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ABSTRACT
For hands-free spoken dialogue system, we propose an interface to
eliminate known noise outputted by the dialogue system and un-
known noise sufficiently by giving known source of the loudspeaker
output. Moreover, elimination of known noise is reinforced by sound
field control. The proposed method, at first, eliminates the loud-
speaker output at the microphone points using sound field control
with fixed filter coefficients. Next, the observed signals are pro-
cessed by a source separation to eliminate both known and un-
known noise. The conventional approach to combine acoustic echo
canceller and adaptive beamformer requires double-talk detection
(DTD) in noisy environment, which is difficult to implement. Due
to no use of DTD, the proposed method works better than the con-
ventional method in real environment. To prove this, we show in the
experiment that the performance of the proposed method is superior
to the performance limit of the conventional method.

1. INTRODUCTION
To realize an interface for comfortable speech communication be-
tween human and machine based on spoken dialogue system, there
is two important issues, i.e., hands free and barge-in free [1]. On one
hand, hands free is a demand to free a user from spatial constraint
to stand near or wear a microphone. On the other hand, barge-
in free is the issue to set the user free from temporal forbiddance
from inputting his speech command when the user is in outputting
mode. These demands are difficult to be satidfied because automatic
speech recognition is weak against noise. In this situation, noise is
classified into two types, i.e., known and unknown noise. Unknown
noise is interfering external noise in acoustic environment, caused
by air conditioning or undesired speaker, etc. The most popular so-
lution of unknown noise is beamforming using microphone array.
Known noise is undesired observation of loudspeaker playback to
present user message of sound from dialogue system. Elimination
of such known response sound of dialogue system is called echo
cancellation problem.

Most of the algorithms to adapt both adaptive beamformer
(ABF) and acoustic echo canceller (AEC) are based on minimiza-
tion of mean square error [2]. ABF learns filter to extract only de-
sired signal by eliminating undesired signals [3]. For this purpose
its filters must be learned only when the desired signal source is in-
active. Thus ABF requires double-talk detector (DTD) to find such
durations [4]. On the other hand, in principle, AEC does not require
DTD because its filter is optimized by exploiting uncorrelation be-
tween the known noise and the other sound sources. However, in
speech application where the transfer system is heavily variable and
has long impulse response, DTD is indispensable to learn the filter
rapidly with limited training samples. Although there are several
approaches to simultaneous use of AEC and ABF [5], its imple-
mentation is hard because of difficulty in DTDs for this purpose.
The problem of DTD is highly complicated because DTD for each
of these methods has different target; noise for one is target to the
other. In addition, noisy environment makes DTD more difficult.

To avoid DTD, one of the authors proposed an alternative
method to eliminate response sound using robust sound field con-
trol with fixed filter without adaptation, called multiple-output and
multiple-no-input (MOMNI) method [6]. This method utilizes
sound field reproduction using multi-channel loudspeaker system
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and inverse filter of room transfer functions. The response sound
is presented to user with high quality while its observation at mi-
crophones is prevented by construction of silent zone at the micro-
phones. Although robustness of its fixed filters designed a-priori is
proven in the literature, this method cannot be applied to reduction
of unknown noise. To deal with unknown noise, adaptive signal
processing is desired after observation by microphones. In addi-
tion, the robustness of the response sound elimination also can be
reinforced by adding adaptive process.

As an adaptation of beamformer for unknown noise without
DTD, blind source separation (BSS) based on independent com-
ponent analysis (ICA) is studied [7, 8]. In the previous work we
have proposed a semi-blind source separation (SBSS), which can
eliminate known noise efficiently, and incorporated SBSS with the
MOMNI method [?]. SBSS uses known source of response sound
as training data together with observed signals at microphones.
With these training data, known source is separated from other
outputs efficiently. In this paper, we generalize the problem from
only known-noise elimination into both known- and unknown-noise
elmination. With this generalization, unknown sources can be sep-
arated in the same manner as ordinary BSS simultaneously to the
elimination of known noise. In an experiment, we compare per-
formances of the proposed method and ideal performance limit of
conventional combination of AEC and ABF. As a result, although
the performance of the conventional method degrades in practical
use, the practical performance of the proposed method is superior
to ideal behaviour of the conventional method.

2. MOMNI METHOD
The purpose of the MOMNI method is simultaneous realization
of high-presence reproduction and elimination of response sound,
which are conflicting issues. Since all information known a-priori
is only transfer functions measured in advance, the elimination is
not perfect because of fluctuation of room transfer functions. How-
ever, it is shown that this elimination is robust against the fluctuation
without adaptation. We show configuration of the MOMNI method
in Fig. 1.

This sound field reproduction controls sound pressures at K +2
control points, i.e., positions of the K microphones, denoted by Ck
for k = 1, . . . ,K, and left and right ears of the user, denoted by CK+1
and CK+2. The stereophonic response sound to be reproduced at the
user’s right and left ears are denoted by rR(ω) and rL(ω), where ω
shows angular frequency. Our goal is that the sound pressures at
the user’s ears dK+1(ω),dK+2(ω) equal the response sound signals
while the sound pressures at the microphones, denoted by dk(ω) for
equal zero, as d(ω) = [d1(ω), . . . ,dK+2(ω)]T

= [0, . . . ,0,rR(ω),rL(ω)]T, (1)
where d(ω) shows all the sound pressures at the control points
and {·}T shows transposition. With this reproduction, the response
sound is prevented from being observed by the microphones while
the user listens to the high-quality reproduction of the response
sound.

For the reproduction of Eq. (1), the effect of room transfer func-
tions should be cancelled at the control points. such cancellation
can be obtained by multi-channel inverse filter of the room trans-
fer functions. To obtain the strict inverse filter of the room transfer
functions with non-minimum phases, the number of the loudspeak-
ers M for the reproduction must be larger than the number of the
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Figure 1: Configuration of the MOMNI method.

control points, i.e., M > K +2 [10]. First we measure all the trans-
fer functions gkm(ω) for k = 1, . . . ,K + 2,m = 1, . . . ,M. We com-
pose an M × (K + 2) transfer function matrix G(ω) = [gkm(ω)]km
where [x]i j denotes a matrix who has an entry x in the i-th row and
j-th column. Next, the inverse filter matrix H(ω) = [hmk(ω)]mk is
obtained by an Moore-Penrose generalized inverse matrix of G(ω).
Then the following condition is obtained;

G(ω)H(ω) = IK+2(ω), (2)
where In denotes an i-dimensional identity matrix. When K + 2
signals are inputted to the inverse filter, each of them are reproduced
at the control points. Using this property, the reproduction of the
state in Eq.(1) can be obtained by inputting silent signals with zero
amplitudes into the first K channels and the response sound into the
remaining two channels as

d(ω) = G(ω)H(ω)[0, . . . ,0,rR(ω),rL(ω)]T

= [0, . . . ,0,rR(ω),rL(ω)]T. (3)
The accurate reproduction of stereophonic signals is effective es-
pecially when the input response sound signals are binaural record-
ings, refered to as transaural reproduction [11]. To generate binaural
recordings, we filter a monaural response sound signal rsrc(ω) with
head related transfer functions or binaural room impulse responses,
denoted by gpriR(ω),gpriL(ω), as

[dR(ω),dL(ω)]T = [gpriR(ω),gpriL(ω)]Trsrc(ω). (4)
Since the control points for the reproduction of any signals are

only CK+1 and CK+2, we truncate H(ω) on the upper K rows and
make an M ×2 matrix H2(ω) = [hmk(ω)]mk for m = 1, . . . ,M, k =
K +1,K +2. Since the two rows of H2(ω) are in the null space of
the transfer functions related to the microphones, when the repose
sound signal dR(ω), dL(ω) are inputted to H(ω), the following
condition is obtained;

d(ω) = G(ω)H2(ω)[dR(ω),dL(ω)]T

= G(ω)H2(ω)[gpriR(ω),gpriL(ω)]Trsrc(ω)
= [0, . . . ,0,rR(ω),rL(ω)], (5)

which is equivalent to Eq. (1).
Note that alghough high-quality reproduction cannot be ob-

tained when the user does not sit on the arranged position, it is
shown in [6] that the degradation is not in problematic level for
spoken dialogue system.

3. INTRODUCING ICA TO MOMNI METHOD
3.1 Motivation
As discussed in the previous section, the MOMNI method can elim-
inate the response sound with high robustness using may loudspeak-
ers. However, there are two remaining requirements:
(R1) As shown in [6], robustness of the MOMNI method is im-

proved according to the number of loudspeakers. To reduce the
expense of the loudspearkers, adaptation of the elimination is
required.

(R2) For a hands-free system, elimination of interfering noise is an
important issue. Thus adaptive signal processing method for the
noise reduction is required.

To satisfy (R1), adaptation is effective in either sound field con-
trol or signal processing applied to the observed signals. However,
adaptation only in sound field control is invalid for (R2). To sat-
isfy both of them, we try to apply adaptive signal processing to the
observed signals by the microphones.

As adaptive signal processings, AEC and ABF are often used
for (R1) and (R2), respectively. However, both of them requires
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Figure 2: Configuration of BSS based on FD-ICA.
DTD and inappropriate for our purpose. As an unsupervised filter
adaptation without DTD, BSS based on ICA is a strong candidate.
Since it is known that frequency-domain ICA (FD-ICA) has ad-
vantages over time-domain ICA both for computational simplicity
and separation performance [12], we try to adopt FD-ICA in the
MOMNI framework.

3.2 BSS Based on FD-ICA
In this section we review the general principle of BSS based on
FD-ICA. Configuration of BSS is shown in Fig. 2. BSS is a
problem to estimate unknown source signals only from the ob-
served signals, which are linear mixture of sources in unknown
system. Suppose that there are L unknown sound sources S(ω) =
[s1(ω), . . . ,sL(ω)]T. Using K microphones, their observed signals,

x(ω) = [x1, . . . ,xK(ω)]T, (6)
can be written as

x(ω) = A(ω)s(ω), (7)
where A(ω) = [akl(ω)]kl is an unknown K×L transfer function ma-
trix. To obtain L separated source signals, K ≥ L must be satisfied.
The purpose of BSS is to obtain an L×K separation filter matrix
W(ω) which makes its output signals,

y(ω) = [y1(ω), . . . ,yL(ω)]T = Wx(ω), (8)
be the estimation of the separated sources.

In FD-ICA, first, short-time analysis of the observed signals is
conducted by frame-by-frame discrete Fourier transform. By plot-
ting the spectral values in a frequency bin for each microphone input
frame by frame, we consider them as a time series. Hereafter, we
designate the spectral values as x(ω , t) = [x1(ω, t), . . . ,xK(ω , t)]T,
where t denotes the time index of the frame. Next, we obtain the
separation filter W(ω) whose time-series output y(ω , t),

y(ω) = [y1(ω, t), . . . ,yL(ω , t)]T = W(ω)x(ω , t), (9)
are statistically independent. Assuming statistical independence
among the sources s(ω, t) = [s1(ω, t), . . . ,sL(ω, t)], the necessary
and sufficient condition for the separation is statistical indepen-
dence among y(ω , t). For the case of K = L, such W(ω) is opti-
mized by, for example, the following iterative updating operation
[7]:

W++(ω) = W(ω)−η{I−⟨Φ(y(ω , t))yH(ω, t)⟩t}W(ω), (10)
where ⟨·⟩t denotes the time-averaging operator, {·}H denotes the
conjugate transposition, and W++(ω) is an updated filter matrix.
In our research, we use tangent hyperbolic function based on polar
coordinate [13] as;

Φ(y(ω)) =

 tanh(|y1(ω)|)exp( j arg(y1 (ω)))
...

tanh(|yK(ω)|)exp( j arg(yL (ω)))

 . (11)

The separation filter W(ω) requires some modifications for us-
age. First, the condition of independence has ambiguity in scaling
of the output signals, both for amplitudes and phases. To compen-
sate for this, we apply projection back [14] to estimate the source
signals at the microphone points using inverse of the separation fil-
ter. Second, independence also has ambiguity in the ordering of
the signals to be outputted, refered to as ‘permutation problem’.
To reconstruct the estimated sources, the ordering must be aligned.
To solve the permutation, several approaches have been proposed,
e.g., use of directivity pattern of the separation filter [15] and use
of envelopes’ correlations among narrow-band signals [14]. In our
research we use combination of those approaches [16].
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3.3 Straightforward Combination of BSS and MOMNI
The purpose of introducing BSS in the MOMNI framework is to
separate user’s utterance from the observed user’s utterance mixed
with unknown noise and the known response sound. Although
source of the response sound is known to the system, its observation
is mixed with unknown signals and effected by unknown fluctuation
of the room transfer functions. The problem is the same as the or-
dinary BSS except for the availability of the response sound source.
Thus, the most straightforward idea to extract the user’s utterance
is simply to use BSS, treating the response sound as an unknown
signal. In this section, we analyze the mechanism of the separation
in this strategy, and point out several problems.

Although the residual response sound observed at the micro-
phones is influenced by the multiple transfer channels, it is origi-
nally a single source. Thus ICA can separate the response sound
as one of the estimated sources. We define an M-dimensional row
vector gk(ω) (k = 1, . . . ,K) composed of measured room transfer
functions gkm(ω) (m = 1, . . . ,M) between the k-th microphone ele-
ment and all the M loudspeakers before fluctuation. Then we define
g′k(ω), the unknown room transfer functions fluctuated after the de-
sign of the inverse filter, as

g′k(ω) = gk(ω)+∆gk(ω), (12)
where ∆gk(ω) is the differential of gk(ω) and g′k(ω). If input sig-
nals are given by Eq. (4), because of the condition gk(ω)H2(ω) = 0
the residual response sound d′

k(ω) observed at the k-th microphone
element can be written as

d′
k(ω) = (gk(ω)+∆gk(ω))H2(ω)gpri(ω)rsrc(ω)

= ∆gk(ω)H2(ω)gsrc(ω)rsrc(ω). (13)

Thus, the residual sound can be written as a multiplication
of single source rsrc(ω) and a single scalar transfer function
∆gk(ω)H2(ω)gpri(ω). Suppose there are L− 1 mutually indepen-
dent source sl(ω) (l = 1, . . . ,L− 1) in the room, excluding the re-
sponse sound; they should be independent of of the response sound.
Then, the observed signal at the k-th microphone element can be
written as

xk(ω) =
L−1

∑
l=1

akl(ω)sl(ω)+∆gk(ω)H2(ω)gpri(ω)rsrc(ω) (14)

where there exist L independent signals including the component of
the response sound. By the substitutions

akL(ω) = ∆gk(ω)H2(ω)gpri(ω) for k = 1, . . . ,K, (15)

and
sL(ω) = rsrc(ω), (16)

in Eq. (7), the mixing system can be described in the same manner
as ordinary BSS. Since there are L sources, ICA can separate the
signals with L observed signals. Thus, the MOMNI method should
make silent zones at K = L microphone elements with the sound
field control, and then we input the observed signals of the micro-
phone elements to ICA.

However, this method has several problems. The first one is
that its output signals are distorted. The mechanism of separation
by ICA is multiple beamformers which extract independent sources
separately [17]. In general, to construct beamformer with high per-
formance, required filter length is longer than those of the room
transfer functions. In addition, since the inverse filter H2(ω) used
in the MOMNI method has much longer impulse responses than
those of the room transfer functions. By necessity the transfer func-
tion ∆gk(ω)H2(ω)gpri(ω) has long impulse response. Neverthe-
less, we must use short filter coefficients in a real environment be-
cause blind estimation of long filter coefficients requires long input
data which is difficult to obtain. The use of the short filter coeffi-
cients distorts the output signals as a result of a circular convolution
effect. The second problem is difficulty in solving permutation in
this case. Since the transfer functions corresponding to the response
sound, i.e., ∆gk(ω)H2(ω)gpri(ω), have no specific directivity, the
permutation solution based on directivity is insufficient. For these
reasons, we cannot expect that this method will perform as well as
the ordinary BSS.
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Figure 3: Configuration of semi-blind source separation.

3.4 Semi-Blind Source Separation
In the previous section, we have discussed combination of the
MOMNI method and BSS where the response sound is dealt as
an unknown signal, and shown its insufficiency. In this section,
we propose a new semi-blind source separation (SBSS) which sep-
arates sources from mixture of known and unknown sources effi-
ciently utilizing information of known source. We give information
of known source by inputting the known source directly into to ICA.

Suppose there are L sources sl(ω) (l = 1, . . . ,L) and only the
L-th source sL(ω) is the known source. To separate L sources with
ICA, L mixed signals are required. However in this case, we use
sL(ω) as one of the input signals. These input signals can be ex-
pressed by the substitution

xL(ω) = sL(ω) (17)
in Eq. (6). In addition, the mixing system of these input signals also
can be expressed by the substitution

aLk(ω) =
{

0 for k = 1, . . . ,L−1,
1 for k = L,

in Eq. (7). Since the L-th input signal sL(ω) is already separated, it
should be outputted without any modification, i.e.,

yL(ω) = xL(ω) = sL(ω). (18)
Thus, the L-th row wL(ω) of the separation filter W(ω) should be
fixed as

wLl(ω) =
{

0 for l = 1, . . . ,L−1,
1 if l = L. (19)

Since wL(ω) is fixed, the components W̄(ω) in W(ω) to be updated
is the (L−1)×L truncated submatrix

W̄(ω) = [wlk(ω)]lk for l = 1, . . . ,L−1, k = 1, . . . ,L
= [IL−1,0L−1]W(ω), (20)

where 0i denotes i-dimensional zero vector. As shown in Appendix,
independence among y(ω, t) can be improved by the following up-
dating formula;

W̄++ = W̄(ω)+η
{

W̄(ω)−⟨Φ(ȳ(ω))yH(ω)⟩tW(ω)
}

(21)

where
ȳ(ω) = [y1(ω), . . . ,yL−1(ω)]T. (22)

The fix of wL(ω) has many advantages over conventional BSS.
First, with the constraint that the component due to sL(ω) is fixed
to outputted from yL(ω), we need not solve the permutation for
sL(ω). Second, giving part of the answer yL(ω) = xL(ω) makes the
problem easier and helps the avoidance of local minima in the non-
linear optimization. In addition, SBSS has advantage in the length
of the separation filter. Though BSS is a problem to obtain beam-
former, SBSS eliminates the component due to sL(ω) in yl(ω) for
l = 1, . . . ,L − 1 by obtaining opposite phase of mixture just like
AEC. Thus required filter length becomes shorter.

3.5 Combination of MOMNI Method and SBSS
Combination of the MOMNI method and SBSS can be realized by
just giving the response sound source to ICA as sL(ω) = rsrc(ω) in
the control of L− 1 microphones to be silent. In this combination,
the advantage of SBSS is significant. As discussed in Sect. 3.3,
the long impulse response of ∆gk(ω)H2(ω)gpri(ω) requires BSS
to have extremely long filter coefficients. However, as discussed
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in the previous section, the filter length can be shorten by SBSS.
In addition, difficulty in solution of permutation caused by no spe-
cific directivity of the MOMNI method can be solved by the fix of
the output of the known source, as also discussed in the previous
section.

4. SIMULATION
4.1 Experimental Conditions
To validate the performance of the proposed method to eliminate
both response sound and interfering noise, we conducted simula-
tion of speech enhancement using impulse responses measured in
real environment. The competitive methods against proposed com-
bination of MOMNI method and SBSS (proposed) are combination
of ABF and AEC assuming ideal DTDs (AEC+ABF), whose details
are described in the following section, conventional BSS (BSS),
SBSS without sound field control of MOMNI method (SBSS), con-
ventional MOMNI method with delay-and-sum (DS) beamformer
[6] (MOMNI+DS), and combination of MOMNI method and BSS
but SBSS (MOMNI+BSS).

Figure 4 shows the arrangement of the apparatuses in the ex-
perimental room. The reverberation time is approximately 160 ms.
The sampling frequency and the resolution are 16 kHz and 16 bit,
respectively. We used eight loudspeakers for the sound field control
and they are positioned along the outer circumstance of the room.
The primary source of the sound field reproduction is a loudspeaker
set in the center of the room. This loudspeaker is also used to play
back the response sound in AEC+ABF, BSS and SBSS. We place a
dummy head, i.e., a replica of an average human head and torso, at
the user’s position.

When the room transfer functions do not alter from the state
where the inverse filter was designed, the performance of the
MOMNI method is infinity. However, since the transfer functions
fluctuate at all times, the performances should be evaluated in the
state after fluctuations. To this end, we located an obstacle and
we measured various impulse responses by changing its position.
Supposing that another person than the user is moving about in the
room, we used a life-size mannequin as the obstacle. Note that we
did not change the position of the dummy head to fix the distance
to the microphones. We measured 13 kinds of impulse responses
as follows: one is for the state where the obstacle does not exist,
and the other 12 are for the states where the obstacle is located at
various positions near the dialogue system. The inverse filter in the
MOMNI method was designed with the impulse responses before
fluctuation. We evaluated the average of the performances in the
latter 12 states after fluctuations. We used a sentence of a male ut-
terance as the response sound. As the user’s utterance, we used 200
Japanese sentences by 13 male and 13 female speakers. The per-
formances are also averaged by these 200 utterances. The number
of microphone elements are three and two for MOMNI+DS and the
others, respectively.

The power of the of the user’s speech and the response sound
are arranged to be the same. The power of the interfering noise is
arranged to be 10 dB lower than the user’s speech. The source of the
interfering noise is set at the edge of the room. As interfering noise,
we used three signals, i.e., a female utterance, music (a symphony),
and stationary noise with −10 dB/octave spectral coloration.

4.2 Adaptation of AEC and ABF Using Ideal DTDs
In this section we describe adaptation algorithm of AEC+ABF. To
validate the performance limit of combination of AEC and ABF, we
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Figure 5: Configuration of the adaptation of the AECs and ABF
using ideal frequency-domain DTDs.

estimated the filter coefficients by frequency-domain batch adapta-
tion with ideal DTDs. To evaluate ideal behaviours of DTDs, we
manually gave the true durations when the power ratio of the signal
to eliminate to the other signals exceeds a threshold. Since human
speech is known to be sparse in time-frequency domain, there are
many time-frequency grids where the signal due to human speech
is much smaller or larger than the other signals. Thus, if we can
find such grids where a source to be adapted is dominant, the filters
can be adapted in frequency domain even if there is no full-band
single-talk duration. The adaptations are not on-line but batch-wise.
With this batch adaptation, the adaptation of AEC+ABF can be set
on the equal footing with the batch learning of the ICAs. Also,
since the system in this experiment is static after fluctuation once
occurred, batch adaptation estimates the performance limit of many
on-line adaptation algorithms because batch adaptation consistently
outperform on-line adaptation algorithms in static system.

Figure 5 shows the configuration of AEC+ABF. We use two
microphone elements. At first, two-channelled AECs eliminates
the response sound from the observed signals using DTD1 for the
AECs. At second, the processed signals of the AECs are inputted
to DTD2 for the ABF. Then, the ABF processes the outputs of the
AECs to eliminate the interfering noise.

Here we describe the adaptation of the AECs. The observed sig-
nals are denoted as x1(ω, t) and x2(ω , t). DTD1 detects the times
t ∈ T1(ω) when the power of the signals due to the response sound
are much larger than the others. Then the filters ĝ1(ω), ĝ2(ω) con-
ducts the echo cancellation as

yAECk(ω, t) = xk(ω , t)+ ĝk(ω, t)rsrc(ω , t) for k = 1,2, (23)

where yAECk(ω, t) are processed signals of the AECs. The residual
echo in the detected single-talk durations can be written as

εk(ω) = E
[
|yAECk(ω , t)|2

]
t∈T1(ω)

, (24)

where E[·] denotes expectation. The optimal solution of ĝk(ω) to
minimize εk(ω) satisfies

∂εk(ω)
∂ ĝ∗k(ω)

=
∂E

[
|xk(ω , t)+ ĝk(ω, t)rsrc(ω , t)|2

]
t∈T1(ω)

∂ ĝ∗k(ω)
= 0. (25)

Substituting expectation by time average, the optimal solution is
obtained as

ĝk(ω) = −
⟨xk(ω, t)r∗src(ω, t)⟩t∈T1(ω)

⟨|rsrc(ω , t)|2⟩t∈T1(ω)
. (26)

Subsequently, DTD2 detects the times t ∈ T2(ω) when the
power of the signals due to the interfering noise are much larger
than the others in yAEC1(ω , t) and yAEC2(ω, t). As an adaptation
method of the ABF, we adopted linear constrained minimum vari-
ance beamformer [3].

Figure 6 shows the relation between the rates of detected single-
talk grids and the thresholds for DTD1 and DTD2. Simultaneous
use of AEC and ABF is difficult because different DTDs are re-
quired for each of them. The difficulty can also be seen in the
trade-off between the quantity of single-talk grids and the thresh-
old which leads quality of the signals for adaptation. Among the
interfering noise signals, the female utterance is the most sparse
and the stationary noise is the most dense. Sparseness increases the
single-talk grids in DTD1 but decreases those in DTD2. Thus the
appropriate threshold varies according to the property of the signals.
We adopted the threshold of 15 dB with which the best performance
was obtained.
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Figure 6: Rates of detected single-talk grids with various threshold.
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Figure 7: Experimental results.

4.3 Results and Discussions
We show signal-to-noise ratios (SNRs) of the processed signals and
their speech recognition performance (word accuracy; WA [18])
in large vocabulary Japanese dictation. At first we compare the
SNRs. Because of the shortage of the single-talk grids detected
by the DTDs, the performance of AEC+ABF falls below 20 dB.
Note that such precise DTDs cannot be implemented in practice.
Because of the layout where the response sound source stand in line
with the microphone array and the user, BSS cannot eliminate the
response sound sufficiently. In contrast, SBSS shows the similarly
high scores to those of AEC+ABF without DTDs. The performance
of MOMNI+DS is not so high because DS cannot eliminate inter-
fering noise sufficiently. MOMNI+BSS shows higher score than
than MOMNI+DS, but lower than AEC+ABF and SBSS. Above all,
with successful elimination of the interfering noise and the residual
response sound, proposed method shows the highest performance.

As for the WAs, the scores are almost proportional to the SNRs
except for the low score of MOMNI+BSS because of the distortion
discussed in Sect. 3.4. The proposed method successfully elimi-
nates the residual response sound and the interfering noise with high
accuracy and low distortion, and shows the highest performance.
From these results, the efficacy of the proposed method is ascer-
tained.

5. CONCLUSION
We have proposed semi-blind source separation algorithm to sep-
arate mixture of known and unknown signals efficiently. Then we
have incorporated the source separation with the spoken dialogue
interface using sound field control. It is shown in the experiment
that the performance of the proposed method is higher than the per-
formance limit of the conventional combination of AEC and ABF
because of difficulty in DTD. From these findings, efficacy of the
proposed method is ascertained.

A. DEVIATION OF UPDATE FORMULA
In this appendix, we derive the updating formula (22) by minimiz-
ing Kullback-Leibler divergence IKL(ω) between the joint probabil-
ity distribution p(y(ω , t)) and the product of marginal probability
distributions ∏L

l=1 p(yl(ω, t)), described as

IKL(ω) =
∫

p(y(ω, t)) log
p(y(ω , t))

∏L
l=1 p(yl(ω , t))

dy(ω, t). (27)

Partial differential of IKL(ω) by W(ω) [7, 8] can be written as

∂ IKL(ω)
∂W̄(ω)

= −W−H(ω)+E
[
Φ(y(ω, t))yH(ω , t)

]
t
, (28)

where {·}−H denotes inverse of conjugate transpose and E[·]t de-
notes expectation operator with respect to t. Similarly to Eq. (20),
partial differential with respect to W̄(ω, t) can be given by
∂ IKL(ω)
∂ W̄(ω)

= − [IL−1, 0]
∂ IKL(ω)
∂W(ω)

= − [IL−1, 0]W−H(ω)+E
[
Φ(ȳ(ω, t))xH(ω , t)

]
t
. (29)

By applying the natural gradient of W(ω) [7], the update of W̄(ω)
can be obtained as

W̄++(ω) = W̄(ω)−η
∂ IKL(ω)
∂W̄(ω)

WH(ω)W(ω)

= W̄(ω)+η
{

W̄(ω)−E
[
Φ

(
ȳ(ω , t)

)
yH(ω , t)

]
tW(ω)

}
.

(30)
Assuming the ergodicity of the sources, the expectation can be sub-
stituted by the time average and the update formula (22) is obtained.
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