Session Subtyping and Multiparty Compatibility
Using Circular Sequents

Ross Horne
Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg
ross.horne@uni.lu

—— Abstract
We present a structural proof theory for multi-party sessions, exploiting the expressive power of
non-commutative logic which can capture explicitly the message sequence order in sessions. The
approach in this work uses a more flexible form of subtyping than standard, for example, allowing a
single thread to be substituted by multiple parallel threads which fulfil the role of the single thread.
The resulting subtype system has the advantage that it can be used to capture compatibility in the
multiparty setting (addressing limitations of pairwise duality). We establish standard results: that
the type system is algorithmic, that multiparty compatible processes which are race free are also
deadlock free, and that subtyping is sound with respect to the substitution principle. Interestingly,
each of these results can be established using cut elimination. We remark that global types are
optional in this approach to typing sessions; indeed we show that this theory can be presented
independently of the concept of global session types, or even named participants.

2012 ACM Subject Classification Theory of computation — Type theory; Theory of computation
— Proof theory; Theory of computation — Linear logic; Theory of computation — Process calculi

Keywords and phrases session types, subtyping, compatibility, linear logic, deadlock freedom

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2020.12

Acknowledgements This paper benefits hugely from discussions with Mariangiola Dezani-Ciancaglini

and Paola Giannini who suggested restricting to a regular calculus.

1 Introduction

Session types are a class of type systems for modelling protocols that prescribe, not only the
types of messages exchanged, but also the sequence in which they are communicated. The
first session type systems were constrained to two parties. For such binary sessions, given a
session type prescribing the behaviour of each of the participants, it is possible to determine
whether the two behaviours are compatible, in the sense that they can interact together to
successfully realise a protocol.

Here, in the introduction, we first make it clear there are obvious, underexploited,
connections between compatibility in the binary setting and provability in non-commutative
extensions of linear logic. The body of this work shows that these observations extend
elegantly to the multiparty setting [32, 33], where multiparty compatibility is the problem of
whether two or more participants realise a protocol when they communicate together.

On the binary setting and non-commutative logic. In the binary setting, compatibility
holds when the two parties are dual to each other [30]. For example, A1;(?A2 A ?X3) is dual
to ?A1;(1A2 V 1A3). The former types a process that is ready to output a message of type Ay,
and then receives either a message of type Ay or A3. The latter types a process that is ready
to receive a message of type A1, and then makes a choice between two branches, sending a
message of type A2 or A3. By building subtyping into the system [24, 23, 18], duality becomes
a more flexible concept. For example, two processes of respective types '\1;(?A2 A ?A3) and

© Ross Horne;
37 licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovécs; Article No. 12; pp. 12:1-12:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0162-1901
mailto:ross.horne@uni.lu
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Session Subtyping and Multiparty Compatibility

?A1;!A2 are also compatible. Notice a process of the type !A1;(?A2 A 7A3) offers two possible
inputs, so is more than capable of responding correctly to ?A1;! A2, which always chooses to
send \g as its second action.

For binary sessions, compatibility is proven by showing that the dual of a type is a subtype
of another type, for example establishing '\1;(?A2 A ?A3) < !A1;?A2. In the original paper on
session types [30], it was explicit that internal and external choice were inspired by the additive
operators in linear logic [27, 26, 1]. For example, interpreting A as additive conjunction in
linear logic, subtype relation ?Ay A 7A3 < ?)5 is a provable implication in linear logic. While
pure linear logic has no concept of sequentiality (all operators are commutative), linear logic
can be extended with non-commutative operators explicitly capturing sequentiality, allowing
the above subtype judgement involving prefixing to be proven. In this work, we restrict
ourselves to a fragment of non-commutative logic with action prefixing only, allowing us
to retain a sequent calculus presentation. Full sequential composition can be achieved [34].
However, for full sequential composition, it is necessary [50] to employ the calculus of
structures [28]. The compromise adopted in this work, of restricting non-commutative logic
to prefixing, allows us to formulate our subtype system using the sequent calculus, whilst
still working within a fragment of a conservative extension of linear logic.

Contribution to the multiparty setting. Using non-commutative extensions of linear logic
to model multiparty session types provides additional expressive power. In particular, the
subtype system obtained allows more session types to be compared than possible using
established subtype systems [25]. Indeed the subtype system obtained is sufficiently rich, so
that subtyping can be used to evaluate compatibility in the multi-party setting. The notion
of multiparty compatibility enforced by this methodology allows session types to be used
to guarantee that multiparty sessions are deadlock free without the need for a global type
choreographing all processes. An advantage of avoiding global types is that we can check
compatibility for protocols for which no global type exists [48].

Problems with pairwise duality resolved. Early work on multi-party session types [8, 21]
employed a notion of compatibility based on the notion of duality for binary types applied
pairwise. In that early work, we take each pair of participants and restrict them only to the
inputs and outputs between the participants selected, and then check whether each pair of
projections are dual. Pair-wise duality fails to guarantee deadlock freedom, since process
2213002]| PA2;1A3 1] ?A3;!1 A1 deadlocks, despite participants being pair-wise dual (e.g., restricting
the first two participants to their mutual communications gives types Ao and 7\, which are
dual). The process above consists of three participants in parallel each waiting to receive a
message, from another process before producing an output. The process is clearly deadlocked
since all inputs await a message that never arrives.

The current work, and related work [20, 15, 48, 39, 19], addresses the above limitation
of pair-wise duality by proposing more sophisticated notions of multi-party compatibility.
The work on which this builds [15] (which concerned a finite fragment of Scribble [31]),
handles multiparty compatibility as a special case of subtyping. In this work, as required,
our example processes in the previous paragraph would not be multi-party compatible. The
rules of the system in this paper are determined by logical principles (cut-elimination).

Related paradigms. This paper does not follow the Curry-Howard inspired proofs-as-
processes school; instead, it follows a processes-as-formulae [10, 36] approach closer to
intersection types [44] and algorithmic subtyping [47]. For multiparty sessions, the processes-

R. Horne

as-formulae [15] and proofs-as-processes paradigms [12, 11] emerged simultaneously. Papers
following the Curry-Howard approach typically aim to design new (higher-order) session
calculi where the process terms are proofs in an established logic. In contrast, in the processes-
as-formulae approach pursued here, we typically harness the power of structural proof theory
to design new logics that can directly embed established session calculi [17], while respecting
their semantics. In this work, linear implication in the logical system introduced provides us
with a notion of session subtyping preserving deadlock freedom.

Summary. In Section 2, we explain how the notion of multiparty subtyping is more flexible
than established notions of subtyping for multiparty sessions, illustrated using an example
where a participant is substituted by two participants. Section 3 formally develops a theory
of session subtyping and multiparty compatibility in a coinductive sequent calculus. That
section concludes with an example where we guarantee the deadlock freedom of a session for
which no global type exists.

2 Motivating Example: A Generalised Substitution Principle

The problem of defining a subtype system for multiparty sessions is in a sense solved in the
synchronous setting [14, 25]. Soundness in that work is defined according to a substitution
principle [41], informally stated in related work [25] as: “If T R T’, then a process of type T’
engaged in a well-typed session may be safely replaced with a process of type T.” Here R is
a candidate subtype relation and “safely” is formalised in terms of deadlock freedom.

In the above related work, the substitution principle allows one (single threaded) parti-
cipant to replace another participant. In the current paper, we take a broader interpretation
of the substitution principle, permitting more parallelism to be introduced. We allow parti-
cipants in a session to be replaced by any number of participants, e.g., a single thread of
type T can be replaced by two parallel participants of type T; and Ts, where T; @ To < T.
This allows parallel components to be introduced with additional communications, while
preserving the ability of the multiple components to fulfil the role of the original components.
An example is provided next.

An authorisation protocol. We provide an example that is out of scope of the substitution
principle in related work mentioned above, but within the scope of the substitution principal
in the current paper. In the example that follows, we consider an application where a Trusted
App is replaced by an Untrusted App and an OAuth Server. This demands a rich multi-party
subtype system accounting for parallelism and interactions.

Consider the protocol realised by the three participants in Fig. 1, which are modelled as
threads in a typical session calculus. In this authorisation protocol, the Trusted App asks the
Owner of a resource for permission before it accesses the Resource.

Owner: This could be you — the human user, who owns the resource. You get redirected
to a login page containing the app_id for the Trusted App and a scope indicating the
resources requested (e.g., personal contact details). If you chose to approve authorisation,
you grant access to the resource by providing your name and password. You do however
have the ability to chose not to approve, choosing the branch !deny in the internal choice,
notated @ in the process Owner in Fig. 1.

Resource: A token is used by the Trusted App to prove it has the right to access the
resource. The Resource can be accessed many times by the Trusted App until the token
expires or is revoked. The expiry of a token is modelled here by the Resource making an
internal choice, deciding whether to provide data or revoke.

12:3

CONCUR 2020

12:4 Session Subtyping and Multiparty Compatibility

Ouwner: ?1login_page (app_id, scope); (!deny @ lauthorise (name, password))

Resource: recX.(?release + 7request (token);(Irevoke @ !response(data); X))

Trusted App: !login_page(app_id, scope);
?deny;lrelease + Tauthorise(name, password);
recY.lrelease @ !request (token);
?revoke + Tresponse(data);Y

Figure 1 The local behaviours of three participants in an authorisation protocol.

Trusted App: Since the App is trusted it presents directly the login page to the user. If
the Resource Qwner approves, the same App manufactures a token which is used to access
the resource. Notice external choice, notated +, is used for inputs.

A problem with the above protocol is that user credentials are provided directly to the
Trusted App. Furthermore, the Trusted App does not only know the credentials of the owner
of the resource, it must also know how to manufacture tokens to access the resource; hence,
in principle, has the right to freely access the resource without asking permission. Thus,
there is no security offered to the Resource Owner or Resource if the app is compromised.

Substituting one participant with two participants. We can address the above limitation
by making use of the OAuth 2.0 protocol [29] where credentials and the generation of tokens
is handled by an OAuth Server that the Owner trusts more than the app. We can refine the
above protocol by substituting Trusted App with two processes in parallel: an Untrusted App
and OAuth Server, defined in Fig. 2.

Untrusted App:
linitiate (app_id, scope);
?close + Tauthorisation_code(code);
lezchange (app_1id, secret, code);
?close + Taccess_token(token);
recY.lrequest (token);(?revoke + ?response(data);Y)
OAuth Server:
?initiate (app_id, scope);
'Togin_page (app_id, scope);
(?deny;lclose;lrelease) + ?authorise(name, password);
(close;lrelease) ® lauthorisation_code(code);
?exzchange (app_id, secret, code);
(close;lrelease) ® laccess_token(token)

Figure 2 Two participants that can safely replace the Trusted App in Fig. 1.

The OAuth protocol enables the Untrusted App to access the Resource, for which per-
mission is required from the Owner, in such a way that the Owner never discloses their
credentials to the Untrusted App. The Owner permits the OAuth Server to grant an access
token to the Untrusted App that can be used to access the Resource. We briefly describe
informally each process.

OAuth Server: As a mediator between the Untrusted App and Resource Owner, the
OAuth Server receives an initiate request from the Untrusted App, resulting in the Resource
Owner being redirected to a login page. Notice the OAuth Server reacts to the decision of
the Resource Owner to either provide credentials or end the session, indicated by an external
choice. Notice, after that point, that the server makes two internal choices: the first issuing

R. Horne

a code to the Untrusted App only if the correct credentials were provided by the Qwner; the
second issuing an access token only if the Untrusted App provides its correct credentials (and
the correct code). If all is correct, a token is eventually issued to the Untrusted App.
Untrusted App: The Untrusted App initiates the protocol. It then reacts, indicated by
external choices, to whether the Resource Owner and OAuth Server grant access. If an access
token is granted, the token can be used repeatedly to access the resource requested.

What the subtype system guarantees here. The Trusted App can be replaced by
Untrusted App || OAuth Server while preserving deadlock freedom of the protocol. We know
this because the type of App || OAuth is a subtype of the type of Trusted App, by using the
subtype system introduce in the next section. Furthermore, for protocols of the complexity of
this OAuth example, it is not immediately obvious whether all roles are correctly implemented
such that deadlock freedom is guaranteed. We can also use the subtype system introduced
in the next section to check whether participants together are multiparty compatible.

3 A Proof System for Subtyping and Multiparty Compatibility

In this section, we introduce session types and a proof system for expressing session types
called Session, which defines our subtype system for multiparty sessions. Later in this section,
having introduced Session, we define multiparty compatibility and race freedom, and use
these properties to establish our main deadlock freedom result.

Session types are defined according to the following syntax. Note we could have proposi-
tional data types (nat, bool, etc.), but accommodating such data types is a perpendicular
issue to this work, hence we simply label messages (A1, A2, etc.).

» Definition 1 (session types). Session types for threads are defined by:

L == N/?Li | Ve oL | ptL |] ox
Session types for networks are defined by:
N = L | N®N | NeN

We refer to both of the above simply as session types, which are ranged over by T, U, V. We
restrict ourselves to guarded recursion, avoiding the type ut.t. Index sets I are finite.

The constant 0k is used to type networks that, on all paths, either successfully terminate or
progress forever. Intersection types (abbreviated as A when there are two branches) are used
to type external choices between inputs; while union types (abbreviated as V) type internal
choices between outputs.

Actions w are either of the form !\ or ?A. Whenever there is only one branch in a
union/intersection type, we simply write the action prefixed type 7;T, which is used to type
a process that performs an input or output and then behaves as T. As standard, we allow ok
to be omitted, by abbreviating m;0k as 7.

Notably, the syntax features two commutative multiplicative operators % and ®. When
typing multiparty sessions we employ only T ® U, representing two parallel sessions T and U
that may communicate and interleave actions. The operator T % U is introduced to complete
the theory, as the dual to parallel composition, and is used in subtyping proofs. Future work
may also use % as an additional modelling device that prevents one session from interfering
with another session. As a consequence of including the pair of multiplicatives, every session
type, has a dual type, its co-type, given by the function below.

12:5

CONCUR 2020

12:6

Session Subtyping and Multiparty Compatibility

» Definition 2 (co-type). Co-types are defined by the following mapping over types, prefized
types and actions:

/\Ti:\/ﬁ \/T¢:/\ﬁ T =mT =172\ 22 =1\

i€l iel iel iel

eU=Ta3U TaU=TeU utT=ptT t=t Tk=uw

—

In addition to the duality between the multiplicatives, described above, the de Morgan duality
between V and A is standard for session types. The co-type of a prefix action interchanges
send and receive, and dualises the continuation. The unit ok is self-dual. Since we have only
guarded recursion, we treat fixed points equi-recursively, hence the fixed point operator is
self-dual. Intuitively, equi-recursive types are treated equivalently to their infinite unfoldings.

Note co-types and the use of two multiplicatives is optional in this work. Having co-types
reduces the number of rules in the next section by avoiding two sided sequents.

3.1 Deriving subtype judgements using the rules of Session

The rules of Session are defined in Fig. 3, using, in proof theoretic terms, a circular (or cyclic)
sequent calculus [9, 4] — which is, in type theoretical terms, a coinductive algorithmic subtype
system [47]. We employ an explicit algorithmic presentation of such a circular system where
we have an axiom [LEAF] which is enabled whenever there is a loop in the proof returning to
a sequent visited earlier in the proof. This algorithmic approach to coinduction is standard
in type theory [2], being sound and complete for infinite proofs such as these due to the
restriction to guarded recursion.

We explain the notation [©]T F. The sequent I" is a (comma separated) multiset of
types, hence types in a sequent can commute (exchange) inside a sequent, but cannot be
duplicated (contraction) or removed (weakening). A set of sequents ©, where each sequent
in the set is separated using |, is employed to define an algorithmic coinductive system, by
remembering sequents that may be revisited. We omit © if it is empty.

» Remark 3. Note that proof systems typically formalise provability of formulae, written - T.
For a tight match with session type conventions (without breaking the logical convention
that A is conjunctive), we instead formulate provability of duals of formulae. To emphasise
that we formulate probability of duals we write sequents as T I, which is equivalent to - T.

Subtypes. Using co-types (Def. 2) and the rules in Fig. 3, subtyping can be defined as
follows. Note, a type is closed when no type variables appear free.

» Definition 4 (subtyping). We say a closed type T is a subtype of another closed type U,
written T < U, whenever T | U F holds in Session.

Note that in linear logic a linear implication T — U holds whenever T @ U is provable.

Translating to provability of duals, proving T ® U is equivalent to establishing T, U F.
Indeed subtyping as defined above is a conservative extension of linear implication in linear
logic (with the mix rule). In what follows, we confirm that standard subtype judgements
are covered by the above definition. In addition, some additional subtype judgements hold,
which are particular to the multiparty setting.

We briefly highlight that most rules are standard rules from linear logic and coinductive
proof systems. Examples appear in the next section. Rules are well-defined over closed types.

R. Horne
FIx-p]
[OK] [LEAF] [
t.T,T)T{" T4}, Tk
oo, oxt - (O] ut.T, T T{* T},
[O]ut.T, T+
[MEET] [JoIN]

[O.VHI IR or some j € AT, orall je
O]7X;;T;, I'F f 1 O]\;;T;, ' for all I
[©] A\?A;Ti, T F O] \/1;Ti , Tk

i€l iel
[PREFIX| [T1MES] [PAR]
O]T,U, Tk O)|T,U, T+ O)|T, I+ [O]U, Tk
[O]INT, 72U, T+ O]TeU, Tk O]T»U,T;, Tk

Figure 3 A presentation of the algorithmic coinductive proof system Session. Note, to align with
session type conventions, the system establishes provability of duals.

Rules from MALL. Most rules of Session are rules of Multiplicative Additive Linear Logic
(MALL), dualised in order to formalise provability of duals. The rule [TIMES] breaks down
types into their parallel components. The rule [PAR] is required for subtyping in the presence
of parallelism. The axiom [OK] indicates that a protocol with no more actions has successfully
terminated (this rule is valid for MALL with mix). Rules [JOIN] and [MEET] are (dualised)
standard rules for the additives of linear logic.

Rules for equi-recursion. Fixed points can be unfolded using the rule [Fix-u]. Axiom
[LEAF] is applied when we reach a previously visited sequent, completing a loop.

Rule [Prefix]. The exception to the above established rules for equi-recursion and MALL is
the [PREFIX] rule. This is used to model an interaction between two processes where one
sends and the other receives. The rule enforces a causal order on interactions.

3.2 On notable admissible rules and algorithmic subtyping

For a proof system, we say a rule is admissible, whenever anything provable in the system
with the rule present is provable in the same system but with the rule removed. We highlight
the following three notable rules that are admissible in Session.

[CuT] [INTR] [MIx]
O], TF [O]T,Is ICJ [0]Te, Uy, T+ forallkel [O]T1F [O]TsF
[@] Iy, Tk [@]\/')\“Tl s /\?)\j;Uj , ' [@]Fl T2 b
iel jeJ

Cut elimination and algorithmic subtyping. The admissibility of [CuT], called cut elimin-
ation, is the corner stone of proof theory, since many results in logic (e.g., the consistency of
classical logic) can be proven as corollaries of cut elimination. Since cut elimination justifies
that rules are consistently defined, we present cut elimination in Session as a theorem.

» Theorem 5 (cut elimination). The [CUT] rule is admissible in Session.

12:7

CONCUR 2020

12:8

Session Subtyping and Multiparty Compatibility

To see that the above holds, observe that, trivially, the unfolding of a proof in Session to
infinite proofs (over infinitely unfolded terms) is sound, and, due to regularity, complete
(i.e., an infinite proof will always eventually loop on every branch, allowing [LEAF] to be
applied). Thus it is sufficient to show that cut elimination holds for the finite proof system.
This follows by observing that the standard normalisation steps for MALL, plus cases for
[PREFIX], can be applied to unfold a cut free proof to an arbitrary depth. We show only the
principal case for [PREFIX], which is given by the following proof normalisation step.

r,U,TF T,V, Tk r,,U,TF T,V,I‘QI—[C |
— uT
Ty, 220U, T F ?A;T7!)\;V7F2|—[C] ~ ,U,V, Dbk
uT
Ty, 220U, IV, Ty k- Ty, 720U, IV, T -

An immediate consequence of cut elimination for session types is that subtyping relation
< is transitive. It is also reflexive by a simple induction on the structure of types.

» Corollary 6. If T < U and U <V, then T <V. Also, we have T < T.

From the perspective of type theory this is a standard result that must hold in order to
recommend an algorithmic subtype system. An algorithmic subtype system is expressed
without a cut (or transitivity) rule, since cut violates what is known as the sub-formula
property. The sub-formula property states that every formula appearing in the premise is a
sub-formula of one of formulae appearing in the conclusion (up to unfolding of equi-recursion,
which is allowed here due to regularity). The sub-formula property guarantees that proof
search in Session terminates.

Admissibility of [Intr]. Established algorithmic subtype systems usually employ a rule of
the form [INTR]. That rule can be simulated by using [JOIN], [MEET] and [PREFIX], without
loss of expressive power. For example, the following sequent, provable using the rule [INTR]
is also provable as follows.

0K , OK |- [Oliq 0K , OK |- [O;{]
nonE PR e P
(?)\1 A ?/\2) AN F (?)\1 A ?/\2) o F
[JOIN]

(TALATA2), (AL V o)

However, we cannot simulate all proofs involving the three rules discussed above, if, instead,
only [INTR] is employed. The following cannot be proven using only [INTR].

[OK]

[PREFIX]
[MEET]
PREFIX]
[MEET]

[OK]

PREFIX]
[MEET]
[PREFIX]
[MEET]
[JOIN]

0K , OK , OK |-
!/\4,?A4,0K}— [
!)\4,?)\1/\?)\4,%'_

0K , 0K , OK |-

!)\3 , 0K, ?Ag [

!)\3 , 0K, 7)\2 N ?)\3 I

!)\1;!)\3 R A1 y A A TA3 [!AQ;!A4 s TALN Ay y Ao

!)\1;!)\3 s AN T s A2 A TA3 F !)\2;!)\4 s A AT s Ao A TA3
!)\1;!A3 \Y !Ag;!A;l s TALN Ay R A A TA3

The following is an example of a coinductive proof that, similarly to the above proof,
cannot be established using only [INTR]. In the following proof, assume T = pt.(!A1;t V [Aast),
U = pu.(?A1;u), and V = pv.(?Ae;v). We also abbreviate sequents ' = T , U , V and

R. Horne 12:9

I"=I\;T,U,Vand I = !My;T , U, V, but notice only T' is used rule [LEAF].

7[1“’ [T [LEAF] 7[1“” T [LEAF]
[PREFIX] [PREFIX]
[T T 00, VE LT DT U oV
DT, U,V E [Frx-p] D] o;T, U,V F [JOHL]]

T[] TV AT, U, VE
T,U,VF
T.UsVF

(F1x-p]
[TIMES]

Notice, the above proof establishes pu.(?A1;u) ® pv.(?Ag;v) < pt.(?A1;8 A ?Ag;t) — a subtype
judgement decomposing a single threaded participant into two concurrent threads.

Admissibility of [Mix]. The fact that the [Mix] rule is admissible allows scenarios where
separate parallel communications can occur. For example, the subtype judgement !'A\; ®
?A1 ® Ihg ® ?Ag < ok (which also holds in pure linear logic with mix only), can be established
by the following proof in Session without using mix.
[OK]
[PREFIX] (twice)

[TIMES]| (twice)

0K , OK , OK , OK , OK |-
!Al,?Al’!AQ’?AQ’OK'_
M @7A ® Ao ®7Ao , 0K F

The admissibility of [MIx] is a corollary of Theorem 5.

3.3 Typing multiparty compatible networks, by using subtyping
The syntax of processes is defined by the following grammar.

» Definition 7 (Processes). Processes for threads are defined by:
Processes for networks are defined by grammar: N == P | N| N.
We simply refer to both of the above as processes, ranged over by P, Q, R. ...

Internal choice & defines a process ready to perform any of the given outputs, and external
choice Y indicates a process ready to perform some input. We typically abbreviate !\;P
and '\1;P; @ ! \o; P, for the unary and binary versions of the above external choice. Similarly,
AP and ?A1;P; 4+ 7)9; P> can be used for internal choices.

[T-ExTCH] [T-INTCH]
AF Yier? ;P : /\ieI?Ai;Ti At Bier'\i; P \/ieIU\i;Ti

AX:tHEP:T
A X:tH X :t [T-VAR] —— [1-REC]
AFpuX.P:ptT

AFP:T AFQ:U AFP:T T<U
[T-PAR] AF1:o [1-1] [SUBSUMPTION]
AFP|Q:TeU AFP:U

Figure 4 Typing rules for processes, making use of the subtype relation < in Def. 4.

Multiparty compatible processes are those with type ok. Note, for any interesting example,
this will involve applying SUBSUMPTION.

CONCUR 2020

12:10

Session Subtyping and Multiparty Compatibility

» Definition 8 (compatibility). Process P is multiparty compatible whenever - P: 0k, ac-
cording to the rules of Fig. 4, where environment A associates process variables to type
variables.

Any application of the [SUBSUMPTION] rule can always be delayed to the final step. Le.,
we calculate the minimal type for the whole network, then apply [SUBSUMPTION].

» Theorem 9 (algorithmic typing). If - P: U then we can construct a T such that T < U
holds and = P: T holds without using the [SUBSUMPTION] rule.

The above result is another consequence of cut elimination.

An immediate consequence is that, if P is multiparty compatible, there exists T such that
F P: T, without using the subsumption rule, and T F holds. For example, proofs from the
previous section can be used to established that networks such as the following are multiparty
compatible: 1A1;1A3 @ o3I || 221 + 7A4 || PA2 + ?A3 and pt. (1At @ Mgst) || pu.(?A1;u) ||
1v.(?A2;v). Furthermore, the multiparty compatibility of the processes from Sec. 2 can be
established in this way.

Note on open sessions. We select a flexible presentation in Fig. 4, since, as a bonus,
we can also use the above type system to reason about open sessions, which may be
missing participants in order for multiparty compatibility to hold. For example, by using
[SUBSUMPTION] and the processes from Sec. 2, we have the following type judgement.

 Owner|| Untrusted App|| OAuth Server: ut.(Irelease® !request (token);
(?revoke + ?response (data);t))

The above type judgement indicates an “interface” exposed by the open session given by
network Ouwner || Untrusted App || OAuth Server. Hence, if composed with a process that
interacts with the interface given by the dual of the above type (such as Resource from
Sec 2) we can judge the whole system to be multiparty compatible. Composition of two
open sessions can be performed by using [T-PAR] and then applying [SUBSUMPTION] to the
resulting type to show that, together, they inhabit type ok, assuming that together the
processes are multiparty compatible (alternatively, when composed, they may expose another
interface if the composition of two open sessions is still an open session). Note this achieves
the same effect as applying a rule of the following form.

AFP:TeU AFQ:UsV
AFP|Q: TV

[T-CuT]

The above rule, derivable using [T-PAR] and [SUBSUMPTION], achieves the effect of a “con-
necting cut”, as desired in recent work on open multiparty sessions [6].

3.4 Guaranteeing deadlock freedom (via race freedom)

In order to prove deadlock freedom of multiparty compatible networks, we require a reduction
system for closed networks, defined by the rules in Fig. 5. As standard [17], different
behaviours are forced for internal choice and external choice. When ranging over all executions,
for external choice, we consider all branches, as indicated by the transition rule for internal
choice (®). Notice that, in order for a communication to occur, we must have committed to
a single branch of the internal choice, forcing all branches to be resolved. However, we need
only select one of the inputs with the corresponding output label in an external choice (>7)
for a communication to occur.

R. Horne

Race freedom. Some multiparty compatible networks with race conditions are not deadlock
free. Races can be avoided by naming participants and ensuring each branch of an external
choice awaits a message from the same participant but is labelled differently compared to other
branches of that external choice. For example, the following multiparty compatible networks
have races, hence should be rejected. For network !A1;1Ae @ IA1;1A3 || 7A157A2 + 2137 A3, when
A1 is sent it may be received by the wrong branch of the external choice resulting in deadlock.
Similarly, network A1;?As || IA1 || ?A1;!A2;7 A1, may deadlock if the second process engages in
a communication before the first.

While explicitly naming participants, as described above, would avoid such examples, for
added flexibility we show that we can also achieve race freedom without naming participants.
This additional flexibility is necessary for examples such as in Sec. 2, where one participant
is replaced by two or more participants (hence if participants were named we would require a
mechanism such as internal delegation [13] to allow one participant act on behalf of another).
An added benefit of avoiding races without naming participants is that we may guarantee
race freedom without relying on participant names to guide reductions.

Race freedom can be formulated in terms of a type inference problem using the race type
system in Fig. 6, where A race type is of the form (o:c,1:x), where o and x are sets of sets
of labels. The former, «, represents a set of sets of output labels — one set of labels for each
thread in a network. The latter x represents a set of sets of inputs — one set of labels for
each external choice somewhere in the network. We also require a “participant condition”
ensuring all branches of a choice talk to the same process, formalised as follows.

» Definition 10. A race type (o:c, 5:x) satisfies the participant condition whenever, for
allz € x and y,z €a, ifx Ny # 0 and x Nz # O then y = 2. A process P is race free,
whenever there exists a race type {o:a, 1:x) satisfying the participant condition such that
FP: (o:a, i:x) using the rules of Fig. 6.

The above race-freedom property we propose is satisfied whenever the unfolding of all
fixed points of a process satisfies the following;:

Branches of an external choice use distinct labels for their immediately enabled inputs

(see [R-EXTCH]).

For any external choice, the set of immediately enabled input labels in an external choice

must be disjoint from the set of all output labels of all but one of the parallel components

(the participant condition). This ensures one participant is listening to at most one other

participant at a time.

For parallel processes, P || @, the set of all input labels of P and the set of all input

labels of @ are disjoint; and, similarly, the sets of all output labels of P and @ are disjoint

(see [R-PAR]).

The above property is efficient to check, since it simply builds up the relevant sets of sets
of labels. Note, a single thread always has a singleton set of outputs.

jel jel
recX.P
BierNiQi — iQ; WP || Sier?hiQ — PI|Q; TeeX P — P /x}

P—» P P=P P—Q Q=Q Pl@QIR)=PQ)R

Figure 5 Reduction system for networks.

12:11

CONCUR 2020

12:12 Session Subtyping and Multiparty Compatibility

SEP:(o{wit,iixs) ((€I) (Vi,j €)X\ =)\ impliesi=j

[R-EXTCH]
S Yier? i P <oz {sz},i:UXi U{{ri:ie I}}>
YEP:(o{xi},ix) (€I SE—

S F @ier' AP <o:{Ux¢U{)\i: i€ I}},i:UXi>

i€l i€l

SFP:(ora,itx) SFQ:(0:f3,1:() (Ua)ﬁ(U,B)z@ (Ux)m(Ug):(/J[

R-PAR]
SEP|Q:(o:aUB,irxU()

¥, X :(ora,irx) F X : (o:a,i:x) [R-VAR] YH1:(0:0,i:0) [r-1]

3, X :{o:ta,i:x)F P:{o:a,izy)

[R-REC]
Yk uX.P:{oa,izx)

Figure 6 Type rules for checking race freedom.

A critical example the participant condition rejects is the following process, which is of
the race type indicated below.

F A [recX. (PA1 + 7A2;X) || recY IAg;Y s (o {{ A1}, 0, {Aa}}, i:{{\1, A2} })

The above example processes contains a race. Two parallel outputs with different labels
contact a process ready to receive a message from either process and, if actions labelled
A1 are played, the process deadlocks. The above example is forbidden by the participant
condition since we have {A1, A2} N{A1} # 0 and {A1, A2} N {A2} # 0 but {A1} # {A2}.

Deadlock freedom. Deadlock freedom can be defined as follows (coinductively): at any
point we can either make progress or we have successfully terminated.

» Definition 11 (deadlock freedom). A network P is deadlock free whenever:
either P =1, or there exists network Q such that P —» Q;
and, for all R such that P —» R we have R is deadlock free.

The theory developed in this work guarantees deadlock freedom as in Def. 11.

» Theorem 12. Any race-free multiparty-compatible network satisfies deadlock freedom.

The proof of this result [see Appendix| relies on Theorem 5 and builds on novel proof
normalisation techniques developed for giving computational interpretations of formulae in
extensions of linear logic [35, 36].

» Remark 13. Note often deadlock freedom is referred to as “progress” which is an overloaded
word in the literature. Deadlock freedom does not necessarily prevent starvation, as for
notions such as lock freedom [37, 46]. Restricted variants of Session can be tightened to
enforce stronger liveness properties — an observation deserving of attention in future work.

R. Horne

Soundness of the subtype system with respect to our multithreaded liberalisation of the
substitution principle [25] is precisely formulated below, which is an immediate consequence
of Theorem 5 and Theorem 12. Notice the flexible subtype system in this work, which permits
networks consisting of parallel threads to be compared, allows a thread to be substituted by
more than one thread, as motivated in Sec. 2.

» Corollary 14 (substitution principle). Assume P, Q and R are closed networks. If - P: T,
FQ:T and T < T/, thenif b Q|| R: ok, and P || R is race free, then P || R is deadlock free.

Proof. Assume - P: T and Q: T’ without using [SUBSUMPTION], and also assume T < T/,
FQ| R:okand P || R is race free. By Theorem 9, there exists a type U such that - Q || R: U
without using [SUBSUMPTION] and U < ok. By Lemma 15 there exists V such that U=T @ V
and F P || R: T' ® V without using [SUBSUMPTION]. By Theorem 5, we have Te V < T & V,
and hence, by Theorem 5 again, T ® V < ok. Thereby - P || R: ok, and hence, by race freedom
and Theorem 12, we have P || R is deadlock free, as required. |

Importance of avoiding races. The following example emphasises the importance of check-
ing races are avoided. Consider the multiparty compatible network 1 || IA1 || (?A1 + ?A2).
Observe we have F !\ || ?A2: 0k hence process 1 can be substituted by !Xz || A2 while
preserving multiparty compatibility. Now, if we remove the condition concerning races in
the substitution principle, after applying the above substitution in the network at the top of
the paragraph, we should have !Ag || 7Az || !A1 || (?A1 + ?A2) is deadlock free. However, this
network is in fact not deadlock free, due to the presence of a race.

Note our race-freedom property does not require output labels in an internal choice
to be distinct. For example, the network (!A1;!Aa @ !A1;103) || 7A15(?A2 4+ 7X3) is race free,
multiparty compatible and deadlock free. Note this is example would not be typeable using
established session type systems.

3.5 Typeable sessions for which there is no global type

Multiparty compatibility is defined independently from global types. Theories that rely
on global types run into the problem that many reasonable protocols have no global type.
Such problematic protocols typically feature branching under a recursion where different
participants are contacted in each branch. The problem of typing protocols for which there
is no established theory in which they can be assigned a global type has been explored in
recent work [48].

To emphasise that Session can also be used to type multiparty sessions for which there is
no global type, we adapt one of the key examples from related work (Figure 4, (2) [48]). In
this recursive two-buyer protocol a buyer repeatedly asks another buyer to split the price.
Assume we have the following types.

T, = lquery;?price;ut. Ty where T; = (!split;To V lcancel;lno) and T = (?yes;!buy A

7no;t)

Tp = ut. T3 where T3 = (?split;T4 A ?cancel) and T4 = lyes V Inojt

Ts = ?query;!lprice;Ts where T5 = ?buy A 7no.

Also assume we have sequents I' = pt.T; , Ts , Tg and IV = Tl{“t'Tl/t} , Ty, Tg
(only the former is used in a [LEAF] axiom). The following proof can be used to establish
Ty ® Ty ® Tg < 0k, which can be used in a multiparty compatibility judgement. Notice we
use the admissible compound rule [INTR] to shorten the proof.

12:13

CONCUR 2020

12:14

Session Subtyping and Multiparty Compatibility

[OK]
[F'][F] 0K, 0K , OK -
[INTR] [LEAF] [OK]
[[7]T] touy , Ts , ox - [T T] pt. Ty, T, To b [T 1] ox, ok, ok -
[INTR] [INTR]
[F/ }[F] TQ{Mt.Tl/t} Ts, T4{Mt.T3/t} - [F/ }[F} lno , Ts , ok -
[INTR]
AT A T DA
IX-1
T {" %}, T, T b
[F1xX-p]
pt. T, Ts5, Te F
?price;ut. Ty, Iprice;Ts, Ts [Prerx]
PrICeR L] [PREFIX]

Ta,Ts, Tk

In the above example, it is possible that processes typed with T, and Ty negotiate forever and
a process typed with Tg, after reaching a state typed by T5, waits forever. Such starvation is
permitted by our classic notion of progress in Def. 11, i.e., deadlock freedom.

4 Related Work and Future Work

A closely related line of work studies the problem of synthesising a “coherent” global type
for multi-party compatible types [43]. The approach in the current paper can be used to
expose the structural proof theoretic content of a closely related system proposed for such
a synthesis problem [38]. There is much work providing notions of semantic subtyping for
session types [7, 5, 45], whose resulting systems can be interpreted proof theoretically using
subsystems and variants of Session (at least for the first-order fragment without delegation).

It could be valuable to explore connections between Session, which follows a processes-as-
formulas approach, and a variety of Curry-Howard inspired systems. There are intersection
type systems, satisfying subject expansion, that completely characterise deadlock freedom
for a fragment of the asynchronous w-calculus where a name can only be used as an input
channel by the process that created the name [16]. Process in that work are quite different
from those in our session calculus, since, in this work, we neither consider channel passing
(delegation) nor asynchrony, while they do not consider choice. Challenges concerning duality
of binary sessions in the presence of delegation and recursion are explored through a linear
A-calculus typed using explicit least and greatest fixedpoints rather than equi-recursion [40].
Regarding circular proofs, Derakhshan and Pfenning propose a calculus for binary sessions
with delegation in a Curry-Howard style [22]. In their work, they propose a locally checkable
condition that guarantees a well-typed session will always terminate either in an empty
configuration or a configuration attempting to communicate along external channels.

In future work, it would be valuable to investigate variants of the rules, notably a focussed
variant of Session [3, 4]. In a focussed system, rules such as JOIN are treated asynchronously,
meaning that we can immediately apply the rule without backtracking; whereas rules such
as MEET are synchronous, meaning that, in general, backtracking may be required during
proof search. The important observation is that, for race-free sessions there will only be one
way to apply synchronous rules, thereby eliminating the need to backtrack in the search for
a proof, i.e., proof search can be conducted deterministically. The ability to search for proofs
in this uniform manner is connected with goal-directed search in logic programming [42].

The system designed in this work preserves deadlock freedom for race-free processes,
as established in Theorem 12; but does not guarantee stronger livelock freedom properties
(sometimes referred to as lock freedom) [37, 46, 49]. Livelock freedom strengthens deadlock
freedom by ensuring that no parties are starved of resources; however, there are many subtle
variations on precisely how livelock freedom is defined. Hence we push the investigation of
refinements of Session that can guarantee notions livelock freedom to future work.

R. Horne

To illustrate the above point, we observe some more unexpected properties of Session.
Observe, the process uX.?A1;X || A2 || pY 1A1;Y is race-free and multiparty compatible, and
hence deadlock free. However, it has a hanging input ?A; that never receives a message,
hence it is not livelock free in any sense. Using a proof of the multiparty compatibility
of the above process, we can also establish subtype judgement ut.?A1;t ® 7o < pt.?Aq;t.
This subtype judgements allows inactive parallel components to be typed using the subtype
system, as long as they rest of the system is deadlock free. Thus the current formulation of
Session guarantees no property stronger than deadlock freedom.

For a more subtle example outside the scope of established session type systems, consider
the types T = pt.(IA1;t V IAo;!h3) and U = pt.(?A158 A ?X2). We have T @ U < !)\3 thus a
thread that sends A5 can be replaced by two threads that may choose to talk internally on
A1 forever, although there is always the possibility of a branching taken where A3 is sent.
This subtype judgement does preserve some notions of livelock freedom (it is always possible
for everyone to eventually act [46]), but not stronger notions of livelock freedom (always
everyone must act eventually [37]). An objective for future work would be to explain how
Session can be refined by restricting circular proofs so that they preserve a strong form of
livelock freedom. The key idea is to check that at all threads in a network act at least once
in every unfolding of a recursion, thereby rejecting both subtype judgements above.

5 Conclusion

The proof calculus Session, introduced in Fig. 3, showcases tools of structural proof theory,
i.e., analytic calculi satisfying cut elimination (Theorem 5), which can be used in the design
of rich multiparty session type systems. Session defines an algorithmic subtype system
(Definition 4), the transitivity of which follows from cut elimination (Corollary 6). The
subtype system admits a more flexible substitution principle (Corollary 14) than standard.
This flexibility enables subtyping to be used directly to decide multiparty compatibility
(Definition 8) and also opens up fresh problems that can be tackled using subtyping, not
limited to scenarios where extra parallelism is introduced, as illustrated in Sec. 2.

Race freedom may be guaranteed by naming participants; however, for extra flexibility we
propose a type system for race freedom (Definition 10), which does not require participants
to be named. From these definitions, we establish our main result (Theorem 12) guaranteeing
deadlock freedom for networks that are both multiparty compatible and race free. In this
line of work, global types are optional, allowing networks for which no global type exists to
be typed.

—— References

1 Samson Abramsky. Computational interpretations of linear logic. Theoretical computer science,
111(1):3-57, 1993. doi:10.1016/0304-3975(93)90181-R.

2 Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., 15(4):575-631, September 1993. doi:10.1145/155183.155231.

3 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):297-347, 1992. doi:10.1093/logcom/2.3.297.

4 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary Proof Theory: the Multiplicative
Additive Case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual
Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages 42:1-42:17.
Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

12:15

CONCUR 2020

https://doi.org/10.1016/0304-3975(93)90181-R
https://doi.org/10.1145/155183.155231
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.4230/LIPIcs.CSL.2016.42

12:16

Session Subtyping and Multiparty Compatibility

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Franco Barbanera and Ugo de’Liguoro. Sub-behaviour relations for session-based client/server
systems. Mathematical Structures in Computer Science, 25(6):1339-1381, 2015. doi:10.1017/
S096012951400005X.

Franco Barbanera and Mariangiola Dezani-Ciancaglini. Open multiparty sessions. In Proceed-
ings 12th Interaction and Concurrency FExperience, ICE 2019, Copenhagen, Denmark, 20-21
June 2019., pages 77-96, 2019. doi:10.4204/EPTCS.304.6.

Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types. Logical Methods in Computer Science, 12(2), 2016. doi:10.2168/LMCS-12(2:10)2016.
Eduardo Bonelli and Adriana Compagnoni. Multipoint session types for a distributed calculus.
In Gilles Barthe and Cédric Fournet, editors, Trustworthy Global Computing, pages 240—256.
Springer, 2008. doi:10.1007/978-3-540-78663-4_17.

James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.
Journal of Logic and Computation, 21(6):1177-1216, October 2010. doi:10.1093/logcom/
exq052.

Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J. Stuckey,
editor, Logic Programming, pages 302-316. Springer, 2002. doi:10.1007/3-540-45619-8_21.
Luis Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In FORTE 2016, pages 74-95, 2016. doi:10.1007/978-3-319-39570-8_6.
Marco Carbone, Fabrizio Montesi, Carsten Schiirmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. Acta Informatica, 54(3):243-269, 2017. doi:10.1007/
s00236-016-0285-y.

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global
types with internal delegation. Theoretical Computer Science, 807:128—-153, 2020. doi:
10.1016/j.tcs.2019.09.027.

Tzu-chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On the
Preciseness of Subtyping in Session Types. Logical Methods in Computer Science, Volume 13,
Issue 2, 2017. doi:10.23638/LMCS-13(2:12)2017.

Gabriel Ciobanu and Ross Horne. Behavioural analysis of sessions using the calculus of struc-
tures. In Perspectives of System Informatics - 10th International Andrei Ershov Informatics
Conference, PSI 2015, pages 91-106, 2015. doi:10.1007/978-3-319-41579-6_8.

Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Intersection types
and runtime errors in the pi-calculus. Proc. ACM Program. Lang., 3(POPL), 2019. doi:
10.1145/3290320.

Rocco De Nicola and Matthew Hennessy. CCS without 7’s. In Hartmut Ehrig, Robert
Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT ’87, pages 138-152. Springer,
1987. doi:10.1007/3-540-17660-8_53.

Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR, volume 6901 of LNCS, pages 280-296. Springer, 2011. doi:
10.1007/978-3-642-23217-6_19.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In Helmut Seidl, editor, Programming Languages and Systems, pages 194-213.
Springer, 2012. doi:10.1007/978-3-642-28869-2_10.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In Automata, Languages,
and Programming, pages 174—186. Springer, 2013. doi:10.1007/978-3-642-39212-2_18.
Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

Farzaneh Derakhshan and Frank Pfenning. Circular proof as session-typed processes: a local
validity condition. CoRR, 2019. arXiv:1908.01909.

Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informatica,
42(2-3):191-225, 2005. doi:10.1007/s00236-005-0177-z.

https://doi.org/10.1017/S096012951400005X
https://doi.org/10.1017/S096012951400005X
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1007/978-3-540-78663-4_17
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/3-540-45619-8_21
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1007/978-3-319-41579-6_8
https://doi.org/10.1145/3290320
https://doi.org/10.1145/3290320
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
http://arxiv.org/abs/1908.01909
https://doi.org/10.1007/s00236-005-0177-z

R. Horne

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Simon J. Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
ESOP, volume 1576 of Lecture Notes in Computer Science, pages 74-90. Springer, 1999.
doi:10.1007/3-540-49099-X_6.

Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebr. Meth. Program.,
104:127-173, 2019. doi:10.1016/j.jlamp.2018.12.002.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-112, 1987. doi:
10.1016/0304-3975(87)90045-4.

Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In Hartmut Ehrig,
Robert Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT ’87, pages 52—66.
Springer, 1987. doi:10.1007/BFb0014972.

Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Compututa-
tional Logic, 8, 2007. doi:10.1145/1182613.1182614.

Dick Hardt. The OAuth 2.0 authorization framework. standard rfc6749, Internet Engineering
Task Force, 2012. URL: https://tools.ietf.org/html/rfc6749.

Kohei Honda. Types for dyadic interaction. In CONCUR’93, pages 509-523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
Scribbling interactions with a formal foundation. In Raja Natarajan and Adegboyega Ojo,
editors, Distributed Computing and Internet Technology, pages 55—75. Springer, 2011. doi:
10.1007/978-3-642-19056-8_4.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’08, pages 273-284. ACM, 2008. doi:10.1145/1328438.

1328472.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1-9:67, 2016. doi:10.1145/2827695.

Ross Horne. The consistency and complexity of multiplicative additive system virtual. Scientific
Annals of Computer Science, 25(2):245-316, 2015. doi:10.7561/SACS.2015.2.245.

Ross Horne. The sub-additives: A proof theory for probabilistic choice extending linear logic.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD
2019, pages 23:1-23:16, 2019. doi:10.4230/LIPIcs.FSCD.2019.23.

Ross Horne and Alwen Tiu. Constructing weak simulations from linear implications for
processes with private names. Mathematical Structures in Computer Science, 29(8):1275-1308,
2019. doi:10.1017/80960129518000452.

Naoki Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122-159, 2002. doi:10.1016/S0890-5401(02)93171-8.

Julien Lange and Emilio Tuosto. Synthesising choreographies from local session types. In
Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 — Concurrency Theory, pages
225-239. Springer, 2012.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15, pages 221-232. ACM, 2015. doi:
10.1145/2676726.2676964.

Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, page 434-447. ACM, 2016. doi:10.1145/2951913.2951921.

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811-1841, 1994. doi:10.1145/197320.197383.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51(1):125-157, 1991.
doi:10.1016/0168-0072(91)90068-W.

12:17

CONCUR 2020

https://doi.org/10.1007/3-540-49099-X_6
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/BFb0014972
https://doi.org/10.1145/1182613.1182614
https://tools.ietf.org/html/rfc6749
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.4230/LIPIcs.FSCD.2019.23
https://doi.org/10.1017/S0960129518000452
https://doi.org/10.1016/S0890-5401(02)93171-8
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/197320.197383
https://doi.org/10.1016/0168-0072(91)90068-W

12:18

Session Subtyping and Multiparty Compatibility

43 Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially
commutative asynchronous sessions. In Programming Languages and Systems, pages 316-332.
Springer, 2009. doi:10.1007/978-3-642-00590-9_23.

44 Luca Padovani. Session types = intersection types + union types. In Proceedings Fifth
Workshop on Intersection Types and Related Systems, ITRS 2010, Edinburgh, U.K., 9th July
2010., pages 71-89, 2010. doi:10.4204/EPTCS.45.6.

45 Luca Padovani. On projecting processes into session types. Mathematical Structures in
Computer Science, 22(2):237-289, 2012. doi:10.1017/S0960129511000405.

46 Luca Padovani. Deadlock and lock freedom in the linear pi-calculus. In CSL-LICS, pages
72:1-72:10. ACM Press, 2014. doi:10.1145/2603088.2603116.

47 Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathem-
atical Structures in Computer Science, 6(5):409-453, 1996. doi:10.1017/S096012950007002X.

48 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. PACMPL,
3(POPL):30:1-30:29, 2019. doi:10.1145/3290343.

49 Paula Severi and Mariangiola Dezani-Ciancaglini. Observational equivalence for multiparty
sessions. Fundam. Inform., 170(1-3):267-305, 2019. doi:10.3233/FI-2019-1863.

50 Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2), 2006. doi:10.2168/LMCS-2(2:4)2006.

A Proof of Theorem 12: well-typed networks are deadlock free

We require the following standard lemmas, which follow by structural induction.

» Lemma 15 (inversion lemma). In the following, we do not use the subsumption rule.
If-P||Q: T, there exists U and V such that T=U®V andt P: U and - Q: V.
If - ®icr'\i; P . T, there exists T; such that T = \/iel!/\i?Ti and = P;: T;.

If = 3,c1?Ai; Py . T, there exists T; such that T = /\ieI!/\i;Ti and = P;: T;.
If - recX.P: T, there exists U and t such that T = pt.U and X: t+ P: U.
If=1:T then T = ox.

» Lemma 16. Ift recX.P: ut.T then - P{X-F/x}: T{#T/}.

We also require that race freedom is preserved by the reduction system. This is effectively
a subject reduction theorem for the race free property.

» Lemma 17 (race freedom). If P is race free and P —» Q, then Q is race free.
The following condition follows from inverting the type system for race freedom.

» Lemma 18. If P || Q is race free and - P: T and b Q: U, then if © appears in T, then w
does not appear in U.

Since we employ a reduction semantics, we require that the rules of the structural
congruence preserve multiparty compatibility.

» Lemma 19. If+ P: ok and P = Q, then - Q: ok,

We also require a subject reduction result, where proofs that T < ok and race freedom
play the role that a global type normally plays in such proofs. Note we avoid the term session
fidelity since fidelity is typically expressed in terms of global types [32].

» Lemma 20 (subject reduction). If - P: ok, and P is race free, then for all Q such that
P —» @, we have - Q: ok.

https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.4204/EPTCS.45.6
https://doi.org/10.1017/S0960129511000405
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S096012950007002X
https://doi.org/10.1145/3290343
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.2168/LMCS-2(2:4)2006

R. Horne

Proof. If there exists a reduction, we can apply the structural congruence to a process
to reach one of the following forms. By Lemma 19, the use of the structural congruence
preserves multiparty compatibility.

Case of internal choice. Assume we have - @;cr!\;;P; || @: ok. By Theorem 9, for some T,
we have F @;er! A\ P; || Q: T, without using subsumption, and T < ok. Counsider the transition
@ieI!Ai;Pi H Q —> !)\M-Pk || Q7 where k € I.

By Lemma 15, we have there exists U; and V such that T =/
for all 4, and + @: V. Therefore - I\y; Py || Q: A\i;U; ® V.

Now, since \/,.;!A;;U; , V I is provable and so is /\ieI?)\i;Ui, !Ag;Ug F, by Theorem 5,
'A\g;Ug , V F holds. Hence '\;;U, ® V < 0k, as required.

iGI!)\i;Ui ®Vand F P;: UZ’,

Case of external choice. Assume we have - 3;c;7\;; P || ' \i;Q || R: ok, where k € I and
Siert i Py || ;@ || R is race free. Consider transition X;er? AP |1 \;Q || R —» P || Q || R.

By Theorem 9, for some T, we have that b X;c;?A;;P; || '\g;Q || R: T holds without using
subsumption, and T < ok. By Lemma 15 we have there exists U;, V and W such that we have
T= /\iel?)‘i?ui @ A\;VeoWand F P;: U;, for all ¢, and - Q: V and - R: W. Therefore we
have - P, || Q|| R: Up ® V @ W holds.

Now, consider the proof of A;.;?A;;U; , !A\g;V , W k. Since we have the type judgements
|— Zze[7)\Z,PZ H !)\k;QZ /\iel?)\i;Ui ® '/\k,V and H R: W and EieI?)\iQPi || ')\lmQ || R is race
free, by Lemma 18, neither !\; nor 7\, appear in W. Hence there are only two possibilities,
for every branch of the proof tree:

1. Either we eventually reach an application of rule [PREFIX], possibly via an application of

[MEET] as follows:

[O]F Uy ,V,TF
0] 72\:Ur , MeV , T F

[PREFIX]

@l] ?/\kEUk y !)\k;V s F/ F
(O Aser iU, IV, TV

[MEET]

Note, by race freedom, if \; = A, then j = &, hence only one branch can be selected in
rule [MEET] to enable the rule [PREFIX]. Hence the above application of rule [INTR] is
deterministic.

2. Alternatively, on some path no [PREFIX] is ever applied to type !'\;;V and there is a
[LEAF] axiom of the following form, with an corresponding ancestor [F1x-u] rule as
follows:

- - - [LEAF]
O TV, pt W TNV, pt W T F

O] eV, it W, T] IV vv'{ﬂt-W’/t} TF
O] NV, pt.W [T+

[F1X-p]

In this case, by the participant condition in the race free condition, each A; such that
j € I can only match an output in the type !A\;;V. Hence there must also be no [PREFIX]

12:19

CONCUR 2020

12:20

Session Subtyping and Multiparty Compatibility

applied to any A; in A
either A
in T

ser ! AisUi between the [LEAF] and the corresponding [F1X-p]. Hence

ser!AisU; appears in T, or there is some j € I such that ?A;;U; for j € I appears

In paths in the proof satisfying the first case above, simply remove the relevant instance
of the rule [INTR] below the rule in the proof, replace A;.;?As;;U; and !\g;V with U and V.

In paths in the proof satisfying the second case above where both A, ;7A;;U; and AV
are never touched, simply replacing these formulae with Uy and V everywhere in the given
path. In cases where ?);;U; appears in I', there must be an instance of rule [JOIN] below the
rule [F1x-p] that introduced T or the following form.

O] \e;V, 225U, T+

OV, A\?AsUs, T -
el

Since, by the participant condition, we know that in this path we never apply [PREFIX] to
Aj, we can safely remove the above rule instances from the proof and replace ?A;;U; with Uy
along that path.

After applying the above proof transformation, we obtain a proof of Ug , V , W . Hence
U ® Vo W < ok as required.

Case of fixed points. Assume F recX.P || Q: x holds. By Theorem 9, for some T, we
have F recX.P || Q: T, without using subsumption, and T < okx. Consider the transition
recX.P | Q —» P{=*F/x} | Q.

By Lemma 15, we have there exist types U and V and type variable t such that T =
put.U®Vand FrecX.P: pt.U and - @Q: V. Now, by Lemma 16, - P{reCX'P/X}: U{”t'U/t}.
Therefore, we have - P{=eX-P/x 1 | Q: U{+*Y};} o V.

Now, since - pt.U , V is provable and ut.U, U{“t'u/t} F is provable, by Theorem 5, we
have U{#*Y/4} | V I is provable. Hence U{#*V/;} ® V < o, as required. <

» Theorem 21 (Theorem 12). Any race-free multiparty-compatible network is deadlock free.

Proof. Assume F P: ok holds and P is race free. Consider the form of P. Either P has a
fixed point or internal choice at the head of a process, hence is ready to act. Hence, there
exists @) such that P —» (). Otherwise we have a process equivalent to the following form.

INGQU - i@ || Sier, PALRE || - || Sier, AR 1] ... || 1

There are two cases to consider as follows.

In the first case, m = n = 0; hence we have P =1|| ... || 1. Therefore, P = 1 and hence
the processes is successfully terminated.

Otherwise, observe, by Theorem 9, there exists T such that F P: T without using
subsumption and T < ok. Also, observe, by Theorem 15, there exists U; and V¢ such that
T=DpUr .. 0 WU © Nie, 2V 1o @ N, AV @ k@ ... @ ok and F Qs Uy
and Rﬁ: Vf, for all 7, k and /.

In the proof of T' I, there must be at least one application of the rule [PREFIX]. Due to the
absence of ¥ in T, the only other rules that may be applied before the bottommost instances
of rule [PREFIX] are the rules [PAR] and [MEET]. In order to apply the rule [PREFIX], there
exists j, k and ¢ such j € I; and A\ = /\f, allowing a proof tree of the following form.

R. Horne 12:21

O] Ty, US T+
. Ll
(O] i Tr , 24508 Tk

(O] N\ Tr, 24508 Tk

O] T, \ 2AGUL, T
i€ly

T+
Thus, simply due to the existence of such a matching pair of inputs and outputs, we have a
transition of the form.

!/\I;Ql ” . H '/\kan || || '/\vam ')\th H || Qx || || !/\m;Qm
[Zien, LR o | Bien, 2GR = [Zien 2GR - [T RE |-
Sier, ANLRY 1.1 [Zier, PATRE |1 ... || 1

Thus we certainly have that either P = 1 or there exists @ such that P —» Q.

Finally, by Lemma 20, since R is race free, we have that for all R such that P —» R,
F R: ok and furthermore, by Lemma 17, R is race free, as required. Hence, deadlock freedom
is established by coinduction. <

B The Precise Relationship to Linear Logic

For a self-contained presentation, we summarise the related non-commutative logic [15] on
which this work builds, formulated in the calculus of structures [28]. We adjust the syntax
to match the body of the paper. The rules of MAV [34] are presented as in Fig. 7, where the
calculus of structures allows rules to be applied in any context C{ - } and the structural
congruence = can be applied at any point in a proof.

C{ox } F . .
. success C{ TR } F atomic interaction
C{(T@V);(U@W)}I—Secl C{T=UaV)}HF o
C{(T:U)e (VW) } F C{(TaU) eV F Wit
C{(TvV);(UVW) }+ dial C{(TeU)V(TaV)}E .
C{(T:U)V (VW) || meda C{Te(UvV)jr coxterna
o(Tir cuyr clo}t
_t-J Lt 4
C{TAU}F ° C{TAU}F ® Cl{okvor kY
(TaU)3V=T23U3V) k; T=T (TolU)oV=Te UaV)
Tak=T T;xk=T Towx=T
TaU=U=T (T;U);V=T5(U3V) TeU=UsT

Figure 7 Inference and structural rules for proof system MAV (formalising provability of duals).

CONCUR 2020

12:22

Session Subtyping and Multiparty Compatibility

We extend the notion of a co-type to local types with sequential composition.

(TAU)=TvU (TvU=TAU TxU=TeU TeU=T3U

Notice the only difference compared to the co-type transformation for Session (Def. 2) is
that any type may appear to the left of sequential composition, not only an atomic send or
receive action. The following result generalises cut elimination to the calculus of structures.

» Theorem 22 (Horne 2015 [34]). In the system in Fig. 7, if C{ T® T } I holds then we
can construct a proof of C{ ox } .

The related work [15, 34], from which the above is extracted, clarifies that, as for Session in

the body of this paper, MAV defines a rich notion of multiparty subtyping and compatibility.
The following result formally relating MAV and Session is a corollary of cut elimination

(each direction of the implication follows from cut elimination in one of the two systems).

» Corollary 23. If T is a session type, as in Def. 1 but without fired points, then T F in
Session if and only if T F in System MAV.

Finally, observe that MAV is a conservative extension of linear logic with mix and, the above
corollary proves the finite fragment of Session is also a fragment of MAV.

	Introduction
	Motivating Example: A Generalised Substitution Principle
	A Proof System for Subtyping and Multiparty Compatibility
	Deriving subtype judgements using the rules of Session
	On notable admissible rules and algorithmic subtyping
	Typing multiparty compatible networks, by using subtyping
	Guaranteeing deadlock freedom (via race freedom)
	Typeable sessions for which there is no global type

	Related Work and Future Work
	Conclusion
	Proof of Theorem 12: well-typed networks are deadlock free
	The Precise Relationship to Linear Logic

