely. If the process is not secure,
the threat actor could intercept the update
and install their malicious update.

Use of insecure
or outdated com-
ponents

Deprecated or insecure software or libraries.

Insufficient
privacy
protection

Personal information store on an insecure
device.

Insecure data
transfer and
storage

Application Programming Interfaces (APIs)
and web applications do not protect data
correctly. They may not encrypt data or cor-
rectly exchange it with browsers.

Lack of device
management

Session management, and authentication can
be incorrectly implemented. This allows the
threat actor to discover keys and passwords
or to masquerade as other users (broken au-
thentication).

Insecure default
settings

Devices with insecure default settings.

Lack of physical
hardening

Devices located on the outside place without
tampering protection.

the IoT components’ features. Table 7 summarizes these con-
straints in three aspects: Hardware, software, and network.

Future research directions on IoT security on smart city
Cybersecurity management in the smart city is more com-
plicated than in traditional information technology systems
due to the solutions’ heterogeneity and larger attack surface.
It can be seen that the layer model is widely used, but
there are no standardized names. In the recommendation
Y.4000/Y.2060 by ITU [101], the IoT layers are named as:

• Application Layer, similar to application layer men-
tioned by Burhan [86].

• Service Layer, similar to application layer mentioned by
Burhan [86].

• Network Layer, similar to network layer mentioned by
Burhan [86].

• Device Layer, similar to the perception layer mentioned
by Burhan [86].

City managers: need to evaluate the cybersecurity risk to
provide privacy and quality of life to citizens in building or
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TABLE 5. Attacks to Technologies Used in the IoT Ecosystem

Technology Attacks Smart City Case

RFID/NFC Tag killing.
Signal interference.
Jamming.
DoS.
Spoofing.
Cryptoanalysis.
Eavesdropping.

RFID is used on smart city applications such
as smart parking, traffic management, human
tracking, and healthcare [87]. In contrast,
NFC is used on contactless payment, navi-
gation, information, or couponing [88].
NFC devices can also exchange data with
existing card readers and ISO 14443 com-
pliant units. eMarketer estimates there will
be 69.4 million NFC mobile payment users
by the end of 2020; that number will rise
to 80.1 million users by 2023, with people
using their mobile devices as travel tickets
on metros, subways, and buses. The grown
of IoT devices increase this number.
In an eavesdropping scenario, the attacker
uses an antenna to capture RF signals of
the communication between NFC devices,
another second method the attacker installs
a malicious terminal and wait that the user
device touched it. The Interception of an
NFC exchange allows theft of sensitive in-
formation or allows attackers to manipulate
the information to make it useless. Some
vulnerabilities like CVE-2019-2114 allow
the bypass local privileges using a package
installation on Android mobiles.

WSN Bandwidth degradation.
Unauthorized access.
Battery exhaustion.

WSNs are used to manage parking lots and
lighting infrastructure. The main goal of
these attacks is obstruct one or more paths
in order to increase the arrival time of the
packets from the target leaves, to crash in-
termediate routing nodes, to decrease node
batteries, or to provoke a general DoS [89].

M2M Physical Attacks.
Attacks on authentication.
Man-in-the-middle.
Side-channel.
Node tampering.
Relay attacks.

Attacker can use multiple identities for oc-
cupy the all channel and prevent legitimate
nodes can access to the network. [90].

Smart Grid Threats to network avail-
ability.
Message replay.
False data attacks.
Attacks on privacy.
DoS.
Breaches in data integrity

An attacker can execute stealthy false data
injection attacks on the state estimation of
a power grid to steal electricity, cause mi-
nor disruption in the grid, induce cascad-
ing failures and/or cause large-scale outages
[91]. FDI attacks occur when an adversary
attempts to inject false measurements into
the system. It requires attackers to access
the topology and state variables only of an
attacked region’s boundary buses rather than
the whole grid.

Smartphone Malicious applications.
Botnets.
Location privacy and GPS.
Threats through WiFi.
Threats in social network.
Privacy issues.

Attackers could infected android APK with
the goal of send phishing attacks to citizens
or convert smartphones on botnets for DDoS
attacks [92].

improving smart city models. Technologies allow to build
smart city models for archiving the sustainability goals, but
these technologies could expand cities’ vulnerability. IoT is
one of the critical technologies for building smart cities, and
its growth for the next years will be considerable worldwide.
City managers need to consider cybersecurity requirements
before installing IoT devices, especially on critical infrastruc-
tures. City managers need to evaluate the control mechanisms
to guarantee the critical infrastructures that prove the city’s
services against attacks like denial of service and theft of
personal information.

They need to participate actively in the culture of cyberse-
curity to prevent theft of information and keep privacy. Espe-

TABLE 6. Attacks to the IoT Layer Approach

Layer Attacks Attacks Case

Application Social Engineering
Broken authentication
Virus
Unauthorized access
Injection
Trojan

Session management and authentication can
be incorrectly implemented. This allows the
threat actor to discover keys and passwords,
or to masquerade as other users [93].

Services Exhaustion
Collision
Malware

Attacker can extract valuable information
from data in-transit of MQTT protocol (plain
text), such as: IP broker, data payload, port
number of MQTT [94].

Network Man-in-the-middle
De-synchronization
Unfairness
Wormhole
Flooding
Spoofing
Selective forwarding
DDoS

In the IoT ecosystem, a rogue device could
masquerade as a legitimate member of an
IoT network resulting in significant data
theft or falsification. In DDoS attacks, the
attacker builds a botnet of zombie hosts. The
command-and-control (CnC) server commu-
nicates with zombies over a covert channel
using Internet Relay Chat (IRC), Peer-to-
Peer (P2P), Domain Name System (DNS),
Hypertext Transfer Protocol (HTTP), or se-
cure HTTP (HTTPS). When more IoT de-
vices are infected, the botmaster carries out
the DDoS attack on the chosen target. [95]

Physical Tampering
Eavesdropping
Jamming
Denial of Service

Systems offer to debug/boot mode in case the
system encounters a problem when starting
up. The attacker could access the debug/boot
mode using a keystroke or connecting to
JTAG or UART interface. After that, the
device has been compromised; a backdoor
can be installed to execute malicious com-
mands remotely using, for instance, netcat
commands [96].

TABLE 7. Attacks to IoT Components

Component Limitations Attacks Case

Hardware Computational
Energy
Memory
Tamper-resistant

SD cards and MicroSD cards (µSD)
are often used to store data nec-
essary for IoT operation or store
collected data. They could even in-
clude the entire operating system
and configuration files necessary
for operation. An SD card could
potentially have data stolen or de-
stroyed by an attacker [99].

Software Embedded software
Dynamic patch

IoT devices typically use a trimmed
down version of an operating sys-
tem. Developers can choose from
open source and commercial op-
tions [100].

Network Mobility
Scalability
Multiplicity devices
Multiplicity
communications
Multi-protocol
networking
Dynamic-network

Threat actors often use amplifica-
tion and reflection techniques to
create DoS attacks. The attacker
forwards ICMP echo request mes-
sages that contain the source IP ad-
dress of the victim to a large num-
ber of hosts. The number of IoT de-
vices that could be associated with
botnet DDoS attacks could improve
the damage [95].

cially, smart home scenarios need to improve their security
and avoid default configurations.

Third parties (e.g., manufacturers or standardization or-
ganizations): need to develop cybersecurity guidelines for
building a security ecosystem on smart city scenarios. IoT
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solutions need to include security from its design, including
quality tests using established standards, e.g., ISO 25000.

Development methodologies to evaluate security on IoT
devices, communications protocols, gateways equipment
could contribute in a relevant way for improving cybersecu-
rity on smart city scenarios.

Academy: needs to continue in the contributions of re-
search processes on cybersecurity of smart cities. IoT vul-
nerabilities are present on different layers of the ITU archi-
tecture. The academy could contribute to different aspects,
such as:

• Methodologies for identifying vulnerabilities on tech-
nology components used in a smart city.

• Methodologies for classifying and measuring vulnera-
bilities

• Methodologies for evaluating cyber-risks on smart
cities.

• Literature reviews on emergent attacks on smart cities.

Research objective 2: What is the role of policymakers
to strengthen IoT cybersecurity in a smart city?
Policymakers must obtain information that allows establish-
ing a set of policies to strengthen security in the smart city. As
mentioned above, there are various IoT solutions, different
attack vectors, and many vulnerabilities that can be used by
attackers. Policymakers must have the ability to establish the
specific cybersecurity situational awareness for a smart city.
From the perspective of IoT ecosystems, based on [102], we
define four steps for the role of policymakers to strengthen
IoT cybersecurity in a smart city.

(i) Establish the dimensions of the attack surface. The
following three broad dimensions are considered.
1. Targets and enablers: Any resource in the IoT
ecosystem of the smart city that may be of interest
to the attacker.
2. Channels and protocols: The means used by the
components to interact within the IoT ecosystem of
the smart city.
3. Access rights: The rights associated with re-
sources of the IoT ecosystem of the smart city.

(ii) Identify the attack vectors that were more likely
to be used for attackers. It is necessary to iden-
tify the most relevant attack vectors (see Table 4).
We propose to use a risk model to carry out the
classification process. Nurse et al. [103] mention
some risk assessment frameworks that are com-
monly used in organizations and governments, i.e.,
NIST SP800-30, ISO/IEC 27001, Operationally
Critical Threat Asset and Vulnerability Evaluation
(OCTAVE), CCTA Risk Analysis and Management
Method (CRAMM). NIST [104] proposes a rec-
ommendation for IoT manufacturers to evaluate
security aspects before IoT devices are sold to
customers. A relevant contribution in [103] is to
consider that due to the dynamics of the IoT ecosys-
tems, the risk models described before may need to

be adapted; we agree on that.
(iii) Define security metrics to evaluate the cybersecu-

rity maturity of a smart city.
(iv) Define the set of policies to implement jointly with

monitoring and improving strategies that prevent
the attacks.

Future research directions in policy-making
When the present study was developed, a lack of policies
or guidelines focused on smart city’s cybersecurity was de-
tected. Several proposals of organizations like ISO, NIST,
and ITU development for IT systems could be applied to
smart city scenarios. However, the complex, dynamic, and
diversity of technologies used to build smart cities raise
the need for developing specific policies, guidelines, and
standards. Policy-makers have the challenge of developing
policies in a timely way facing the continuous development
of new technologies. Some future research directions in this
context are the following:

City managers: establish cybersecurity policies related to:
• Data privacy in a smart city.
• Personal data storage and process in smart city.
• Guidelines for interoperability between technologies

and vertical domains of a smart city.
• Data security in vertical domains of a smart city.
• Cybersecurity incident response handling in a smart

city.
Third parties: maintain the development of security so-

lutions for technologies used in a smart city according to
guidelines and standards for improving the cybersecurity
situational awareness. The development of IoT to build smart
city solutions is continuously growing, and it needs to cover
some cybersecurity aspects:

• Lightweight encryption algorithms for IoT devices.
• Security mechanisms for communication channels.
• Authentication mechanisms for ubiquitous and hetero-

geneous networks.
• Security requirements validation process for IoT

ecosystems.
Academy: development of cybersecurity programs focused

on the development of cybersecurity in smart cities scenarios,
which could include topics like:

• Data privacy in a smart city.
• Cybersecurity for urban computational models.
• Cybersecurity on smart city technologies.
• Cybersecurity compliance in a smart city.
Research objective 3: How to measure the level of IoT

cybersecurity in a smart city?
In the conducted SLR, we did not find an assessment model
to evaluate the cybersecurity maturity level in a smart city;
however, considering that the development of this model can
be an essential support to improve the cybersecurity at the
smart city level, we have proposed an approach in Section V.

Bear in mind that only assessing each city’s security level
may not be effective because each city has a different dy-
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namic. Even within the same city, there may be different
IoT solutions for the same domain that perform the same
functionality, but they could present different security levels.
Howard et al. [102] propose a relative measure to assess
the security between different operating system versions. It
is based on the fact that instead of measuring a system’s
absolute security, it is more useful to assess its relative
security. Although it is complex to establish metrics to as-
sess a system’s security, how safe one system is concerning
another could be established. As several IoT solutions could
be developed from the mentioned approach, we can establish
if IoT solution A is safer than IoT solution B, considering
that the two solutions will be within the same smart city
ecosystem. Several researchers have adopted the proposal
in [102] to assess the security of information systems. Based
on this context, we find it interesting to propose an adaptation
of the proposal in [102] to the smart city context. To establish
a relative security measurement model based on the attack
surface in a smart city, we propose the following four steps:

1) Establish an attack surface formed by the set of ele-
ments that make up the system;

2) Identify the set of attack vectors that can allow the
attack to that surface;

3) Establish a strategy to reduce the attack surface;
4) Evaluate relative security by establishing security im-

provements by reducing the attack surface.

Future research directions on smart city cybersecurity
models
City managers: need to establish a cybersecurity situational
awareness of smart city; for that, it is important to:

• Establish a layer-based model to evaluate a smart city’s
cybersecurity maturity that includes social, economic,
and environmental factors and key pillars.

• Identify the impact value of cyber-attacks on social,
economic, and environmental factors in smart cities’
different verticals.

• Identify the critical cyber-attacks surfaces for establish-
ing cybersecurity control mechanisms.

• Define cybersecurity indicators of compromise for mea-
suring the level of cybersecurity risk.

Third parties: develop and propose cybersecurity maturity
models for evaluating smart city components. Support the
development of indicators of cybersecurity vulnerabilities.
Approaches like CVSS are adequate resources, but they need
to be adapted for the IoT and smart city contexts.

Academy: could contribute to the development of cyberse-
curity smart city models. The vast amount of data, the hetero-
geneous and large number of devices, and the administrative
process to get data in real-time in a smart city could delay the
development of smart city cybersecurity models. The devel-
opment of simulation scenarios for evaluating cybersecurity
models could be an essential contribution from the academic
perspective.

A. DISCUSSION
IoT ecosystems support various applications in different
smart cities’ axes, but they are exposed to new threats from
the cybersecurity approach. The challenge of cybersecurity in
IoT is the heterogeneity of devices, networks, protocols, and
the hyper-connectivity IoT represents. IoT is still considered
an emerging technology, and proposals for standardization
and security management of IoT have developed. Based on
the performed SLR, we have identified four key aspects that
should be addressed in IoT ecosystems.

1) Network security: Numerous types of networks support
the hyper-connectivity of IoT; this allows the vast
scope of IoT, its mobility, and adaptability. Perhaps one
of the biggest security challenges in IoT ecosystems is
that most IoT networks are wireless.

2) Authentication: The authentication secures the process
of accessing an IoT network by devices, persons, and
systems. Establishing one-way authentication mecha-
nisms, e.g., authentication based on a password can be
a weak option for IoT ecosystems. The administration
of authentication mechanisms can be complicated due
to many devices and the process associated with modi-
fying the device’s credentials. An API is more common
in IoT ecosystems; the authentication process should
consider this kind of interface connection.

3) Encryption: It ensures security in the storage and
transfer of data, and it is essential in IoT security.
However, encryption requires important computational
resources, which are generally limited in IoT compo-
nents.

4) Update: Keeping IoT devices and systems updated
regularly is critical for reducing possible cybersecurity
gaps. Due to the enormous number of IoT devices, this
can be a complicated process.

Some researchers had made proposals to drive these cyber-
security key aspects in IoT ecosystems. For instance, Cui et
al. [105] propose five research axes for IoT security:

1) IoT-based network security focuses on modeling pat-
terns of the spread of an attack;

2) Security and privacy in fog systems;
3) User-centric and personalized protection methods;
4) Lightweight security solutions;
5) Theoretical complement.
Additionally, Cui et al. [105] identify six disciplines re-

lated to protection methods in a smart city. From the smart
city’s perspective, it is necessary to evaluate which disci-
pline is adequate to improve its cybersecurity capabilities.
We match these disciplines to each stage of the IoT layer
model (see Table 8). We also observe that cybersecurity in
IoT ecosystems follows a layering approach. The forensics
process commonly establishes three layers: device, network,
and application, but attacks and threats can occur in four
layers: physical, network, services, and application. There-
fore, considering cybersecurity risk assessment for a smart
city under a layering perspective can be useful. Aydos et
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TABLE 8. Disciplines per Layer for Protecting IoT Applications

Layer Discipline Use

Application Ontology Smart home
Mobile computing

Services Cryptography Smart transportation
Smart grid
Smart shopping
Smart card

Blockchain Smart home
Smart transportation

Network Machine Learning & Smartphone
Data Mining Mobile devices

Social networking
Game Theory Wireless networks

Honeypot-enabled networks

Physical Biometrics Mobile sensors
Storage devices

al. [85] propose a risk-based layered security approach based
on the following four stages: (i) securing the layers; (ii)
understanding and evaluating layered threats; (iii) measuring
the likelihood of layered threats; and (iv) determining the
layered risk by combining the probability and impact of the
layered threat.

V. SMART CITY CYBERSECURITY MATURITY MODEL
DEVELOPMENT BASED ON RISK LEVELS
Based on the proposal by Mbanaso et al. [106] that defines a
set of steps to develop a conceptual design of a Cybersecurity
Resilience Maturity Measurement (CRMM) Framework, and
the proposal by Weeserik et al. [107] which indicates a
maturity model to improve risk management operationally,
we have established the following five phases for developing
an IoT Cybersecurity Maturity Model for a smart city:
Phase 1: Research context
Perform a review of literature and standards related to smart
city, cybersecurity, resilience, and sustainability.

Phase 2: Design the strategy framework
Identify technologies or features related to cybersecurity,
resilience, and sustainability.

Phase 3: Conceptualization and specification of the
Framework
Define the cybersecurity maturity model.

Phase 4: Mapping features of the cybersecurity maturity
model based on expert panel ranking.

Phase 5: Validation of the initial cybersecurity maturity
model.

1) Research Context
Several models have been developed to measure the maturity
of cybersecurity capabilities in organizations; some of these
are shown in Table 9. According to [108], the most widely
used model is the SEE-CMM, since it presents details of the
cybersecurity processes that must be implemented; it defines
22 areas (11 areas of engineering processes, 11 areas of
project management) and establishes five levels of maturity.

TABLE 9. Cybersecurity Maturity Models for Organizations

Acronym Cybersecurity maturity model Proposed
by

Maturity
levels

Ref.

CCSMM Community CyberSecurity Maturity
Model

White Five [111]
[112]

COBIT Control Objectives for Information and
related Technology

ISACA Five [111]

CSF-NIST Cybersecurity Framework NIST Five [113]
[112]

C2M2 Cybersecurity Capability Maturity Model Curtis Four [114]
[111]

ISMS Information Security Management
System-ISO27001

ISO Five [111]
[112]

ISM3 Information Security Management Matu-
rity Model

ISM3 Five [111]
[112]

- NICE´s Cyber Security Capability Matu-
rity Model

US DHS Three [112]

RMM Resilience Management Model CERT Four [115]
SSE-CMM Systems Security Engineering Capability

Model
NSA Five [116]

The second most used model is C2M2 [109]. The most com-
prehensive and used cybersecurity maturity models are CSF-
NIST and C2M2 [110]; however, they have been criticized
due to their subjectivity that can be generated when mak-
ing self-assessment. Although the models are general and
focused on organizations, the maturity model can be adapted
to specific sectors [108] (e.g., C2M2 has two variants: one
developed for the energy sector and another for the gas and
fuel sectors).

The C2M2 model was released in 2012, and in 2014, it
was updated to support the electrical sector. C2M2 is based
on four maturity indicator levels (MIL0 to MIL3) and ten
phases:

1) Risk management
2) Asset, change and configuration management
3) Identity and access management
4) Threat and vulnerability management
5) Situational awareness
6) Information sharing and communications
7) Event and incident response
8) Continuity of operations
9) Supply chain and external dependencies management

10) Workforce management and cybersecurity program
management.

On the other hand, the CSF-NIST defines five phases: (i)
Identify, (ii) Protect, (iii) Detect, (iv) Respond, (v) Recover.

Most of the mentioned models cover generic aspects and
can be adapted to specific environments. However, as is
the case of IoT ecosystems, certain aspects are not covered
completely, or they are not adaptable from the generic mod-
els (e.g., risk assessment or continuous monitoring). In the
IoT ecosystem, conducting an asset inventory can be quite
complex to perform due to many devices and their physical
location in the Smart City case. A similar context is the
one presented when using C2M2. Generally, both COBIT
and C2M2 perform the categorization of critical assets to
analyze the security level and subsequently establish coun-
termeasures; this aspect would be more complex to establish
in an IoT-Smart City environment since any node attacked
can have a high impact on critical city services. The proposed
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FIGURE 3. Axes of the design strategy framework.

model seeks to prioritize the attack surface, the interrelation
between the Smart city IoT nodes, and the probability of a
future attack based on a previous attack.

The COBIT and C2M2 models propose maturity analysis
focused on business objectives, but there is no direct concern
in the aspects that may impact these systems’ users. However,
this reality is the opposite in the context of Smart City.
Although there is concern regarding the technological sys-
tems used, citizens’ concern is more significant, especially
about those factors that may affect their sensitive personal
information or impact your life. The proposed model seeks
to propose an alternative for safety assessment based on the
economic, social, and environmental aspects of the smart city
in which the citizen and their interactions are included.

From the literature review conducted in this study, we
found few cybersecurity maturity proposals applied to IoT;
the most relevant are shown in Table 10. These two models
include risk assessment and continuous monitoring. How-
ever, we cannot identify maturity levels in the proposal by
Bugeja [117]. Another relevant aspect that these two models
consider is Governance.

2) Design the strategy framework
In this phase, we have consider the BSI PAS 180 stan-
dard [119] that addresses the critical aspects of a smart city; it
establishes the management of a smart city considering three
axes: strategic, tactical, and operational factors as depicted in
Fig. 3.

At the strategic level, it considers the three pillars on which
a smart city is based on economic, environmental, and social
factors. Measuring the impact of security attacks on each
pillar will give city managers a comprehensive approach for
subsequently establishing strategies to minimize the impact.

At the tactical level, the aspects to consider are the sus-
tainability and the resilience of the smart city. Sustainability
is defined as the city’s capacity to manage resources for both
current and future generations adequately. The resilience of
the city is established as the capacity of the city to adapt to
adverse situations. From a security perspective, the model’s

FIGURE 4. Risk levels as a function of the design strategy axes.

objective is to measure the maturity of the smart city’s
cybersecurity capabilities to identify and respond to security
attacks that may directly or indirectly affect sustainability
and resilience.

At the operational level, the maturity model would con-
sider several aspects, such as the implemented security con-
trols, the detected vulnerabilities, logging infrastructure, in-
cident response effectiveness, and device access.

Fig. 4 illustrates how these axes interact to define the risk
levels in a smart city.

3) Conceptualization and specification of the framework
Table 11 shows the main specific factors of each pillar of the
smart city that must be evaluated from the strategic approach.
From the tactical approach, two aspects closely related to the
smart city are sustainability and resilience, as can be seen
in Fig. 5. Focusing on cybersecurity aspects that may affect
these two aspects will minimize their impact on the smart
city and guarantee the smart city’s economic, social, and
environmental objectives.

In [106], an adaptation of the CMMI model is proposed
considering resilience features; for this development, the
following norms or cybersecurity standards are considered
as input sources:

• COBIT5;
• CIS Security Control;
• SoGP for IS (Standard of good practice for information

security), and
• ISO 27005.
The proposal considers the NIST cybersecurity framework

a central element to assess compliance progress, empowering
with a percentage of 20% the five functions: Identification,
protection, detection, response, and recovery. The model
also considers five levels of maturity: Not achieved (no
controls), loosely achieved (few controls), partially achieved
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TABLE 10. Cybersecurity Maturity Models Applied to IoT

Model Proposal by Levels Domains Sub-domains

IoT_SMM Industrial Internet Consortium [118] None Governance Strategy and governance
Minimum Enablement Treat modeling and Risk assessment
Adhoc Hardening Supply chain and dependencies management
Consistent Identity and access management
Formalized Asset protection

Data protection
Vulnerability and patch management
Situation awareness
Event and incident response

IOTSM Bugeja [117] Not defined Governance Security education and awareness
Construction Regulations and compliance
Verification Security-by-design
Operations Continuous and automated risk assessment

Data and application threat modeling
Security requirements and architecture
Artifact Review
Security testing
Security operations and maintenance
Security configuration

TABLE 11. Possible Cyberattack Outcomes on Smart City Pillars

Factor Cyberattack outcome

Social People can suffer depression, anxiety, and
frustration because of a cyberattack [120].

Economic The loss of information or the disruption
of businesses caused by attacks has a di-
rect economic impact. The average costs of
malware, web-based, and Denial of Service
(DoS) attacks were $1.4 million, $1.4 mil-
lion, and $ 1.1 million dollars, respectively,
in 2018. According to the World Economic
Forum, it is estimated a loss of $5.2 trillion
dollars due to cyberattacks from 2019 to
2023 [121].

Environmental Critical infrastructures that directly relate to
environmental resources such as water or oil
can be affected by cyberattacks. Attackers
can take control of services and over sat-
urate their demand or block their distribu-
tion. In October 2018, North Caroline’s wa-
ter and sewer service suffered a ransomware
attack [122].

(some controls), mainly achieved (structured controls imple-
mented), and fully achieved (baseline security).

4) Mapping features of the cybersecurity maturity model
based on expert panel ranking.

This phase aims to establish the cybersecurity characteristics
that allow determining the smart city’s risk levels based on
the impacts of cybersecurity in each of the three pillars,
namely economic, social, and environmental factors. To es-
tablish the correlation between the identified characteristics
and the risk level, we propose using fuzzy engineering that
allows establishing a set of rules and reducing the subjectivity
that a panel of experts may have when defining weights for
each of the characteristics associated with a certain risk level.

FIGURE 5. Aspects of the tactical level and their relation with the components
of the strategic level.

Figure 6 presents the system components for mapping the
strategic pillars to the risk level.

5) Validation of the initial cybersecurity maturity model.
For the initial evaluation of the model, we used a simulation
scheme based on Bayesian networks in which different sce-
narios of cyber-attacks in smart cities are performed. For that
purpose, the Bayesian Server 9.2 Software was utilized.

A. EXPERIMENT
The Smart city contributes to fulfilling the sustainability
and resilience objectives in the city’s social, economic, and
environmental perspectives. From a technological point of
view, the Smart city is built through emerging technologies
such as IoT, Bigdata (BD), Artificial Intelligence (AI), and
Cloud. Their interrelation for the generation of information
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FIGURE 6. Correlation between strategic levels and risk levels as a function
of the fuzzy system.

supports the decision-making processes of the different city
factors. To evaluate the impact of cyberattacks on the city’s
strategic objectives, we conducted a simulation of the Smart
city’s components to evaluate the dependency relationship
of each one’s security factors and its impact on the social,
economic, and environmental aspects.

We defined four nodes as parents that represent emerging
technologies IoT, BD, AI, and Cloud that can be used to
construct the Smart city. Additionally, we have defined four
nodes as children that simulate the vertical axes or domains of
the city such as Smart health (SH), Smart traffic (ST), Smart
agriculture (SA), and Smart grid (SG) that allow services
to be covered and city operations and in which the use
of emerging technologies is increasingly common. Finally,
we have defined four nodes called leaf that represent the
Economic (ECO), Environmental (ENV), and Social (SO)
factors involved in the sustainability objectives of the city.
We aim at evaluating the cybersecurity impact on the city’s
factors if an attack is performed on one of the parent nodes.

To model the dependency relationships between the differ-
ent nodes, we have considered the use of Bayesian network
as illustrated in Fig. 7. It will allow us to determine the proba-
bility of impact on the different nodes based on attack events
that may occur at a particular node. The use of Bayesian
networks allows us to represent the probability of impact in
each relationship of nodes.

We have considered the ECO, ENV, and SO factors as
temporal type where t ∈ {0, 1, 2, 3, 4} in all nodes. In the
Bayesian network, each node has a boolean type data repre-
senting two states: attack or not attack with their respective
probabilities. For each time slot in simulation, the Bayesian
network does not change (i.e., connections between nodes
is permanent, but temporal nodes will have different prob-
abilities associated with the type of attack). After running
the model, we have obtained the results shown in Table 12.
The results indicate the attack probability of each node of
the smart city (SO, ECO, ENV) based on the parent nodes’
possible state. According to Bayesian values, the highest
probability of attack to the social node is 63.3% when the at-

tacker affect BD, AI, and IoT nodes; the results also indicate
that there is an attack probability of 68.8% to the economic
node, if the attacker affects BD and IoT; finally, there is an
attack probability of 71.4% to the ENV node, if the attacker
focus on cloud and AI. One attack to all nodes has more
relevance in the ECO node than the other two. According
to our Bayesian model, if an attacker decides to affect only
the IoT node, the attack probability is 61.5%, whereas the
same attack event to other nodes executed on a separate way
is equal or fewer than 50%. This simulation indicates that
The IoT node presents a more significant probability of being
attacked.

Another simulation scenario shows the probability of a
smart traffic node (ST) being attacked based on the parent
nodes’ information, i.e., IoT, BD, AI, and Cloud. If an
attacker decides not to take any action, the attack probability
on the ST node is lower than 30%. In the opposite case, if
the attacker tries to damage all the parent nodes’ systems,
the attack probability on the ST node is 96%. According to
Bayesian values, the highest probability of ST attack is 95%
when an attacker focuses on IoT and cloud. There are no
substantial difference in results when attacks are performed
against all parents nodes together (see Table 13).

Cybersecurity risk level could be determined based on
the conditional dependence of several attacks to environ-
mental, social, and economic impact of smart city nodes.
For instance, Fig. 8 illustrates the data from our simulation
scenario where a ransomware attack represents a impact on
the social node of 20%, while a DDoS attack affects the
economic node in 35 %. These results individually could
be considered of low impact for an smart city, but when
they are combined, it generates an risk level of 2 in a scale
of risk of 1 to 5. Fig 9 presents the lineal regression to
corroborate of results obtained of simulation data of possibles
attacks to smart city nodes using R software. According to
Laugé et al. [123], dependencies create vulnerabilities that
could cause a cascade of failures on critical infrastructures;
for this reason, it is important that operators understand the
complexity and dependencies of the critical infrastructures.
Additionally, Laugé mentions that the dependencies of crit-
ical infrastructures (CI) could vary according to factors like
the time period when failure happened and the duration of the
failure.

To obtain a more accurate cyber-risk for smart cities, it is
necessary to identify the dependencies among critical nodes
and the level of impact of the attack to the economic, social
and environmental nodes. The Bayesian model could be used
for modeling the smart city attacks, but the identification of
all possible relation among nodes is required. This could be
a vast network because of all possible cybersecurity attacks
related to IoT devices, AI algorithms, and cloud platforms
in the city. Another challenge is to identify the impact of
cyber-attack on economic, environmental, and social factors.
The impact of each factor could be different for each vertical
smart city domain. However, the Bayesian model allows
understanding the relation of cyber-attack with parent nodes
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FIGURE 7. Bayesian network model for smart city simulation.

TABLE 12. Bayesian probabilities for simulated smart city attack

BD AI Cloud IoT ECO-False ECO-True ENV-False ENV-True SO-False SO -True

False False False False 0.571 0.429 0.6 0.4 0.615 0.385

False False False True 0.606 0.394 0.645 0.355 0.385 0.615

False False True False 0.612 0.388 0.675 0.325 0.604 0.396

False False True True 0.382 0.618 0.452 0.548 0.404 0.596

False True False False 0.459 0.541 0.581 0.419 0.444 0.556

False True False True 0.461 0.539 0.675 0.325 0.415 0.585

False True True False 0.528 0.472 0.45 0.55 0.409 0.591

False True True True 0.489 0.511 0.596 0.404 0.534 0.466

True False False False 0.714 0.286 0.5 0.5 0.5 0.5

True False False True 0.529 0.471 1 0 0.313 0.688

True False True False 0.565 0.435 0.222 0.778 0.591 0.409

True False True True 0.419 0.581 0.5 0.5 0.405 0.595

True True False False 0.462 0.538 0.478 0.522 0.357 0.643

True True False True 0.367 0.633 0.714 0.286 0.522 0.478

True True True False 0.508 0.492 0.396 0.604 0.453 0.547

True True True True 0.32 0.68 0.416 0.584 0.48 0.52

(IoT, Cloud, BD, and AI) with the smart city nodes (ECO,
SO, and ENV factors).

VI. CONCLUSION
Internet of Things (IoT) is a crucial component for the devel-
opment of a smart city. In the next years, IoT will grow to
billions of devices, as confirmed by international consulting
firms. However, since IoT is vulnerable to cybersecurity
attacks, this situation could impact smart cities’ security. In
this work, we have conducted a systematic literature review

to identify the proposals for improving IoT cybersecurity in
smart cities. Building on this, we have proposed an assess-
ment model to evaluate the cybersecurity maturity level of
IoT solutions used in a smart city. This model represents
essential support for improving cybersecurity at the smart
city level and ensuring its functionality. Furthermore, by
applying cognitive security techniques, it would be possible
to assess cybersecurity risk levels in the face of complexity,
diversity, and large volumes of data in IoT ecosystems.

The large number of IoT devices found in the smart city
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TABLE 13. Bayesian probabilities for simulated smart traffic attack

BD AI Cloud IoT ST-False ST-True

False False False False 0.70 0.30

False False False True 0.44 0.56

False False True False 0.85 0.15

False False True True 0.05 0.95

False True False False 0.36 0.63

False True False True 0.70 0.30

False True True False 0.38 0.62

False True True True 0.89 0.11

True False False False 0.28 0.72

True False False True 0.32 0.68

True False True False 0.54 0.46

True False True True 0..31 0.69

True True False False 0.98 0.02

True True False True 0.14 0.86

True True True False 0.47 0.53

True True True True 0.04 0.96

FIGURE 8. Determining the cybersecurity risk level by a Bayesian network
analysis.

FIGURE 9. Classification model of dependencies of cyber-attacks with smart
city nodes.

and the various possible security attacks pose a challenge in
risk analysis. To obtain a more accurate value of cyber-risk on

smart cities, it is necessary to identify a more significant num-
ber of possible cyber-attacks and vulnerabilities and analyze
the impacts and their relationships on the social, economic,
and environmental domains. Relevant aspects when consid-
ering cybersecurity in IoT ecosystems are the relationships
and dependencies of different nodes, e.g., Cloud. In cloud
platforms, they have some cybersecurity parameters that can
be used to minimize the impact of cyber attacks on smart
cities.

At the time of study, we have identified a limitation of
knowledge of the values of the impact of cyber-attacks on
the social, economic, and environmental aspects of smart
cities. Although there are some studies in this context, most
of them are focused on the economic aspects, and they only
analyze the social and environmental contexts superficially.
The smart city’s direct interaction with people encourages
us to consider the present research on the social impacts
generated by cyber-attacks; for example, when there are
attacks on critical infrastructures that handle health, water,
or energy aspects, it would directly affect the people’s life.

Future works include evaluating the selected discipline’s
effectiveness as a protection method in each IoT ecosystem
layer. To evaluate, improve, and measure the cybersecurity
on IoT solutions used in smart cities, we could focus on the
IoT network layer, and we could combine the proposals of
risk-based layered security with machine learning or data
mining solutions. We should also consider the limitations
of IoT forensics and privacy issues in IoT ecosystems. In
the forensic process, it is essential to determine the root-
cause of cybersecurity attacks. Based on this SLR, it could
be determined that no formal process has been established
yet. Several IoT forensic models are based on ISO 27037
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standard; however, there are gaps in applying the forensic
process in IoT ecosystems. In future work, we will develop
a model to identify the dependencies of a cybersecurity
attack focused on IoT and their probabilities of impact on
the smart city’s social, economic, and environmental aspects.
We have initially considered the Bayesian model to represent
the dependencies among the smart city nodes because they
describe the causality of relationships.
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