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ABSTRACT In recent years, with the development of high-throughput technologies, lots of computational
methods for predicting essential proteins based on protein-protein interaction (PPI) networks and biological
information of proteins have been proposed successively. However, due to the incompleteness of PPI
networks, the prediction accuracy achieved by these methods is still unsatisfactory, and it remains to be a
challenging work to design effective computational models to identify essential proteins. In this manuscript,
a novel Prediction Model based on the Non-negative Matrix Factorization (PMNMF for abbreviation) is
proposed. In PMNMF, an original PPI network will be constructed first based on PPIs downloaded from
any given benchmark database. And then, based on topological features of protein nodes, the original PPI
network will be further converted to a weighted PPI network. Moreover, in order to overcome the
incompleteness of PPI networks, the NMF (Non-negative Matrix Factorization) method will be
implemented on the weighted PPI network to obtain a transition probability matrix. And then, by
integrating biological information including the gene expression information, homologous information and
subcellular localization information of proteins, a unique initial score will be calculated and assigned to
each protein node in the weighed PPI network, based on which, an improved Page-Rank algorithm will be
designed to infer potential essential proteins. Finally, in order to evaluate the performance of PMNMF, it
will be compared with 14 state-of-the-art prediction models, and experimental results show that PMNMF
can achieve the best identification accuracy.

INDEX TERMS Essential protein prediction, Iteration method, Non-negative matrix factorization

I. INTRODUCTION
Essential proteins are found in large numbers in protein
complexes, and their absence will lead to the loss of
functions of related protein complexes, and make it
impossible for organisms to survive or develop. Identifying
essential proteins is important for the understanding of the
process of cell growth and regulation, and can provide
valuable information to the researches of disease analysis
and drug design etc. In recent years, with the rapid
development of high-throughput techniques, more and more
protein-protein interactions (PPIs) have been detected
successively, based on which, PPI networks are established
and applied widely in designing computational models for
inferring essential proteins. For instance, based on the
topological characteristic of centrality [1-2] of PPI
networks, a series of calculation models including

CC(Closeness Centrality)[3], DC(Degree Centrality)[4],
BC(Betweenness Centrality)[5], SC[Subgraph
Centrality][6], NC(Neighbor Centrality)[7] have been
proposed to discover basic proteins. Besides, Li M et al [8]
designed an identification model named LAC to identify
key proteins based on the Local Average Connectivity of
protein nodes in PPI networks [9]. Qi Yi et al [10] designed
a prediction model to infer basic proteins based on the
Local Interaction Density (LID) of protein nodes in PPI
networks. Chen B et al [11] proposed an essential protein
identification method based on multiple topological
structures of PPI networks. In all these methods mentioned
above, it is only considerate the topological properties of
PPI networks, thus, due to the incompleteness of current
PPI networks, the prediction accuracy of these methods is
still not satisfactory. Then in order to improve the
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prediction accuracy of computational models, some new
identification models have been proposed for the past few
years by combining the topological characteristics of PPI
networks and the biological information of proteins. For
example, through integrating PPI networks with the gene
expression data of proteins, M Li et al [12] and Xiwei Tang
et al [13] proposed two prediction models called Pec and
WDC respectively. W Peng et al designed one prediction
model based on the orthologous information of proteins and
PPI networks [14], and another prediction model based on
the domain information of proteins and PPI networks [15]
to infer essential proteins respectively. X Zhang et al [16]
introduced an identification method called CoEWC by
combining topological features of PPI networks with the
co-expression properties of proteins. BH Zhao et al [17]
designed a prediction model called POEM by integrating
gene expression data of proteins with topological features
of PPI networks. J Luo et al [18] put forward a
computational method for essential protein prediction based
on the local interaction density of PPI networks and
biological features of protein complexes. Seketoulie
Keretsu et al [19] presented an identification model of
protein complexes based on weighted edge by clustering
and the gene expression profiles of proteins. M Li et al [20-
21] proposed two necessary protein identification methods
by integrating PPI networks with subcellular localization
information and complex centrality of proteins separately. J
Luo et al [22] introduced a method to detect essential
proteins based on protein complex co-expression data and
ECC (edge clustering coefficient) of PPI networks.
Bihai Zhao et al proposed a model based on
Multiplex Biological Networks [23] and a model based on
Diffusion Distance Networks [24] to predict essential
proteins separately. S. Li et al [25] proposed one iteration
method called CVIM to predict essential protein, based on
topological and functional features. Lei X et al presented
one essential protein prediction methods called AFSOEP
[26] to infer protein complexes by AFSO (Artificial Fish
Swarm Optimization). Bihai Zhao et al [27] designed an
iterative method for identifying potential key proteins from
heterogeneous PPI networks. Dai W et al [28] proposed a
method to discover essential genes based on protein-protein
interaction network embedding. Fengyu Zhang et al [29]
introduced a model called FDP to predict essential Genes
by fusing dynamic PPI networks. Chen Z et al [30]
proposed a prediction model called NPRI based on one
heterogeneous network, the heterogeneous Protein-Domain
network are established in accordance with initial PPI
network, Protein-Domain network and gene expression data.
All these above mentioned methods have demonstrated that
it can improve the prediction accuracy of calculative
models by combining the biological information of proteins
with the topological features of PPI networks.
In general, these existing essential protein prediction

methods are mainly designed by combining the topological
characteristics of PPI networks with biological features of
proteins. However, due to the incompleteness of PPI

networks, the prediction accuracy of these methods is still
not very satisfactory. Hence, inspired by the ideas of
existing state-of-the-art models, in this paper, a novel
prediction model called PMNMF is designed to infer
essential proteins. In PMNMF, an original PPI network will
be constructed first based on known PPIs downloaded from
benchmark databases. And then, based on topological
features of protein nodes, the original PPI network will be
transformed to a weighted PPI network. Next, through
adopting the Non-negative Matrix factorization (NMF)
method, a transition probability matrix will be obtained.
Finally, by combining the gene expression information,
orthologous information and subcellular localization
information of proteins, an iterative algorithm will be
designed and implemented on the weighted PPI network to
detect potential essential proteins. Moreover, in order to
evaluate the performance of PMNMF, it will be compared
with some competitive methods. Experimental results show
that PMNMF can achieve reliable identification accuracies
of 98.04%, 85.10%, 69.74%, 60.10%, 55.05% and 51.22%
in top 1%, top 5%, top10%, top15%, top20% and top 25%
of predicted potential essential proteins respectively, which
predictive performance is better than all these state-of-the-
art competing models.

II. MATHOD
As shown in Fig.1, the process of PMNMF consists of the
following 3 main steps:
Step 1: First, based on the dataset of known PPIs

downloaded from any given benchmark database, an original
PPI network will be constructed. And then, based on the
topological features of protein nodes, the original PPI
network will be further converted to a weighted PPI network.
Step 2: Next, based on the gene expression formation,

homologous information and subcellular location information
of proteins, a unique initial score will be calculated and
assigned to each protein node in the weighted PPI network.
Step 3: Finally, based on the initial scores of proteins and

the transition probability matrix obtained by adopting the
non-negative matrix factorization method, an improved page-
rank algorithm will be designed to calculate a final score for
each protein, which can be utilized to evaluate the
essentiality of the protein effectively.

FIGURE 1. Flowchart of PMNMF.
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A. CONSTRUCTION OF THE WEIGHTED PPI NETWORK
Let �denote the dataset of known PPIs downloaded from

any given benchmark database, �� = {�1,�2….��} be the set
of all these different proteins in � . For any two given
proteins �� and �� in �� , we define that there is an edge
�(��,��) between them, if and only if there is a known
interaction between �� and �� in �. And for convenience, let
�� represent the set consisting of all these edges between
proteins in � . Then, it is apparent that we can obtain an
original PPI network ����� = {��, ��}, and based on which,
we can further obtain an O×O dimensional adjacency matrix
����� as follows: for any two given proteins �� and �� in
�� , there is ����� �,� = 1, if and only if there is a known
interaction between them in � , otherwise there is
����� �,� = 0 . In addition, let �t(��) represent the set of
nodes neighboring to �� in ����� , i.e., there are edges
between these nodes and �� in �����. Let |�t �� | denote
the number of different nodes in �t(��) , �t(��) ∩ �t(��)
be the set of nodes neighboring to both �� and �� in �����,
and |�t �� ∩ �t �� | represent the number of different
nodes in �t(��) ∩ �t(��) , then based on the assumption
that for any two given proteins, if they interact with one or
more other common proteins at the same time, the interaction
between these two proteins will be more reliable [31], we can
define the Edge Aggregation Coefficient between �� and ��
as follows:
�呂ᇫ ��,��

=
�t �� ∩ �t �� + 1

��� �t �� , �t ��
: �t ����� ��,�� = 1

0: ����

(1)

From observing above formula (1), it is easy to see that,
for any two given proteins �� and �� in ��, the more common
neighboring nodes between them, the bigger the value of
�呂ᇫ ��,�� will be. Hence, to some degree, the Edge
Aggregation Coefficient between �� and �� can reflect the
degree of interaction between them effectively.
Moreover, it is reasonable to assume that if a protein node

has known interactions with more proteins, then it will be
more reliable. Hence, for any given protein �� in �� , let
��t �� denote the number of known interactions between
it and all the other proteins in �� , then we can define the
Point Aggregation Coefficient of �� as follows：

�呂ᇫ �� =
��t ��

�t �� ∗ �t �� − 1
2

(2)

Based on above two formulas, for any two given proteins
�� and �� in ��, it is reasonable to assume that the potential
interaction between them varies directly with both the value
of the Edge Aggregation Coefficient between them and the
values of their Point Aggregation Coefficients. Hence, we
can define the Degree of Potential Interaction between ��
and �� as follows:

��䙙 ��,�� = �呂ᇫ ��,�� ∗ �呂ᇫ �� + �呂ᇫ �� (3)

Obviously, based on above formula (3), an O × O
dimensional interaction matrix DPI can be obtained.
However, through considering the limited number of
known interactions between proteins and the definition of
the Edge Aggregation Coefficient between proteins
illustrated in above formula (1), it is easy to know that DPI
will be a sparse matrix. Hence, we can adopt the Non-
negative Matrix Factorization (NMF) method [32-34] to
predict unknown weights, convert it to the product of two
non-negative matrixes � ∈ ��×� and � ∈ ��×� (� ≪ �) as
follows:

��䙙∗ = ��� (4)

Here, the matrixes � and � satisfy the following target
function:

�� = �,�
��� ��䙙 −W��

�
2 �.�. � ≥ 0 ��� � ≥ 0 (5)

Here, ||.||� represents the Euclid paradigms.
From observing above two formulas, it is easy to see that

NMF aims to find two non-negative matrixes W and H,
whose product WH can provide the optimal approximation
to the original matrix DPI. As for above target function
illustrated in formula (5), by adopting the iterative update
algorithm proposed by Lee et al [35], the matrixes� and �
can be iteratively obtained according to the following
formulas:

��� ← ��� ×
��䙙 ∗ ��

��

����
��

(6)

��� ← ��� ×
�� ∗ ��䙙 ��

���� ��
(7)

B. CALCULATION OF INITIAL SCORES FOR PROTEINs
In this section, we will combine the gene expression
information, subcellular localization information and
homologous information of proteins to calculate a unique
initial score for each protein in the weighted PPI network as
follows:
Firstly, for any given protein �� , let GE(�� ) = {GE(�� ,1),

GE(�� ,2), …, GE(�� , n)} denote the gene expression data of
�� at n different time points, where GE(�� , t) represent the
level of gene expression of �� at the time point t. Then, based
on the method of PCC (Pearson Correlation Coefficient) [36],
we can calculate a PCC-based initial score for �� as follows:

�ollo� �� =
��llo� �� − 1����

�䙙�{��llo�(��)}

1����
�呂h{��llo�(��)} − 1����

�䙙�{��llo�(��)}
(8)

Here,
��llo� �� =

�� ∈�t ��

�ᇫᇫ ��,���
(9)

�ᇫᇫ ��,��

=
1

�− 1
�=1

�
�� ��,� − �� ��

� ��

�� ��,� − �� ��
� ��

�

(10)
Here, ��(��) denotes the average expression level of �� at

all these n time points, � �� is the standard variance of gene
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expression levels of �� at all these n time points, and
�ᇫᇫ ��,�� represents the Pearson Correlation Coefficient
between �� and ��.
Next, based on the homologous information of proteins,

for any given protein �� , let � �� denote the homologous
information of �� , then we can obtain another homologous
information based initial score for �� as follows:

�ollo� �� =
� �� − 1����

�䙙�{�(��)}

1����
�呂h{�(��)) − 1����

�䙙�(�(��)}

(11)

Moreover, based on the subcellular location information of
proteins, we can calculate the third subcellular location based
initial score for �� as follows:

oollo� �� = �� ∈ �olܿ�(��)
�呂h{oݑ�l��� �� } (12)

oݑ�l��� �� =
oܿݑ��(��) − 1����

�䙙�{oܿݑ��(��)}

1����
�呂h{oܿݑ��(��)} − 1����

�䙙�{oܿݑ��(��)}
(13)

Here, �olܿ�(��) denotes the set of all subcellular locations,
in which the protein �� is located, Sub_p (��) is the number of
proteins in the i-th subcellular localization, and m is the total
number of all subcellular localizations.

Finally, based on above formulas, for any given protein ��,
we can define a unique initial score for it as follows:
�ollo�0 �� = � ∗ �ollo� �� + � ∗ �ollo� �� + �

∗ oollo� ��
(14)

Here, β∈[0, 1], γ∈[0, 1] and δ∈ [0, 1] are the weights of
the GScore �� , OScore �� and SScore �� separately, and
in addition, there is � + � + �=1. During simulation, in order
to obtain the appropriate combination of these parameters, all
possible values of these three parameters will be tried to
obtain different initial scores for proteins, among which, the
combination corresponding to the highest prediction
accuracy of essential proteins will be selected as the final
values of these three parameters.Here,β=0.55,γ=0.25,δ=0.2.

C.CONSTRUCTION OF THE PREDICTION MODEL
PMNMF
First, based on the following formula (15), we will transform
the matrix ��䙙∗ to a symmetrical transition probability
matrix NTP as follow:

��� ��,�� =
�� ��,��

�=1
� �� ��,��� (15)

Here,

�� ��,��

=
max ��䙙∗ ��,�� , ��䙙∗ ��,�� : �t � ≠ �

� �䙙∗ ��,�� : ����
(16)

Next, based on the transition probability matrix NTP, let
PScore(0)=PScore0, then we can iteratively obtain the final
scores for all proteins in the weighted PPI network as follows:

�ollo� � + 1 = α ∗ ��� ∗ �ollo� � + 1 − α ∗ �ollo� 0

(17)

Here, the parameter α is used to adjust the ratio of the
initial score to the score of the latest iteration, and PScore(t)
is the scores of all proteins in the t-th round of iteration.
Finally, according to above descriptions, as shown in

algorithm 1, the novel prediction method PMNMF can be
presented as follows:

Algorithm 1: PMNMF
Input: Downloaded dataset of known PPIs, downloaded
dataset of orthologous information, gene expression
information, and subcellular location information of
proteins, the iteration condition parameter ε, the
dimensionality parameter K, the max iteration times T,
and the proportional adjustment parameters α, β, γ and δ.
Output: Top K percent of proteins sorted by values in
PScore in descending order

Step1: Generating the original and weighted PPI networks
according to formulas (1)-(3);

Step2: Obtaining the non-negative matrices W and H
according to formulas (4)-(7),Repeating (6)-(7) until the
iteration times exceeds T;
Step3: Calculating the initial scores for proteins according
to formulas (8)-(14);
Step4: Obtaining the transition probability matrix
according to formulas (15)-(16);
Step5: Let t=t+1, calculating PScore(t+1) according to the
formula (17) iteratively;
Step6: Repeating Step 5 until ||PScore(t+1) –PScore(t) || <
ε;
Step7: Sorting proteins by values in PScore in the
descending order;
Step8: Outputing top K percent of sorted proteins.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL DATA
In order to evaluate the predictive performance of PMNMF,
in this section, we will compare it with 14 representative
basic protein prediction methods including IC [1], CC [3],
DC [4], BC [5], SC [6], NC [7], PeC [12], ION [14], CoEWC
[16] and POEM [17], CVIM[25], NPRI[30], TEGS[20] and
RWHN[27] simultaneously. During experiments, we will
first download datasets of known PPIs from different
benchmark databases including DIP [37], Gavin [38] and
Krogan [39] respectively. After pre-processing, we obtain a
dataset consisting of 24743 interactions between 5093
proteins from the DIP database, a dataset consisting of 7,669
interactions between 1,855 proteins from the Gavin database,
and a dataset consisting of 14317 interactions between 3672
proteins from the Krogan database finally. In addition,
according to the databases such as MIPS [40], SGD [41],
DEG [42] and SGDP [43] etc., a dataset consisting of 1285
essential proteins can be further obtained, and based on
which, 1,167, 714 and 929 essential proteins have been
picked out from the databases of DIP, Gavin and Krogan
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separately. Moreover, based on the dataset provided by Tu
BP et al [44], we obtain a dataset consisting of gene
expression data of 6,776 proteins, which represent the gene
expression levels of proteins over consecutive metabolic
cycles. Additionally, the orthologous information of proteins
will be downloaded from the Inparanoid database (Version7)
that includes a collection of pair wise comparisons between
100 whole genomes [45]. After that, the number of times that
proteins have orthologous information in reference
organisms will be calculated to quantify the homologous
information of proteins. Finally, based on the dataset
downloaded from the COMPART-MENTS database [46]
(downloaded at April 20, 2014), we can obtain a dataset
consisting of the subcellular location information of proteins,
in which, we will only keep 11 categories of subcellular
localization data closely related to essential proteins such as
the Endoplasmic, Cytoskeleton, Golgi, Cytosol, Vacuole,
Mitochondrion, Endosome, Plasma, Nucleus, Peroxisome
and Extracellular etc.

B. EFFECTS OF PARAMETER α ON PERFORMANCE OF
PMNMF
In PMNMF, we set a user-defined parameter α with value
between 0 and 1 to adjust the ratio of the initial protein
fraction to the latest score during iterations. By setting

different values to α, we can obtain different prediction
accuracies of PMNMF. During simulation, we will choose
the number of true essential proteins identified by PMNMF
in top 1%, top 5%, top 10%, top 15%, top 20% and top 25%
of predicted potential essential proteins when α is set to 0.1,
0.2, 0,3, … and 0.9 as the final results. And in detail, Table 1,
Table 2 and Table 3 illustrate these results based on the
databases of DIP, Gavin and Krogan respectively. From
observing Table 1, it is easy to see that with the increasing of
the value of α from 0.1 to 0.9, the prediction accuracy of
PMNMF will increase as well, however, when α exceeds 0.4,
the prediction accuracy of PMNMF in the top 1% and 5% of
predicted potential essential proteins will decrease gradually.
Therefore, based on the DIP database, it will be appropriate
to set α to 0.4. From observing Table.2, it is easy to see that
PMNMF can achieve the best prediction results while α is set
to 0.9 based on the Gavin database. From observing Table.3,
it is obvious that 0.6 is a turning point. Therefore, based on
the Gavin database, we consider that it will be appropriate to
set α to 0.6. According to above analysis, it is easy to known
that the value of the parameter α will have obvious effect on
the prediction performance of PMNMF. Based on the overall
performance on the three datasets, we set α to 0.4.

TABLE1. Effects of the parameter α on predication performance of PMNMF based on the DIP database

Rank α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Top1% 49 49 50 50 49 48 47 47 46
Top5% 207 211 213 217 216 216 213 210 209
Top10% 347 349 353 355 358 359 365 369 365
Top15% 449 450 459 466 474 474 484 481 479
Top20% 545 550 557 561 563 561 566 566 568
Top25% 639 646 649 652 644 645 650 654 648

TABLE 2. Effects of the parameter α on predication performance of PMNMF based on the Gavin database

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1% 18 18 18 18 18 18 18 18 18
Top5% 87 88 88 88 88 88 88 88 87
Top10% 163 166 166 166 165 165 166 169 170
Top15% 221 221 221 222 225 226 227 226 227
Top20% 281 281 281 281 282 282 282 282 284
Top25% 319 319 319 321 321 322 327 330 332

TABLE 3. Effects of the parameter α on predication performance of PMNMF based on the Krogan database

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1% 37 37 37 35 35 35 35 35 35
Top5% 145 145 149 153 153 154 151 147 141
Top10% 267 270 273 275 275 272 268 265 259
Top15% 356 360 363 366 366 367 367 368 365
Top20% 428 431 433 438 438 444 445 441 443
Top25% 499 499 504 503 504 504 501 505 505

Ran
k

Ran
k
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C. COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, we will compare PMNMF (while α = 0.4)
with 14 state-of-the-art competing methods to evaluate its
prediction performance based on the DIP database. And as
shown in Fig.2, we can see that the prediction performance
of PMNMF is better than that of all these 14 competitive
methods. Especially, as for the top 1%, top 5%, 10% and top
15% of predicted candidate proteins, PMNMF can achieve
reliable predictive accuracies of 98%, 85%, 70% and 60%
separately, which are 50%, 24%, 22%, 24%, 32%, 24%, 22%,
20%, 14%, 18%, 8%, 12%, 16% and 8% higher than the
predictive accuracy achieved by BC, CC, DC, IC, NC, SC,
Pec, POEM, CoEWC ION,CVIM,NPRI,TEGS and RWHN
respectively. Next, we further adopt the ROC (Receiver
Operating Characteristic) curve and the AUCs (the area

under the ROC curve) to compare the prediction performance
of PMNMF with these 10 competing methods. The
comparison results between PMNMF and BC, CC, DC, IC,
NC and SC are illustrated in Fig.3(a), and the comparison
results between PMNMF and CoEWC, PeC, POEM and ION
are shown in Fig.3(b) respectively. From observing these two
figures, it is easy to see that the prediction performance of
PMNMF is higher than that of all these 10 competitive
methods. And in addition, as shown in Table 4, from
observing the AUCs achieved by PMNMF and 10 competing
methods based on the DIP database, it is obvious that
PMNMF can achieve the highest AUC value of 0.77, which
is better than that achieved by all these 10 competitive
methods as well.

FIGURE 2: The figure shows the comparison results of the number of true essential proteins inferred by PMNMF and 14 competing identification
models based on the DIP database. During experiment, proteins will be first sorted in descending order based on their scores calculated by
predictive methods such as PMNMF, BC, CC, DC, IC, NC, SC, Pec, POEM, CoEWC, ION, CVIM, NPRI, TEGS and RWHN separately. And then, the top 1%, 5%,
10%, 15%, 20%, and 25% of ranked proteins will be selected as candidate essential proteins. Finally, through comparing with the downloaded
dataset of known essential proteins, the number of true essential proteins identified by each method will be calculated and shown in the table,
which will be adopted to evaluate the predictive ability of each method. The numbers in parentheses indicate the number of proteins ranked in each
interval.

(a) (b)
FIGURE 3: The ROC curves achieved by different prediction models based on the DIP database. (a) Comparison results among PMNMF, BC, CC,
DC, IC, NC and SC. (b) Comparison results among PMNMF, CoEWC, PeC, POEM and ION.

TABLE 4. AUCs achieved by PMNMF and 10 competitive methods based on the DIP database
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method PMNMF BC CC DC IC
AUC 0.77 0.62 0.63 0.67 0.67
NC SC CoEWC PeC POEM ION
0.69 0.64 0.63 0.65 0.67 0.75

D. VALIDATION BY JACKKNIFE METHOLOGY
In this section, the jackknife methodology [47] will be
implemented on top 1000 candidate essential proteins
predicted by PMNMF and 10 competitive models to compare
the performances between them based on the DIP database.
The comparison results are illustrated in the following Fig.4,
in which, the X-axis shows the number of predicted potential
essential proteins in descending order according to the
predicted scores of proteins, while the Y-axis denotes the
cumulative count of the truly proven essential proteins.
Especially, Fig.4(a) shows the comparison results among
PMNMF, BC, CC, DCIC, NC and SC, from which, it can be

seen that the predictive performance of PMNMF is much
higher than that of all these 6 competing methods. Moreover,
from observing Fig.4(a), it is easy to see that with the
increasing of the number of ranked proteins, the performance
gap between PMNMF and these competitive methods will
increase significantly. Fig.4(b) illustrates the comparison
results among PMNMF, Pec, CoEWC, POEM and ION,
from which, it can be seen that the prediction performance of
PMNMF is to some degree higher than that of all these 4
competing methods as well. However, from observing
Fig.4(b), it can be seen that with the increasing of the number
of ranked proteins, the performance gap between PMNMF
and these competitive methods will increase gradually.

(a) (b)
FIGURE 4: The Jackknife curves of PMNMF and 10 competing methods based on the DIP database are shown in this figure, where the X-axis
represents the number of ranked potential key proteins from top 100 to top 1000, and the Y-axis is the cumulative count of the true necessary
proteins identified by these models. (a) Comparison results of PMNMF, BC, CC, DC, IC, NC and SC. (b) Comparison results among PMNMF, PEC,
CoEWC, POEM and ION.

E. DIFFERENCE BETWEEN PMNMF AND 10
COMPETITIVE PREDICTION METHODS
In this section, we will select top 200 proteins predicted by
PMNMF and 10 competitive methods based on the DIP
database to analyze the difference and commonality between
them. Comparison results between PMNMF and 10
competitive methods are illustrated in the following Table.5,
in which, Mi indicates one of these 10 methods. |PMNMF
∩Mi| denotes the number of common key proteins identified
by both PMNMF and Mi. |PMNMF-Mi| means the number
of key proteins detected by PMNMF but not by Mi.

|Mi- PMNMF| represents the number of proteins inferred by
Mi but not by PMNMF. {PMNMF-Mi} denotes the set of
true key proteins identified by PMNMF but not by Mi, and
{Mi- PMNMF} denotes the set of true basic proteins inferred
by Mi but not by PMNMF. From observing Table.5, it is
easy to know that among these top 200 proteins, the
proportions of true essential proteins predicted by PMNMF
but not by competing methods are more than 80%, which
indicate that PMNMF can achieve much higher identification
accuracy and better prediction performance than all these 10
competitive methods

Centrality
measures (Mi)

|PMNMF∩Mi| | PMNMF-Mi| Percentage of the essential
proteins in {PMNMF−Mi}

Percentage of the essential
proteins in {Mi−PMNMF}

BC 23 177 87.57% 31.07%
CC 22 178 87.08% 22.02%
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TABLE 5. Differences between PMNMF and 10 competitive methods based on the top 200 proteins and the DIP database

DC 29 171 87.13% 31.58%
IC 27 173 86.71% 30.64%
NC 60 140 85.71% 49.29%
SC 26 174 86.78% 29.31%
Pec 93 107 85.05% 49.53%

CoEWC 97 103 85.44% 53.40%
POEM 97 103 81.55% 56.31%
ION 113 87 83.91% 52.87%

(a)

(b)
FIGURE 5: The figure shows the comparison results of the number of true essential proteins inferred by PMNMF and 13 competing identification
models based on the Gavin database and the Krogan database respectively. During experiment, proteins will be first sorted in descending order based
on their scores calculated by predictive methods such as PMNMF, BC, CC, DC, IC, NC, SC, PeC, CoEWC, POEM, ION, CVIM, NPRI, TEGS or RWHN
separately. And then, the top 1%, 5%, 10%, 15%, 20%, and 25% of ranked proteins will be selected as candidate essential proteins. Finally, through
comparing with the downloaded dataset of known essential proteins, the number of true essential proteins identified by each method will be
calculated and shown in the table, which will be adopted to evaluate the predictive ability of each method. The numbers in parentheses indicate the
number of proteins ranked in each interval. (a) Comparison results based on the Gavin database. (b) Comparison results based on the Krogan
database.
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(a) (b)

(c) (d)

FIGURE 6: The Jackknife curves of PMNMF and 10 competing methods based on the Gavin database and the Krogan database are shown in this
figure respectively, where the X-axis represents the number of ranked potential key proteins from top 100 to top 1000, and the Y-axis is the
cumulative count of the true necessary proteins identified by these models. (a) Comparison results of PMNMF, BC, CC, DC, IC, NC and SC based
on the Gavin database. (b) Comparison results among PMNMF, PEC, CoEWC, POEM and ION based on the Gavin database. (c) Comparison results
of PMNMF, BC, CC, DC, IC, NC and SC based on the Krogan database. (d) Comparison results among PMNMF, PEC, CoEWC, POEM and ION based
on the Krogan database.

F. RECOGNITION PERFORMANCE OF PMNMF BASED
ON THE GAVIN DATABASE AND KROGAN DATABASE
In order to demonstrate the universal applicability of
PMNMF method, in this section, we further adopt the Gavin
and Krogan databases to compare the prediction performance
between PMNMF and some competitive prediction methods.
The comparison results are shown in Fig.5 and Fig.6. From
observing Fig.5(a), it is clear that based on the Gavin
database, the prediction accuracies of PMNMF exceed 89%
in the top 1%, top 5% and top 10% of ranked candidate
essential proteins. From observing Fig.5(b), it is clear that
based on the Krogan database, the prediction accuracies of
PMNMF exceed 83% in the top 1% and top 5% of ranked
candidate essential proteins. And based on both of these two
databases, the prediction accuracies achieved by PMNMF are

higher than all other competitive prediction methods. In
addition, from observing Fig.6(a) and Fig.6(b), we can find
that the prediction performance of PMNMF is higher than all
these 10 methods based on the Gavin database, and from
observing Fig.6(c) and Fig.6(d), we can find that the
prediction performance of PMNMF is higher than all these
10 methods based on the Krogan database as well.

IV. DISCUSSION
Essential proteins are important for cell growth and
regulation processes. In recent years, accumulating
computational methods have been proposed to identify
essential proteins. However, due to the effects of false
positives and false negatives in original PPI data obtained by
high-throughput techniques, it is still a challenging work to
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develop a stable and accurate essential protein prediction
model. Inspired by the fact that it can improve the prediction
performance of computational models by integrating PPI
networks with multiple biological information of proteins, a
novel prediction model called PMNMF based on the Non-
negative Matrix Factorization is designed in this manuscript.
In PMNMF, a weighted PPI network is first constructed by
extracting the topological information of proteins from the
original PPI network, and then, by applying the NMF method
on the weighted PPI network and combining with biological
information of proteins, an improved Page-Rank algorithm is
introduced to calculate the importance scores for proteins.
Experimental results show that PMNMF can achieve
superior prediction results than state-of-the-art prediction
models, which demonstrates that PMNMF is an effective
prediction method for key protein prediction. Of course, there
are still some shortcomings in current version of PMNMF.
For example, more biological information of proteins being
considered, the prediction performance of PMNMF may
become better.

V. CONCLUSION
The main contributions of this manuscript can be
summarized as follows: (1) A weighted PPI network is
established based on the topological information of proteins
in the original PPI network. (2) The Non-negative Matrix
Factorization is introduced to obtain the transition probability
matrix. (3) An improved Page-Rank algorithm is designed to
estimate the critical scores of proteins. However, there are
still some limitations in current version of PMNMF. For
example, since a random algorithm is adopted to initialize
these two non-negative factorization matrices, the result
obtained by the NMF algorithm has a certain degree of
randomness as well, we improve the stability of results
through multiple iterations, more effective methods is worthy
to be explored in the future researches.
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