THREE-DIMENSIONAL FACE AND FINGER BIOMETRICS

Kyong Chang, Damon Woodard, Patrick Flynn, Kevin Bowyer

Department of Computer Science & Engineering, University of Notre Dame
384 Fitzpatrick Hall, Notre Dame IN 46556 USA
phone: +1 574 631 8803, email: {kchang,dwoodard,flynn ,kwb}@nd.edu
http://www.nd.edu/~cvrl

ABSTRACT

The use of dense range scans of the face to supplement or
supplant visible-light images in face recognition systems has
been a subject of recent interest in the biometrics commu-
nity. This paper summarizes recent research activities de-
signed to assess the potential of a high-resolution 3D face
scan as a viable biometric, using a large database of such
scans. We show that 3D faces offer potential for this appli-
cation but also exhibit challenges that must be addressed
before systems based on 3D face can be fielded. We also
describe preliminary results from a study of 3D hand shape
biometrics employing curvature classification of the finger
skin surface.

1. INTRODUCTION

Research on 3D face recognition started over a decade ago;
yet, to date the number of research articles and commercial
products describing or performing face recognition in 3D
has been fairly small. Cartoux et al. [1] matched face pro-
files obtained from a bilateral symmetry plane’s intersection
with the face. Lee and Milios [2] matched extended Gaus-
sian images generated from a curvature-based segmentation
of the 3D face image to match probe and gallery faces.
Gordon [3] registered face images using a curvature-based
segmentation and matches faces by computing volume dif-
ferences between the probe and gallery images. More re-
cently, Achermann et al. [4] applied PCA and HMM tech-
niques developed for 2D images to range data. Beumier and
Acheroy [5] fused 2D and 3D matching scores. Bronstein et
al. [6] employed isometric transformations and canonical
images to handle variations in face shape due to facial ex-
pression.

Commercial vendors are now offering 3D face recogni-
tion systems with integrated sensors. Geometrix [7] offers a
stereo face sensor and a recent conference demonstration
paper by Medioni et al. [8] describes an alignment-based
recognition technique employing the well-known ICP regis-
tration procedure. A4Vision [9] offers a structured light sys-
tem and a matching engine. Given the market potential of
robust biometric systems, commercial interest in 3D biomet-
rics seems likely to remain high.

Another area of biometric research that has seen some
recent interest is hand shape. Jain and students [10,11] have
developed and investigated 2D hand geometry biometrics
that compute features from the silhouette of the hand. There

has been almost no work on 3D biometrics of the hand. Lay
[12] projected a grating pattern on the back surface of the
hand and captured the pattern distorted by hand shape, and
attempted to match binarized versions of these distorted
grids.

One key to establishing the performance of biometric
systems is thorough testing on realistic data sets of size suffi-
cient to bolster performance claims. Open data sets are very
valuable when comparing different systems, although com-
mercial products sometimes are tuned to a particular sensor
and might not be expected to perform well when presented
with other types of data.

In this paper, we address the recognition of subjects
from 3D range scans of the face or the top of the hand. We
summarize our recent published work on 3D face matching
using PCA. These results confirm good performance overall,
but pronounced sensitivity to facial expression change. To
our knowledge, this is the first paper to investigate and test
3D shape biometrics of the hand. @ We describe pre-
processing, feature extraction, and curvature-based matching
procedures for 3D hand scans, and demonstrate degradation
in performance when probe and matching gallery images are
obtained on different days. All data collected in this research
study is either already available or will be made available as
part of a large biometric data repository containing over
100,000 images of various types'.

2. 3D DATA ACQUISITION AND PROCESSING

The “workhorse” 3D sensor in our laboratory is the Minolta
Vivid 900/910 sensor. This laser scanner, acquired in 2001
and upgraded in 2003, obtains a 640x480 range image and a
registered color image in about 8 seconds. Our database
contains over 4,000 3D face images collected starting in
Spring 2002 and continuing to the present. Experiments
reported in this paper use subsets of this collection.

The acquisition of 3D face and hand images is part of a
larger data collection effort underway since 2002. At pre-
sent, we have 300 experimental subjects active in the project,
with about 160 in common from week to week (this yields a
large amount of repeat data). In addition to 3D face and hand
scans, approximately 80,000 high-resolution color face im-
ages, 15,000 infrared face images, and additional small col-
lections of ear images have been collected. In addition, ac-
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quisition of iris images began in 2004 and approximately
2,400 are collected each week (six images from each eye).

Each 3D face image undergoes some processing prior to
use in recognition experiments. As acquired, the set of range
pixels is not registered to a face-centered coordinate system.
We normalize these images by placing the nose tip at the
origin and forcing the corners of the eyes to lie on a horizon-
tal line at the same depth as the center of the chin. These
normalization steps are depicted in Figure 1.

Figure 1. 3D face image normalization. Left: before
normalization. Right: after normalization.

3. 3D FACE RECOGNITION USING PCA

Chang et al. [13] report on PCA-based recognition experi-
ments performed using 3D and 2D images from 200 per-
sons. One experiment uses a single set of later images for
each person as the probes, and another experiment uses a
larger set of 676 probes taken in multiple acquisitions over a
longer elapsed time. We employ the Colorado State Univer-
sity face recognition evaluation software distribution [14] in
our experiments using PCA. Some eigenspace pruning was
done to remove low-discrimination basis vectors with high-
est variation and lowest variation. Figure 2 shows a cumu-
lative match characteristic plot for the individual modes and
a system that fuses modes at the metric level. Results in both
experiments were approximately 99% rank-one recognition
for multi-modal 3D+2D, 94% for 3D alone and 89% for 2D
alone. This work represents the largest experimental study
yet reported in the literature either for 3D face alone or for
multi-modal 2D+3D, in terms of the number of subjects, the
number of gallery and probe images, and the time lapse
between gallery and probe image acquisition.

Our experiments with PCA based face recognition re-
vealed strong sensitivity to facial expression change between
the gallery (enrolled) image and the probe image to be rec-
ognized. Figure 3 contains intensity and range images of a

subject under three facial expressions. Figure 4 shows the
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Figure 2. Performance of PCA-based 2D, 3D, and
fused 2D/3D face matcher.

results of a comparative study pitting PCA-based 2D and 3D
face recognizers against one another in the presence of
elapsed time between probe and gallery and also expression
change. We see that expression change causes a more sig-
nificant drop in 3D system performance than in 2D system
performance. A robust facial recognition system should be
able to accommodate variation in expression.

Handling change in facial expression would seem to re-
quire at least some level of part-whole model of the face, and
possibly also of the range of possible non-rigid motion of the
face. This is a topic of our current research. We believe that
facial alignment with a variant of the ICP algorithm and a
facial segmentation based on curvature may offer some ro-

Figure 3. Intensity and range images of three facial
expressions.

bustness to expression change.

4. HAND SHAPE BIOMETRICS

As noted above, there have been relatively few articles in
the published literature relating to hand shape as a biometric,
and those papers that do exist focus on silhouette features
and silhouette matching. We have been examining the 3D
shape of the hand as a potential biometric and report some
initial results here.

Figure 5 shows range and registered color images of a
hand captured by the Minolta 900/910 range sensor in our
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Figure 4. Performance of PCA-based 2D and 3D
face recognition: elapsed time and expression
change effects.

Figure 5. Range and color images of a hand.

laboratory. We have 132 experimental subjects for whom
five range images of the hand are available (two images the
first week and three images the second week). Experimental
conditions require careful positioning of the hand and ac-
commodation of the large variability in hand size from per-
son to person. One barrier to widespread acceptance of 3D
hand shape biometrics may be the lack of scanners special-
ized to the hand.

Range images of the hand are processed and segmented
into individual finger images by silhouette processing. In-
dentations in the silhouette identify valleys between fingers,
and their positions along the silhouette contour are used as
segment boundaries; thus, the fingers can be extracted and
processed individually. We currently extract the index, mid-
dle and ring fingers, denoted a, 3, and vy, generating masks as
shown in Figure 6. The mask and the corresponding range
pixels are rotated so that the major axis of the mask is coinci-
dent with the horizontal axis in the output finger range im-
ages. This alignment step suppresses finger pose variations.

Range pixels on the finger surface are classified using
the shape index classifications proposed by Koenderink [16].
These were adapted to free-form surface representation and
global object recognition by Dorai and Jain [17]. The shape
index SI is a scalar computed from principal curvatures and
intervals in the shape index value correspond to shape
classes such as ridge, valley, and plane. Figure 7 shows shape
index images for the aligned fingers in Figure 6. These clas-
sification maps tend to capture local finger features such as
creases and looser skin over the knuckles, as well as the ridge
near the nail bed. Clearly, a dense range map is necessary for

Figure 6. Index (o), middle (), and ring (y) finger masks
extracted from a range image.

Figure 7. Shape classification maps for aligned fin-
ger images.
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Figure 8. Cumulative Match Characteristic for
finger matching experiments.

this representation to be useful; at a coarser scale the finger is
reasonably well approximated by a cylinder and the distinc-
tive local shape features would be lost.

At present, we employ a very simple finger matching
technique. Since we know the finger type (o, 8, or v), we
match probe finger shape class images with gallery finger
classification images of the same type. A simple correlation
score is computed:

1
NUNAEEEDY (A ENAN)E
N &
i, j)valid

where f1 and f2 are the two finger images with N valid mask
pixels in common between them, and I() is the indicator
function that returns unity if its argument is zero and zero
otherwise. Thus, this score is the total fraction of valid shape
pixels that agree in classification.

Figure 8 shows CMC plots depicting recognition accu-
racy averaged across fourteen experiments involving differ-
ent probe and gallery image sets. Each line on the plot indi-
cates one of the three fingers. These experimental results are
surprisingly good considering the simplicity of the matcher.
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Figure 9. CMC plot for same-day matching
experiments.

Figures 9 and 10 reveal a performance drop with elapsed
time between probe and gallery acquisition. Figure 9 shows
averaged CMC plots for probes and galleries acquired on the
same day. In addition to plots for individual finger perform-
ance, performance curves for metric-level fusion using a
“max” rule (highest-confidence finger match is used) and an
“average” rule (the average score is computed over all three
fingers) are shown. Figure 10 is a corresponding plot for
probes and galleries acquired one week apart. From these
plots, we see a notable drop in performance associated with
elapsed time. We are investigating this effect.

5. CONCLUSIONS

In this paper, we have described two classes of 3D biomet-
rics: face (which has a decade of history and now is appear-
ing in fielded systems) and finger (which, to our knowledge,
has not been examined as a potential biometric heretofore).
Our initial experiments with both suggest that their viability
but also highlight potential performance problems. Future
work will address these problems through careful testing on
the largest database of 3D biometric data available, as well
as development of new and improved algorithms for
matching.
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Figure 10. CMC plot for different-day matching
experiments.
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