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Abstract—Power electronics systems have become increas-
ingly vulnerable to cyber-physical threats due to their growing
penetration in Internet of Things (IoT) enabled applications,
including connected electric vehicles (EVs). In response to this
emerging need, a cyber-physical-security initiative was recently
launched by the IEEE power electronics society (PELS). With
increasing connectivity due to Vehicle-to-everything (V2X) and
the number of electronic control units, connected electric vehicles
are facing greater cyber-physical security challenges. However,
existing research extensively focuses on the network security
of internal combustion engine vehicles and fails to address
the cyber-physical security of EVs specifically. In this paper,
the challenges and future visions of cyber-physical security are
discussed for connected electric vehicles from the perspective
of firmware security, vehicle charging safety, and powertrain
control security. The vulnerabilities of EVs are investigated
under a variety of cyber-attacks, ranging from energy-efficiency-
motivated attacks to safety-motivated attacks. Simulation results,
including hardware-in-the-loop (HIL) results, are provided to
further analyze the cyber-attack impacts on both converter
(device) and vehicle (system) levels. More importantly, an ar-
chitecture for the next-generation power electronics systems is
proposed to address the cyber-physical security challenges of
EVs. Finally, potential research opportunities are discussed in
detail, including detection and migration for firmware security,
model-based, and data-driven detection and mitigation. To the
best of our knowledge, this is the first comprehensive study on
cyber-physical security of powertrain systems in modern EVs.

Index Terms—Cyber-physical security, Modern electric ve-
hicles, Powertrain systems, Firmware security, Vehicle-to-grid
security

I. INTRODUCTION

W ITH the growing penetration in IoT enabled applica-
tions, e.g., electric vehicles (EVs), power electronics

systems are becoming more vulnerable to cyber-physical threats
ranging from cyber-attacks to physical faults. Meanwhile, due to
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the lack of cyber awareness in the power electronics community,
it becomes more urgent to develop monitoring and diagnosis
strategies for networked power electronics systems. For many
safety-critical applications, if these threats are not detected
at the early stage, they can lead to a catastrophic failure and
substantial economic loss. In response to this emerging need, a
PELS cyber-physical-security initiative was recently launched
by the IEEE power electronics society (PELS), and the first
IEEE Power Electronics Security Workshop (Cyber PELS) was
held in April 2019.

While cyber-physical security of power electronics systems
is an emerging area, vehicle security has been actively studied
from information/network security aspects over the past few
years [1], because of the enormous number of electronics and
software that rely on environmental sensors and networks. For
example, the traffic, road, and environmental information has
been widely used in both academia and industry, which can
be obtained from radar, lidar, visual sensors, vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything
(V2X), and dedicated short-range communication [2], [3]. Some
examples of cyber-attacks have been demonstrated in literature
and reports [4]. In July 2015, two researchers exploited software
vulnerabilities in a Cherokee Jeep to remotely take control of
safety-critical systems, leading to severe consequences such as
disabling brakes and losing control [5]. In [6], researchers were
able to hack a Tesla via both Wi-Fi and cellular connection, and
in [7], the potential cyber-attacks specific to automated vehicles
and their vulnerabilities were investigated. The automotive
industry has made significant efforts to design secure modern
cars, and several security standards are established, for instance,
Society of Automotive Engineers (SAE) J3061, International
Organization for Standardization (ISO) 26262, and a committee
draft of the “ISO-SAE Approved new Work Item 21434 Road
Vehicles - Cybersecurity Engineering” standard. Overview of
the recommendations provided by these guidebooks is given
in [8]–[10].

Apart from the efforts of automotive industry, researchers in
academia have published studies in the last few years, among
which the security of in-vehicle networks, especially for the
network in connected vehicles, is a well-researched topic [7],
[11]. A typical in-vehicle network architecture of a modern
vehicle is shown in Fig. 1, which illustrates multiple electronic
subsystems. In this architecture, the safety-critical systems
(braking system, engine control unit, steering control unit),
powertrain control, body and comfort control, in-vehicle info-
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tainment, and telematics systems are considered [12]. Based on
this architecture, several studies analyzed vehicle cybersecurity
and discussed several approaches to defend vehicles against
malware attacks. Further, [3], [12]–[15] presented mitigation
techniques and solution frameworks to defend modern vehicles
against cyber-attacks such as secure onboard diagnostics (OBD-
II) port, better firewall, reliable hardware, secure software
updates, penetration testing, and code reviews. In addition,
some analytics and detection methodologies for in-vehicle
network security [16]–[18] and control systems [19], [20] have
been studied.
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Fig. 1: A typical in-vehicle network architecture of modern
cars [12], where ABS means antilock brake system; ESC
means electronic stability program; ADAS is advanced driver
assistance system; ACC is adaptive cruise control.

In recent years, the cyber-physical security of vehicles
is gaining interest because the information/network security
approach alone cannot guarantee the security of the whole
system. The core problem is how to assess, detect, identify,
and mitigate such attacks and ensure the safe operation of the
vehicles. To address this issue, [21] analyzed the impact of
security attack (rear-end collision) on the connected adaptive
cruise control (ACC) system. In [22], the stability of the vehicle
platoon under jamming attacks was investigated. To defend
the vehicles against cyber-attacks, [20] and [23] proposed
detection and mitigation strategies to reduce collisions for a
vehicle platooning system.

A. Work and Contributions

While the aforementioned studies provide surveys and
technical foundations, challenges of cyber-physical security
in modern electric vehicles (EVs) remain significant: (1)
Most of the existing reviews and studies largely focus on
information/network security, and they do not fully address
cyber-physical security of vehicle critical control systems.
(2) Although several works have been reported concerning
automotive control systems (e.g., connected ACC and vehicle
platooning), only safety-critical systems are addressed; very
few studies focus on cyber-physical security of long-term
specifications such as efficiency performance in powertrain
systems, which may result in severe degradation of energy effi-
ciency and battery capacity [24], as well as reducing vehicle’s

monetary value. (3) The existing security studies of internal
combustion engine (ICE) vehicles do not specifically address
powertrain systems in EVs, namely, energy management system
(EMS), battery, and electric drives. With increasing connectivity
between EVs, charging stations, and smart grids, EVs are
exposed to other serious cyber-threats that do not exist for ICE
vehicles. In an ICE vehicle, the control systems, e.g., engine
control system, steering system, brake system, transmission
system, driver assistance systems like ABS and ESC, are
typically distributed. Differently, in an EV, because of the
short drive chain and compact drive structure, the control
systems in the VCU are more centralized. For example, in four
wheel-motor-driven EVs, the torque reference of each motor
influence both longitudinal (e.g., regenerative braking system,
ABS, and acceleration slip regulation (ASR)) and lateral control
performances (e.g., ESC); therefore, controls in an EV are more
centralized for coordination between these systems. Then, the
more centralized control architecture and higher electrification
of EVs will also inevitably expand the attack surfaces and their
ultimate impacts, especially on the EMS, battery, and electric
drives in powertrain systems.

In this paper, challenges and future visions of the cyber-
physical security in powertrain systems are discussed, which
to our knowledge, is the first comprehensive study on this area.
The main contributions of the paper are as follows:
• For modern EVs, the cyber-physical security of powertrain

systems is systematically addressed from aspects of
firmware security, vehicle charging safety (vehicle-to-grid
(V2G) safety), and powertrain control security.

• The vulnerabilities of EVs are investigated under a
variety of cyber-attacks, ranging from energy-efficiency-
motivated attacks to safety-motivated attacks. Simulation
results, including hardware-in-the-loop (HIL) results, are
provided to further analyze the cyber-attack impacts on
both converter (device) and vehicle (system) levels.

• An architecture for the next-generation power electronics
systems is proposed to address the cyber-physical security
challenges of EVs. Potential research opportunities for
detection, diagnosis, and mitigation of cyber-attacks are
discussed in detail, which will potentially be used in future
research on cyber-physical security for modern EVs.

B. Description of the System Architecture

As illustrated in Fig. 2, a modern EV generally includes
one or more motors, a battery pack, and other mechanic and
electronic components. Unlike a traditional ICE vehicle, the
EV is connected to the charging infrastructure that links with
the power grid. The powertrain diagram that characterizes
longitudinal driving dynamics can be divided into three parts
according to their different functions: environmental sensing
and perception, upper driver system, and powertrain system. In
the environmental sensing and perception part, the vehicle can
be available to the extraneous data reflecting the traffic and road
conditions by using V2V, V2I, vehicle-to-cloud (V2C), onboard
camera, radar, and lidar. Then, the upper driver controller (e.g.,
auto-driving system or a human driver) provides the torque
demand to the powertrain system, which generates the desired
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Fig. 2: System diagram of the modern EV.

longitudinal velocity profile under different traffics. All of
the signals are transmitted by the high-speed control area
network (CAN) buses, local interconnect network (LIN), and
FlexRay communication. In the powertrain system, given the
total desired torque demand, the EMS focuses on optimizing the
torque references (positive or negative values) of each electric
drive system (EDS) to maximize the energy efficiency. When
considering the brake regenerative control, the brake action
is derived by optimizing the electrical and hydraulic braking.
When a negative torque is required, the motor works as a
generator, and the vehicle’s kinetic energy charges the battery
during deceleration. In the aspect of hardware, all of the control
systems are embedded in the electronic control unit (ECU). For
the cyber-physical security study of the EV, it is assumed that
the attacker can illegally access the in-vehicle communication
buses, arbitrarily modify the sensor measurements, and hijack
the powertrain system. In particular, they may also obtain
access to the battery through the connection between the battery
management system and the charging infrastructure.

As stated above, the vehicle has two lines of defense
against invaders. The first one is information security that
aims to prevent malicious attacks, e.g., secure hardware, secure
communication techniques, firewall, secure software update,
etc. Among these security applications, reliable hardware is the
most critical. For instance, it can offer secure storage, random
number generators, and hardware firewalls. Also, secure micro-
controllers and drivers can support real-time control systems
and online attack detection, diagnosis, and countermeasures.
The second line of defense considers the critical issue: once
the car has been attacked, what should we do to assess, detect,
and mitigate such attacks and ensure the safe operation of
the ECUs? Then, effective detection, diagnosis, and mitigation
methodologies should be developed. Therefore, in real-world
applications, collaborative efforts should be made from both
information and control security perspectives. In the following,
we first review the access and taxonomy of cyber-attacks,

including cyber-attacks access in terms of firmware security
and taxonomy of cyber-attacks in the cyber-physical system.
Then, vehicle charging safety in V2G and powertrain control
security will be discussed.

II. PRELIMINARY INTRODUCTION OF CYBER-ATTACKS

A. Cyber-attack access in terms of firmware security

Perhaps the most well-known vehicle exploit is the 2015 Jeep
hack [5]. In this attack, a myriad of common security issues
was identified in the in-vehicle infotainment (IVI) system of
a Cherokee Jeep. These issues include low-entropy password
generation, improper network isolation, lack of access control,
and insecure firmware update. This attack is not the first of its
kind. Dating back to 2010, researchers have already successfully
comprised the GM Onstar Gen8 and the remote telematics
system on GM automobiles [25], [26]. They identified a buffer
overflow vulnerability, which can be remotely triggered and
allows the attackers to penetrate the CAN bus. Nowadays,
an average car includes thousands of pieces of hardware on
which millions of lines of code run. The greatly enlarged attack
surface undoubtedly puts vehicles in danger.

The IVI has been a main target for the attackers. On
the one hand, the IVI has direct/indirect access to other
ECUs via the CAN bus, which grants the attackers a high
return on investment. More specifically, it allows the attackers
to directly hijack non-safety and safety-critical functions,
including steering or brake systems. On the other hand, the IVI
involves multiple components that implement useful features.
They inevitably expose more vulnerabilities to cybercriminals.
Note that the IVI firmware is usually powered by a full-fledged
OS. It is no different from traditional software, which is subject
to vulnerabilities, such as buffer overflow, use-after-free, and
return-oriented programming attacks. Several attack vectors to
the bloated software stack are discussed based on the attacker’s
required proximity in delivering a malicious input to a particular
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access vector in the field. To fix a vulnerability, complex in-
field update has to be implemented, which itself has become
a hot attack target. For clear expression, Table I consolidates
the access and taxonomy of cyber-attacks in terms of firmware
security. For each attack category, attack prerequisites, the
vulnerable interface being targeted, attack approaches, and the
consequences will be discussed.

1) Local Attacks: When the attackers have physical access
to the car, they could directly or indirectly access the car’s
internal networks via physical interfaces. For example, there
has been work that exploits the firmware of the aftermarket
telematics control unit (TCU), which connects to a car via the
standard OBD-II port [27]. Since the OBD-II port is connected
to the CAN bus directly, insecure firmware of TCUs imposes
a disconcerting threat to vehicle security. Researchers from
Zingbox used a maliciously crafted USB device to infect the
IVI [28]. Once the device is plugged into the car’s USB port,
the injected malware can then put the IVI system into an
unusable state. Using similar methodologies, malformed CD-
ROM tracks and multimedia files were used to inject Trojan
horses into the car [29].

2) Short-range wireless attacks: Short-range wireless chan-
nels include Bluetooth, remote keyless entry, radio frequency
identification (RFID), tire pressure monitoring systems (TPMS),
WiFi, etc. Crafting a malformed Bluetooth media, the CarsBlues
vulnerability allows attackers to steal personally identifiable
information (PII) of users who have synced their phones to
cars via Bluetooth [30]. By connecting the car to a malicious
WiFi hotspot, the attackers could access the CAN bus via
the web browser on a Tesla Model S [31]. Since 2008, the
U.S. government has mandated that each newly manufactured
vehicle needs a TPMS that provides real-time tire pressure
diagnosis. However, the wireless communication used by the
ECU of the TPMS and other components has been an attack
target [25]. The car’s remote keyless system has also been
compromised. With code grabbers, which is sold at $32 in
the dark web, the attackers can intercept the communication
between the key and the car.

3) Remote attacks: In the first quarter of 2016, connected
cars accounted for a third of all new cellular devices [32].
By 2020, virtually all manufactured vehicles will come with
embedded connectivity. The connectivity is enabled by long-
range communication channels, including cellular, global
positioning system (GPS), satellite radio, digital radio, etc.
The ability to use the cellular spectrum as an entry point into
the car network provides cybercriminals with unprecedented
convenience. Once the attackers have penetrated the internal
network via the cellular entry point, more attack sources and
surfaces can be reached. This consequence has been clearly
demonstrated in the 2015 Jeep hack [5]. In this attack, the
attackers first remotely broke into the internal network of the
IVI via the 3G cellular access point. Then, as insiders, they
reprogrammed the firmware of the V850 chip (gateway ECU to
the CAN bus) to get access to the CAN bus eventually. In the
2015 Jeep hack, they could even upload a malicious firmware
that directly talks to the CAN bus. At the application level,
the insider attackers could exploit a bug in the Just-in-Time
engine of the browser render process to cause arbitrary code

execution on Tesla Model 3’s firmware [33].

B. Cyber-attack modeling in vehicle control systems

Generally speaking, the cyber threats can be categorized into
three types based on their different objectives, namely cyber-
attacks on confidentiality, integrity, and availability, which are
often denoted as CIA triad for carrying out risk assessments on
cyber-physical security [34], [35]. In the confidentiality attacks,
the malicious attacker attends to obtain the non-disclosure
of data, e.g., personal sensitive and private information from
unauthorized access. In the second case, the attackers can either
physically or remotely gain access to the system or the ECU
and generate false signals or modify the system parameters
to perform the attack, leading the systems into a dangerous
operation region. The cyber-attacks on availability means that
timely access to the data or system functionalities is destroyed.

As a cyber-physical control system, the powertrain and power
electronic systems in EVs may present similar attack surfaces.
Typically, cyber-attacks in a cyber-physical control system
can be qualitatively categorized into three types: denial of
service (DOS) attacks, replay attacks, and false data injection
attacks [51]. Although the three types of cyber-attacks are
summarized according to the cybersecurity research in cyber-
physical control systems, up to date, they are widely used in
vehicle cybersecurity. To clearly express the anomaly of cyber-
attacks in vehicle control systems, we summarize the related
works in Table II, in which attack setup, attackers’ capabili-
ties, and real-world examples are presented. For convenient
expression, we consider a general control architecture, which
has three components [52]: the plant (physical phenomena of
interest including the actuators), sensors to obtain the system
outputs y, and control commands u. Let ỹ and ũ represent the
compromised sensor measurement and control signal, respec-
tively. The attack duration is denoted as Ta = [tstart, tend],
where tstart and tend represent the start and end time of attack,
respectively. Then, typical mathematical formulas of these three
cyber-attacks are described as follows [52], [53].

1) DOS attacks: DOS attack means the attacker sends
malicious messages or data with a very high frequency to
destroy the traffic condition of the whole communications. The
sensor cannot reach the controller in the attack duration, and the
control signal does not reach an actuator. Then, a conservative
response strategy in real applications is to use the last signal
received as the current value, as follows:

ỹ(t) =

{
y(t), t 6∈ Ta
y(tstart), t ∈ Ta

or ũ(t) =

{
u(t), t 6∈ Ta
u(tstart), t ∈ Ta

(1)
2) Replay attacks: Replay attack means the attacker records

data from original normal conditions during the period of
disturbance to fool the operator not to take actions. In equations,
a replay attack can be expressed as ỹ(t) = Y and ũ(t) = U,
where Y and U represent the recorded set of the past sensor
and control signal, respectively.

3) Data injection attacks: Data injection attacks can directly
falsify measurements or inject incorrect instructions to the
system, which can be expressed in many forms, e.g., scaling and
addictive attacks [53], high-frequency harmonics, and periodic
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TABLE I: Firmware vulnerability and its impacts.

Local attacks Short-range Wireless Attacks Remote Attacks
Prerequisites Physical access Within wireless signal coverage

(less than 100m).
Example interface OBD-II port, USB port, etc. Bluetooth, WiFi, RFID, etc. 3G/Long Term Evolution

(LTE)/5G, GPS, etc.
Approach Malicious hardware dongle, mal-

formed media contents, fault in-
jection, etc.

Malformed media contents, sig-
nal spoofing, insecure network
configuration, etc.

Insecure network configuration,
etc.

Consequence CAN access, firmware reverse
engineering, arbitrary code exe-
cution, firmware reprogramming,
etc.

CAN access, unauthorized car
access, PII leak, arbitrary code
execution, etc.

CAN access, firmware repro-
gramming, arbitrary code execu-
tion, etc.

TABLE II: Vulnerability and impacts of cyber-attacks on vehicles.

Attack Setup Targeting System Attacker Capabilities Real-word Examples
DOS attack Cooperative cruise control

(CCC) [19], [21], internal
vehicle networks [15], [36].

The attacker has no priori
knowledge.

Distributed DOS attacks on
Amazon web services in 2020,
Six Banks in 2012, and GitHub
in 2018 [37].

Replay attack Linear control system [38],
CCC [21], [39], operator-
vehicle network [40], internal
vehicle networks [41].

The attacker has no priori
knowledge but has resources to
record and manipulate data in
the system.

Data injection attack Electric drives in EVs [42],
energy management system in
EVs [43], linear control sys-
tem [44].

The attacker has limited system
knowledge [45], [46] or full
system knowledge [34], [47].

Hackers remotely control a Jeep
in July 2015 [5]. Cyber-attacks
on Tesla [6].

Stealthy attack EV battery system [48], supervi-
sory control and data acquisition
(SCADA) system [49], smart
grid [50].

The attacker has full system
knowledge and can access to all
sensor and actuator channels.

pulse injection [42]. If the attacker has no prior knowledge
of the system, the data injection attacks can be designed by
mixing the original value with a malicious factor, as

ỹ(t) =

{
y(t), t 6∈ Ta
νy(t) + ε, t ∈ Ta

or ũ(t) =

{
u(t), t 6∈ Ta
νu(t) + ε, t ∈ Ta

(2)
Here, ν and ε are unknown signals due to the malicious
modification of the signals, for instance, white noise, periodic
function, periodic pulse injection, constant value, etc. If an
attacker is highly-skilled and has sufficient knowledge of the
system, sophisticated and stealthy data injection attacks can
be created. These cyber-attacks would constantly affect the
system operation while being undetected. For example, in [38],
a stealthy cyber-attack was presented, which could remain
undetectable to the exploited detector (χ2-detector based on
Kalman filters). In [50], based on the robust extended Kalman
filter, a real-time detection for false data injection attacks was
proposed. In [54], the authors designed an artificial linear
control system, generating a sequence of data injection to
sensors that pass the state estimator and statistical fault detector.
In general, these kinds of stealthy attacks are based on a linear

control model. The difference vectors between normal and
compromised systems are functions of the attack sequence of
the artificial linear control system. The main objective of the
attacker is to maximize the estimation error without triggering
the alarm while increasing the system states to infinity [54].

Besides the aforementioned cyber-attack modeling, there are
some potential cyber-attacks specific to powertrain and power
electronic systems in EVs. These cyber-attacks are generated
based on their specific attack targets. For example, the battery-
drain attacks are studied in [48], [55], in which the cyber-attacks
are conducted to deteriorate the power capability of battery
packs. On the one hand, to over-discharge the battery cells,
cyber-attacks are designed by using wake-up functions - let the
adversary wake up ECUs. On the other hand, a compromised
BMS can modify the upper cut-off voltage to realize overcharge
- higher charging voltage. Both of the two scenarios would
lead to permanent physical damage to the battery packs. For
the powertrain system, the authors in [56] demonstrated some
potential cyber-attacks aiming at misleading the powertrain
control system. For example, an attacker may inform the ECU
not to charge the battery when it needs to be charged. Also,
through GPS deception, the malicious attack may provide the
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powertrain control system with false information about its
location and some other GPS information, which may cause
wrong battery consumption prediction and over-discharge of
the battery. For the cybersecurity of power electronic systems in
EVs, authors in [57] demonstrated the cybersecurity challenges
related to power electronic systems. In this study, a spoofing
attack aims to modify a signal in the system before quantization
and a man-in-the-middle attack can be duplicated by changing
the quantized data transmitted by the sensors. In [42], [58],
the impact analysis of various data integrity attacks on power
electronics and electric drives are analyzed. Overall, up to
date, little research work on power electronics security in
EVs has been published. For a more detailed discussion on
potential cyber-attacks on modern vehicles, please refer to
surveys in [13], [34], [59].

III. VEHICLE CHARGING SECURITY

The impacts of large-scale, light-duty EVs charging demand
on distribution networks have been well studied. In general,
charging demands of light-duty EVs [60] have been considered
as active loads through V2G, grid-to-vehicle (G2V), and
vehicle-to-building (V2B) modes [61]. It has been well studied
and widely acknowledged that charging EVs in an uncontrolled
manner could cause reliability issues and negative effects on
power grids [62]–[64]. However, the proliferation of electrified,
heavy-duty transit buses [65], [66] brings new challenges
to power grids as they are operated with high power and
high volatility. A major challenge to accurately investigate the
impact of cyber-attacks is the lack of real-time, spatial-temporal
models to represent the interaction among a large volume of
EVs, traffic and driving patterns, and geographically spread
charging infrastructures. Furthermore, the size and potential
caused by the charging demands of electrified bus fleets are
often overlooked. Most major public transportation systems
worldwide have announced strategic plans for 100% electric
bus fleets in the near future. Moreover, electric buses consume
much more power than light-duty EVs due to their size, weight,
and loading. For instance, a state-of-the-art Proterra electric
bus can be charged at 500 kW. Therefore, the overall charging
profile of bus fleets would be high pulsed, and volatile [67].
To summarize, the potential impact of both light-duty EVs and
electrified bus fleets with vulnerable powertrain systems on
power grids can be summarized as the following two categories.

First, power grids are being operated with inaccurate charging
demand models, as almost all state-of-the-art models are based
on certain assumptions [68]. For instance, the starting time,
initial battery state-of-the-charge, and charging period for
EVs in commercial buildings are represented by the normal,
log-normal, and truncated normal distributions, respectively
[62]. However, it is questionable whether these location-
data-driven assumptions can be applied in general to other
regions. Therefore, recent efforts have been devoted to identify
real-time EV charging profiles [68]–[72]. Furthermore, it
is shown that, assuming light-duty EVs are subject to 11-
kW charging and tested on Denmark distribution network
data, uncontrolled and altering charging demands [73], [74]
could cause local voltage unbalances and also trigger grid

component overloading [75]. A proof-of-concept demonstration
was provided using public sources from New York City has
shown that aggregated EVs could be controlled to launch cyber-
attacks on the power grid via malicious demand variations [76].
Coordinated attacks on either the cyber or the physical layer
could propagate to infect other components and cause cascading
effects. The above-discussed literature focuses on coordinated
cyber-attacks through altering demand caused by vulnerable
charging infrastructures, i.e., V2G and G2V applications. It is
worth noting that, if instead powertrain systems are malicious,
EVs could also cause similar risks to power grid stability under
V2G settings. Furthermore, being operated with much higher
wattage levels, heavy-duty electrified transportation fleets could
significantly amplify the impact of pulsed charging needs and
cause unexpected grid stability issues.

Furthermore, existing EV demand models also do not effec-
tively incorporate traffic models and driver behaviors [75]. If
powertrain systems are under cyber-attacks, power grids could
encounter greater vulnerabilities due to coupled transportation-
power systems. The intrinsic characteristics of transportation
systems such as traffic nonlinearities, congestion, instabilities,
road capacity, as well as special events like extreme weather or
sporting events, could dramatically influence EV travel patterns,
and in turn, further impact spatial and temporal distributions of
the power grid charging demand profiles. As a demonstration
example, if a fleet of combined light-duty EVs and electric
buses are under cyber-attacks and break down during peak hours
due to powertrain failures, they could induce designed traffic
jams and reshape the forecasted load profiles. For instance, a
wide area of the residential area could be delayed or cause
significant spikes, leading to overloading and voltage stability
issues.

A proof-of-concept simulation was conducted by the authors
on a 50 km, 4-lane highway with a peak density of 533
vehicles per mile in Orange County, California. With 50%
of light-duty EV penetration on the highway (which can
be equivalent to fewer EVs with some electric buses), the
simulation results showed that several EVs under control could
induce a significant traffic jam and cause more EVs to reach
their lowest battery state-of-the-charge. In turn, those EVs
arrive destination late with an immediate need to recharge. A
five-fold increase (4 MW to 20 MW) in total power demand
was observed, and a seven-fold increase (0.19 MW/km to 1.4
MW/km) in local peak demand relative to the baseline profile
was also a significant threat to power grid stability.

IV. POWERTRAIN CONTROL SECURITY

As shown in Fig. 3, the powertrain control security involves
system- and device-level security that directly impacts the
functionality and safety of the vehicles. The system-level EMS
is usually denoted as the ”Cyber” part, which focuses on the
overall performance of the EV, for instance, energy efficiency
and battery management. In the device-level EDS, the motor
controller and the actuator (plant) are considered as the ”Cyber”
and ”Physical” part, respectively. In general, the control period
of the system level is 10-20 milliseconds, and the control period
of the device-level EDS is usually 0.1 milliseconds or less.
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Fig. 3: Diagram of the powertrain control system.

A. System-level Cybersecurity of EMS

1) System description: As shown in Fig. 3, the EMS is
developed by optimizing the brake, torque, and battery power
to maximize energy efficiency while satisfying the desired
dynamic performance, e.g., velocity reference, total wheel
torque. To observe the impact of the cyber-attacks on EMS, a
predictive EMS under the framework of the model predictive
control (MPC) is developed. A detailed description of the
controller is given in the Appendix.

2) Attack modeling and definition: Different from the safety-
critical systems, cyber-attacks on EMS usually impact energy
consumption only. Thus, the driver can hardly notice the attack.
In this subsection, for a better understanding of cyber-physical
security, some preliminary results of cyber-attacks on the EMS
are presented. Based on the MPC-based EMS, Fig. 3 shows the
potential cyber-attack locations and signals. The cyber-attacks
may occur in different locations, including sensor measurements
(vehicle speed v and road slope α) and control inputs (torque
reference of the jth motor, marked as Tref,j). As a case study,
we firstly consider the continuous data injection attacks on
Tref,j . The compromised torque reference that will be used
by the motor drive is expressed as

T atk
ref,j = νTref,j + ε, (3)

where ε and ν are unknown signals due to the malicious
modification; Tref,j denotes the actual signal. Without loss of
generality, we set j = 2, which means that the second motor
is compromised. Four attack scenarios (marked as Cases 1-4)
are defined as ν = {−0.5, 0.5, 1.5, 2} (ε = 0), respectively;
the other four cases (marked as Cases 5-8) are defined as
ε ∈ {±0.2Tmax,±0.4Tmax} (ν = 1), respectively. Here Tmax

is set to 400Nm.
In addition to the effect on energy efficiency, cyber-attacks

on the powertrain system may also degrade the dynamic
performance. Based on the developed EMS in the above, four
data injection attacks targeting v (marked as Cases v-1 and v-2)
are designed, expressed as vatk = νvv, where vatk denotes the
compromised speed, and νv ∈ {0.8, 1.2}.

3) Simulation setup: The simulation is conducted under
two typical long-term driving cycles - New European Driving
Cycle (NEDC) and Urban Dynamometer Driving Schedule
(UDDS), which are widely used in literature [77]–[81]. In [78],
under different driving cycles, trajectories, and optimization
algorithms of EMSs in electric vehicles (including hybrid
electric vehicles and battery electric vehicles) were summarized.
Although the real driving scenarios are often more complex,
these standardized driving cycles can serve as examples for
practical driving tests, as discussed in [79].

4) Results and impact analysis: The results of system
performance are presented in Fig. 4, including velocity tracking
and energy consumption, which illustrate that despite the
compromised torque reference of jth motor, the system presents
a similar dynamic performance in terms of speed tracking. This
implies that those efficient-goal-oriented attacks (e.g., cyber-
attacks in Tref,j) can cause significant efficiency degradation
while not affecting driving tasks. Based on the comparison
between the energy consumption profiles, the cyber-attacks
exhibit different effects on energy efficiency. When a reverse
command (ν < 0) is input to the objecting motor, e.g., attack
case 1, the energy efficiency would be reduced over 20%.
This significant reduction of energy efficiency is likely to
occur in practical applications. For example, when the initial
command of the targeted motor is to drive the car by providing
positive torque, and a compromised torque reference makes it
constantly work as a generator, then the other motors need to
output more power to fulfill the required wheel torque. In such
a case, compared to the normal conditions, the extra power will
be wasted. Although the negative power from the jth motor
can recharge the battery, the energy loss due to the internal
resistance and other losses in the motor cannot be ignored.
Besides the negative-ν-attack, other false data injection attacks
with various definitions of ε and positive ν may also lead to
higher energy consumption (up to 10%), causing a considerable
energy loss in the long term. Therefore, unlike the cyber-attacks
on life-critical systems, such as driver assistance systems (e.g.,
ESC), cyber-attacks that deteriorate system efficiency also
require attention and further investigation. From the results in
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Fig. 4: Impact of cyber-attacks on Tref,j under NEDC and UDDS driving cycles.
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Fig. 5: Impact of cyber-attacks on v under NEDC and UDDS driving cycles.

Fig. 5, it can be seen that cyber-attacks on v may significantly
affect the tracking accuracy. In real-world applications, the
larger tracking error will lead to poor dynamic performance.

B. Device-level Cybersecurity of EDSs

1) System description: As mentioned earlier, at the device
level, the function of an EDS is to track the torque commands
given by the system-level controller. Fig. 6 shows the cyber-
physical diagram of a typical EDS, wherein the physical
systems (DC supply, power converter, electric machine) are
denoted in blue, and the cyber systems are denoted in red.
According to the feedback signals gathered from sensors
and torque command from the system-level controller, the
local controller calculates the duty cycles needed for pulse
width modulation signals (PWM), which then drive the power
converter through a gate driver.

2) Attack modeling and definition: In the traditional EDS,
the communication to the external systems is limited; thus, the
traditional EDS is hardly targeted by the cyber-attacks, and
the physical faults are the primary concerns. For example, as
shown in Fig. 6, three types of common physical faults are
denoted in yellow: mechanical faults (fault A), open-circuit
faults in power electronics (fault B), and machine winding
inter-turn short circuit faults (fault C). In the past decades, the
physical faults of the EDS and related components and devices
are widely studied. In [82], [83], some of the research outcomes
and progress of EDS condition monitoring and fault diagnosis

were reviewed, such as inter-turn short circuit fault detection
in the electric machines and open circuit fault diagnosis in
power electronics modules.

However, with the increasing computational capability of the
digital signal processors (DSP) and micro control units (MCU),
and the development of the communication network techniques,
local controllers can achieve advanced functionalities, such as
online optimization, fault diagnosis, and multi-mode operations.
Such functions require the modern EDS to communicate more
frequently with the onboard networks than ever, making the
EDS much more vulnerable to malicious attacks from the
cyber systems. In Fig. 6, some common attacks are denoted by
red attack vectors. Attack A represents the sensor attacks, in
which the attacker could fabricate false sensor signals or block
the communication between sensors and estimators. Attack B
represents the estimator attacks or observer attacks, in which
the attacker could use false signals or parameters to modify
the estimator. Attack C denotes the local controller attacks, in
which the attacker could manipulate the controller parameters
or directly modify the control commands to the gate drivers.
Besides, data injection attacks targeting the EDS controller
parameters could also lead to system instability. Meanwhile, a
series of false current reference injected to the current controller
could make the EDS operate at deteriorated efficiency without
being detected, which will largely reduce the vehicle cruising
capability. Also, introducing random delay to the feedback
signals could cause a large ripple in the output torque and
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current, which eventually could shorten the battery and machine
life.

As a case study, several replay and false data injection
attacks on ia (see Attack A in Fig. 6) in an interior permanent
magnet synchronous machine (IPMSM) are conducted. The
false data injection attacks are expressed as iatka = νiia, where
ν ∈ {1.2,−0.75}. Then, three replay attacks are defined with
different attack start timings, denoted as tatk ∈ {72, 103, 181}s,
wherein the recording time horizon is set to five seconds.

Fig. 6: Diagram of a general electric drive system.

Fig. 7: OPAL-RT hardware-in-the-loop (HIL) real-time simula-
tion testbed.

3) Simulation setup: The simulation is conducted under a
high-fidelity EV powertrain model in a real-time hardware-
in-the-loop (HIL) testbed (OPAL-RT OP5700), as shown in
Fig. 7. In this testbed, a detailed model of the motor (IPMSM)
and vehicle dynamics are included. The sampling time is set
to 25µs.

4) Results and impact analysis: The results in Fig. 8
demonstrate that the compromised ia may cause a larger
tracking error of the motor. Notably, in replay attack scenarios,
the torque increases dramatically once the cyber-attacks are
activated. From the perspective of the longitudinal performance
in powertrain, despite the short attack period, this transient
degradation in performance of torque tracking may further
cause unexpected jerk of the vehicle body, significantly reduc-
ing the driving comfortability. From the lateral performance
aspect, if the attack occurs on a curve road segment, the higher
tracking error may also lead to lateral instability.

From the attacker’s perspective, once the EDS is compro-
mised, the attacker’s benefits could be summarized in three
categories: safety, economy, and information.
• Safety: a malicious attacker could simply aim at causing

some damages to the systems. For example, it could

increase the current reference in the current control loop
or modify the duty cycle from the controller output so that
the power converter will be overcharged and eventually
damaged.

• Economic: a profit-driven attacker could anticipate gain-
ing economic benefits from the attacks. For example, a
charging station operator could intrude into the electric
drive systems through the charging station and inject some
false data into the sensors or estimators. This kind of cyber-
attacks will cause higher current harmonics and eventually
lead to higher energy loss in the traction inverters. In such
a case, the vehicle’s cruise range will be reduced, and
the customers will have to recharge their vehicles more
frequently. Then the operator will gain more money.

• Information: some attackers also intend to steal the
system information so that they could either intercept the
technological property or invade customers’ privacy. For
example, the attack could be deployed to the estimators,
where system operation data will be calculated and sent
to external devices.

5) Preliminary discussion on distinguishing between ma-
licious cyber-attacks and physical faults: When it comes to
cybersecurity, a broad concern is how to distinguish between
malicious cyber-attacks and physical faults. One of the possible
fault situations in the powertrain system is motor failures,
leading to misbehavior during driving. To observe the difference
between malicious cyber-attacks and physical faults, several
fault scenarios are presented in Fig. 9. Results of a cyber-attack
are also given for comparison. In this figure, physical faults 1
to 3 represent winding grounded short circuit fault on phase A,
phase A & B, and phase A & B & C, respectively. Physical
fault 4 represents an open circuit fault in upper switch of phase
A. Overall speaking, the D-axis current profiles have severe
distortion and oscillation for both cyber-attacks and physical
faults, but the frequency of the oscillation is different. While
the oscillation and distortion patterns due to cyber-attacks are
considerably random, the ones due to physical faults show
specific regular variation because faults often have a fixed
physical model, such as short circuit faults. In particular, we
can see that despite the physical faults, the id still presents a
fixed frequency characteristic. For one type of physical faults,
the amplitude is related to the physical parameters of that fault.
This feature may provide a guideline to distinguish the cyber-
attacks and physical faults. Moreover, for those physical faults
causing gradual performance degradation, such as increasing
internal resistance, specific physic characteristics should be
utilized to address the long-term abnormal behavior. This kind
of persistent rule of performance degradation may also be used
to distinguish faults from cyber-attacks.

V. DETECTION AND MITIGATION OPPORTUNITIES AND
FUTURE VISIONS

To design secure power electronics systems and overcome the
issues related to cyber-physical security, this section presents a
cyber-secure architecture of next-generation power electronics
systems for EVs, considering both hardware and software
aspects. The proposed architecture, as shown in Fig. 10, will
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Fig. 8: Impact of cyber-attacks on ia in an IPMSM under the OPAL-RT HIL testbed.
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Fig. 9: Comparison between malicious cyber-attacks and physical faults.

provide a cyber-secure solution to the next generation of
power electronics systems at the design and operation stage.
More importantly, this architecture will focus on both device
and system levels, aiming to monitor the vehicle system
real-time. Corresponding detection, diagnosis, and mitigation
algorithms will be designed and then discussed in subsections
V.B and V.C in order to improve the security and resilience of
connected electric vehicles.

At both the device and system levels, each controller module
includes a primary microcontroller (MC) and a secondary MC.
In the recent paper [84], the authors presented a comprehensive
review of the state-of-the-art traction inverter designs from
several leading automotive manufacturers. In most autonomous
applications, only one microcontroller, such as DSP, is included
on a dedicated control board within the inverter [85], for
instance, traction inverters in Audi MY2016 A3 e-Tron [86] and
Nissan MY2012 LEAF [87]. Although in certain vehicles, such
as BMW MY2016 i3 [84], two DSPs are used in the control
board within the traction inverter, the secondary DSP is not used
for security purpose. Unlike the current design methodologies,
the proposed cyber-secure architecture introduces and encrypts
a secondary MC through a firmware security module to provide
extra security. In normal cases, the converter is controlled by

the primary controller, while the monitoring systems, including
cyber-attack detection and diagnosis algorithms, are integrated
into the secondary microcontroller. Once a cyber-attack is
identified and the compromised signal is diagnosed, a resilient
control algorithm in the secondary microcontroller would be
used to replace the primary microcontroller and recover the
system from cyber-attacks at the early stage.

At the device level, both primary and secondary microcon-
trollers can receive sensor feedback signals from the converters,
such as phase current and position/speed of the electric
machines, and provide a control command to the converter
when necessary. At the system level, besides the critical signals
in the powertrain system, the secondary microcontroller also
collects the sensor measurements and monitoring states of each
device (denoted as MC #1, MC #2, ..., MC #N) to identify the
presence of the cyber-attacks. It should be noted that Fig. 10
only shows the diagram of the cyber-secure architecture. In
real-time applications, this cyber-secure architecture is more
complicated. Besides the two microcontrollers, some other
devices need to be used. For a detailed discussion on the
validation of this dual-microcontroller design methodology,
please refer to the literature [88], which provided a cyber-secure
power router prototype and results of switching between the
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Fig. 10: Diagram of the cyber-secure architecture of next generation power electronics systems for EVs.

primary and secondary microcontrollers.
Cyber-attack detection methods, including data- and physics-

based that will be discussed in subsection V.B and V.C, can be
used to detect and diagnose cyber-attacks in connected electric
vehicles. Through dual microcontroller systems, mitigation
algorithms can be applied to improve the resilience and recovery
of the powertrain system in an EV once the cyber-attack occurs.

A. Detection and Mitigation for Firmware Security

The software bug is a major source of vehicle hacking. As
more vehicles are connected to the Internet, we should expect
to see more software attacks. To prevent, detect, and mitigate
attacks targeting connected vehicles, multi-layered, autonomous
defense systems should be designed.

First, in-house software testing should be extensively ap-
plied to mission-critical firmware. Combined with memory
checker [89], taint analysis [90] and symbolic execution [91],
[92], traditional software bugs such as buffer overflow, use-
after-free, double-free, integer error, etc. could be eliminated
in the first place.

Second, the state-of-the-art advances in a programming
language should be incorporated in software development. In
the short term, using more secure programming languages such
as RUST [93] is a tangible way of improving code quality.
In the long term, OEMs should employ formal verification to
prove the security of the released firmware [94] theoretically.

Third, after the firmware has been deployed, mitigation
techniques could serve as another line of defense. Currently,
code diversity techniques (e.g., address space layout randomiza-
tion, stack protections (e.g., stack canaries [95]), control-flow
integrity [96], data execution prevention (DEP) have been the
standard security features on PCs. But how to apply them to
vehicle firmware, especially those written for less powerful
ECUs, remains an open problem. As an illustrative example,
DEP, the fundamental technique to defeat code injection,
is achieved on PCs using the memory management unit,
which is unfortunately not present on most ECUs. Although
there has been a significant effort on system-level mitigation

techniques for microcontroller systems, existing work either
requires radical hardware retrofit [97]–[99] or relies on heavy
instrumentation to the binaries [100], [101], which imposes
considerable runtime overhead and thus compromises the real-
time constraint of many ECU tasks. Towards this direction, we
should creatively utilize existing hardware features available
on MCUs, such as performance monitoring unit or TrustZone,
to minimize the runtime overhead. A clean-slate hardware-
software co-design is also a direction that pursues to meet both
the security and performance requirements.

Fourth, when the system is suspicious of attacks, logging pro-
vides analysts from OEMs with valuable data for quick causality
analysis. As such, trusted logging should be implemented to
collect and store security-related events from each module.
Note that the logging subsystem should be properly isolated
from others since a sophisticated attacker could overwrite the
logging data once the ECU firmware is compromised.

With hardware support, trusted computing is the ultimate
goal. In trusted computing, a dedicated chip is integrated into
the system to provide fundamental security features such as
memory isolation, platform integrity, and remote attestation. In
embedded systems, SMART [102] has been a highly-influential
proposal that follows the sprite of trusted computing. It can
establish a dynamic root of trust for microcontroller devices.
SMART requires no additional hardware – only a few small
changes to the microcontrollers. The follow-up work, called
TrustLite [103] augments SMART with support for running
arbitrary code (trustlets), isolated from the rest of the system.
An execution-aware memory protection unit (EA-MPU) ensures
that the data of a trustlet can be accessed only by the code
of the trustlet itself. These proposals form the fundamental
hardware environment for mission-critical firmware to run in.
OEMs should closely collaborate with academia to quickly
apply these results to the most critical ECU modules.

Apart from software bugs, we should also pay attention to
‘logic bugs’ that are directly associated with the design logic of
the vehicles. For example, limit what kinds of communications
a particular device can engage in (e.g., disabling ODB-II
dongles from sending CAN message via CAN firewalls). It
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is necessary to enforce isolation so that compromised IVI
could not easily communicate with other critical ECUs. When
the firmware is found vulnerable, software patches should be
prepared, and OTA updates should kick in immediately [104].
However, the OTA updates should be immune from the attack
itself. Otherwise, the attacker could misuse this mechanism to
flash malicious firmware. To safeguard OTA updates, end-to-
end security should be guaranteed between the update server
and the vehicle. This implies that static keys should never be
used, and strong encryption should be employed.

B. Model-based Cyber-Attack Detection and Mitigation

As the final protection line, cyber-physical security detection
and identification are gaining increasing attention, which is
broadly divided into two groups: model-based and data-driven
methods. To clearly express the cyber-attacks, vulnerabilities,
and potential mitigation techniques, Table III summarizes
the related works on cybersecurity of cyber-physical systems,
including both model-based and data-driven approaches. Due
to the little literature on cyber-attack detection and mitigation
for EVs, most of the reviewed methodologies are from cyber-
physical control systems. Although they are not developed
aiming at cybersecurity of EVs and power electronic systems,
they can provide a reference for further research in vehicle
cyber-physical security. Meanwhile, considering the different
features of vehicle powertrain and power electronic systems,
unique cyber-physical security challenges of powertrain systems
are discussed later.

Model-based methods show promise in cyber-threat detection
and diagnosis based on the known physical models, while
data-driven approaches work more effectively in the appli-
cations that do not have explicit physical models. The key
idea of model-based detection is to compare the predicted
measurements based on previous signals and models with real
sensor measurements [52]. The prediction model that gives
the relationship between the sensor measurements, control
commands, and the predicted measurement can be developed
from physical equations such as Newton’s laws, fluid dynamics,
electromagnetic laws, auto-regressive model, and a technique
called system identification. For example, in [38], [44], [109],
[111], in response to the sensor attacks in the presence of noise,
the detection methods were designed based on a linear dynamic
system (LDS) with sensor and perturbation noise. In [110], an
auto-regressive model-based approach was developed to detect
cyber-attacks on process control, wherein the auto-regressive
model was used to capture the behavior of the system. Overall
speaking, almost all the existing works are based on LDS, static
linear state space (SLS), or simply near-linear control systems
such that well-known prediction or estimation approaches
can be used, e.g., Kalman filter, state observers, parameter
estimation techniques, and weighted least-square observers.
Typically, research works on the trigger condition of anomaly
detection focus on scoring the anomaly and the conditions for
raising an alert. In most publications, the residual at the kth
time instance is defined as r(k) = |y(k)− ŷ(k)| ≥ τ , where
τ is a threshold, y and ŷ represent the measured output the
system and its estimated value, respectively. Then, this residual

is considered as a proxy for the presence of attacks, such as
as [54], [133]. Apart from the deterministic objective, some
statistical [120], [134], payload-based [135], and classification-
based [136] algorithms are often used for designing an anomaly
detector. One of the representative residual-based detection
strategies is χ2-detector based on Kalman filters, which has
the capability against both bad data and false data [112].

To protect the system against stealthy cyber-attacks, some
studies inserted an additional signal (also named watermark) to
the system inputs for cyber-attack detection. In [38], the authors
added an authentication signal (Gaussian distribution with zero
means) to the control input, with which the stealthy replay
attacks were detected. However, the introduced watermark
may cause degradation of the system performance in normal
conditions. To address this issue, within the context of replay
attacks, several publications aimed to design watermarks
with consideration of trade-offs between security and control
performance [124]–[127]. For example, in [137], based on the
game-theoretic paradigm, a suboptimal switching control policy
that balances control performance with the intrusion detection
rate, was proposed. Specifically, considering the problem of
tracking a constant reference at the output, the authors in [124]
presented a deterministic watermark based on model inversion,
which to a certain extent, allows a defender to achieve control
performance during normal operation and detect malicious
behavior while under replay attack. Alternatively, some other
active defense techniques, e.g., authentication changes to the
parameters, sensing, and communication, can also help detect
these stealthy attacks [138]. Extensions of watermarking-
based methods can be found in [139], [140]. Besides the
watermarking-based methods, some other approaches have also
been proposed in recent years [54], [129], [130]. In [129], [130],
a moving target defense approach was used for identifying
sensor attacks in control systems, wherein deterministic and
stochastic scenarios were discussed.

Besides cyber-attack detection, attack-resilient controls are
applied to guarantee the ability of recovery from cyber-physical
attacks [141], and up to date, two representative resilient control
strategies have been proposed in the published literature. One
is to develop a state estimation algorithm that is resilient
to various attacks and modeling errors, provided that the
controller can obtain reasonable estimate of states and actuator
commands [141]–[143]. On the basis of state estimation, an
appropriate controller can be designed by using a switching
strategy, for instance, observer-based resilient control [144],
[145]. Besides the accurate state estimation, the second attack-
resilient control strategy designs a high-assurance control
system to mitigate the threat from cyber-physical attacks via
various control theories [112], which can be further categorized
into two schemes. The first scheme designs a resilient controller
that focuses on a certain type of attack such as denial-of-service,
various deception attacks (false data injection attacks, zero-
dynamic attacks, etc.), and replay attacks. The second scheme
uses adaptive control to assure the security and reliability of
closed-loop-systems, considering the presence of unknown
attacks. For example, in [146]–[148], adaptive resilient control
strategies against unknown sensor and actuator attacks are
presented, which guarantee the closed-loop stability for linear
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TABLE III: Cyber-attack detection and mitigation for cyber-physical system.

Attack Setup Model-based (attack location; prediction model;
detection method)

Data-driven (application; model)

DOS attack Sensors; LDS [19]; observer-based [19], [105]. Smart grids, industrial control systems, electric
vehicles; dynamic state estimation [106], support
vector machine (SVM) [107], multi-layer machine
learning models [108], etc.

Replay attack Sensors and actuators; LDS [38], [44], [109],
auto-regressive model [110]; state estimation in
the presence of sensor noise [111], χ2-detector
based on Kalman filters [112], etc.

Power systems, wide-area measurement systems;
self-correlation coefficient [113], singular value
decomposition [114], stochastic coding [115],
frequency-based signature [116], etc.

Data injection attack Sensors and controllers; LDS [117], [118],
SLS [119]; state estimation [117], MPC [118],
statistical anomaly detection technique [120], etc.

Smart grids, CAN bus; support vector ma-
chine (SVM) [121], Gaussian mixture model
(GMM) [122], neural networks [123], etc.

Stealthy attack Sensors and controllers; LDS [124]–[127]; water
marking method [124]–[127], robust extended
Kalman filter [128], moving target defense ap-
proach [129], [130], etc.

Networked control systems, smart grid, automatic
voltage controls (AVCs); closed-loop recursive
identification [69], low-rank and sparse matrix ap-
proximation [131], reinforcement learning [132],
etc.

dynamic systems. It should be noted that the first scheme
assumes that the attack type or schedule are open to the resilient
controllers. For instance, in [149], the authors assumed that
the replay attacks can always be detected, and on this basis,
the attack-resilient receding horizon control law is developed.
But for real applications, accurate detection is hard to achieve.
In the second scheme, although no prior knowledge of attacks
is utilized, the attack values in the dynamic system are often
supposed to be state-dependent and bounded, hence in most
cases, to guarantee robustness and stability, the designed
resilient controllers expose some considerable conservatism.

For cybersecurity of powertrain and power electronic systems
in EVs, the above model-based literature provides fundamen-
tal methodologies, for instance, observer-based cyber-attack
detection during charging for battery packs [150], in which a
linear battery dynamics model is used. To improve the cyber-
physical security of EVs with four motor drives, [151] proposed
a coordinated detection methodology that combines state
observer and performance-based evaluation metrics. Currently,
the research of cybersecurity of EVs is still at an early stage,
and most of the literature focus on driving-level control systems,
such as detection and recovery mechanism design for vehicle
platooning [19], [20]. Cyber-physical security issues of vehicle
powertrain and power electronic systems are not well addressed
in both academia and the industries, and few studies have
been devoted to this area. In the previous work [42], [58],
vulnerabilities of EDSs due to sensor false data injection
attacks were analyzed, wherein some innovative metrics were
developed. These performance-based metrics can help identify
the cyber-attacks.

C. Data-driven Cyber-Attack Detection and Mitigation

Unlike model-based solutions, data-driven based algorithms
are model-free; thus, neither system parameters nor models
are needed in the attack detection and diagnosis. Data-driven
methods have diverse branches, such as statistical models,

machine learning (ML) techniques, data-mining techniques, etc.
As data-driven methods do not require explicit physical models,
they can cope with complex, complicated, and heterogeneous
phenomena. There are many data-driven methods for the
security issues, such as the geometrically designed residual
filter [46], signal analytics based [152], generalized likelihood
ratio [153], the cumulative sum (CUSUM) [154], leverage
score [155], influential point selection [156], support vector
machine (SVM) [121], Gaussian mixture model (GMM) [122],
neural networks [123], machine learning [121], deep learn-
ing [157], and so on.

More specifically, targeting the three possible attack types in
the powertrain systems in modern EVs: DOS, replay attack, and
false data injection attacks, the related data-driven solutions
will be introduced. In general, data-driven methods can be
viewed as using trained models to detect abnormal system
behavior based on the observation data collected from the
system, which are usually based on the idea that under normal
conditions, the observation data would be constant with minor
variations due to measurement inaccuracies and system noises.
The main motivation is that the normal data and the tampered
data tend to be separated in a certain feature space [121], [158]
or using given quantitative metrics [107], [159]. Commonly,
labeling information is needed for supervised learning, and one
can train a classifier to identify attacks according to the class
labels. While, if labels are not given, unsupervised learning-
based methods cluster unlabeled data into classes according to
the hidden features.

In terms of theoretical methods, the linear regression (LR)
detects the cyber-attack if the measured data does not fit
the linear model fitted from the training data set. Signal
temporal logic proposed in [160] compared the DC voltages
and currents with the predefined upper and lower boundaries.
SVM is another linear discriminative classifier formally defined
by a separating hyperplane, which has been widely used to
detect attacks [161]. The artificial neural networks (ANN)
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model is a computational model based on the structure and
functions of networked neurons, used for classification and
regression. Depending on activation functions and neurons,
ANN can model complicated relationships between inputs and
outputs [123]. Recurrent neural networks (RNN) is a type
of deep neural network (DNN). With the internal memory
unit, RNN can better capture the signal dynamics, which
is important for the time-series data analytics [162]–[164].
Convolutional neural network (CNN) is another type of DNN
which is widely used for image processing. CNN utilizes
the convolutional kernels to extract texture features of the
measurement matrices [165]. Need to mention, DNNs with a
higher number of hidden layers are expected to yield more
precise detection results. However, the computation cost will
be higher.

For the cybersecurity of vehicles, although there have been a
series of research works on data-driven cyber-attack detection
for vehicles, most of them are developed for in-vehicle-network
security and less for powertrain control systems. For example,
authors in [166] proposed a deep learning-based approach for
cyber-attack detection in vehicles. In this work, a generative
adversarial network classification is used to assess the message
frames transferring between the ECU and other hardware in
the vehicle. In [167], for cybersecurity of in-vehicle network
communication, a cloud-based intrusion detection approach is
presented. By using deep learning, distributed DOS, command
injection, and network malware can be identified.

D. Challenge and Future Versions

Although these detection and mitigation approaches provide
technical foundations against malicious attacks, several chal-
lenges remain to be solved for cybersecurity of powertrain and
power electronic systems in EVs.
• Notice that in real-world applications, the powertrain sys-

tem in an EV is nonlinear and complicated, and most of the
controllers in ECUs include a large number of engineering-
experience-based rules and look-up tables. Under these
circumstances, the traditional theory-based methods would
be ineffective to analyze the stability, security, robustness,
and resilience of the system because most of them are
based on a linear dynamic system modeling. One of
the potential solutions is to develop index-based attack
impact analysis, detection, and diagnosis to fully utilize
the physical features and performance of the powertrain
system, such as the discussions in the previous work [42],
[43], [58], [151].

• Although data-driven methods for cyber-physical con-
trol systems provide an alternative way to cyber-attack
detection and mitigation, there are still limitations and
challenges, especially for EV cybersecurity. On the one
hand, unlike the cybersecurity in power grids and other
cyber-physical systems with fixed normal conditions,
real-time driving cycles of vehicles demonstrate high
uncertainty and a broader range of variation (even in
normal scenarios). Therefore, it is difficult to distinguish
abnormal conditions and varying driving conditions, such
as frequent start-stop driving in urban traffic. On the

other hand, data scarcity is generally the most critical
issue that needs to be solved. However, real EV data
can be hard to obtain and are often confidential by the
carmakers. Besides, the training data may not be available
for every attack scenario in a particular EV. Therefore,
more novel solutions to reduce data dependency, improve
computation efficiency, and increase the model fidelity
need to be explored.

• Most of the current research in cyber-physical control
systems does not consider computational requirements.
However, power electronic systems, e.g., electric drive
systems, are operating faster than other processing control
systems. A fast detection methodology needs to be devel-
oped such that the cyber-attack could be detected at the
early stage. Therefore, besides the detection accuracy, the
sampling rate, computational burden, and time to detection
need to be considered. From this perspective, model-
based approaches that do not require online optimization,
such as an observer-based cyber-attack detector with
fixed observer gain [19], [105], are available for power
electronic systems. Additionally, computational-efficient
data-driven methods can be used. It is worth noting that,
compared to root-cause diagnosis, the purpose of cyber-
attack detection is to distinguish between normal and
cyber-attack scenarios, thus requiring less computational
time in real applications. Once a potential cyber-attack
or a physical fault is detected during driving, the human
driver can stop the car and request car maintenance for
further cyber-attack diagnosis.

• Besides, advanced root diagnosis methods must be devel-
oped to distinguish cyber-attacks and physical failures, as
the existing literature is mostly focused on either on phys-
ical fault detection or cyber-attack detection. For power
electronic systems in the EV, this paper has presented
a preliminary discussion on this topic (see Section IV-
B). However, it is difficult to distinguish physical faults
from various cyber-attacks, especially considering the time-
varying and uncertain driving conditions of the powertrain
system. Therefore, a comprehensive study on this topic is
still an emerging topic in the future.

VI. CONCLUSIONS

This paper has presented a comprehensive study of cyber-
physical security of modern EVs, with a particular focus on
three representative components relevant to the powertrain
system: 1) firmware of ECUs; 2) vehicle-to-grid in-vehicle
charging system; 3) powertrain control system that includes
system-level energy management systems and device-level
electric drive systems. For practical guidance, some preliminary
results of security assessment on the powertrain control system
are also presented, which are further divided into two major
parts: the powertrain control system and the electric drive
system. Finally, the state-of-the-artwork firmware, model-
based and data-driven detection, diagnosis, and mitigation
opportunities are discussed comprehensively. Unique cyber-
physical security challenges of powertrain systems and future
versions are also discussed.
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APPENDIX

Suppose the prediction horizon is discretized into Np steps on
∆t-axis. Then, the EMS is designed by solving an optimization
that find the optimal u = [Tref,i(1), Tref,i(2), ..., Tref,i(Np −
1)](i = 1, 2, 3, 4), such that

min
u∈U
J =

Np∑
k=1

[(v(k)− vref (k))2 + κVoc(k)Ibat(k)], (4)

where Tref,i represents the torque reference of the ith motor;
v is the vehicle speed; vref is the desired vehicle speed of the
upper drive controller; κ is the weighting factor; Voc is the
battery open-circuit voltage; Ibat is the battery current; U is the
closed set of admissible controls. In the above cost function,
the first term illustrates the dynamic performance of the vehicle,
which reflects the capability to track the velocity profile of
the upper drive controller. The second cost denotes the power
consumption of the battery. The nonlinear and time-varying
system dynamics are summarized in [168]–[170], as follows:

v(k + 1) = v(k) + [

4∑
i=1

Tref,i(k)/rw − G(k)]∆t/M, (5a)

Ibat(k) = [Voc(k)−
√
V 2
oc(k)− 4Pbat(k)Rb]/2Rb. (5b)

Here rw is the tire radius; M is the total mass of the vehicle;
G represents the total resistance during driving, including the
rolling resistance, air resistance, and gravity resistance caused
by road slope; Pbat is the power consumption of the battery;
Rb is the battery internal resistance. Finally, the first control
command is applied to the lower system, and at the next time
instance k + 1, a receding horizon control is realized.
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