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ABSTRACT Nuclear Power Plant (NPP) have increasing demand to improve safety and reliability of air 

compressors with various fault diagnosis methods. Fault diagnosis methods may provide early 

fault warning information for air compressors rapidly and give a reference for maintenance, especially for the 

serious faults affecting security strongly. In this work, a method framework of fault diagnosis system based on 

the Vibration Observation Window (VOW) for air compressors is proposed. The VOW constructs a dynamic 

vibration tensor which presents the operating state of air compressors according to the real time vibration data, 

strengthens the association among the monitoring data in spatial domain and time domain. Thus, dynamic 

characteristic, which reflects the fault information, can be contained in the dynamic vibration tensor explicitly. 

For proving the advantage of VOW method, we  compare the performance between the fault diagnosis system 

with VOW and the fault diagnosis system without VOW based on different hardware environments: 

embedded computer, and high speed Industrial PC. The results show that the VOW method can both improve 

the performance of the vibration fault diagnosis system of NPPs in different hardware environments. 

INDEX TERMS Air Compressors; Fault Diagnosis; Vibration Tensor; Nuclear Power Plants; VOW method.

I. INTRODUCTION 

As critical mechanical systems in Nuclear Power Plants 

(NPPs), safety is of prime importance for air compressors, and 

closely related to the mechanical state. Various kinds of faults, 

which may occur in any components of air compressors, have 

a major impact on security of NPP operation and experiment. 

Moreover, aged air compressors in NPPs are more vulnerable 

to aging-related faults [1]. This becomes a major concern as 

existing NPPs on average are over 30 years old [2], and similar 

problems may happen in some special nuclear reactors. 

Therefore, fault diagnosis systems are necessary for air 

compressors operation. 

Over the past few decades, various diagnosis methods, 

including model-based methods [3-4], data-driven methods 

and signal-based methods [5], have been applied in fault 

diagnosis. For example, Kalman filters and parameter 

estimation which belong to model-based methods [6-7], 

artificial neural networks and partial least squares which 

belong to data-driven methods [8-9], time-frequency analysis 

and wavelet transform which belong to signal-based methods 

[10], etc.  

Model-based method is the first method used for the fault 

diagnosis of complex mechanical system, where, analytical 

redundancy is the core concept that most model-based 

methods are based on [11]. For model-based methods, the 

normal behavior of a system needs to be described by the 

mathematical model. Based on the model, output variables of 

the system can be estimated analytically from other correlated 

measurements. The idea can be extended to analytically 

estimate other quantities such as model parameters and system 

states. The differences between the analytically estimated 

quantities and the actual measurements are called residuals. 

Faults result in violations of the normal relationships 

represented in the model, leading to statistically abnormal 
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changes in the residuals, so that faults can be detected by 

testing these residuals statistically [12]. However, the accurate 

models are necessary, which is difficult to be built. In addition, 

faults that have not been considered in the modeling stage may 

not be detected at all. Further, robustness against disturbances 

and modeling uncertainties has to be considered [13]. 

Signal-based and data-driven methods do not rely on 

precise dynamic models of systems. Actually, signal-based 

methods can be regarded as special data driven methods. They 

make decisions by comparing features extracted from a signal 

or state data with baseline characteristics that are considered 

to be normal, where, features in both frequency domain and 

time domain have been used. With the development of 

artificial intelligence, multivariate statistical methods are also 

used for signal-based method gradually. For the fault 

diagnosis of the rotating machinery based on signal-based 

method, analysis in time-domain, frequency-domain, and 

time-frequency domain [14]. The methods like fast Fourier 

transform (FFT) [15], wavelet transformation (WT) [16], 

empirical mode decomposition (EMD) [17], ensemble 

empirical mode decomposition (EEMD) [18], empirical 

wavelet transform (EWT), wavelet packet transform (WPT) 

[19], variational mode decomposition (VMD), stochastic 

resonance, sparse decomposition, etc., were suggested 

worldwide. 

 However, with the continuous development of computer, 

sensor and manufacturing technology, the modern mechanical 

systems have shown a new trend of large-scale, complex and 

distributed [20], so that traditional signal-based methods 

cannot adapt to the complexity of modern mechanical systems. 

As a typical branch of data-driven methods, machine learning 

method was developed during past decades to teach machines 

how to handle data more efficiently. some of the broadly 

practiced machine learning algorithms are artificial neural 

networks (ANNs) [21], principal component analysis (PCA) 

[22], support vector machines (SVM) [23-24], k nearest 

neighbors (KNNs) [25], singular value decomposition (SVD) 

[26]. In recent years, some fault deep learning methods 

represented by convolutional neural networks (CNNs) were 

also presented, for example, the motor bearing, self-priming 

centrifugal pump, and axial piston hydraulic pump fault 

diagnosis systems based on CNNs [27], and the bearing and 

pump fault diagnosis system based on TCNNs [28]. 

For air compressors of NPPs, these methods on above lead 

to benefits for safe and efficient operations: assist with 

decision making correctly and timely; enhance safety margins; 

enhance equipment reliability; optimize the maintenance 

schedule. However, for the reason of complicated operational 

mechanism, it is impossible to build a whole dynamic model 

of air compressors for model-based fault diagnosis; 

meanwhile, huge amounts of state variable measured in air 

compressors will enhance the complexity and reduce the 

process rate of the signal-based fault diagnosis method. 

Therefore, the data-driven method based on machine learning 

for air compressors fault diagnosis of NPPs is 

worthy of further research. 

In this work, a method framework of fault diagnosis system 

based on the Vibration Observation Window (VOW) for air 

compressors is proposed. The VOW constructs a vibration 

tensor which presents the operating state of air compressors 

according to the real time vibration signal. Actually, the VOW 

is a kind of special feature enhancement method. For different 

from traditional data-driven fault diagnosis methods, the 

VOW can strengthen the association among the monitoring 

data in spatial domain and time domain, and simplifies the 

diagnosis process of air compressors with large monitoring 

data. And then, the operation state of air compressors can be 

diagnosed by existing fault diagnosis methods accurately and 

rapidly.  

The rest of this study is organized as follows: In Section II, 

the basic concepts of VOW method for data organization are 

presented. Section III describes the experiment setup based on 

real air compressors in NPPs, where two different hardware 

environments are considered, one is embedded computer, and 

the other is high speed Industrial PC. Section IV shows the 

experiment result of fault diagnosis, and the result analysis 

from the view of accuracy and calculation speed is also given. 

At last, it has a brief conclusion in Section V. 

II. VOW Method 

A. Data Organization 

Consider an air compressor with n vibration sensors, which 

can measure the accelerated velocities under the rectangular 

coordinate system. The sampling period of each sensor is T . 

The data series presenting the vibration state of air 

compressors can be shown in figure 1. Where, ijV means the 

vibration data series in direction ( , , )j j x y z=  of thi

vibration sensor. k
ijv  means the thk  vibration data in ijV . We 

introduce an observation window with the size of 3n m  to 

cover the data series, the V containing the vibration data from 

0T  to 0T mT+ can be built. 

If the data flow direction is defined as shown as the gray 

arrow in figure 1, V  will become a tensor. So that, at time 

0T mT+ , the dynamic vibration tensor 
0TV can be built, 

which contains the all of the vibration data from 0T  to 

0T mT+ . The tensor 
0TV will be regarded as the 

analytic target of the fault diagnosis. 

 

Fig.1 Data series and observation window with the size of 3n m . 
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Fault diagnosis of air compressors can be reduced to the 

classification problem about 
0TV . For this purpose, the 

classification function of the vibration tensor can be given as:  

....)3,2,1)(( == iClf
0Ti Vη                             (1) 

Where, Clf  means the classificationfunction. iη means the 

thi classification of 
0T

V . Actually, Eq.1 provides a normal form 

of the vibration diagnosis based on VOW method, that is, as the 

sample analyzed in this work, 
0TV belongs to the sample space; as 

the classification of system faults, i  belongs to the classification 

space.  For 
0TV of each moment  0T , the fault diagnosis system 

based on VOW method can calculate i , which means the current 

state belongs to the normal steady-state or fault state. 

B.  Classification 

According to the equation 1, the fault diagnosis of air 

compressors can be converted to the classification problem of 

tensors. It is obvious that, Convolutional Neural Networks 

(CNNs) based on deep learning is one of suitable methods for 

tensors classification. However, the training and operation of 

CNNs may need a lot of computational resources, so that 

hardware system for air compressor vibration fault diagnosis 

should have a high computational performance in real time. 

Contrast to deep learning methods, classical machine learning 

methods, such as binary classification, K-nearest neighbor 

(KNN) and support vector machine (SVM), only need fewer 

computational resources.  

Generally, two kinds of hardware systems are used for 

NPPs, one is Industrial PCs (IPCs) with high computational 

performance; the other is embedded computers with 

little computational performance. Therefore, an appropriate 

classification method needs to be chosen for different 

hardware system. 

(1) IPC 

IPCs have become a firmly established part of various 

industrial environments. The advantages of IPCs are 

extremely high arithmetic speed，excellent scalability and 

flexibility. Together with associated software, IPCs are at the 

core of wide range of control or calculation task, such as 

motion control, processes or logistics systems, networking of 

system components, data acquisition, or image processing 

(figure 2 [29]). It is obvious that IPCs also have the ability to 

diagnosis vibration fault based on complex CNNs in real time.  

 
Fig.2 Typical Industrial PCs. 

CNN are typical feedforward deep neural networks, which 

extract the characteristics of input data by constructing 

multiple filters, and then carries out convolution and pooling 

processing to extract the potential topological data 

characteristics. Finally, the processed information is 

classification by the multi-layer perceptron, that is full 

connected layer. 

 
Fig.3 The structure of VOW-CNN. 

Figure 3 shows the complete structure of VOW-CNN, 

which contains VOW, convolution layer, pooling layer, and 

full connected layer. The characteristics implying in the tensor 

can be extracted by convolution layers and pooling layers. The 

function of the fully connected layer is to integrate the features 

after multiple convolution layers and pooling layers, obtaining 

the high-level meaning of the features and then use it for 

classification. The structure of VOW-CNN is similar with the 

classical feed-forward neural network (figure 3), where the 

detail expression can be shown as equation 2: 

1 1 1
,

1

I
l l l l
n n m m n

m

N f W x b+ + +

=

 
= + 

 
                                

(2) 

Where, 
1l

nN +
is the output of thn  neural cell in ( 1)thl +  

layer. 
l
mx  means the input of thm

 
neural cell in the thl  layer. 

1
,

l
n mW +  means the weight of thm

 
neural cell in the thl  layer 

connected to the thn  neural cell in the ( 1)thl +  layer. 
1l

nb +

 
means the bias of thn  notes in the ( 1)thl +  layer.  

Usually, the ReLU activation function can be used for the 

hidden layer of full-connected layer, which can be shown as 

equation 3: 
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Where, ReLU  means the ReLU activation function. 

SoftMax function can be regarded as the activation function 

in output layer: 
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j

e
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e
=

=

                                                   
(4) 

Where, ip means the output of thi  neural cell in the output 

layer. iz  means the input of thi  neural cell in the output layer. 

k  means the number of the neural cells in the output layer. 

Actually, the SoftMax function reflect the probability of the 

classification. k neural cells in output layer means that the 

vibration states need to be classified into k  ICs. If the output 

probability of thi neural cell is the maximum probability of all 

the output probability in the output layer, the current vibration 

state will be classified into thi  IC. 
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(2) Embedded computer 

The distributed processing units (DPUs) is a kind of 

classical control-oriented embedded computer system, which 

are used for NPPs widely (figure 4 [30]). DPUs have lower 

power consumption, appropriate volume and lower 

manufacturing cost. While, they cannot diagnose vibration 

faults based on complex CNNs because of the 

little computational performance. Classical machine learning 

methods are more suitable for the vibration diagnosis in DPUs. 

 
Fig.4 Typical embedded computer. 

For a classification process based on classical 

machine learning method, the first step is feature extraction. 

As mentioned in section I, the VOW method associates the 

monitoring data in special domain and time domain, so that 

the pixel feature can be extracted from the tensor 
0TV . For 

reducing computational complexity, a method based on 

multiresolution histogram is used for feature extraction of 

vibration tensor in this section, which can be shown as figure 

5. 

DWT

Lv1

…… 

Lv2

…… 

Multiresolution Histograms 

Moment Features 
Extraction

 
Fig.5 Process of feature extraction for vibration tensor. 

This method based on multiresolution histogram can 

reflect the change of amplitude and vibration spatial 

distribution of different sensors in 
0TV . First, the vibration 

tensor
0TV is processed by 2D Discrete Wavelet Transform 

(DWT) [31-32]: 

0
( ), 1,2k k TDWT k L= =WV V                             (5) 

Where, kDWT is the 2D DWT operator, k is the 

decomposition level of 2D DWT, kWV is the approximation 

with k level decomposition. Then an approximation sequence 

of 
0TV  in different resolutions can be given as: 

( )0 1k L=W W W WV V V V                           (6) 

Accordingly, the multiresolution histograms 

( )0 1 LW W WH H H  of kWV can be built: 

01 2( ), 1,2k k k knh h h k L= =WH                 (7) 

Moment features of multiresolution histograms can be 

extracted from kWH  to represent the feature of 
0TV , shown 

as equation 8: 
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Where, 
p
ckm means the thp  moment feature in the column 

direction of kWV . p
rkm is the thp  moment feature in the row 

direction of kWV , jg is thj  decomposition level. Then, the 

feature vector 
0TF at time 0T mT+ of kWV  can be built:  

0

2 3 1 2 3 2 3 1 2 3
1 1 1 1 1( )

T

x x y y y xL xL yL yL yLm m m m m m m m m m

=F

(9) 

Based on the feature vector 
0TF , vibration faults of air 

compressors can be diagnosed by lightweight classical 

classifier, including KNN, SVM, and binary classification. 

The performance of these classifiers with VOW will be tested 

and compared in section VI. 

 
Fig.6 Vibration sensors in different locations in air compressor. 
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III. Experimental Setup 

The experiments are performed on a type of air compressor 

used for Nuclear Power Plant. 2 vibration sensors in different 

locations of the air compressor provide real time vibration 

signals, which can be shown as figure 6. Vibration signals are 

acquired by the distributed control system (DCS). 

For testing the performance of VOW, it is realized based on 

an additional IPC or embedded Distribution Process Unit 

(DPU), which can be shown as figure 7. The IPC is connected 

with the DCS by a special embedded DPU in the DCS. The 

special DPU is also communicates with other DPUs in the 

DCS, acquires vibration signals through data transmission 

network based on TCP/IP, and extracts the vibration tensor. 

The IPC acquires the vibration tensor through PROFIBUS-DP. 

In the IPC, the method based on VOW-CNN is executed, and 

the classification results are transmitted to the DPU backward. 

At the same time, the DPU is also used for test the 

performance of classical machine learning methods with 

VOW. Timing sequence of vibration diagnosis in one period 

can be shown as figure 8, which means the IPC and DPU must 

make diagnosis in one period T in order to receive the 

diagnosis result from the DCS in real time. 

The structure dimension of the CNN merged in the IPC can 

be shown as figure 9. In addition to the feature tensor 

generated by The CNN contains one convolution layer (5×49

×6), one Relu layer (5×49×6), one pool layer (4×48×12), 

and two full connected layers (10 and 7 nodes respectively). 

Kernels with 2×2 size are used for the convolution and 

pooling process. The strides in the convolution and pool layer 

are also set to 1. 

Switch

Data transmission network(TCP/IP)

…… 
IPC

Control station 
with DPU

Embedded 
DPU

PROFIBUS-DP

Operator station

Vibration sensors

Signal line …… 
DCS Classical machine 

learning +VOW
Deep learning +VOW

 
Fig.7 Hardware architecture based on IPC and DPU. 

Extraction of  the 
state matrix

1T

Feature extraction Classification Data Process

2T 3T

DCS IPC or Embedded DPU DCS

T

4T

 
Fig.8 Timing sequence of vibration diagnosis in one period. 

 
Fig.9 Structure sizes and parameters in CNN used in experiment. 

IV. Results and Discussion 

A.  IC Introduction 

In this work, 6 fault ICs and 1 normal IC are considered, 

including normal (IC-1), seat wear of discharge valve (IC-2), 

crack of discharge valve (IC-3), spring break of discharge 

valve (IC-4), hydrops in air cylinder (IC-5), bolt looseness 

(IC-6) and filter clogging (IC-7). All of the ICs are shown as 

table 1. The corresponding ID of fault type of each simulation 

IC is also contained. 
TABLE.1 

 SIMULATION INDUSTRY CONDITIONS. 

ID of IC Description 
Sampling 

period/Observation window 

size 

IC-1 normal 0.5s/50 
IC-2 Seat wear of discharge valve 0.5s/50 

IC-3 Crack of discharge valve 0.5s/50 

IC-4 
Spring break of discharge 

valve 
0.5s/50 

IC-5 hydrops in air cylinder 0.5s/50 

IC-6 bolt looseness 0.5s/50 

IC-7 filter clogging 0.5s/50 

With the vibration experiment of the air compressor, the 

vibration data in less than 12 hours is acquired (figure 10-11), 

which is divided into two parts: train set and validation set. 

Degenerated components are installed to present failures at 

different times.  

 

(a) 0h-0.7h 
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(b)0.7h-12h 

Fig.10 Vibration signal from sensor 1. 

 

(a) 

 

(b) 

Fig.11 Vibration signal from sensor 2. 

According to figure 10-11, more than 240000 vibration 

signals are acquired during the 12 hours. Each vibration tensor 

has 50 time-domain samples based on the 0.5s sampling 

period, and 6 signal group (vibration signals in x, y, z direction 

of 2 sensors). Thus, the size of each vibration tensor is 50×6. 

It can also be found that the state of the air compressor 

changed consistently, so that the vibration fault diagnosis in 

real time is necessary.  

B.  Results and comparison of VOW-CNN 

 

Fig.12 Training process of VOW-CNN (100 iterations). 

 

(a) 

 

(b) 

Fig.13 Accuracy and loss during training and validation process. 

Based on the IPC, the training process of VOW-CNN 

method can be given as figure 12. As mentioned on above, the 

vibration data is divided into two parts: train set and validation 

set. There are about 120000 normal signals and 70000 fault 

signals in the training and validation set, and 30000 normal 

signals and 20000 fault signals in the test set respectively. The 

signal in training set is reconstructed by the VOW, and the 

tensor from VOW is applied to train the proposed CNN 

directly. The validation set is used to optimize parameters and 

evaluate the performance of VOW-CNN. 

During the training process, the predicted value is obtained 

by using forward propagation firstly. Then, the chain 

derivative of the back-propagation algorithm is used to 

calculate the partial derivative of the loss function with respect 

to each weight.  The weight in each neural cell is updated by 

using gradient descent method. The training and validation 

accuracy can be shown as figure 13 (a), accordingly, the 

training and validation loss can be shown as figure 13 (b), 
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where, 100 iterations are implemented during the training 

process. It is obvious that after 100 iterations, the accuracy and 

loss converge significantly. The training and validation 

process show that the fault diagnosis system based on VOW-

CNN method has the accuracy of more than 80%. 
TABLE.2 

SIMULATION INDUSTRY CONDITIONS FOR VOW-CNN TEST 

ID of IC Description 

maximum 

length of lag 

time 

Number of 

Samples 

IC-1  normal 2.4s 46941 

IC-2  Seat wear of discharge valve 10.4s 3790 

IC-3  Crack of discharge valve 9.2s 4463 

IC-4  Spring break of discharge valve 1.2s 3105 

IC-5  hydrops in air cylinder 5.4s  3120 

IC-6 bolt looseness 3.6s 2679 

IC-7 filter clogging 3.2s 3652 

For testing the performance of VOW-CNN method in the 

IPC, extra 72000 vibration signals are test online in 4 hours, 

which contain about 50000 normal signals and 22000 fault 

signals. For introducing faults, fault components are 

implemented. The test results can be shown in Table 2 and 3. 

Take the fault IC-7 as the example, the output of fully 

connected layer is shown as figure 14 during 1 hour after the 

fault introduction, where 7 nodes are adapted to present the 

different ICs (shown as figure 15). In the initial phase, the 

normal filter is replaced by the clogging filter in the air 

compressor. Accordingly, the output of node 7 enhances 

rapidly, and becomes greater than the output of mode 1-6. It 

shows that the fault diagnosis system based on VOW-CNN 

method has identified the most fault signals accurately, 

although some normal signals are diagnosed as fault 

conditions, which may due to the unbalanced distribution of 

IC classifications. Not only for IC-7, IC-1~IC-6 have all 

similar fault diagnosis processes. 

Some brief analysis can also be given as follows based on 

the results of VOW-CNN method. For the most of the ICs, the 

fault diagnosis system has good precision and recall rate. 

However, the test recall rate of fault IC-6 (bolt looseness) is 

lower than other ICs significantly. One possible reason is that 

number of sensors is small, so that the classifier cannot acquire 

sufficient information from original data. Moreover, the long 

sampling period of the fault diagnosis system (0.5s) may 

reduce the diagnosis accuracy. Beside the measurement 

process, the feature of IC-6 may also be an important factor 

for IC-6 diagnosis. Actually, bolt looseness is not an 

independent fault. It may also be caused by other abnormal 

vibration, including seat wear, crack, and filter clogging. 

When bolt looseness occurs, the fault diagnosis system is hard 

to recognize whether the bolt looseness is independent. On the 

other hand, the test precision rate of IC-2 and IC-7 are lower 

than other ICs significantly, because of the unbalance samples 

distribution. On the other hand, the maximum length of false-

alarm or lag time also shows the impact of diagnosis loss on 

air compressor operation. IC-2 (seat wear of discharge valve) 

and IC-3 (crack of discharge valve) have longer lag time, 

which means seat wear and cracking are not significant in the 

initial phase of the fault (traditional machine learning methods 

with VOW have also similar result, which can be shown as 

section IV C). 

 

Fig.14 Output of fully connected layer in IC-2. 

Output Nodes
1 2 3 4 5 6 7

IC2 IC3 IC4 IC5 IC6 IC7 IC1

Fault ICs Normal ICs
 

Fig.15 Structure of output nodes in fully connected layer. 

TABLE.3 
CONFUSION MATRIX OF VOW-CNN 

 PREDICTED CLASS 
Recall 

A
ct

u
al

 C
la

ss
 

 IC1 IC2 IC3 IC4 IC5 IC6 IC7 

IC1 42216 812 1274 373 486 845 935 89.93% 

IC2 661 3095 27 0 0 7 0 82.45% 

IC3 726 196 3519 0 0 22 0 75.32% 

IC4 335 0 0 2770 0 0 0 89.20% 

IC5 641 0 0 0 2479 0 0 79.47% 

IC6 694 51 79 121 0 1711 23 63.85% 

IC7 380 12 0 0 31 47 3182 91.65% 

Precision 91.37% 74.29% 71.83% 84.87% 82.74% 65.00% 76.86%  

It is well known that CNNs are very adept at extracting two-

dimensional signal features, therefore, it is necessary to 

compare the proposed VOW-CNN method with the typical 

CNN method without VOW. The typical CNN without VOW 

tested in this section also contains convolution layer, pooling 

layer and fully connected layer. The same number of the nodes 

in these three layers as the VOW-CNN is configured (figure 

16). Figure 17 shows the precision on about 50000 tests of 

VOW-CNN and CNN. Different from classical machine 

learning methods on section IV C, CNN method has a better 

precision, and the performance in most of fault conditions is 

closed to VOW-CNN. However, for the normal condition IC-

1 and combination fault IC-6, CNN without VOW has a lower 

precision, which means CNN generates more false alarms than 

VOW-CNN, and has a bad performance in combination faults. 
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Fig.16 The comparison between VOW-CNN and typical CNN. 

 

Fig.17 The precision with 50000 tests among the VOW-CNN and typical 
CNN. 

 

(a) Level 1 

 

(b) Level 2 

Fig.18 Features of vibration tensor from 0h-12h in different 
decomposition levels. 

C.   Results and comparison of traditional machine 
learning method with VOW 

A lot of typical machine learning method can be used for 

fault classification based on the embedded DPU. For ease of 

analysis, KNN, SVM and binary classification are regarded as 

the candidate classification methods. Similar to VOW-CNN in 

the IPC, for testing the performance of VOW-KNN, VOW-

SVM and VOW-Binary classification methods in the DPU, 

extra 72000 vibration signals are introduced online in 4 hours. 

 For the classical machine learning method based on the 

VOW, vibration fault features need to be extracted separately. 

According to the algorithm in section II B, from 0h-12h, 

multiresolution features of the vibration tensor in VOW, 

which are regarded as features, can be shown as figure 18, 

which contain 2 decomposition levels. On the other hand, for 

the test of classical machine learning methods without VOW, 

the original 6-D vibration vector is also need to extract features 

similar to the machine learning method with VOW. For this 

purpose, 1-D moment features are extracted according to the 

process of figure 19. 

Original Signal

Level 1

Level 2

Moment Features

 

Fig.19 The moment feature extraction and classification process of 
original signal. 

Figure 20-22 show the precision on the 72000 tests of 

classical machine learning methods with VOW compared with 

machine learning methods without VOW. In the table 4, the 

fault diagnosis process all can be executed during one 

diagnosis period of the DPU (500ms), where, VOW-SVM has 

maximum average program running time (175ms). It can be 

found that in figure 20-22, the test precision of machine 

learning methods without VOW has a lower precision than 

machine learning methods with VOW in IC-1~IC-7, which 

means VOW can represent more information about fault ICs 

effectively. For the three methods in figure 20-22, the similar 

characteristic to the CNN method in section IV B is presented: 

the diagnosis accuracy of IC-6 is lower than other ICs 

significantly. This reason has been analyzed in section IV B 

briefly. Beside on IC-1, the classical machine learning method 

with VOW can acquire better diagnosis accuracy for IC-2, IC-

4 and IC-7 than other ICs, because faults of the discharge valve 

and filter have striking features than other faults, and can be 

recognized linearly and easily. Moreover, the VOW-SVM has 

the best diagnosis accuracy in the three classical machine 

learning methods with VOW, because of the non-linear and 

robust characteristics.  
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TABLE 4 

TIME PERFORMANCE OF VOW-CLASSICAL MACHINE LEARNING TEST 

Method 
maximum length 

of lag time 

Average program 

running time 

VOW-KNN 12.1s 103ms 

VOW-SVM 10.7s 175ms 

VOW-Binary 

Classification 
17.2s 71ms 

 

Fig.20 The precision comparison between VOW-KNN and KNN. 

 

Fig.21 The precision comparison between VOW-SVM and SVM. 

 

Fig.22 The precision comparison between VOW-Binary classification and 
binary classification. 

VI. Conclusion 

In this work, a method framework of vibration fault 

diagnosis system based on VOW method for air compressors 

has been researched. In the VOW method, vibration tensor is 

used to describe the air compressors state in current. Actually, 

the VOW is a kind of special feature enhance method. 

Different from classical data-driven fault diagnosis methods, 

the VOW method can strengthen the association among the 

monitoring data in spatial domain and time domain, and 

simplifies the diagnosis process of air compressors with large 

monitoring data. Considering the hardware characteristic in 

NPPs, we  compare the performance between the fault 

diagnosis system with and without VOW based on different 

hardware environments: the embedded DPU in DCS, and the 

high speed IPC. In the high-speed IPC, the CNN is used for 

fault classification, and the vibration tensor in VOW is 

regarded as the input of the CNN. In the DPU, three kinds of 

classical machine learning methods are used, where 

multiresolution histogram can be extracted from the VOW as 

the feature. 

The effectiveness of VOW method is verified by the actual 

air compressor in NPPs, and the industrial field application 

mode of the VOW method is also given. The online test show 

that the fault diagnosis system based on IPC and DPU both 

have good test accuracy and response speed, which indicate 

that the VOW can both improve the performance of the 

vibration fault diagnosis system of NPPs based on different 

classification methods.  

However, the experiment result also shows that the 

inadequacy of the method framework for combination faults. 

As a typical example, the test accuracy of fault bolt looseness 

is lower than other ICs significantly, because bolt looseness is 

not an independent fault. In future work, the fault diagnosis 

based on VOW method needs to be improved further: 

(1) improving the feature extraction ability of combination 

faults; 

(2) reducing the maximum length of undetected time based 

on different classification methods, including deep learning 

and classical machine learning. 
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