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 

Abstract: Deep Learning (DL) has contributed a lot in the field 

of industrial maintenance, in particular predictive maintenance 

by detecting potential failures and breakdowns before their 

appearance. Unfortunately, the DL has some limitations like the 

need for a large amount of data to produce an effective prediction 

model and also the fragility of the model in the face of changes in 

operating conditions. Another approach, the Transfer Learning 

(TL), had demonstrated in the literature that he can overcome 

these weaknesses. In this article, we will be using this technique 

with the pretrained neural network, AlexNet, which had been 

previously trained with the ImageNet database. Our method 

doesn’t require a high amount of input data and thus saves a lot of 

time in retraining the network in another task, which can be 

related or unrelated to the source task. In fact, the prediction 

model was successfully adapted to the bearings diagnosis case. It 

showed also high degree of robustness against changes of 

functioning conditions. 

Keywords : AlexNet, Machine health diagnosis, Pretrained 

neural network, Transfer learning. 

I. INTRODUCTION 

The new industry revolution, industry 4.0, is now taking 

place. The Machine Condition Monitoring System (MCMS) 

plays a key role in maintaining an optimal functioning health 

for the machines. 

The predictive-type maintenance is now progressively 

implemented to all aspects of the industry 4.0. The detection 

of any imminent defect before its appearance ensures a 

minimum or no impact costs and operation on the production 

lines. In addition, it allows the manufacturer to reduce direct 

and indirect costs of maintenance and of repair by avoiding 

the untimely unavailability of the production tool by 

removing premature shutdown for inspections and visits, 

planning at best the interventions and finally reducing their 

duration and their extent. This type of maintenance has 

become increasingly efficient thanks to its data-driven mode 

of operation; in fact more data is used and more powerful and 

reliable is the prediction. Currently, the way to get the most 

out of the data is by using the deep learning, which extracts 

the necessary information from the raw data to create a 

powerful health predictive model that is done quickly and 
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efficiently without the need for any human intervention. 

However, the deep learning still suffers from two major 

weaknesses: 

 

 The need for a large amount of data. If the labeled data 

is unavailable or in very small quantity, the prediction 

model won’t be efficient and thus unreliable. 

 Difficulty to adjust to operating condition changes. 

This problem arises when the labeled target data (for a 

specific operating condition like for a rotation speed) is 

unavailable. So if the source data domain is different 

from the target data domain, the prediction model will no 

longer be correct. 

The industrial environments are highly changing. That’s 

why the new data analysis techniques in the real industrial 

world must take into account non-stationary environments in 

order to carry accurate predictive diagnostics. 

One widely used method to enable the adaptation to these 

new changes is transfer learning. This latter allows to extract 

the learned characteristics of a domain A and to adapt them to 

the new domain B and thus perform the results with a 

significant time saving and minimal data in the target domain. 

After identifying the source and the target domain, the TL 

adapts in record time to the new operating conditions like the 

changing load or speed conditions or even the aging effects on 

sensors. This process requires much smaller input data, time 

and energy than traditional approaches. With traditional 

machine learning, the knowledge is not retained or 

accumulated. With the TL, the learning of the new tasks relies 

on the previous learned tasks. And so the learning process is 

faster, more accurate and needs less training input data. 

The TL learns invariant representations from source 

samples and adapts to the new distribution in the target 

domain. The methods used are feature transfer, fine-tuning 

and freezing the first layers. 

There are several TL methods depending on the similarity 

between the source and the target. 
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Fig. 1. Different types of transfer learning 

Based on the availability of labeled samples, transfer 

learning can be divided into three categories as seen in Fig. 1 

above: 

 Inductive transfer learning which requires the 

availability of labeled target data. 

 Transductive transfer learning is used when labeled 

source data are available while labeled target data do not 

exist. 

 And unsupervised transfer learning remains the most 

appropriate approach when labeled target and source 

data are not available. 

In our chosen approach, we will use the inductive transfer 

learning method because the labels for source and target data 

are available. 

The transfer learning had been extensively studied in “in 

press” [1] who did a survey on the subject of knowledge 

transfer by showing its opportunities and benefits for 

manufacturing data and also the state of the art achieved in 

this subject. They showed how the knowledge transfer allows 

a fast adaptation to a new environment. They pointed out also 

its flexibility because it offers several TL methods that differ 

according to the availability of labels and the type of changes 

in data properties. These methods are categorized into two 

types: using knowledge from data and using knowledge from 

models. 

But transfer learning has drawbacks which is the negative 

transfer that emerges when the source and target data are not 

closely related, leading to a performance deterioration of the 

classifier. 

Yao and Doretto, in “in press” [2], tackled this problem by 

proposing a new algorithm, MultisourceTrAdaBoost, that 

exploits and extracts the knowledge from multiple sources in 

order to increase the chances to find one with a beneficial 

knowledge closely related to the target domain. 

Traditionally, transfer learning is used primarily to enable 

the training without overfitting on small target datasets but 

this new finding shows that transferring features boost 

generalization performance even if the target dataset is large. 

In “in press” [3], the authors used a deep transfer learning 

method based on three transfer strategies, namely weight 

transfer, hidden function transfer learning and weight update, 

demonstrating its effectiveness in predicting the RUL. 

“In press” [4] proposes a new fault diagnosis method by 

using a digital assisted body production line using deep 

transfer learning. The concept of digital twin is fully 

compatible with the corresponding physical entity. 

The previously trained diagnostic model can be transferred 

by DL from the virtual space to a real physical space for 

real-time monitoring and predictive maintenance. 

In the “in press” [5], they present a 2-step transfer learning 

approach based on a deep convolutional neural network. The 

first part is built with a pre-trained deep neural network used 

to automatically extract input features: ImageNet's large 

image data. And the second part is a fully connected layer 

used for classifying the features to be trained using 

experimental data on gear defects. 

In our study, we will use a pretrained neural network 

AlexNet with data from general object categories database 

and we will adapt it to our health diagnosis topic by using only 

very little training data. 

This paper is organized into three chapters as follows: 

Chapter 2 will describe our approach, 

Chapter 3 will describe the results, 

Chapter 4 will conclude, at the end of this article, on the 

multiple benefits of our method by using the transfer learning 

in achieving high performance results and time savings. 

II.  PROPOSED METHOD 

To exploit the potential of transfer learning, we will be 

using the pretrained neural network AlexNet. 

The Fig. 2 below shows a simplified illustration of the 

considered network model.  It is a type of convolutional 

neural network containing eight layers; the first five are 

convolutional layers, some of them followed by Max-pooling 

layers, and the last three were fully connected layers. It uses 

the non-saturating ReLU activation function. 

 

 

 

Fig. 2. Simplified illustration of AlexNet architecture 

The Table- I. below displays some of the characteristics of 

the network. 

 

Table- I: Characteristics of the Alexnet network 
Network Depth (Number of 

hidden layers) 

Parameters 

(Millions) 

Image Input 

Size 

AlexNet 8 61.0 227-by-227 

AlexNet is trained on over a million images and can 

classify images into 1000 object categories (such as keyboard, 

coffee mug, pencil, and many animals). The network has 

learned rich feature representations for a wide range of 

images. The network takes an image as input and outputs a 

label for the object in the image together with the probabilities 

for each of the object categories. 

So we will be exploiting and using this accumulated 

knowledge in our work and in particular the initial learned 

features. In our work, we used the open dataset from the Case 

Western Reserve University Bearing Data Repository [6]. 
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The Fig. 3 below presents the experimental rig. The 

procedure was conducted using: 

 2 hp Reliance Electric motor (left), 

 a torque transducer/encoder (center): it collects the 

speed and horsepower data, 

 a dynamometer (right), 

 and control electronics (not shown). 

 Bearings: SKF bearings were used for the 7, 14 and 21 

mils diameter faults, and NTN equivalent bearings were 

used for the 28 mil and 40 mil faults. 

 Accelerometers: They are attached to the housing with 

magnetic bases and were placed at both the drive end and 

fan end of the motor housing. 

 

Induction Motor Dynamometer

Torque 

transducerAccelerometer

Drive EndFan End

 

Fig. 3. Schematic of experimental setup 

The actual test conditions of the motor as well as the 

bearing fault status have been carefully documented for each 

experiment: The faults in the motor bearings were generated 

by using electro-discharge machining (EDM). Faults ranging 

from 0.007 inches in diameter to 0.040 inches in diameter 

were introduced separately at the inner raceway, rolling 

element (i.e. ball) and outer raceway. The vibration data was 

recorded for motor loads of 0 to 3 horsepower (motor speeds 

of 1797 to 1720 RPM). 

Outer raceway faults are stationary faults, therefore 

placement of the fault relative to the load zone of the bearing 

has a direct impact on the vibration response of the 

motor/bearing system. In order to quantify this effect, 

experiments were conducted for both fan and drive end 

bearings with outer raceway faults located at 3 o’clock 

(directly in the load zone), at 6 o’clock (orthogonal to the load 

zone), and at 12 o’clock. 

All data files are in Matlab (*.mat) format. Digital data was 

collected at 12,000 samples per second, and data was also 

collected at 48,000 samples per second for drive end bearing 

faults.  In our experiment, we will be using the 48,000 samples 

per second one. 

In our work, we will be using the data signals for the 4 

different conditions: Normal, Inner Race fault, Ball fault and 

Outer Race fault (sensor centred at 6:00 only) in 4 different 

motor loads (0, 1, 2 and 3 HP) corresponding respectively to 

the following motor speeds (rpm) (1797, 1772, 1750, 1730). 

We will use only a fault diameter of 0.007" inches. 

For each of the 4 conditions signals and for 4 different 

speeds, we generated several spectral representation images: 

spectrogram and scalogram, as presented in the two figures, 

Fig. 4 and Fig. 5, below. These images give the possibility to 

know whether there is more or less energy but also how 

energy levels vary over time. The amplitude or energy of a 

particular frequency at a particular time is represented by the 

third dimension, color, with dark blues corresponding to low 

amplitudes and brighter colors up through red corresponding 

to progressively stronger amplitudes. And so, the images offer 

an energy map of the signal with high amplitudes for specific 

frequencies. 

 

 

Fig. 4. Spectogram of the signal part 

 

Fig. 5. Scalogram of the signal part 

Here below in The Table- II, we summarized in a table the 

number of images generated for each health condition and 

motor loads that we used in our work. 

 

Table- II: Number of images used for the experience 

Motor 

speed 

Bearing condition Spectogram Scalogram 

Motor speed 

1797 rpm 

(Load 0) 

Normal 121 121 

Inner Race Fault 121 121 

Ball Fault 122 122 

Outer Race Fault  

(Centered @6:00) 

121 121 

Motor speed 

1772 rpm 

(Load 1) 

Normal 241 241 

Inner Race Fault 243 243 

Ball Fault 243 243 

Outer Race Fault  

(Centered @6:00) 

243 243 

Motor speed Normal 242 242 
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1750 rpm 

(Load 2) 

Inner Race Fault 242 242 

Ball Fault 243 243 

Outer Race Fault  

(Centered @6:00) 

243 243 

Motor speed 

1730 rpm 

(Load 3) 

Normal 242 242 

Inner Race Fault 242 242 

Ball Fault 244 244 

Outer Race Fault 

 (Centered @6:00) 

243 243 

 
All these images will be used as inputs in order to fine-tune 

the pretrained neural network AlexNet. 

We will take this pretrained network and use it to learn a 

new task which is differentiating between the 4 different 

health conditions. Fine-tuning a network with transfer 

learning is faster and easier than training a network with 

random initialized weights from the beginning because it 

doesn’t require a high number of training images. Just a smal 

number of training images is sufficient to quickly fine-tune 

the network into the new task. In addition, in the “in press” 

[7], the authors showed that initializing with transferred 

features from a source distant from the target and then 

fine-tuning them to the new task gives much better results than 

starting with random weights. 

Secondly, we made changes on the image inputs. The 

network requires input images of size 227-by-227-by-3, but 

our images have a different size. Thus, we resized these 

images into this format. 

Thirdly, we replaced the last three layers, configured for 

1000 classes from the previous pretraining, of the network by 

new ones in order to adapt to our new classification problem. 

We replace the last three layers with a fully connected layer, a 

softmax layer, and a classification output layer. The fully 

connected layer is set to have the same size as the number of 

classes in the new data which 4 conditions: Normal, Inner 

Race fault, Ball fault and Outer Race fault. 

The first layers contain very generic variables (For 

example: detection of angles or colors) and therefore relevant 

for many different tasks while the last layers are specific to the 

details of the classes contained in the target database. Thus, 

the early layers of AlexNet possess the learned low-level 

features from previous training and the last 3 layers have the 

task specific features. 

For transfer learning, we need to keep the features from the 

early layers of the pretrained network (the transferred layer 

weights).  So we slow down the learning rate in the transferred 

layers, set the initial learning rate to a small value and we 

increase it for the fully connected layer to speed up learning in 

the new final layers. 

The Fig. 6 below provides a summary of all the steps that 

are used in the approach. 
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Fig. 6. Simplified diagram of the process 

The training was done with a small number of images from 

each class of the machine health in 4 different speed 

functioning conditions. 

The AlexNet-based extraction method can extract signal 

trend to failure with high accuracy using the Fourier and the 

wavelet transforms. 
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III. RESULTS 

We trained the new neural network with source data from a 

specific motor speed and we tested the diagnosis model on the 

4 different cases of target data. We used alternatively 

spectrogram and scalogram images as inputs. 

We summarized the results in the Table- III below. 

 

Table- III: Accuracy results with the 2 types of images 

Image type   Motor speed used for target data (rpm) 

  1797 1772 1750 1730 

Spectrogram 

 

 

 

 

 

Motor 

speed 

used 

for 

source 

data 

(rpm) 

1

7

9

7 

100% 99,90

% 

99,90% 99,90% 

Scalogram 100% 100% 100% 99,38% 

Spectrogram 

 

1

7

7

2 

100% 100% 100% 100% 

Scalogram 91,75% 100% 100% 100% 

Spectrogram 

 

1

7

5

0 

98,97% 100% 100% 100% 

Scalogram 97,73% 100% 100% 100% 

Specrtogram 

 

1

7

3

0 

98,97% 100% 100% 100% 

Scalogram 81,65% 100% 99,90% 100% 

 

We can see that the approach gives very positive results 

even if the speed changes. The diagnostic model built with the 

newly adjusted network AlexNet stays robust against speed 

changes.  

In general, the results show a high level of accuracy but 

there is some differences detected between the ones using the 

spectrogram as input and scalogram images. The precision is 

higher with spectrogram images in comparison with 

scalogram ones. The average precision achieved by 

spectrogram is at least 99% while by scalogram the minimum 

reached is at 78%. Also, the accuracy stayed stable with 

spectrogram which is not the case with scalogram. It becomes 

lower when the source operating speed is different from the 

target one. With spectrogram, the accuracy fluctuates between 

99% and 100% whatever the source operating speed. More 

there is a gap between source and target speed and lower is the 

precision with scalogram. Thus spectrogram is a robust and 

stable spectral representation against speed variations. 

In the study of Ferguson et al [8], they transferred the 

knowledge of different CNN architectures previously trained 

using images of common objects (for example: a person, a 

bicycle and a car) to detect and locate defects in metal 

castings with a small set of X-ray images. They took 

advantage of the stored knowledge in 2 available pretrained 

architectures which are VGG-16 (the Visual Geometry 

Group) and ResNet-101 (Residual Network) and improved 

the diagnosis system by reducing the total training time and 

improving the accuracy. They achieved a precision of 86 and 

92%. In our work, especially with spectrogram images, we 

never go under 99.5% in accuracy. 

Finally, this finding is very interesting because even if the 

machine operating parameters change, the model would be 

able to detect the correct health condition with high accuracy. 

Then we made a classification of the images in the test set 

by plotting a confusion matrix of the true and predicted labels, 

presented in the two figures below, Fig. 7 and Fig. 8, in order 

to verify that the network is accurate at classifying new data. 

  

  

Fig. 7. Confusion matrices of the diagnosis results with 

1797 rpm source motor speed and with input data 

spectogram images 

  

  

Fig. 8. Confusion matrices of the diagnosis results with 

1797 rpm source motor speed and with input data 

scalogram images 

To analyze the network performance further, we computed 

activations for every observation in the dataset at an early max 

pooling layer, the final convolutional layer, and the final 

softmax layer.  

We used the t-SNE function to reduce the dimensionality of 

the activation data.  Early layers tend to operate on low-level 

features such as edges and colors. Deeper layers have learned 

high-level features.  
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Therefore, activations from early layers do not show any 

clustering by class. Two images that are similar pixelwise (for 

example, they both contain a lot of green pixels) are near each 

other in the high-dimensional space of the activations, 

regardless of their semantic contents. Activations from later 

layers tend to cluster points from the same class together. This 

behavior is most pronounced at the softmax layer and is 

preserved in the two-dimensional t-SNE representation. 

 

Fig. 9. Ft-SNE representations at the early max pooling 

layer, the final convolutional layer and the final 

softmax layer 

From the Fig. 9 above, we can observe that the early max 

pooling activations do not exhibit any clustering between 

images of the same class. Activations of the final 

convolutional layer are clustered by class to some extent, but 

less so than the softmax activations. Different colors 

correspond to observations of different classes.  

It shows that the prediction model generated by the neural 

network was able to separate successfully the 4 different 

categories of the machine status without any problem of 

overfitting. 

IV. CONCLUSION 

In conclusion, the use of pretrained network with the 

transfer learning approach made it possible to adapt it to our 

fault diagnosis case very effectively even with very little data 

used for training. The approach made the learning process 

quicker with less energy and less data required. 

This work shows also that using a neural network 

pretrained with data unrelated to the target dataset and 

retraining it for a new classification task gives an astounding 

result. By retraining AlexNet with a new set of spectral 

representation images to classify the condition of the machine 

according to 4 categories, the prediction model was able to 

achieve 99% accuracy. In addition, the generated model 

remained robust in the face of changes in operating 

conditions, in particular the rotation speed as previously 

demonstrated. 
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