
CybersecurityWang et al. Cybersecurity (2020) 3:23
https://doi.org/10.1186/s42400-020-00063-5

RESEARCH Open Access

On the combination of data
augmentation method and gated
convolution model for building effective and
robust intrusion detection
Yixiang Wang1†, Shaohua lv1†, Jiqiang Liu1, Xiaolin Chang1* and Jinqiang Wang2

Abstract

Deep learning (DL) has exhibited its exceptional performance in fields like intrusion detection. Various augmentation
methods have been proposed to improve data quality and eventually to enhance the performance of DL models.
However, the classic augmentation methods cannot be applied to those DL models which exploit the system-call
sequences to detect intrusion. Previously, the seq2seq model has been explored to augment system-call sequences.
Following this work, we propose a gated convolutional neural network (GCNN) model to thoroughly extract the
potential information of augmented sequences. Also, in order to enhance themodel’s robustness, we adopt adversarial
training to reduce the impact of adversarial examples on the model. Adversarial examples used in adversarial training
are generated by the proposed adversarial sequence generation algorithm. The experimental results on different
verified models show that GCNN model can better obtain the potential information of the augmented data and
achieve the best performance. Furthermore, GCNN with adversarial training can enhance robustness significantly.

Keywords: Data augmentation, Intrusion detection system, Machine learning algorithms, System call

Introduction
An intrusion detection system (IDS) is a kind of active
defense technique with the aim of resisting malware and
sensitive activities. It mainly identifies malicious intru-
sions by monitoring network traffic or user behaviors.
There are two types of detection systems, misuse-based
and anomaly-based. The former type works by construct-
ing a known attack pattern database and then identifying
intrusion behaviors according to the pre-defined match-
ing rules. The latter type focuses on normal behaviors,
and when the system finds a behavior deviating from
the pre-defined rules, it is determined to be an intru-
sion event. The ability to identify intrusion is a crucial

*Correspondence: xlchang@bjtu.edu.cn
†Yixiang Wang and Shaohua lv contributed equally to this work.
1Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing Jiaotong University, 3 Shangyuancun, 100044 Beijing, China
Full list of author information is available at the end of the article

factor in evaluating an intrusion detection system. How-
ever, current intrusion detection systems have some lim-
itations. The misuse-based intrusion detection system
needs a large number of attack pattern libraries and can-
not identify unknown attacks, which will cause a high rate
of false negatives. Due to the variability of user behavior
habits, anomaly detection algorithms always have a high
false-positive rate.
In recent years, there has been a growing number

of publications focusing on the analysis of system-call
sequences in the anomaly-based IDS. Forrest et al. (2008)
overviewed the methods of analyzing the system-call
sequences, including Hidden Markov Models (HMM),
Bayes model and so on. Unfortunately, these methods
delt with frequent system-call sequences without consid-
ering the semantic meanings of system-call sequences.
Just as people express their thoughts through sentences
and grammar, processes can also reach their goals through

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00063-5&domain=pdf
http://orcid.org/0000-0002-2975-8857
mailto: xlchang@bjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Wang et al. Cybersecurity (2020) 3:23 Page 2 of 12

specific system-call sequences. A system-call sequence
can be considered as a language sentence which can inter-
act with the operating system (Lv et al. 2018). Considering
the high similarity between sentences and system-call
sequences, using the languagemodel tomodel the system-
call sequences is an intuitive way to extract latent semantic
information.
In order to alleviate the above limitations, researchers

try to find answers in machine learning (ML) or deep
learning (DL) techniques. DL techniques have been
changing the landscape of mainstream research fields
such as computer vision (Wang et al. 2019; Karras et al.
2019), natural language processing (Devlin et al. 2018;
Lan et al. 2019), and also revolutionizing the way to solve
the problems that traditional algorithms cannot handle.
With the drive of big data and no need for manual feature
extraction, DL makes it possible to address the issues of
IDS (Xu et al. 2018; Liu et al. 2017; Singla et al. 2019).
As expected, a large number of results indicate that

DL techniques are the key determinant of improving the
classification results of intrusion detection (Ustebay et al.
2018; Al-Qatf et al. 2018; Hao et al. 2019). Meanwhile,
the seq2seq model can extract the semantic information
in the system-call sequences, and the predicted sequence
from seq2seq model can be the augmented sequence to
enhance the IDS model’s performance (Bahdanau et al.
2015; Lv et al. 2018). There are a few researches on
augmenting the system-call sequences such as adding
some system calls into the sequences, but these previous
works only concentrated on the generation of augmented
sequences without considering how to apply augmented
sequences to improve the robustness of the system-call
model.
Inspired by the above discussions, we propose a

gated convolutional neural network (GCNN) model, spe-
cially designed to deal with the augmented system-call
sequences and capture the latent information from the
augmented sequences. Moreover, we conduct adversar-
ial training on the proposed GCNN model in order
to enhance its robustness against adversarial example
attacks. Concretely, our major contributions are summa-
rized as follows:

• We propose a gated convolution intrusion detection
model (GCNN) to unearth the prediction sequence
based on the system-call sequence augmentation
method (Lv et al. 2018). On the premise of the
reliability of augmented sequences, the practical
information is extracted from the prediction
sequence through the gated mechanism to help the
model capture the characteristics of latent program
behaviors. We observe that compared with training
on the augmented data directly, our model can
produce better results.

• We propose a system-call adversarial sequence
generation algorithm based on Fast Gradient Sign
Method (FGSM) (Goodfellow et al. 2015) and we
employ the adversarial examples generated by the
proposed algorithm for adversarial training to better
defend the attack of adversarial examples on GCNN
model. The results show that the adversarial-trained
GCNN can maintain 60.7% accuracy under
adversarial example attack.

The rest of the paper is organized as follows.
“Background and related work” section presents back-
ground knowledge and related work. “Methods” section
describes the details of GCNN model, adversarial
sequence generation algorithm and adversarial training.
Experimental results and discussions are in “Experiment
and analysis” section . Conclusion and future work are
given in “Conclusion and future work” section.

Background and related work
This section first introduces the language model and
seq2seq model with the attention mechanism in order to
explain how the seq2seq model works. Then, we outline
adversarial examples and adversarial training. Finally, we
overview the achievements and urgent issues in the field
of intrusion detection.

Languagemodel and seq2seq model
A language model (Chung et al. 2014) is a model that can
calculate the probability that a sequence is a sentence from
the perspective of linguistics. It can be formalized as the
conditional probability of the occurrence of the next word
given all the previous words, which is shown below.

p (w1,w2, · · · ,wL−1,wL) =
L∏

l=1
p

(
wl

∣∣w1,w2, · · · ,wl−1
)

where L is the number of words in the sentence, and wl
is the lth word in the sentence. Recurrent neural network
(RNN) is one of the language models, denoted as the RNN
based language model (RNNLM)(Mikolov et al. 2010).
RNNLM uses the previous input to determine the output
of the current location. In practice, the RNNLM deter-
mines the semantic rationality of the predicted word. We
apply RNNLM to the generation of system calls based on
its generality. Here, in order to deal with input sequences
and output sequences, we choose a sequence-to-sequence
structure described in Sutskever et al. (2014) and
Bahdanau et al. (2015), where the structure is RNN
Encoder − Decoder.
Concretely, the structure of the seq2seq model is shown

in Fig. 1. h denotes the hidden state of the encoder (E) and
H is the hidden state of the decoder (D). As implied by
the name, the seq2seq model takes the sequences as the

Wang et al. Cybersecurity (2020) 3:23 Page 3 of 12

Fig. 1 The structure of the seq2seq model with the attention mechanism

input and produces the predicted sequences. It contains
two parts, namely, encoder and decoder. The encoder is
a Long Short-Term Memory (LSTM) model, which is a
sophisticated RNN architecture to solve the gradient van-
ishing problem of vanilla RNN. The encoder is responsible
for encoding a sequence into a context vector, which con-
tains the latent semantic information. The decoder is also
an LSTM RNN model that uses the context vector as
the initial hidden state and parses the latent semantics
from it to predict the subsequent system-call sequence.
Since the decoder only relies on one context vector, which
limits the relationship between the input sequence and
output sequence, the attention mechanism is introduced.
The attention mechanism combines each hidden state of
the encoder in a probabilistic way to form a context vec-
tor. In this way, each predicted system call of the decoder
is associated with each input element. Meanwhile, the
results (Lv et al. 2018) show the seq2seq model with atten-
tion mechanism can obtain better predicted sequences.
For the above reasons, we choose the seq2seq with the
attention mechanism to generate predicted system-call
sequences.

Adversarial attacks and defense
Adversarial examples are the model input that causes
the model misclassification. Szegedy et al. (2014) was
the first to discover the existence of adversarial exam-
ples and reveal the attribute of adversarial examples
— transferability. Transferability means that adversarial
examples generated by model A can misclassify model B.

Subsequently, Goodfellow et al. (2015) introduced a
white-box attack, Fast Gradient SignMethod(FGSM), and
adversarial training, where FGSM is an effective and
computation-less method to generate adversarial exam-
ples. White-box means that the attacker has access to the
dataset, model parameters and any information. The core
function of FGSM is shown below.

X∗ = X + εsign (∇xJ (θ ,X, y))

where X is the original clean sample and y is the cor-
responding label. X∗ is the adversarial sample. ∇ is the
derivation calculation. ε is the distortion rate. J is an
objective function and θ is the parameters of the attacked
model. At present, the research on adversarial examples
focuses on the images (Akhtar and Mian 2018). There are
some researches on the adversarial system-call sequences,
where Rosenberg et al. (2018) introduced a black-box
adversarial sequence attack. In this paper, we will con-
struct a white-box adversarial sequence generation algo-
rithm based on FGSM to craft adversarial examples for
adversarial training to enhance the model’s robustness.
Adversarial training is a method that combines the

original legitimate samples and adversarial samples to re-
train the model, which can improve the robustness of the
model. The adversarial training objective function based
on the FGSM is shown below.

J̃ (θ ,X, y) = J (θ ,X, y) + J
(
θ ,X + εsign (∇xJ (θ ,X, y)) , y

)

The goal of adversarial training is to improve the gen-
eralization ability of the model. First of all, the model is

Wang et al. Cybersecurity (2020) 3:23 Page 4 of 12

trained on the original legitimate data set, and after train-
ing, the adversarial examples are generated on the basis
of the model parameters and generation algorithm. Then,
adversarial examples are used as the training data, and the
optimization function of the model is modified, which is
shown above, to train the second time. After adversarial
training, the model has a strong defense ability against the
adversarial examples.

Related work
The fact that the attacks are more sophisticated and
even more frequent requires intrusion detection technol-
ogy to develop towards standardization and intelligence.
Deep learning technology has been applied to intru-
sion detection. Gao et al. (2014) applied a deep belief
network(DBN) to the KDD CUP 1999, whose results
showed that deep neural networks outperformed tradi-
tional machine learning algorithms. Ustebay et al. (2018)
combined recursive feature elimination and deep mul-
tilayer perceptron to classify benign traffic and DDoS
traffic. Kim and Kim (2015) was the first to use RNN
to solve the classification on the DARPA dataset (avail-
able in the website). Then LSTM recurrent neural network
(Hochreiter and Schmidhuber 1997; Kim et al. 2016; Hao
et al. 2019) and gated recurrent unit (GRU) network
(Xu et al. 2018) were applied to get better performance
than vanilla RNN. At this point, the researchers con-
sidered migrating the relevant technologies of natural
language processing to the field of intrusion detection
(Cho et al. 2014). Lv et al. (2018) were the first to apply
a seq2seq model to the prediction of the system-call
sequence.
Deep learning models converge through continuous

iterations of model parameters based on a large amount
of data. Without enough data, the model can not per-
form well. Therefore, data augmentation methods are
introduced to solve the problem. In the computer vision
area, there are many augmentation methods such as ran-
dom rotation, random flipping, and so on (Shorten and
Khoshgoftaar 2019). Also, in natural language process-
ing, randomly insert, randomly swap, or delete (Wei and
Zou 2019; Kobayashi 2018), even GANs (Kusner and
Hernández-Lobato 2016; Yu et al. 2019) can be used
to augment a dataset. Lv et al. (2018) was the first to
use the predicted sequence generated from the seq2seq
model as the augmented sequence. But it only proposed
an augmentation generation algorithm, there have been
no methods to deal with augmented sequences efficiently.
We introduce a model, GCNN, to fill the gap. Rosenberg
et al. (2018) introduced a black-box attack to generate
adversarial sequences. We prefer a white-box attack to
generate adversarial sequences by adding perturbation in
the padding part, and we make GCNN more robust by
adversarial training.

Methods
In this section, we first introduce an intuitive CNN-based
model to handle the predicted sequence in “Convolu-
tional intrusion detection model based on augmented
sequence” section. However, there is a problem with the
intuitive model, where the predicted sequence is as impor-
tant as the original sequence. To solve it, we further
propose a GCNN model in “GCNN intrusion detec-
tion model based on predicted sequence augmentation
method” section. Afterwards, an FGSM-based adversar-
ial sequence generation algorithm is proposed to gen-
erate adversarial sequences for adversarial training in
“Adversarial sequence generation algorithm” section. In
“Metrics” section, we demonstrate the metrics in the
experiments.

Convolutional intrusion detection model based on
augmented sequence
At the beginning, we give a brief introduction of aug-
mented sequences. Then, we present the convolution
operation and maxpool opration to deal with sequential
data, where these two operations differ in image data. The
system-call sequence augmentation method first inputs
each training data sequence into the seq2seq model for
prediction, and then expands it in the way of one-to-one
correspondence between the prediction sequence and the
original sequence. For an input sequence, the follow-up
sequence that can be calculated by the prediction model
is:

xe = Predict (x)

where the function Predict (x) is a function that the
seq2seq model learns. Then, we concatenate x and xe to
get x̃, where x̃ = {x, xe} . Here, the amount of training
data does not increase, but each sequence of training data
contains more information.
The system call sequence is quite different from the

image. We vectorize each system call. For a sequence of
length l, a vector of dimension l×m is generated after the
word embedding layer, where m is the dimension of the
word vector. For system-call sequences, each word vector
has its semantic information. There are latent meaningful
local features in the embedded matrix, so a convolutional
kernel of size n × m should be used to extract the local
associations in the embedded matrix. Depending on the
convolutional kernel size n, we can obtain different n-
gram information. Each convolutional kernel kni learns a
feature vector vni , where i means the i-th kernel. The out-
put channel of the kernel kni can be set to ci , and the
dimension d of the feature vector vni can be calculated by
the formula:

d = (l − n)

s
+ 1

http://www.ll.mit.edu/IST/ideval/data/dataindex.html

Wang et al. Cybersecurity (2020) 3:23 Page 5 of 12

where s is the stride when the kernel moves. After convo-
lutional calculation, the dimension of the output feature
vector about kernel kni is ci × di × 1. Then, the max-
imum pooling (MaxPool) algorithm is used to extract
higher-level abstract feature vectors from the output fea-
ture vectors. Here, the MaxPool algorithm differs from
that in computer vision since image processing selects
the maximum value in the pooling window as the output,
which belongs to local pooling, as shown in Fig. 2. But in
our model, MaxPool is global pooling, where the maxi-
mum value of the entire vector is selected as the output.
The formula is as follows:

MaxPool (v) = argmax (v)

We concatenate these higher-level abstract feature vectors
of different kernels into a matrix. Finally, the classification
output is performed through the fully connected layer and
the softmax layer. Figure 3 describes the feature extrac-
tion and pooling process of the system-call word vector
convolutional neural network, where different colors in
embedding represent different convolutional kernels.
The input of our convolutional intrusion detection

model is to directly append the prediction sequence after
the original sequence as an augmented sequence. This is
a simple and intuitive way since the augmented sequence
can maintain the time dependency between the predic-
tion sequence and the original sequence to the greatest
extent. To sum up, the complete model architecture is
shown in Fig. 4. Firstly, we take the augmented sequence
directly as the network input and obtain the word vector
of each system call through the embedding module. Then
the convolution structure described in Fig. 3 is used to
extract the local relation features of the system calls, and
the MaxPool operation is performed on the feature vec-
tors extracted by convolution kernels. Finally, the softmax
layer outputs the classification results.

GCNN intrusion detection model based on predicted
sequence augmentation method
There is a limitation in the convolutional intrusion
detection model described above. That is, the predicted
sequence is as important as the original sequence in the
training phase. We believe the predicted sequence as a
supplementary part of the information should provide
useful information to the model. Still, there may be some
invalid information in the predicted sequence, which will
affect the extraction of attack features by the model. To
eliminate this effect, we propose a more advanced model,
gated convolutional neural network (GCNN). The model
has the ability to use thresholds to select the effective part
of the prediction vector, so as to better fit the objective
function.
The concrete structure of our proposedGCNN is shown

in Fig. 5. During the training of GCNN, the original
sequence x and the predicted sequence xe are extracted
using different convolution kernels to obtain the feature
vectors f and fe, respectively. Both convolution opera-
tions use ReLU (Nair and Hinton 2010) as the activa-
tion function. It is worth noting that the convolution
kernel of xe uses extra activation function, sigmoid, to
extract g on xe. Sigmoid function limits the range of
vector element to [0,1], and we think this reasonable
transformation plays a gated role to distll the abstract
features. Also, ReLU functions plays a gated role to main-
tain positive features. In this way, we obtain two types
of features, distilled feature and positive feature. Then,
the Hadamard product of fe and g is used to control the
contribution of the predicted feature vector, selectively.
The Hadamard product of ReLU results and Sigmoid
results is what we call the gated mechanism in this paper.
Finally, the original sequence vector is added to get the
fusion vector vf . After the MaxPool layer and Softmax
layer we can get the outputs. The computing graph of
GCNNmodel is:

Fig. 2 The process of convolution and pooling in the image CNN model

Wang et al. Cybersecurity (2020) 3:23 Page 6 of 12

Fig. 3 The process of convolution and max-pooling in the system call intrusion-detection model

f = ReLU
(
conv

(
embedding (x)

))

fe = ReLU
(
conv

(
embedding (xe)

))

g = sigmoid
(
conv

(
embedding (xe)

))

vf = f + fe � g
o = MaxPool

(
vf

)

y = softmax (Wo + b)

Adversarial sequence generation algorithm
The generation of adversarial examples in this section pre-
pares data for the adversarial training defense. Adversarial
examples require small perturbation to the input sam-
ples. At present, all the researches on adversarial examples
focused on the images (Akhtar and Mian 2018). For an
image, the value of each pixel is within [0,1], and small
changes to each pixel will not be captured by human eyes.

But it is especially tough to disturb the sequence data.
For the system-call sequence, each word vector repre-
sents the semantic information of a system call, which will
lose its original meaning after being disturbed directly.
Therefore, the traditional adversarial example generation
algorithm is not suitable (or even impossible) to construct
adversarial examples for system-call sequences. In order
to solve this problem, we propose a system-call adver-
sarial sequence generation algorithm based on the FGSM
attack.
The proposed algorithmmakes use of the padding char-

acteristics of the input. Iterative perturbation is performed
on the zero-padding part of the input sequence, and a per-
turbed word vector is added in each iteration until the
model outputs incorrectly or the padding part is com-
pletely replaced. The perturbed adversarial sequence does

Fig. 4 CNN classification for anomaly intrusion detection trained based on the extended system call sequence

Wang et al. Cybersecurity (2020) 3:23 Page 7 of 12

Fig. 5 The structure of gated CNN classification model for anomaly intrusion detection

not destroy the original features, but only adds pertur-
bation in the padding part. This is because the mask
operation is adopted to cover up the real sequence in
the perturbation algorithm and prevent the algorithm
from modifying it. The pseudo-code is described in
Algorithm 1.
Concretely, we first convert the initial system call

sequence, for instance, the sequence in Fig. 6, to embed-
ded vectors through the embedding layer. Also, we can
get all the system call word vectors, EmbeddedMa-
trix, according to the embedding layer. Then, we add
the perturbation to the padding part of a system call
sequence using FGSM algorithm and mask operation.
To make the adversarial sequence close to the legiti-
mate sequence, each vector in the padding part calculates
the euclidean distance with every vector in Embedded-
Matrix. After that, we can obtain the legitimate closet
vector index, se. Then we replace some perturbation with
the legitimate closet vector in the padding part. In the
end, a system-call adversarial sequence is generated by
repeating the above process. We can use the adversar-
ial sequences generated by Algorithm 1 to do adversarial
training.

Metrics
We include two parts of the experiment. The first part is
the evaluation of the classification ability of themodel, and
the other is the evaluation of the robustness of the model.
In the first part of the experiment, accuracy is the

most intuitive evaluation metric in the classification prob-
lem, which measures the proportion of correctly classified
samples to the total samples. For data with uneven dis-
tribution of positive and negative examples, the accuracy
will bias the evaluation of the model. So, we need to intro-
duce other metrics to assess models’ capabilities. In the
binary classification, the classification results of the model

Algorithm 1: System-call Adversarial Sequence
Generation Algorithm
x is the legitimate sequence. l is the legitimate
sequence length. m is the input sequence length,
embedding is a layer that transforms the a system call
to a vector. EmbeddedMatrix is the whole system-call
vectors. ε is the perturbation coefficient. J (·) is the
objective function.
Input: x
Output: x∗

1 x∗ ← x;
2 xe ← embedding(x);
3 for idx = (l − m) to l do
4 noise = εsign

(∇xe J (θ , xe, y)
)
;

5 xe = xe + mask (noise);
6 se =

min(euclidean_distance! (xe[idx] ,EmbeddedMatrix));

7 x∗ [idx] = EmbeddedMatrix [se];
8 ifModel (xe) �= Lable (x) then
9 return x∗;

10 end
11 end
12 return x∗;

will show the following four outcomes, which make up the
confusion matrix (Stehman 1997) as shown in Table 1.
There are many evaluation metrics (Powers 2011)

derived from the confusion matrix, such as precision
and recall. Precision represents the proportion of positive
samples in the data predicted by the model to be posi-
tive. Recall represents the proportion of the data predicted
by the model as positive to the actual positive samples.
The calculation formulas of precision and recall and other
metrics are shown in Table 2.

Wang et al. Cybersecurity (2020) 3:23 Page 8 of 12

Fig. 6 The process of crafting training set and test set

The ROC curve (Fawcett 2006) calculates the TPR and
FPR of the model according to the classification threshold,
and then draws the curve with TPR as the vertical coordi-
nate and FPR as the horizontal coordinate. The larger the
FPR is, themore the actual negative samples are in the pre-
dicted positive class. In addition, the larger the TPR is, the
more the real positive examples are in the predicted pos-
itive class. In general, the area under the curve (AUC) of
the ROC curve is used to evaluate a classifier directly. The
characteristic of the ROC curve is very stable. When the
distribution of positive and negative samples in the test set
changes, the ROC curve can remain unchanged. Thus, it
is suitable to evaluate the uneven data.
In the adversarial training part of the experiment, we

introduce three evaluation metrics: Accadv, perturbation
rate and crafting rate. ACCadv score is the accuracy score
on the adversarial examples, which presents the ability
of misclassification of adversarial sequences generated by
the proposed algorithm 1. The perturbation rate is the
percentage of the perturbed elements in all the elements
when generating the adversarial sequence, indicating the

Table 1 The Confusion Matrix

Positive sample Negative sample

True prediction True Positive (TP) False Positive (FP)

False prediction False Negative (FN) True Positive (TP)

degree of added noise. Crafting rate is the proportion of
generated sequences that can cause misclassification in all
generated sequences. Crafting rate of generating adversar-
ial examples can intuitively reflect whether the adversarial
examples are successfully generated or not. These three
indicators can fully reflect the quality of the adversarial
sequence and the robustness of themodel after adversarial
training.

Experiment and analysis
In this section, we describe the dataset and how we pre-
process it. Model details and hyper-parameters setups
in the experiments are introduced. Then, we ana-
lyze the classification performance among verification

Table 2 The calculation formula for the evaluation metric of the
binary classification model

Metric Formula

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

FPR FPR = FP
FP+TN

TNR TNR = TN
FP+TN

F1 − score F1−score = 2TP
2TP+FP+FN

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

Wang et al. Cybersecurity (2020) 3:23 Page 9 of 12

Table 5 Overview of the ADFA-LD dataset

category file number

Normal 833

Abnormal Adduser 91

Hydra_FTP 162

Hydra_SSH 176

Java_Meterpreter 124

Meterpreter 75

Web_Shell 118

models. Finally, we make a comprehensive evaluation of
the model’s robustness after adversarial training.

Verification model description
For the purpose of verifying the proposed method, we
choose four standard intrusion detection classifiers based
on machine learning for comparison, including support
vector machine (SVM) model (Cortes and Vapnik 1995),
random forest (RF)model (Kam 1995), convolutional neu-
ral network (CNN) model (LeCun et al. 1989; LeCun
et al. 1998), and recurrent neural network (RNN) model
(Elman 1990). The reason for choosing these four models
is that they are represented in their respective technical
fields.
SVM maps the input space to the high-dimensional

feature space through the kernel function. Then optimal
separation hyperplane is constructed to classify the input
data. RF is a classic representative of ensemble learn-
ing. It is an algorithm that builds a variety of decision
tree models into a kind of decision model in an ensem-
ble learning manner. Because RF has the characteristics
of easy implementation, low computational overhead, and
powerful performance, it is widely used in a variety of
learning tasks. RNN’s outstanding sequence processing
ability makes it shine in time series modeling and has now
become the basic model in natural language processing
tasks. CNN also has an irreplaceable position in the field
of computer vision. We have a structural improvement in
convolutional neural networks in our work.

Table 3 Examples of correspondences between numbers and
system-call names

num system-call name

0 sys_restart_syscall

1 sys_exit

2 sys_fork

3 sys_read

4 sys_write

· · ·
307 sys_recvmmsg

Table 4 The ADFA-LD dataset

Train Test

seq_len Pairs seq_len Pairs

10 8000 10 1600

20 6000 20 1200

30 4000 30 800

For the recurrent neural network, we construct a two-
layer LSTM neural network with 256 neurons. Hidden
layers are connected using Dropouts. The cross entropy
function is used to calculate the loss value, and Adam opti-
mizer is used to update the models’ parameters. For the
input sequence, the recurrent network uses the hidden
state at the last timestep as the sequence’s semantic vector.
Then, the semantic vector connects to a fully connected
neural network for classification. For the convolutional
neural network, three different sizes of convolution ker-
nels are used, whose sizes are [3, 4, 5], and each size has
128 convolution kernels.
Both models have two fully connected layers, whose

nodes are 128 and 32, and use L2 regularization to pre-
vent overfitting. The settings of the hyper-parameters,
such as the optimization algorithm and the learning rate,
are the same for these two models. We share parameters
for the two ReLU convolution operations when training
GCNN model because the purpose of both is to extract
the semantic relationship between the original sequence
and the predicted sequence. Sharing parameters can help
the model to fit the objective function faster, and reduce
the memory and processor consumption in the training
phase. SVM and RF which we use are the default models
in the scikit-learn python package.
In our experiments, verification models are trained on

two kinds of inputs: original sequences and augmented
sequences. Models trained on original sequences are
called RNN, CNN, SVM, RF. Models trained on aug-
mented sequences are called eRNN, eCNN, eSVM, eRF,
GCNN.

Dataset description and preprocessing
In our experiments, we choose ADFA Linux Dataset
(ADFA-LD) (Creech and Hu 2013) because the ADFA-
LD dataset includes six abnormal attacks occurring in the

Table 6 The performance of models trained with the original
sequence

Classfier Accuracy Precision Recall F1-score

RNN 95.8% 96.5% 96.6% 96.6%

CNN 96.9% 97.7% 97.1% 97.4%

SVM 86.9% 85.9% 94.2% 89.8%

RF 94.7% 94.6% 96.9% 95.7%

Wang et al. Cybersecurity (2020) 3:23 Page 10 of 12

real-world Ubuntu 11.04 system, which means the attacks
contained in the dataset are closer to real situations. Also,
the ADFA-LD dataset is the latest open source system-
call dataset in these years, newer than the UNM dataset
and DARPA dataset. Moreover, the number of sequences
in the data set is large enough to be used to train neural
networks. Table 5 shows the number of files for each cat-
egory in the dataset. Each file is a system call sequence
that a process invokes during execution. It is worth noting
that each sequence is composed of a string of numbers,
and each number represents a system call name. Table 3
shows some examples of the corresponding relationships
between numbers and the actual system calls.
We give an example to demonstrate how we process

the dataset. Assuming that a normal sequence file con-
tains a system-call sequence of length 100, we can slice
this sequence. If we want the seq2seq model’s input-
output sequence pair with length 5, then we can get 10
pairs. The schematic diagram is shown in Fig. 6. We
do the same thing on the whole sequence files in the
dataset. Afterward, we divide all the sequence pairs into
a training set and a test set at a ratio of 5 : 1. Through
the construction method mentioned above, the train-
ing set and test set used in the experiment are shown
in Table 4. One thing to declare is that we do not pay
much attention to the system-call names, because the
model cannot learn from the system call names directly.
On the contrary, the sequence contains more semantic
information.
In the verification stage of the experiment, due to the

large differences in the models’ structures used in the
experiments, we need to do specific data preprocessing
for a specific model. For convolutional neural networks
and recurrent neural networks, it is necessary to use word
embedding to convert system calls into word vector for
calculation. For SVM and RF, a vector space model is used
to map the system call sequence to a feature vector. The
vector dimension is the number of system calls, which is
307 shown in Table 3, and each component value repre-
sents the frequency of the system call in the sequence.
For instance, for the sequence {3,4,7,7,9,11,3,3,4,7,12}, the
mapped vector is expressed as {0,0,3,2,0,0,3,0,1,0,1,1,0,0},

Table 7 The performance of models trained with augmented
sequence

Classfier Accuracy Precision Recall F1-score

eRNN 97.6% 97.8% 98.3% 98.0%

eCNN 97.3% 97.8% 97.7% 97.8%

eSVM 87.4% 86.0% 94.8% 90.2%

eRF 96.2% 96.0% 97.8% 96.9%

GCNN 97.5% 98.8% 98.8% 98.8%

When training, we use the normalization method to
normalize the elements of the vector to be distributed
among [0,1].

Model classification analysis
Tables 6 and 7 show the comparative performance of ver-
ification models under all metrics. From Tables 6 and 7,
we can see that compared with the models trained on the
original sequences, the performance of the four intrusion
detection models trained on the augmented sequences
has been significantly improved. Concretely, the metrics
of the eRNN model are improved by about 1.5%, while
the evaluation values of the eRF models are improved
by 2%. However, compared with the CNN model and
the SVM model, eCNN and eSVM have no noticeable
improvement.
By comparing the evaluation indicators of each model,

we can see that GCNN has achieved the best results
of four models under the evaluation of all metrics. It
strongly proves that augmented sequences can provide
more practical information for the model and enable the
model to detect potential intrusion behaviors and to pro-
vide supports for decision making. The convolutional gate
helps GCNN model to fit the feature function of the
attack sequence by selectively extracting useful informa-
tion. Meanwhile, the characteristics of the potential attack
behavior are enlarged in the sequence through the model,
so as to improve the model’s ability to classify and decide
abnormal sequences.
Figure 7 shows the ROC curves and AUC values of clas-

sification models trained on the original sequences and

Fig. 7 ROC curves and AUC values of intrusion detection models trained on the original sequences and the augmented sequences respectively

Wang et al. Cybersecurity (2020) 3:23 Page 11 of 12

Table 8 Comparison between models with adversarial training and models without adversarial training

Model ACCorig ACCadv Perturbation rate Crafting rate

Adversarial sequences attack
CNN 96.40% 34.40% 19.50% 64.20%

GCNN 97.50% 35.40% 22.70% 63.70%

Adversarial training
CNN 96.90% 45.20% 28.00% 53.20%

GCNN 97.90% 60.70% 28.60% 37.90%

augmented sequences. As can be seen from the figure,
the classification ability of the intrusion detection mod-
els has been improved compared with the models trained
on original sequences and our proposed model, GCNN,
achieves the best AUC value. In summary, GCNN can
fully extract the potential semantic information from the
augmented sequence to improve its classification ability.
In the next section, we will improve its robustness by
adversarial training.

Model robustness analysis
In our experiments, we choose the half of the test set
to generate adversarial sequences and evaluate the effec-
tiveness of the adversarial sequence generation algorithm
mentioned in “Adversarial sequence generation algo-
rithm” section. Then, we use the generated adversarial
sequences to do adversarial training. Afterward, adver-
sarial sequences are generated on the other half of the
test set and are used to attack adversarial-training models.
Eventually, we evaluate the robustness of the model after
adversarial training.
The first three rows of Table 8 represent the perfor-

mance of the two models, mentioned in “Convolutional
intrusion detection model based on augmented sequence”
and “GCNN intrusion detection model based on pre-
dicted sequence augmentation method” sections, on the
augmented sequences and adversarial sequences gener-
ated by algorithm 1. It can be seen that the adversarial
sequence can cause a great decrease in the accuracy of
CNN and GCNNmodels, where the accuracy of the CNN
model drops by 62%, and the accuracy of GCNN drops
by 60.6%. From the perspective of perturbation rate and
crafting rate, the average perturbation rate is about 21%,
and the crafting rate is about 64%.We believe that the pro-
posed adversarial sequence algorithm can generate effec-
tive adversarial sequences with a high crafting rate and
low perturbation rate, and can be used to do adversarial
training.
The last two rows of Table 8 are the evaluation of adver-

sarial sequences on adversarial-training models. It can be
seen that under the premise of the classification accu-
racy, the adversarial-training model can better resist the
attack of the adversarial sequences. Under the attack of
adversarial sequences, the accuracy of GCNN decreases
only by 37.2%. Also, the increased perturbation rates and

decreased crafting rates indicate that the difficulty of gen-
erating adversarial sequences on the adversarial-training
models, and the concealment of the adversarial sequences
becomes weak. This indirectly shows that the robustness
of the model after adversarial training is indeed enhanced.
From Table 8, we can conclude that adversarial train-

ing of the model through the system-call adversarial
sequences constructed in Algorithm 1 can effectively
improve the classification accuracy and robustness of the
model, and the robustness improvement of GCNN is
more prominent.

Conclusion and future work
To address the problem of under-reporting and false posi-
tives and improve the detection capability of the intrusion
detection system effectively, we propose a gated convo-
lutional neural network architecture based on the aug-
mented sequence, where the classification performance
is significantly improved. Furthermore, to enhance the
robustness and security of the model, an adversarial
sequence generation algorithm based on FGSM is pro-
posed to generate adversarial examples for adversarial
training, and the ability of the model to resist adversar-
ial attack is improved through adversarial training. The
effectiveness of the proposed method and the model are
verified through experimental analysis.
In future work, research on the experimental investiga-

tion of scenarios of live traffic data and live processing
overhead for IDS will be carried out. Also, this paper
focuses on the convolution extraction of n-gram informa-
tion. Using sophisticated RNN structures such as GRU or
LSTM to extract semantic information will be considered
in future work. Moreover, we take into consideration that
how to compare black-box attacks with white-box attacks
to design better algorithms.

Authors’ contributions
Drafting the manuscript: Yixiang Wang, Shaohua lv, Jinqiang Wang. Revising
the manuscript critically for important intellectual content: Jiqiang Liu, Xiaolin
Chang. All authors read and approved the final manuscript.

Funding
This work was supported in part by the Fundamental Research Funds for the
Central Universities of China under Grants 2019YJS049.

Competing interests
No potential conflict of interest was reported by the authors.

Wang et al. Cybersecurity (2020) 3:23 Page 12 of 12

Author details
1Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing Jiaotong University, 3 Shangyuancun, 100044 Beijing, China. 2Beijing
Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, 3
Shangyuancun, 100044 Beijing, China.

Received: 20 April 2020 Accepted: 8 October 2020

References
Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in

computer vision: A survey. IEEE Access 6:14410–14430
Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K (2018) Deep learning approach

combining sparse autoencoder with svm for network intrusion detection.
IEEE Access 6:52843–52856

Bahdanau D, Cho K, Bengio Y (2015) Neural Machine Translation by Jointly
Learning to Align and Translate. cite arxiv:1409.0473Comment: Accepted
at ICLR 2015 as oral presentation. https://nyuscholars.nyu.edu/en/
publications/neural-machine-translation-by-jointly-learning-to-align-
and-trans-2

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H,
Bengio Y (2014) Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078:1724–1734. https://www.aclweb.org/anthology/D14-
1179.bib

Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated
recurrent neural networks on sequence modeling. ACM, Montreal. https://
nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-
recurrent-neural-networks-on-sequen

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Creech G, Hu J (2013) Generation of a new ids test dataset: Time to retire the

kdd collection. In: 2013 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, Shanghai. pp 4487–4492. https://ieeexplore.
ieee.org/document/6555301

Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805:4171–4186. https://www.aclweb.org/anthology/N19-
1423.bib

Elman J (1990) Finding structure in time. Cogn Sci 14(2):179–211
Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett

27(8):861–874
Forrest S, Hofmeyr S, Somayaji A (2008) The evolution of system-call

monitoring. In: 2008 Annual Computer Security Applications Conference
(ACSAC). IEEE, Anaheim. pp 418–430. https://ieeexplore.ieee.org/
document/4721577

Gao N, Gao L, Gao Q, Wang H (2014) An intrusion detection model based on
deep belief networks. In: 2014 Second International Conference on
Advanced Cloud and Big Data. IEEE, Huangshan. pp 247–252. https://
ieeexplore.ieee.org/document/7176101

Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and Harnessing
Adversarial Examples

Hao S, Long J, Yang Y (2019) Bl-ids: Detecting web attacks using bi-lstm model
based on deep learning. In: International Conference on Security and
Privacy in New Computing Environments. Springer. pp 551–563

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput
9(8):1735–1780

Kam H (1995) Random decision forest. In: Proceedings of the 3rd International
Conference on Document Analysis and Recognition, vol. 1416. IEEE,
Montreal, Canada, August. p 278282

Karras T, Laine S, Aila T (2019) A style-based generator architecture for
generative adversarial networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, Long Beach.
pp 4401–4410. https://ieeexplore.ieee.org/abstract/document/8953766

Kim J, Kim H (2015) Applying recurrent neural network to intrusion detection
with hessian free optimization. In: International Workshop on Information
Security Applications. Springer, Jeju Island. pp 357–369. https://link.
springer.com/book/10.1007/978-3-319-31875-2

Kim J, Kim J, Thu H, Kim H (2016) Long short term memory recurrent neural
network classifier for intrusion detection. In: 2016 International Conference
on Platform Technology and Service (PlatCon). IEEE, Jeju. pp 1–5. https://
ieeexplore.ieee.org/document/7456805

Kobayashi S (2018) Contextual augmentation: Data augmentation by words
with paradigmatic relations. arXiv preprint arXiv:1805.06201:452–457.
https://www.aclweb.org/anthology/N18-2072.bib

Kusner M, Hernández-Lobato J (2016) Gans for sequences of discrete elements
with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051

Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2019) Albert: A lite
bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942

LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L
(1989) Backpropagation applied to handwritten zip code recognition.
Neural Comput 1(4):541–551

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied
to document recognition. Proc IEEE 86(11):2278–2324

Liu Y, Liu S, Zhao X (2017) Intrusion detection algorithm based on
convolutional neural network. DEStech Trans Eng Technol Res
(iceta):62–67. https://dl.acm.org/doi/abs/10.1145/3313991.3314009

Lv S, Wang J, Yang Y, Liu J (2018) Intrusion prediction with system-call
sequence-to-sequence model. IEEE Access 6:71413–71421

Mikolov T, Karafiat M, Burget L, Cernocký J, Khudanpur S (2010) Recurrent
neural network based language model. Twelfth Annu Conf Int Speech
Commun Assoc:1045–1048

Nair V, Hinton G (2010) Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10). ACM, Madison. pp 807–814. https://dl.acm.
org/doi/10.5555/3104322.3104425

Powers D (2011) Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. https://dl.acm.org/doi/10.
1145/1143844.1143874

Rosenberg I, Shabtai A, Rokach L, Elovici Y (2018) Generic Black-Box End-to-End
Attack Against State of the Art API Call Based Malware Classifiers. arXiv
1707.05970

Shorten C, Khoshgoftaar T (2019) A survey on image data augmentation for
deep learning. J Big Data 6(1):60

Singla A, Bertino E, Verma D (2019) Overcoming the lack of labeled data:
Training intrusion detection models using transfer learning. In: 2019 IEEE
International Conference on Smart Computing (SMARTCOMP). IEEE,
Washington. pp 69–74. https://ieeexplore.ieee.org/document/8783997

Stehman S (1997) Selecting and interpreting measures of thematic
classification accuracy. Remote Sens Environ 62(1):77–89

Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning with neural
networks. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 NIPS’14. MIT Press, Cambridge,
MA, USA. pp 3104–3112

Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R
(2014) Intriguing properties of neural networks

Ustebay S, Turgut Z, Aydin M (2018) Intrusion detection system with recursive
feature elimination by using random forest and deep learning classifier. In:
2018 International Congress on Big Data, Deep Learning and Fighting
Cyber Terrorism (IBIGDELFT). IEEE, Ankara. pp 71–76. https://ieeexplore.
ieee.org/document/8625318/

Wang X, Huang Q, Celikyilmaz A, Gao J, Shen D, Wang Y-F, Wang W, Zhang L
(2019) Reinforced cross-modal matching and self-supervised imitation
learning for vision-language navigation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, Long Beach.
pp 6629–6638. https://ieeexplore.ieee.org/abstract/document/8953608

Wei J, Zou K (2019) Eda: Easy data augmentation techniques for boosting
performance on text classification tasks. arXiv preprint
arXiv:1901.11196:6382–6388. https://www.aclweb.org/anthology/D19-
1670.bib

Xu C, Shen J, Du X, Zhang F (2018) An intrusion detection system using a deep
neural network with gated recurrent units. IEEE Access 6:48697–48707

Yu L, Zhang W, Wang J, Yu Y (2019) Seqgan: Sequence generative adversarial
nets with policy gradient. In: Thirty-First AAAI Conference on Artificial
Intelligence. ACM, San Francisco. https://dl.acm.org/doi/10.5555/3298483.
3298649

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://nyuscholars.nyu.edu/en/publications/neural-machine-translation-by-jointly-learning-to-align-and-trans-2
https://nyuscholars.nyu.edu/en/publications/neural-machine-translation-by-jointly-learning-to-align-and-trans-2
https://nyuscholars.nyu.edu/en/publications/neural-machine-translation-by-jointly-learning-to-align-and-trans-2
https://www.aclweb.org/anthology/D14-1179.bib
https://www.aclweb.org/anthology/D14-1179.bib
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://ieeexplore.ieee.org/document/6555301
https://ieeexplore.ieee.org/document/6555301
https://www.aclweb.org/anthology/N19-1423.bib
https://www.aclweb.org/anthology/N19-1423.bib
https://ieeexplore.ieee.org/document/4721577
https://ieeexplore.ieee.org/document/4721577
https://ieeexplore.ieee.org/document/7176101
https://ieeexplore.ieee.org/document/7176101
https://ieeexplore.ieee.org/abstract/document/8953766
https://link.springer.com/book/10.1007/978-3-319-31875-2
https://link.springer.com/book/10.1007/978-3-319-31875-2
https://ieeexplore.ieee.org/document/7456805
https://ieeexplore.ieee.org/document/7456805
https://www.aclweb.org/anthology/N18-2072.bib
https://dl.acm.org/doi/abs/10.1145/3313991.3314009
https://dl.acm.org/doi/10.5555/3104322.3104425
https://dl.acm.org/doi/10.5555/3104322.3104425
https://dl.acm.org/doi/10.1145/1143844.1143874
https://dl.acm.org/doi/10.1145/1143844.1143874
https://ieeexplore.ieee.org/document/8783997
https://ieeexplore.ieee.org/document/8625318/
https://ieeexplore.ieee.org/document/8625318/
https://ieeexplore.ieee.org/abstract/document/8953608
https://www.aclweb.org/anthology/D19-1670.bib
https://www.aclweb.org/anthology/D19-1670.bib
https://dl.acm.org/doi/10.5555/3298483.3298649
https://dl.acm.org/doi/10.5555/3298483.3298649

	Abstract
	Keywords

	Introduction
	Background and related work
	Language model and seq2seq model
	Adversarial attacks and defense
	Related work

	Methods
	Convolutional intrusion detection model based on augmented sequence
	GCNN intrusion detection model based on predicted sequence augmentation method
	Adversarial sequence generation algorithm
	Metrics

	Experiment and analysis
	Verification model description
	Dataset description and preprocessing
	Model classification analysis
	Model robustness analysis

	Conclusion and future work
	Authors' contributions
	Funding
	Competing interests
	Author details
	References
	Publisher's Note

