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Abstract: Quality checks, assessments, and the assurance of food products, raw materials, and food
ingredients is critically important to ensure the safeguard of foods of high quality for safety and
public health. Nevertheless, quality checks, assessments, and the assurance of food products along
distribution and supply chains is impacted by various challenges. For instance, the development
of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate,
and sensitive analysis, quality checks, assessments, and the assurance of food products in the
field and/or in the production line in a food manufacturing industry is a major technological and
analytical challenge. Other significant challenges include analytical method development, method
validation strategies, and the non-availability of reference materials and/or standards for emerging
food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost
of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality
checks, assessments and assurances of food products, raw materials, and ingredients. This review
article surveys literature and examines current challenges and breakthroughs in quality checks
and the assessment of a variety of food products, raw materials, and ingredients. Specifically,
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recent technological innovations and notable advances in quartz crystal microbalances (QCM),
electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in
the quality assessment of selected food products, and the analysis of food raw materials and
ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted.
In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental
calibration and sample analyses for quality assessments and assurances of selected food products
and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review
provides insight into the future trajectory of innovative technological developments in QCM,
electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general
applications for the quality assessment of food products.

Keywords: food-quality-assessment; near infrared spectroscopy; multivariate analyses; analysis
quartz crystal microbalance; electroanalytical sensors

1. Introduction and Overview

Secure and sustainable access to safe, quality foods is undeniably among the most significant
global challenges of the 21st century. Access to safe and quality foods is also a top global priority for
food manufacturing and processing industries, regulatory agencies, public health officials, and other
food stakeholders. Routine and effective quality checks, assessments, and assurances of food products,
raw materials, and food ingredients is also pertinent and critically important to ensure foods of high
quality to safeguard food safety and public health. Guaranteed access to safe, authentic, quality foods
is only achievable via proactive, concerted, and well-coordinated efforts among food manufacturing
and processing industries, public health officials, and regulatory agencies. Accordingly, agencies
such as the United States Foods and Drug Administration, United States Department of Agriculture,
European Commission, European Food Safety Authority, World Health Organization, and the Food
and Agricultural Organization of the United Nations are working collaboratively to mitigate the sales
of fraudulent, substandard, adulterated, and unsafe foods [1-7]. Non-governmental agencies have
also played critical roles in promoting access to safe foods for millions of people globally, particularly
during pandemics, natural disasters, and in emergencies.

Nevertheless, quality checks, assessments, and assurances of food products along distribution
chains are impacted by various challenges. This review article includes a literature survey and
a summary of general challenges and major breakthroughs in methods of quality checks and
assessments of a variety of foods, food raw materials, and ingredients. The review is limited to journals,
books, and reviewed articles published in English. Specifically, recent technological innovations and
notable advances in methods involving quartz crystal microbalances (QCM), sensors, electroanalytical
techniques, and NIR spectroscopic instrumentation for use in the quality assessment of selected foods,
raw materials, and ingredients from January 2019 through July 2020 are highlighted. In addition,
chemometric approaches and multivariate analyses of spectral data for NIR instrumental sample
analysis and calibration for quality assessment and assurance of selected foods are discussed. Moreover,
the review provides insight into the future direction of innovative technological developments in QCM,
electroanalytical techniques, NIR spectroscopy, and multivariate analyses for the quality assessment of
food products.

2. General Challenges and Breakthroughs in Quality Assessment of Food Products

The development of a strategy to promote production and ensure the intake of safe foods is an
active area of research and a top global priority for the food manufacturing and processing industries,
public safety officials, regulatory agencies, and other food stakeholders. Yet, food quality assessments
face tremendous technological challenges involving instrumentation, analytical method development,
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method validation, political issues, and limited resources [8-21]. For instance, the sales of counterfeit
and/or adulterated food products by cartels for illicit financial gains pose a global challenge concerning
food safety and public health. Significant percentages of food products are poorly monitored and
inadequately assessed for quality and safety for a variety of reasons [8-21].

The development of a portable, low-cost instrument that is capable of rapid, reliable, sensitive,
accurate, and robust, real-time quality checks, assessments, and assurances of food products in the field
and/or at the production line in a food manufacturing or processing industry is still a big challenge.
The development of new equipment is mostly market and often profit driven. Instrument developing
companies are deliberate and intentional when investing in new technology in an effort to develop
instruments that are financially viable and profitable.

Chromatographic separations coupled with mass spectrometry (GC-MS and HPLC-MS) and
nuclear magnetic resonance (NMR) are matured techniques and have been well developed for
food quality assessments. Despite the high sensitivity and accuracy of current reference protocols,
they suffer significant drawbacks that preclude their wider applicability for fast screening in quality
food assessment. Both GC-MS and HPLC-MS are particularly slow, require lengthy sample preparation,
extraction, cleaning-up procedures, and expensive instrumentation. Moreover, portable GC-MS and
HPLC-MS techniques are not widely available, impeding their practical application for rapid on-site
food quality assessment, routine analysis, and rapid field study.

The development of analytical protocols for the detection of emerging/new contaminants analysis
in foods matrices remains an analytical challenge of top priority in the food processing or manufacturing
industries. Another significant challenge in the method validation strategy is the non-availability of
reference materials and/or standards for emerging food contaminants. The use of multi-calibration
for rapid, sensitive, and accurate analyses of multicomponent analytes for quality food assessment is
limited and requires a significant undertaking. Poor analytical methodologies involving selectivity,
specificity, and the reliable detection of potential toxins and contaminants in food matrixes at low
concentrations is problematic. Type I errors (false negative) and Type II errors (false positive) of low
analyte detection is concerning and a challenge in food quality assessment. Moreover, the detection
of food-borne pathogens and microbial contamination in real time along a supply chain remains
a huge task of top priority for food safety and public health. Moreover, a continued decline in
government research support hinders the creative innovation of new instrumental and technological
method development in academia and national labs. In addition, limited resources (material, financial,
and workforce), a lack of political will/power, and ineffective food quality monitoring schemes by
regulatory agencies are challenges, hindering the effective assurance of sufficient food quality.

Despite the highlighted challenges, notable progress has been achieved in food quality assessment
in recent years. An area of active research leading to a breakthrough in food quality assessment is the
development of sensors. Recent advancements in nanotechnology and material science has facilitated
the development of chemical sensors in food processing and food packaging industries [22,23].
A significant breakthrough was achieved in the development of portable electroanalytical devices,
including electronic noses and electronic tongues for quality food flavorings assessment [23].
Critical roles of sensors and automation techniques in food quality assessment, including process
monitoring, shelf-life investigation, freshness evaluation, and authenticity in food processing industries,
have been demonstrated [23]. Emerging low-cost and reliable technology based on machine learning
(ML) and artificial intelligence (AI), computer vision, biometrics, and robotics for the accurate, remote,
automated assessment of the quality and consumer preference of beverage and for the assessment of
food smells have resulted in major breakthroughs [24,25].

The development of DNA barcoding and DNA barcode scanners in recent decades is a significant
breakthrough that has facilitated rapid food quality assessment for authenticity [26]. The use of DNA
barcode scanners affords rapid detection of food fraud, adulterations, and mislabeling to ensure food
quality assurance along a distribution chain [26]. DNA barcoding scanners are potable, low cost,
and require no technical training to use, thereby promoting rapid scanning and authentication of food
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products. Importantly, DNA barcoding is high-throughput, sensitive, and with multiplexing capability.
However, the use of a DNA barcode scanner for quality food assessment is very limited in developing
countries. In addition, DNA barcode scanners are not readily available at the point of processing or in
the field, further limiting its wide applicability in quality food assessment.

Applications of multiplex real-time polymerase chain reaction (PCR) protocols for fast screening
of food products for quality assessment is a significant development. The practical utility of PCR
for accurate detection of adulterated meat in mutton [27], detection of pork in meat and meat
products [28], chicken adulteration [29], and the content of camel milk in adulterated milk samples
was successfully demonstrated [30]. Importantly, the capability of PCR for the detection of a variety of
foodborne pathogens, including Salmonella enterica, Escherichia Coli, and Campylobacter jejuni [31-34],
Staphylococcus aureus [35], Toxoplasma gondii [36], and many foodborne pathogens in food samples have
been recently reported. Moreover, the use of PCR for the GMO screening of food products with high
specificity, good accuracy, and a low limit of detection has been demonstrated [37].

The simplicity, non-invasive, non-destructive properties of NIR and FTIR spectroscopy makes it
appealing and a desired analytical method of choice for rapid quality checks, assessments and the
assurance of food products, raw materials, and ingredients [38]. Detailed review of innovations in
the use of NIR spectroscopy for assessment of food quality is provided in different sections of the
review article. Recent technological innovations and advances have also promoted the development
of a low-cost hand-held portable NIR spectrometer with improved sensitivity which has incredibly
facilitated routine, in-situ, on-site detection, and rapid quality food assessment in the field in real-time.
Recent technological innovations, advances, and breakthroughs in NIR, QCM, and electroanalytical
instrument development is extensively covered in Section 3 of the review article. Furthermore,
the combined use of NIR spectroscopy and multivariate regression analysis data processing strategies
has further promoted the wider applicability of NIR for fast screening, authentication, and quality
assessment of a diverse variety of foods and food products, food raw materials, and ingredients,
with incredible precision, excellent accuracy, and high sensitivity. Section 4 of the review highlights
innovations in the use of NIR spectroscopy and multivariate regression analysis data processing
strategies for food quality assessment.

3. Recent Technological Innovations and Advances in NIR, QCM, and Electroanalytical
Spectroscopic Instrument Development

Technological innovations and advances in development of NIR spectroscopic instruments,
quartz crystal microbalance (QCM) and electroanalytical techniques is motivated by their applications
for the sensitive, selective, non-invasive, and non-destructive analysis of consumer products and quality
control assurance. In addition, these techniques are simple, low-cost, and portable, which enables their
applications for robust, accurate, and rapid purity analysis, as well as the quality control and assurance
of consumable products. As a result, there are several recent developments in these instrumental
techniques. These recent innovations are highlighted in the following subsections for each of these
instrumental techniques: (i) near infrared (NIR) spectroscopy, (ii) quartz crystal microbalance (QCM),
and (iii) electroanalytical techniques.

3.1. NIR Spectroscopy

Recent advances in near infrared (NIR) spectroscopy is due to its applications for sensitive
and noninvasive analysis and the capability of sample analysis in transmission or reflectance mode.
In addition, NIR analysis can be performed on thin and thick samples with minimum sample
preparation [38]. Importantly, NIR spectroscopy has undergone rapid transformation and growth
in miniaturization and the development of low-cost, handheld devices. As a result, NIR techniques
have become invaluable for testing food and beverages for industrial and consumer applications.
For example, a low-cost portable NIR instrument was developed and used for the determination of
nutritional parameters of pasta sauce blends. Six different nutritional parameters of a broad range
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of different pasta/sauce blends including energy, protein, fat, carbohydrates, sugar, and fiber were
recorded by a handheld NIR spectrometer. In addition, application of chemometric approaches and
calibration strategies such as partial least squares regression (PLS) to the handheld NIR spectrometer
in food quality assessment have been demonstrated [39]. Moreover, the applications of a combined use
of PLS regression, electronic tongue, and NIR spectroscopy for the accurate quality assessment
of melon varieties, including grafted and the self-rooted types, have been demonstrated [40].
Detailed applications of chemometric approaches and calibration strategies in NIR spectroscopy for
food sample analysis and food quality assessment is provided in Sections 9 and 10 of the review article.

3.2. Portable NIR Sensors

Portable NIR sensors have gained increased attention due to the convenience for onsite analysis.
A portable NIR sensor was developed by Lucia and coworkers and used for detection of biofilms
of Staphylococcus aureus on surfaces [41]. Portable NIR sensors have also been used to evaluate the
quality of pork [42]. The method could be used to categorize pork into the four groups based on
quality that is determined by pig’s genotype and/or the feeding regimen. A handheld micro electro
mechanical instrument was used to acquire the spectra by scanning live animal skin, carcass surface,
fresh meat and subcutaneous fat samples [42]. In addition, portable handheld NIR instruments have
found applications for space exploration in Mars. The handheld NIR spectrometers are capable of
analyses of the composition of minerals and geological materials of various types and sizes in space
in situ [43]. NIR spectroscopy is increasingly used as a remote sensing technique for the surface
characterization of planetary objects. For example, NIR spectrometer/Supercam instrument was used
onboard Mars2020Rover for the identification of a variety of mafic and altered minerals on the surface
of Mars [44]. Such spectrometer development will potentially facilitate the assessment of food quality
in a space station laboratory in the future.

Seng and coworkers [45] have also developed a new NIR sensing technique known as
pre-dispersive NIR light sensors with five light emitting diodes (at 780, 850, 870, 910, and 940 nm) in
the NIR wavelengths for pineapples” quality assessment. In addition to the low cost, the combined use
of this sensor with an artificial neural network facilitated accurate and a reliable quality assessment of
intact fruits [45]. NIR sensors that are capable of quality control in a food processing and manufacturing
industry was also developed during the review period. For example, Eskildsen and coworkers [46]
have developed NIR spectroscopy instruments for online assessment of fat and dry matter in cheese
blocks at different processing stages. Although time-resolved NIR spectroscopy is regarded as a
standard technique for determination of absorbance and optical characteristics of tissues, it requires a
means of differentiating the signal from the instrument from the sample measurement. To resolve this
challenge, Wojtkiewicz et al. [47] have developed a new self-calibrating instrument which eliminates the
influence of the instrument response function from the data [47]. The accuracy of this self-calibrating
instrument was validated using phantom and in-vivo data from two different time-resolved instruments.
Importantly, the recently reported approach showed that recovery of parameters in a multi-wavelength
time-resolved data can be achieved without prior instrument calibration [47]. Other notable NIR
innovations in instrumental methods for spectral analysis during the review period includes a dual
detection channel instrument for NIR time-resolved diffuse optical spectroscopy [48], functional NIR
spectroscopy (fNIRS) instruments for high-density diffuse optical tomography [49,50], and other
NIR-based sensors [51-55].

3.3. Quartz Crystal Microbalance (QCM)

The detection principle in a quartz crystal microbalance (QCM) is based on the change in frequency
of a quartz resonator due to a change in mass per unit area. Yu-zhi and coworkers [56] developed a
portable QCM instrument based on difference frequency detection between the reference and detection
crystal (between £10 to +30 kHz). This QCM instrument showed remarkable accuracy, precision and
stability. For instance, a frequency drift of less than 0.13 Hz/min and 0.23 Hz/min, respectively,
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were obtained for gas phase and pure water. In addition, an accuracy of less than 0.0028% (relative error
from the difference frequency) and precision of less than 0.2825% (the error difference frequency between
theoretical value and measurement value) were obtained [56]. A modulated reference frequency source
was generated using a direct digital synthesizer. Another advantage of this instrument is the ability to
adjust the reference frequency based on conditions of the experiment. The instrumental response was
good as shown by a linear relationship between the change in frequency as a function of density of
sodium chloride and change in viscosity of glycerol. In addition, this instrument could be coupled
with electrochemical sensors for online detection of copper during deposition. The mass response
value was 0.61 ng/Hz, which represented 82% of the theoretical value [56]. Petteri and Tapani [57] and
Dirri et al. [58] have also highlighted new innovations and applications in QCM sensors. The practical
applications of QCM in food quality assessment is provided in Section 12 of this review article.
Electroanalytical techniques including electronic nose [59], electronic tongue [60,61], and biosensors [62]
have notably gained attention for quality control assessment due to their sensitivity and portability.
Some of these sensors are nanomaterial-based [50,62—64], carbon electrode [65,66], lab-on-a-disc
(LOD) [67], paper-based multiplexed [68], and electrochemical aptamer-based (E-Aptasensor) [69]
sensors. The real-world applications of electrochemical biosensors for the quality assessment of food
products and for the detection of foodborne pathogens are provided in Section 13 of this review.

4. NIR Spectroscopy in Processed Foods

The use of NIR spectroscopy for the quality assessment of processed foods has generated a lot
of interest during the review period. This section of the review highlights the recent innovation and
reported use of NIR spectroscopy for the quality assessment of dairy products, grains and flours,
chocolate and syrups, herbs and spices, and food additives.

4.1. Edible Oils

Despite the similar vibrational modes of monounsaturated fatty acids (e.g., oleic acid, C18:1),
NIR spectral variations have been recently exploited for quality control and the compositional
determination of adulterations in extra virgin olive oil and other edible oils. In a recent report,
Sohng et al. [70] utilized two-dimensional correlation analysis of temperature-dependent NIR spectral
variations to discriminate fatty acid content in several mock-adulterated olive oils. In particular,
they propose a rapid quality control technique for determining olive oil adulteration by employing a
mild heating gradient (2041 °C) to discern subtle temperature-dependent NIR spectral variations,
accomplishing an accuracy (considering instances of true versus false positives/negatives for
adulteration) of 86.4%. Likewise, the discrimination of extra virgin olive oil from adulteration
oils was achieved using first-order data from room temperature NIR spectra alongside chemometric
tools, particularly principle component analysis (to reveal relationships between olive oils and their
common adulterants) and partial least squares discriminant modeling [71]. Impressively, the latter
chemometric tool boasted 100% accuracy when approximating the geographic region of origin of over
100 Argentinean olive oils. Similar chemometric models were also employed for the discrimination of
geographic origin of Chinese sesame oils, with mild success based on lignin (sesamin and sesamolin)
content [72].

Besides adulteration detection, NIR spectroscopy has been employed for quality control of edible
oils. For instance, NIR spectroscopy has been used for the determination of acidity (free fatty acid
content), peroxide value (based on extinction coefficients for hydroperoxides at 232 and 270 nm which
negatively correlate to NIR vibrational bands at 1440 nm), aldehyde level (via p-anisidine value),
and level of refinement (via pyropheophytin A and isomeric diacylglycerol ratio). In particular,
these parameters aid in the discernment of oil treatment, temperature of storage, and age [73], and can
assist in quality assessment of waste cooking oils [74]. The latter application is of great importance to
the budding biodiesel industry, where triglyceride degradation during routine cooking in open air can
result in highly acidic cooking oils, requiring expensive esterification prior to use.
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4.2. Dairy Products

Advances and practical considerations for NIR spectroscopy as a tool for the real-time (on-line
or in-line) monitoring of products in the dairy industry have been reviewed recently for progress
made over the last decade [75]. Likewise, a performance comparison between ultraviolet, visible,
and NIR spectroscopy for off-line compositional analysis of the principal components in raw cow’s
milk (fat, protein, lactose) and the rapid, online implementation thereof has been reviewed [76].
The fatty acid profile of a cheese influences both the sensory and nutritional characteristics and can
serve as a diagnostic tool to distinguish cheeses of the basis of the milk employed for its production.
Gonzalez-Martin et al. [77] have recently demonstrated NIR as a rapid, non-destructive tool for the
determination of 19 different fatty acids (from C8:0 to C20:0, including saturated and unsaturated fatty
acids) in cheeses of variable composition and origins (i.e., cow, ewe, goat) by direct recording on a
slice of cheese. Importantly, the authors validate the NIR methodology for reliably predicting the lipid
profile of cheese, making it viable for application to samples of unknown origin.

Several important advances have been made in the detection of dairy product adulteration.
Chemometric prediction of water adulteration in cow milk was demonstrated by Kamboj et al. [78]
pairing NIR spectroscopy and a principle component analysis model. This model accurately predicts
the adulteration of up to 2 mL of water in 5 mL of milk, providing a quick and simple determination
without requiring trained analysts. A similar chemometric system was applied with NIR and
mid-IR spectroscopy for the quantification of milk fat or oil (margarine, sunflower oil, corn oil,
and hydrogenated vegetable oil) adulteration in yogurts [79]. Additionally, melamine adulteration
in milk powder, a common target for falsification of amino acid content, was recently demonstrated
as a NIR forensic technique. Therein, Mazivila et al. [80] devised a chemometric model for the NIR
estimation of both melamine and sucrose in milk powder in the concentration range of 0.8-2% and 1-3%
w/w, respectively. Indeed, even cow milk can act as adulterant, as is the case with the more expensive,
but also more nutritious, buffalo milk [81]. In this case, a partial least squares algorithm was designed
to detect cow milk in buffalo milk at wt% ratios from 10:90 to 90:10. Further, fat-filled milk powders
have recently been examined for degradation using a NIR method [82]. These products, typically used
as high-fat, low-cost supplements in developing world markets, are exposed to high temperature and
humidity during long distribution and storage periods. A NIR method was demonstrated for the
quantification of fatty acids in fat-filled milk powders derived from coconut, pal, soybean, and sunflower
oils, allowing for the detection of constituent damage during accelerated storage conditions.

Finally, as a striking example of improvements made in real-time management, Muifiiz et al. [83]
have developed a handheld NIR reflectance spectrophotometer and artificial intelligence based
mobile application which enables real-time estimation of quality parameters (e.g., lactose, protein, fat,
non-fat solids) for cow’s milk. Notably, the portable NIR sensor allows milk quality parameters to be
estimated onsite and employs machine-learning algorithms based on a neural network model, which is
fed by NIR spectral data, offering decision-making at the farm level toward the prompt optimization
of milk quality during its production.

4.3. Grains and Flours

NIR spectroscopy has proven beneficial for the analysis of various cereals, grains, flours, and baked
goods, including specific quality parameters, which influence classification, safety, grading, and price.
For example, chemometrics and machine learning have been coupled with NIR spectroscopy for
the prediction of wheat quality factors [84] and the quantitative determination of fatty acid values
during wheat flour storage [85]. NIR spectroscopy and partial least squares algorithms have similarly
been used to determine the polyphenol content in oat grain [86]. In particular, NIR spectroscopy has
emerged as an important tool to determine fraud, adulteration, contamination and provenance in
grains and flours. For instance, significant instrumental improvements (e.g., hyperspectral imaging,
FT-NIR) and advances in data analysis (e.g., deep learning) have allowed for the development of
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screening methods for detecting the presence of pests (e.g., rice weevil) across a range of stored grains,
sometimes down to the individual-grain level [87-89].

Food fraud remains a significant problem for food regulators, importers, merchants,
law enforcement personnel, and the consumer. NIR spectral data analyzed using partial least
squares discriminant analysis and implementing a support vector machine algorithm, was recently
shown to be a feasible method for the rapid identification of fraudulent rice varieties (5% detection
limit) blended with authentic Wuchang rice samples [90]. The authors further noted that more
uniform particle sizes aided in quantitative analysis (i.e., 100 mesh > 70 mesh > 40 mesh > full
granules). Another subject of frequent food fraud, Gragnano pasta from the homonym Italian town,
was identified against imposter products by coupling NIR spectra with two classifiers, partial least
squares discriminant analysis and soft independent modeling of class analogies [91]. With a test
set of 200 samples, the resulting models correctly classified all Gregnano pasta with only a single
misclassification of an imposter sample. Meanwhile, the corresponding soft independent modeling of
class analogies model boasts an impressive sensitivity of 6.57% with 100% specificity. NIR spectral data
and partial least squares modeling identified the protein content, moisture and the types of various
grains including wheat, barley, lentils, and peas, providing an expedient and non-destructive method
for accurate prediction of grain quality [92]. Detection, identification, and quantification of toxins from
harmful additives or inappropriate post-harvest storage or treatment can also be readily achieved
by NIR methods. A recent article provides a method for detecting aflatoxins, a product of genus
Aspergillus mold infestation when grains are stored under warm and humid conditions, in brown
rice [93]. Detection of allergens is necessary to protect the health of consumers, and another recent
paper demonstrates a matched subspace detector algorithm, coupled with NIR spectral data, to identify
global adulteration of peanut in wheat flour at 0.2% [94]. Further, a recent NIR hyperspectral imaging
study demonstrates the prediction of peanut adulteration in spring and winter wheat flower at a level
ranging from 0.01-10 w/w% using partial least squares regression [95].

4.4. Chocolate and Syrups

NIR analysis has made significant recent contributions in the area of confection and sweetener
analysis, moving closer to the routine quality monitoring of cacao powder cross-contamination and
the authentication of honey and determination of its geographical origin, as examples. Indeed,
adulteration of cocoa powder with cocoa husk, either by poor husking processes or by the intentional
addition of waste processed material, is a prominent economic and health concern. A recent
contribution addressed this issue by pairing NIR analysis and partial least squares discriminant
analysis, accurately grouping samples of cocoa powder into sample sets of those containing less
than 5% cocoa shell (the acceptance limit according to the Codex Alimentarius) and those containing
between 5% and 40% [96]. Additionally, peanut flour adulteration of cocoa powder is an alarming
health concern for consumers with peanut allergies. A study involving training model at proportions of
0%, 0.1%, 1%, 10% and 100% for the determination of peanut flour in cocoa powder was demonstrated
recently by pairing NIR spectral data with principal component analysis and multivariate curve
resolution-alternating least squares chemometrics [97]. The authors propose the use of their method
for the identification and quantification of adulterants in other powders in the future.

Honey is a pure product and international regulations prohibit the addition or removal of
any substance. Unfortunately, honey adulteration by unscrupulous addition of inexpensive syrups
(e.g., high fructose corn syrup, beet syrup, rice syrup) is a common practice, making necessary the
development of reliable analytical methods to guarantee its authenticity. For example, multi-floral
honey was the target medium of a recent study for determining adulteration of honey by a variety
of sugar syrups (inverted sugar, rice syrup, brown cane sugar, and fructose syrup) at ratios ranging
from 5-50% [98]. The authors combine visible and NIR spectroscopy with multiple chemometrics
models (hierarchical cluster analysis, linear discriminant analysis, and partial least squares regression)
to detect, identify, and quantify these adulterants. In a separate study seeking to discriminate botanical
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origins of honey samples, NIR data was combined with partial least squares chemometrics alongside
multivariate and machine learning analyses to successfully identify honey samples from multi-floral,
acacia, and chestnut sources, but was unsuccessful in discriminating samples from linden sources [99].
The complex makeup of honey makes this an important and daunting challenge, as many intrinsic
variables (e.g., bee species, geographical origin, production methods, storage time and temperature)
complicate discriminatory identification.

4.5. Herbs and Spices

Food fraud in herbs and spices remains an important topic, and NIR spectroscopy,
alongside Fourier-transform infrared, Raman, and nuclear magnetic resonance spectroscopies,
remains an indispensable tool in the authentication of spices and the identification of adulterants,
either as foreign matter (e.g., exogenous starch in paprika, curry, turmeric, or ginger powders),
inferior production-related materials (e.g., non-spice vegetable matter like stamens and safflower
in pure saffron), or colorants used to mask quality (e.g., synthetic Sudan azo-dyes in paprika or
chili powder) [100]. Recently, adulteration of black pepper through bulking by papaya seeds, chili,
and non-functional black pepper products was screened via a rapid NIR and FT-IR model, demonstrating
the feasibility of combining these techniques with chemometrics to combat counterfeiting of black
pepper [101]. Paprika powder, another attractive target for adulteration, was the subject of another
recent study which successfully screened for potato starch, acacia gum, and annatto adulterants using a
portable NIR spectrometer paired with partial least squares chemometrics [102]. Similarly, partial least
square discriminant analysis paired with data acquired through diffuse reflectance NIR spectroscopy
provides an avenue for detecting Cinnamon cassia adulteration in true cinnamon, Cinnamon verum, via the
former’s significantly higher coumarin content [103]. Finally, adulteration of saffron, the world’s most
expensive medicinal plant and high-grade spice, with lotus stamens and corn stigmas was screened by
NIR spectroscopy coupled with a partial least squares discriminant analysis model [104]. The authors
compared synergistic interval partial least squares, competitive adaptive reweighted sampling,
and Monte Carlo uninformative variable elimination variable selection methods, and demonstrated a
chemometric model for detecting adulteration of saffron in a non-destructive manner.

4.6. Food Additives

NIR spectral analysis has the potential to provide useful information about approved additives in
foodstuffs, such as flavor enhancers, antioxidants (e.g., tertiary butyl hydroquinone E319, butylated
hydroxyanisole E320, butylated hydroxytoluene E321), and food hydrocolloids (e.g., guar gum,
locust bean gum, gum Arabic, carrageenans) which are key functional agents for emulsification,
thickening, stabilization, and texturizing within food engineering. Quantification of ascorbic acid in
soft drinks and juices has been demonstrated using NIR spectroscopy coupled with partial least squares
analysis (rather than the typical methods of titration or chromatography) providing to a non-destructive
and in-line option for controlling the addition of this antioxidant during the manufacturing process [105].
A similar method applied NIR and mid-IR spectroscopy for the quantification of citric acid, ascorbic acid,
and the total and reducing sugar in Valéncia oranges, demonstrating the use of NIR spectroscopy for
rapidly determining the quality of orange fruit and juice [106].

Regarding grains, first steps were recently taken toward quality assessment of gluten-free
minor crop grains for total antioxidant capacity [107]. Therein, NIR spectral data was paired with
Folin-Ciocalteu assay and partial least squares chemometrics to detect antioxidants in millet, buckwheat,
and oat cultivars, achieving a limit of quantification of 2.6 mg gallic acid equivalents per gram of
cultivar for intact seeds of the latter two grains. NIR spectroscopy was additionally applied to
determine thermal degradation of soybean oil when heating in the presence of natural seed extracts
(poppy seed, dehydrated goji berry, pumpkin seed, and provengcal herbs) as antioxidant additives,
concluding that phenolic compounds within the seed extracts act as sacrificial degradants to enhance
the frying stability of soybean oil [108]. Finally, the identification and quantification of hydrocolloids,
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compounds that alter the properties of food when dispersed in water, is a notoriously difficult task due
to the similar chemical makeup of these compounds. Recently, this challenge was overcome by pairing
NIR spectroscopy with partial least squares regression and continuous locality preserving projections
dimensionality reduction technique as a chemometric framework, allowing for 100% discrimination
between pure solutions and blends of kappa and iota carregeenans and tara, guar, and locust bean
gum [109].

5. NIR Spectroscopy in Agricultural Produce Analysis

Access to high quality produce is essential to human health. Thus, the accurate collection of
agricultural food quality data in real-time is of utmost importance. By analyzing various components
and properties of crops at various stages in their development, crop productivity can be determined
early on. To maximize efficiency and lessen waste of produce, it is important that these data
collection methods be non-invasive, non-destructive, and economical. Some quantitative instrumental
techniques used for quality assessment of foods include gas chromatography (GC), high-pressure liquid
chromatography (HPLC), or mass spectrometry (MS). However, these methods are not applicable
for real-time measurements. Thus, agricultural industries have recently utilized spectroscopic
instrumentation for quality analysis. One of the most common methods is near infrared (NIR)
spectroscopy. NIR spectroscopy is a quantitative method that is cost efficient, prompt (real time),
with simplistic technique and thus has been widely applied for food and agriculture analysis in recent
years. NIR spectroscopy allows food analysts to examine the quality, composition, and the authenticity
of agricultural and food products quickly and accurately. These industries rely on NIR to monitor
physicochemical properties of crops throughout development, into harvest, and onto the shelves of
grocery stores.

NIR is based on the electromagnetic radiation in the near infrared region (700-2500 nm).
NIR spectroscopic techniques rely on the interaction of NIR radiation with matter. The chemical
bonds that absorb NIR radiation are present in food and crop components such as fats, water,
and carbohydrates, which can easily be detected using NIR spectroscopy. Some of the major molecular
groups of interest seen in an NIR spectrum include N—H, C—H, and O—H bonds. Depending on
the complexity of the sample, it is common for these bands to overlap one another. Accordingly, it is
extremely essential so select an appropriate data model and instrumental mode for each application.
Two major modes of NIR spectroscopy, transmission, and reflection are used in analysis depending
on the physical state of the sample being tested. Transmission modes are useful when working with
liquids, thin solids, and thick solids when inspecting a food item for its ripeness, or whether it contains
pests or defects. Reflectance techniques are useful for measuring content in wholegrains such as
protein, moisture, and oil content.

5.1. Fruits

Food products like fruits are often measured in reflection mode to attain information that reflect
maturity and ripeness characteristics. When the NIR absorption signal is being recorded, unwanted
scattering also occurs at the fruit surface which can interfere with data collection. There are several
data processing techniques that are used to separate this scattering signal from the desired signal.
This pre-processing correction is commonly used in the food quality assessment industry, and there are
many different methods such as standard normal variate (SNV) or variable sorting for normalization
(VSN). However, choosing the most optimal pre-processing method for a certain application is
a challenge. Recently, Mishra et al. [110] investigated the sequential pre-processing through
orthogonalization (SPORT) approach to combine multiple pre-processing methods. They applied the
SPORT approach on four different fruits (apple, grape, olive, and apricot), combining multiplicative
scatter correction (MSC), variable sorting for normalization (VSN) and standard normal variate
(SNV). They saw improved model accuracy for all samples tested, particularly for those analyzed in
reflection mode.
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When analyzing fruits for quality, it can be a challenge to collect accurate quantitative data about
their chemical composition. One important parameter when analyzing fruit’s quality is the soluble
solids content (SSC), which is a blanket term for the water-soluble compounds in fruits. SSC is a
key indicator of the internal quality of fruits and NIR spectroscopy coupled with chemometrics is a
common approach to determining SSC of fruits. There are several challenges to collecting SSC data,
one being the practical limitations in factory settings. This is due to the non-homogeneity of fruits in
terms of size and composition as well as the difficulty in detecting single compounds from spectra.
Modeling the spectra accurately requires a large amount of data that can slow down the process and
limit practical use of the instrument. Guo et al. [111] developed a theoretical basis for the industrial
application of NIR spectroscopy for the determination of apple SSC by using a variable selection
method. They showed that competitive adaptive reweighted sampling (CARS) can simplify modeling
and that competitive adaptive reweighted sampling-partial least squares (CARS-PLS) modeling can
have practical applications in an industry setting. CARS-PLS model gave a correlation coefficient
greater than 0.9 while other models tested showed lower value than 0.9 for correlation coefficient.
Xia et al. [112] introduced a diameter correction method that allowed a more accurate and robust
SSC analysis of Fuji apples. This was done by applying a calibration model based on varying fruit
diameter and orientation (stem axis horizontal or vertical). They were able to lessen the effect of
fruit diameter difference on the NIR spectra. One other challenge of SSC analysis on-line is the
wavelength variable selection. Some commonly used methods are CARS and PLS, discussed previously.
Recently, particle swarm optimization (PSO) has been applied to select optimal wavelength bands for
analyzing compound percentage in fruits and is shown to outperform the more common methods.
However, the PSO algorithm can suffer from premature convergence that causes significant variability
in characteristic wavelength determination. Song et al. [113] implemented a piecewise particle swarm
optimization (PPSO) method to extract data from NIR spectra of navel oranges for enhanced accuracy
in their analysis of SSC in the fruit.

5.2. Grains (Rice, Cereal) and Potatoes

NIR spectroscopy is highly useful in analyzing shelf life and maturity of agricultural products
like rice and potatoes. One challenge in industrial and real-time application is the optimization of
portable spectrometers. There have been numerous applications of portable NIR instruments in recent
years for specific analyses such as determining adulteration in oils and other food quality parameters.
However, the data collection and modeling are still time consuming for portable spectrometers to
be efficient in some applications. This can be potentially overcome by combining NIR spectroscopy
with other analytical methods. Malegori et al. [114] developed a tandem approach of monitoring rice
germ shelf life during storage using FT-NIR and a portable e-nose. This method of data convergence
allowed deeper understanding of rice germ shelf life and could lead to enhanced NIR modeling of
the shelf life of other food products. Le proposed a study that combines deep learning with NIR to
provide a much faster method of cereal analysis than traditional NIR models [115]. The deep learning
algorithm eliminates interference of NIR signal making modeling much more efficient. Jiang et al. [116]
developed a portable NIR spectrometer system to dynamically monitor fatty acid content of rice during
storage. They utilized an optical fiber for light capture, allowing the portable device to be used far
away from the sampling site, and this makes it suitable for even harsh industrial conditions.

Another challenge in NIR spectroscopy is determining authenticity and the geographical location
of certain agricultural products like grains. The major issues in mapping the genes for grain quality traits
required intensive labor, time, and high cost to investigate the diversity of physicochemical traits that
effect rice quality. Sampaio et al. [117] developed a robust and accurate classification model based on
machine learning methods. They determined the NIR range where two genotypes of rice display major
differences which allows high accuracy sorting of rice based on these characteristics. Barnaby et al. [118]
correlated the grain chalk of rice to the genomic regions of NIR spectra. These spectral regions can be
applied in the automation of grain chalk quantification and potentially for other grain products as well.
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5.3. Cassava and Wheat

One of the major advantages of using NIR spectroscopy is its wide applicability. Cassava root
starch content is traditionally determined by a grower snapping the root, which is destructive and not
highly accurate. Bantadjan et al. [119] developed a portable NIR spectrometer in order to determine the
starch content of intact cassava roots with calibration correlation (rp) of 0.825. They also determined
that the position of spectral measurement does not affect the predicted starch content. The same group
in another study investigated the application of short wave NIR spectroscopy (720-1150 nm) of both
intact cassava root as well as cassava flesh [120]. They achieved a confidence interval of 95% for the
two models. Carmo et al. reported the phenotyping of waxy starch cassava using Fourier Transform
Infrared (FTIR) analysis on the leaves rather than the root [121]. This method has the potential to make
analysis much easier for breeders, as the leaves are formed before the root.

Although NIR spectroscopy alone is a powerful analytical tool for quality control of agricultural
products like cassava and wheat, recent studies have investigated how NIR can be used in tandem with
other qualitative/quantitative techniques to enhance the sensitivity and selectivity of data. One study by
Firmani et al. [122] utilized a multi-block strategy to determine the geographic origin of Italian semolina.
The combination of sequential and orthogonalized-partial least squares-linear discriminant analysis
(SO-PLS-LDA) and W-indices with NIR spectroscopy gave 100% correct classification of 140 test samples.
Another study by Fan et al. [123] utilized a machine learning classification model in tandem with NIR
spectroscopy to determine individual wheat seed vigor. This methodology yielded an overall accuracy
of 84%, which makes the model potentially suitable for on-line application. Girolamo et al. [124]
used for the first time a European (EU) validation model for screening of mycotoxins coupled with
multivariate Fourier transform near infrared (FT-NIR) spectroscopy for wheat adulteration analysis.
The statistical modeling used in this study enhanced the reliability of the model validation compared
to screening methods based on binary results.

NIR spectroscopy has become the preferred method to analyze agricultural products and crops
due to its non-destructive sampling and ease of industrial application. However, there are still some
aspects that can be improved such as data modeling and timely on-line application. Researchers have
recently introduced new methodologies to overcome these problems such as enhanced pre-processing
strategies that can improve model accuracy. Also, combining NIR with other analytical methods
(e-nose, deep learning) has been shown to enhance data collection time and simplify the modeling
process overall. The developments in NIR spectroscopy for food quality in only the last year show
great progress. It is expected that data acquisition and modeling methods will continue to become
more accurate and less costly in the coming years.

6. NIR Spectroscopy in Food Supplements, Beverages, and Drinks

In modern society, people consume many different kinds of processed products such as dietary
supplements, non-alcoholic beverages (fruit juices, sodas, etc.), and alcoholic beverages (wines, beers,
spirits). The high demand of these products requires that strict guidelines be in place to ensure the
highest quality. Manufacturers of these items utilize various analytical methods to assess purity, origin,
and adulteration. Some of these techniques include gas chromatography (GC), mass spectrometry (MS),
and nuclear magnetic resonance (NMR). These methods are highly accurate. However, they are costly,
time consuming, and require significant sample preparation. NIR spectroscopy has recently been used
to determine quality parameters of these products because it offers several advantages as it is a rapid
and non-destructive technique. NIR spectroscopy is based on absorption of electromagnetic radiation
in the range of 800-2500 nm. In this range, different chemical bonding environments can be identified
and correlated to components in product. Some common bonds seen in NIR spectroscopy are around
1350, 2000, and 1600 cm ™1 corresponding to C—H, O—H, and N—H bonds, respectively. The stretching
and bending vibrations of these bonds can easily be analyzed by NIR spectroscopy, often in real
real-time and on-line. However, the overlap of these absorbance bands can make the interpretation of



Sensors 2020, 20, 6982 13 of 42

complex samples more difficult. Thus, most NIR spectroscopy methods utilize chemometrics or other
mathematical conversion models to extrapolate usable data from the instrument.

6.1. Food Supplements

The accurate detection of adulterations in food supplements is highly important as these products
are often used to control ailments and dietary regulation. Thus, the introduction of additives can
be potentially detrimental to the consumers. For whey protein powder samples, adulterants can
currently be detected on average down to about 1-5% composition. Zaukuu et al. [125] developed
a method for handheld NIR spectroscopy devices that can detect adulterant concentrations down
to 0.5% (w/w) with root mean square error of prediction (RMSEP) values as low as 0.21 g/100 g.
They achieved exceptional RMSEP values for samples in both commercial plastic bags and glass
containers. Chen et al. [126] utilized a one-class model strategy to achieve untargeted identification of
Chinese Sangi powder adulteration. This method of class-modeling can be built for the target class
without in-depth information on other classes or samples which is advantageous for authentication
analysis. Thus, this method can potentially be applied for many kinds of products.

Omega-3 dietary supplements have become a highly popular food supplement product and
thus, the quality screening of these is highly important. In the last year, studies have focused on
applying portable spectrometers to the quality screening of these products to bring associated costs
down. Karunathilaka [127] used a chemometric model based on PLS to classify the omega-3 oils
based on triacylglycerol and ethyl ester polyunsaturated fats. They found that attenuated total
reflectance-Fourier transform infrared (ATR-FTIR) was more sensitive than FTIR alone and that the
band in the 1750~1730 cm™! region (ester carbonyl group) was the most important for discriminating test
samples based on their lipidic matrix. In an attempt to drive costs down further, Hespamhol et al. [128]
developed a low-cost handheld spectrometer (~1000 USD) that showed potential for the delivery of in
situ quality information of omega-3 supplements. This allows the raw materials to be easily quality
controlled to remove adulterated precursors early in the processing stage.

6.2. Beverages (Fruit Juice, Soda, Energy Drink)

Commonly consumed beverages (fruit juices, sodas, energy drinks, etc.) contain many components
such as sugars, nitrogen, and caffeine. It is important to utilize quantitative analysis methods that
can accurately measure these components for specific drinks as well as be applied to other beverages.
Petrovic et al. [129] utilized NIR spectroscopy quantified nitrogen content of grape juices with extremely
high variability (over 900 juice samples). They were also able to use an independent validation set
which has prevented the widespread use of this technology in similar fields. Jiang et al. [130] developed
a method using miniature NIR spectroscopy scanners to accurately determine sucrose content in a
multitude of everyday beverages. They achieved >99% accuracy in identifying 18 different drinks and
the prototype they designed shows promise to analyze other food quality parameters.

The determination of common quality control parameters, such as soluble solids content (SSC) in
the beverage industry is of high importance. Food science researchers are continuously developing
new methods to enhance the speed, efficiency, and cost-effectiveness of data acquisition and analysis.
Wilodarska et al. [131] recently investigated the application of NIR spectroscopy in determining SSC
of strawberry juice as well as the precursor fruits. The models used had high predictive ability,
with root mean square error of prediction values <0.5%. Ren et al. [132] employed a method using
variable combination population analysis (VCPA) coupled with NIR spectroscopy to assess quality
attributes in tea. The robust hybrid VCPA algorithm allows for the application of a smartphone-based
micro-Vis-NIR sensor to acquire spectral data inexpensively and on-line.

6.3. Alcoholic Drinks (Wines, Beers, Spirit)

Alcoholic drinks are a highly consumed product and contribute greatly to local economies.
Oftentimes, beverages like spirits and wine from a certain geographical origin are adulterated with
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lower quality drinks. By using various portions of NIR spectrum, Hu et al. [133] were able to correlate
the chemical fingerprints of Cabernet Sauvignon to their geographical location. The developed database
models achieved 100% recognition rate for 374 wines from three different countries (Australia, Chile,
and China). Zaukuu and coworkers combined NIR spectroscopy and e-tongue technology for the
determination of adulterants in high quality Tokaj wines [134]. Partial least square regression modeling
gave a coefficient of determination (R?) value of 0.98 and 0.97 for the e-tongue and NIRS, respectively.
These methods used in tandem have practical and simple application in industry.

The storage and analysis conditions of alcoholic drinks can drastically affect quality control data
obtained for these samples. Joshi et al. investigated the effect of analysis temperature for different
whiskeys at a range from 25-55 °C. They saw that past 40 °C, there is a distinct alteration of absorption
bands. By coupling NIR spectroscopy with two-dimensional correlation spectroscopy, they proved
that this technique can dramatically improve quality evaluation efficiency over NIR alone [135].
Another group, Anjos et al. [134], found that NIR spectroscopy can discriminate aging practices of
wine spirits (barrel wood species in which it was aged, aging time, etc.) with up to 90% accuracy.
They found that the spectral region between 4200 cm™! and 5200 cm~! was most representative of
sample differentiation [134].

NIR spectroscopy has been widely used for quality investigation of processed food products like
supplements and beverages (alcoholic and non-alcoholic). Recently, new modeling techniques have
been introduced successfully to improve these methods. In terms of adulterant detection, models have
been developed that are more accurate and more applicable to a wider range of products. Some new
models even show potential application in smartphones. In a similar regard, portable spectrometers
have also been applied to more diverse areas with competitive performance relative to benchtop
instruments. These advancements are essential in lowering the costs and time associated with quality
control analysis.

7. NIR in Food and Pharmaceutical Raw Materials

In the realm of food and pharmaceuticals, NIR spectroscopy has reached a point to where it is
readily available in both screening technologies and in process monitoring applications [136,137]. As a
screening technology, NIR can be used in a laboratory setting and at “point-of-use” as a portable
technology [138]. Laboratory applications are typically performed using a benchtop instrument,
which are commonly available using the Fourier-transform approach. Some instruments may also be
dispersive, but usually these types of spectrometers are portable/handheld/small footprint [139] and
used in most point-of-use technologies [140].

NIR when applied to screening applications is used to make rapid determinations, usually between
a few seconds to one minute, and the methods are often combined with either a library-type comparison
or an analysis made using a multivariate model [141]. Regardless of the algorithm, the spectrum
obtained in the field is compared to a known library or model that contains reference samples.
Until recently, this comparison has been made mostly on the local computer that is available on the
portable NIR spectrometer but recent advances in server architecture have made it so that possible
for certain applications to compare spectra under study in real-time to a virtual server via a wireless
network connection or cloud. This new area of innovation means that models and libraries can
constantly be adapted to the needs of users and undergo refinement in real-time such as monitoring of
medication taken by elderly patients [141].

The use of NIR in process controls [142] is increasingly common and is has been reported in
applications such as the manufacturing of botanical drug products. This class of products has intrinsic
variability in the raw materials and ingredients may undergo complex chemical reactions during
production. This makes it imperative to perform real-time monitoring of the reactions, such as in the
case of production of compound danshen dripping pill (CDDP) reported by Zhang et al. [142], where an
in-line NIR method was developed for commercial production of the botanical product. In almost
all in-line/at-line/on-line applications the NIR method requires careful development and validation.
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This includes the creation of a representative calibration set and validation set. The models are usually
chosen such that an appropriate number of batches, containing representative variability expected in
the process, are used in the model development. This is a key consideration for the success of any
NIR model. For example, in a recent study by Carogo et al. [140] aimed at assessing raw citrus-related
materials for pectin production, the research team built a design space of 85 raw material samples that
contained representative fruits, including 43 lemon, 27 lime, and 15 orange peel samples. The ultimate
design space depends on the application, but especially for naturally-derived raw ingredients, there are
known sources of variability [140] that should be built into the model robustness.

The use of spectral ranges [143] and pre-processing [144] also help to enhance model
performance [145] and the method parameters such as those commonly reported for chromatographic
methods [146] are also reported: specificity, accuracy, linearity and precision. For process NIR
applications, some of the areas where NIR brings considerable utility is in moisture content,
particle sizing, form identification, density, and blend uniformity [137]. NIR has also been
useful to monitor coating thickness [147], and in a recent application was used as part of a
combined-data-approach to predict the active ingredient dissolution performance of enterically-coated
microspheres [148]. Finally, there are also new approaches to the critical problem of calibration transfer,
which is the use of a model or method that was developed on a different—often central—geographically
distributed transfer instrument. This is important since all instruments contain small differences and
an effective calibration transfer [149] approach obviates the need to develop a unique model on each
transfer instrument. Skotare et al. [150] recently reported on the use of a novel approach called joint
and unique multiblock analysis (JUMBA) to achieve instrument standardization to transfer models
effectively compared to traditional approaches.

8. NIR Spectroscopy in Meat and Meat Products, Fish, and Seafood Products

Muscle foods, including meat and fish, are very important from the point of view of human
nutrition and commercial activity worldwide [151]. There have been significant efforts, both from the
industry and academia, on improving quality and quantity of the raw and processed muscle food
types in recent years [151-155]. Accordingly, there have been increasing demands for the development
robust and time effective monitoring techniques to track compositional and safety compliance issues
as conventional chemical methods of meat quality assessment become more expensive and time
consuming. Near infrared spectroscopy (NIR) has drawn considerable interest for many reasons,
including its portability, speed, cost-effectiveness, suitability for in-line as well as on-line analysis,
and the ability to concurrently measure different parameters for a large number of samples [151-157].
Several studies reported on the use of NIR for meat quality assessment and the analyses of meat
properties in live animals or carcasses due to the capability of IR light to penetrate several layers
of tissue [151-159]. Two published papers demonstrated that the short wavelength radiation in
the NIR region of the electromagnetic spectrum can potentially be utilized to non-invasively assess
meat quality [152,154]. The results of these studies are significant because of the limited literature
non-invasive analysis of crucial nutrients in the live animals; thus, these reports fill that gap.

Recently, Simon et al. [152] demonstrated NIR spectroscopy as a non-invasive technique to assess
the nutritional parameters of spiny lobsters. The authors also used the Bruker MPA FTIR spectrometer
to determine abdominal muscle composition and hepatopancreas composition. Total carbon content
(AMc) and total lipid content (HP1; ) models developed by the authors in this study demonstrated
that NIR has great potential for rapid non-invasive screening of live lobsters and other fish as well
as poultry products. For fisheries and poultry farms, this technique will allow for monitoring the
condition of live stocks during changes in feed availability, feed quality, water temperature as well as
in the wild and in cultured conditions. The NIR HPt;, model would be effective in determining the
growth in the number of livestock with no requirement to capture or tag individual animals. The NIR
AMCc analysis that resulted in low abdominal carbon content is likely associated with low meat yield,
lower health benefits from decline in the omega-3 fatty acid levels, and a likely reduction in taste
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and texture quality. Additionally, the authors have been able to establish a good correlation between
NIR AMc as well as haemolymph total protein (TP) models, demonstrating NIR’s ability to predict
livestock vitality crucial for live shipment.

Caballero et al. [160] have recently demonstrated a fast and accurate method to determine crucial
nutritional parameters, including protein, lipid, slat, and carbohydrate contents, based coupled NIR and
data mining techniques in an automated manner. The authors have conducted a study on two batches
of Iberian pork meat products. The authors divided one batch of each product into training as well as
validation sets. The authors have accessed the prediction equations from the NIR, while data mining
was implemented to obtain the nutritional data for the training batches. Finally, NIR data from the
validation batches were used to evaluate the prediction equations. The authors have demonstrated that
the NIR based evaluation method that they have developed is many times faster than the conventional
approach taking only 10 min as opposed to the orthodox six-day process.

Pochanagone et al. [157] have also demonstrated that a NIR-based method can be used to rapidly
determine the salt content in tuna fish without having to go though the time consuming conventional
wet chemical assay. The salt content, predicted by the NIR model, was observed to be very close with
the one obtained from the conventional assay providing a 96% confidence interval. Although, the salt
is IR inactive, the authors have explored the influence of salt on the absorbance of the NIR energy
providing access to a way of determining the salt content by exploiting the changes in the water band
at 970 nm. Calibration equations for these experiments were derived from the frozen fish pieces as well
as ground samples by employing linear regression analysis for the wavelength region of 700-100 nm.
The same authors have also demonstrated the ability of the NIR based method to rapidly determine
in tuna, the content of histamine, a neurotransmitter responsible for the inflammatory response in
humans [153]. In this study, the authors have coupled the dry extension system for IR (DESIR) with
the NIR to determine the histamine in tuna at the ppm level. Their findings showed that the DESIR
method significantly improved NIR application allowing the detection in the ppm level. This method
is still not fully developed, and authors are working on it.

Kilbo et al. [158] have demonstrated the ability of NIR based methods to rapidly and precisely
determine biogenic amine content as the same could be used to evaluate the freshness of fish and
poultry products. The authors, however, have pointed out that dehydrated samples must be prepared,
following procedures that they have developed, as the developed NIR method is not suitable for the
samples with high water content. There are a few other recent reports demonstrating the use of a
NIR based analysis method for rapid and cost effective identification of crucial nutrients with high
precision rates [161]. For example, recently, Miller et al. [159] reported a NIR based method for quick
assessments of various components of king salmon and greenshell mussels. Most of the demonstrated
methods take minutes to prepare and analyze the samples as compared to the days required for the
conventional wet-lab chemical assays. Therefore, NIR techniques seem to be highly promising for the
fish and poultry industries and should be extensively looked into to develop fully from the perspective
of time as well as cost effectiveness.

9. Chemometrics Approach and Multivariate Analyses of Spectral Data Analysis

Beer’s law is widely used in analytical spectroscopy to correlate the concentrations of standard
solutions with corresponding analyte absorbances to construct the calibration curve that is later utilized
to determine the concentration of analyte of unknown samples. Beer’s law relies on the use of standard
solution absorbances at one wavelength (typically at lambda (Amax), a process known as univariate
spectral analysis. Nonetheless, Beer’s law and univariate spectral analysis are ineffective for reliable
and accurate sample analysis where there is a considerable blue or red spectral shift at lambda max.
Variation in other wavelengths/wavenumber regions is often not considered but contains significant
data that may be utilized to map analyte absorption fingerprint signatures and spectral profiles
for ultimate pattern recognition and/or quantification of analytes in unknown samples. Moreover,
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univariate spectral analysis is incapable of multicomponent analyses of multiple analytes without
tedious spectral resolution or deconvolution.

Multivariate regression methods of the analysis of spectral data were developed to address
the challenges and shortcomings of univariate spectral analysis. In general, multivariate regression
analysis of spectral data involves applying statistics and advanced mathematics for processing spectral
data for chemical analysis. Multivariate regression analysis allows for the simultaneous investigation
of multiple wavelengths/wavenumbers or sections of wavelengths/wavenumbers for chemical analysis.
Moreover, multivariate analyses are capable of multicomponent analyte sample analysis without the
requirement for spectral resolution and spectral deconvolutions.

The scope multivariate regression analyses is broad and can be classified into two major
categories [162-166]. The first category of multivariate regression analyses focuses primarily on
the elucidation of the structural relationships in a data set that may facilitate pattern recognition
and sample classifications [162-166]. Principal component analysis (PCA) is most commonly used
for sample pattern recognition. PCA relies on the decomposition of x-variables (spectra data in
spectroscopy) and represents the data set in a new orthogonal coordinate system, eliminating the
collinearity between the x-variables. The first initial few principal components (PCs) typically contained
the maximum variability and the most useful information in the data set. Higher PCs often contained
insignificant information or “noise”. The use of few PCs to represent the data is advantageous since it
reduces data dimensions.

Samples are grouped on PCA score plots based on the similarity or dissimilarity in their physical
and chemical properties. For instance, samples with similar properties origin, geographical location or
composition are often grouped close to one another on the PCA scores-plots [162-166]. PCA scores
plots may reveal hidden data or information that may not be apparent from ordinary data examinations.
Nonetheless, the capability and effectiveness of PCA for accurate sample classification is very limited.
To address these challenges, linear discriminant analysis (LDA), Fisher linear discriminant analysis
(FLD), and soft independent modeling by class analogy (SIMCA) have been developed for sample
differentiation and classification with excellent accuracy [162-166]. Moreover, artificial neural networks
(ANN), random forests (RF), support vector machines (SVM), deep convolutional neural networks
(DCNN), and 3D convolution neural networks (3D-CNN) are also excellent for data processing and
efficient sample classification.

The second category of multivariate analysis focuses on using regression analysis for process
optimization, process or system control, sample calibrations, and instrumental calibration [162-166].
Partial-least-squares (PLS) regression remains the most widely used regression analysis model
for the sample and instrumental calibrations. However, other regression analysis techniques,
including principal component regression (PCR), variable selection random frog partial least squares
(RE-PLS) algorithms, and others, have been strategically developed and used for sample and
instrumental calibrations. Regardless of the regression method, the initial stage of regression model
development is model optimization and refinement. The overarching goal of any multivariate
regression is to predict future samples” analyte concentration with a degree of certainty and good
accuracy using a process known in multivariate analysis as “validation”. The developed regression
models must be adequately validated, usually with independent validation samples of known
concentrations. Root-mean-square-error-of-prediction (RMSEP) and root-mean-square-percent-relative
error (RMS%RE) are often used to evaluate the reliability and performance of the regression model for
accurate determination of analyte concentrations of validation or future samples.

10. Multivariate Analyses of NIR Spectra for Selected Food Quality Assessment

Quality assessment of the nutritional values of meat, pork, fish, and egg and the authentication of
meat, pork, fish, and egg products is of considerable importance directly impacting the human diet
with financial implications for meat industries. As a result, the development of rapid protocols for
assessing the quality of meat continue to be of a significance interest to the food processing industry.
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Unlike the conventional methods of meat analysis, NIR spectroscopy is fast, low-cost, non-destructive,
and readily available. Some of the recently reported multivariate analyses of NIR spectra meat, pork,
fish, and egg quality assessments are discussed in this section.

10.1. Meat and Pork

The practical applications of NIR spectroscopy for quality checks and assessment of meat products
have been published [167,168]. The protocols were capable to segregate meat tissues (lean and fat)
and to predict protein, moisture, fat, and fatty acids content, and the sheer force of meat in food
processing industry [167,168]. The use of a combination of NIR spectroscopy in conjunction with
PLS-DA models for rapid differentiation between South African game species, irrespective of the
treatment (fresh or previously frozen) or the muscle type was also demonstrated during the review
period [169]. The result of this study is significant because of its capability to distinguish between
fresh and previously frozen meat (accuracy >90%). Importantly, the protocol differentiated ostrich
muscles, the forequarters and hindquarters of the zebra, and springbok muscles, with an accuracy of
100%, 90.3%, and 97.9%, respectively.

The adulteration of meat products is wide-spread and a challenge in the food industry. Besides the
economic losses for the food industry, adulteration of meat also has a cultural and religious consequence.
For example, the adulteration of beef meat with pork negatively impacts people who are forbidden
from the intake of pork meat due to cultural or religious beliefs. Several studies reported on the use
of multivariate regression analysis of NIR spectra for meat quality assessment during the review
period. For instance, a combined use of a Vis/NIR reflectance spectrometer with a support vector
machine (SVM), random forest (RF), PCA, PLS regression, and deep convolutional neural network
(DCNN) for the accurate detection of adulteration of minced beef was reported [170]. The use
of DCNN and PCA allowed the identification of beef adulteration type with excellent accuracy
(>99%). The obtained figure-of-merit (R? = 0.973) demonstrates the linearity of the PLS regression.
Importantly, the PLS regression accurately predicted the adulterated beef with pork meat with a
root-mean-square-error-of-prediction (RMSEP) of 2.145.

In a related study, the use of NIR spectroscopy in conjunction with PLS-DA for quantitative
detection of binary and ternary adulteration of minced beef meat with pork and duck meat was
reported [171]. According to the study, the use of DA models with selected wavelengths (none with
preprocess methods) resulted in accurate classification rates for binary (100%) and ternary systems
(91.5%). Moreover, the developed PLS regressions resulted in R? > 0.95 and RMSEP as low as 7.27,
demonstrating the linearity and accuracy of the protocol for the detection of adulterated minced beef
meat. Application of NIR spectroscopy combined with PCA and PLS-DA for efficient discrimination
and reliable detection of fraud in minced lamb and beef production was also reported [172]. Moreover,
the use of NIR and deep 3D convolution neural network (3D-CNN) for red meat classification was
demonstrated with a remarkable accuracy (>96.9%) [173].

The authentication, quality assessment, and assurance of pork meat also generated considerable
interest during the review period. For instance, an analytical protocol involving the combined use of NR
reflectance spectroscopy and PCA and PLS-DA for rapid analysis, detection, and quantification of pure
pork and pork meat that were adulterated with other meat samples was published [174]. According to
the report, PCA and PLS-DA notably achieved accurate classification of pure and adulterated pork
meat samples. In addition, the developed PLS regression predicted the pork content of independent
validation samples, with good accuracy and a low RMSEP value of 1.84%. The use of a portable
FT-NIR instrument coupled to a 5-m fibre optic sensor head for the accurate prediction of moisture,
protein and fat in Iberian pig pork loins [175] and the authentication of Iberian ham quality were
reported [176]. Other significant reported studies on the quality assessment of pork meat included
the classification and prediction of nutritional parameters for different iberian pork meat products
(e.g., dry-cured ham) [177], characterization of sous vide pork loin [178], and classification of brined
pork samples and the prediction of brining salt concentrations [179]. Other related published studies
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include the rapid detection of total volatile basic nitrogen content in frozen pork [180] and the detection
of bacterial foodborne pathogens in fresh pork muscles [181].

10.2. Fish and Eggs

Fish continues to be a significant source of protein and nutrients in the human diet. Assessmentand
authentication of the food quality of fish therefore continues to generate interest during the review period.
For instance, the use of NIR reflectance spectroscopy and PLS regression for fast determination of the
textural properties of silver carp (Hypophthalmichthys molitrix) has been reported [182]. The accuracy
of the protocol for the determination of fish flesh textural properties has been demonstrated by the
reported figure-of-merit of the PLS regression and low RMSEP for water holding capacity (RMSEP,
0.10), hardness (RMSEP, 0.54), resilience (RMSEP, 0.08), springiness (RMSEP, 0.96), chewiness (RMSEP,
2.63), and shear force (RMSEP, 0.41). In a related study, the capability of NIR hyperspectral imaging for
the accurate determination of total volatile basic nitrogen content and the characterization of the fish
textural profile and fish freshness has been published [183]. The result of the study is significant because
spectra from fish eyes and gills can potentially be used for the prediction of total volatile basic nitrogen
content and the characterization of textural profile analysis of intact fish. Another study reported on the
combined use of NIR and PLS regression for the determination and evaluation of texture and freshness
(pH, total content of volatile basic nitrogen, thiobarbituric acid reactive substances, and ATP-related
compounds) of bighead carp (Aristichthys nobilis), with excellent accuracy [184]. The combined use of
NIR spectroscopy, PCA, and PLS-DA for fast authentication and classification of European sea bass
(Dicentrarchus labrax L.) according to production method, farming system, and geographical origin
has been reported [185]. According to the report, PLS-DA models achieved an impressive classification
rate of 100% for both wild and farmed sea bass. In addition, the reported PLS-DA models correctly
classified sea bass according to production method with impressive accuracy.

In addition to meat and fish, eggs are also a critical component of the human diet and a major
sources of protein and minerals. Eggs are widely consumed in a variety of ways such as boiled, fried,
or scrambled. Eggs are also a critical component or ingredient of other food products including breads
and cakes. Quality assessment and authentication of eggs and egg products is therefore imperative for
the food industry. A fast and accurate protocol involving the use of ATR-FTIR and NIR spectroscopy
in combination with PCA for liquid egg authenticity and possible adulteration (with water) has been
reported [185]. An accurate method based on UV-VIS-NIR spectroscopy utilizing support vector
machine classification as well as linear and quadratic discriminant analysis for rapid fraud detection in
hen housing systems declared on egg product labels has also been published [186]. According to the
study, unlike cholesterol concentration, egg lipid extract content was found to be a very promising tool
for the analytical verification, classification, and authentication of an egg farming system. A related
study reported the use of NIR spectroscopy and PCA for the non-destructive identification of native
eggs in Chinese markets [187]. Quality checks and assessment of eggs for cholesterol content from fresh
manually shelled egg yolks or pasteurized pre-shelled egg yolks by the combined use of UV-Vis-NIR
and PCR and PLS regression [188] or UV-Vis-NIR and artificial neural networks (ANN) [189] have
been reported.

11. Multivariate Analyses of NIR Spectra for Selected Food Quality Assessment

Near infrared spectroscopy (NIR) is a rapid, non-invasive, and non-destructive technique that
allows investigators to collect powerful analytical information from a sample. For these reasons, this
analytical technique has been widely employed for food quality assessment at different production
stages of several products, such as dairy products, juices, edible oils, fruits, seeds, and others [190-194].
However, this technique presents certain challenges, such as an incredible amount of molecular
information, spectrum variations between samples, and overlapping spectral bands due to the presence
of several components in the samples, as well as other problems [38]. To overcome these difficulties,
NIR spectra may be processed using chemometric and multivariate analyses to obtain valuable
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information such as classification of samples and/or quantification of compounds within them. As a
result, NIR spectroscopy coupled to multivariate analysis and chemometrics tools is a valuable
approach for the evaluation of quality as well as quantification of nutritional compounds in food
products and classification and discrimination of food samples into different groups.

11.1. Dairy Products

Consumption of dairy products is promoted by the medical and scientific community because it
is a high source of calcium, proteins, and fatty acids [195,196]. For this reason, evaluation of the quality
and authenticity of dairy products is of great importance to ensure the presence of essential nutrients
and to guarantee that these products will not present a risk to consumer health. The Codex Alimentarius
is a series of international guidelines and codes to maintain food standards. Moreover, these guidelines
set the regulatory standards for use and concentration of various additives, such as conservatives,
stabilizers, antioxidants, etc., in products. However, these regulations are usually violated by dairy
companies with intent to increase profits [197,198]. As a result, different adulterated dairy products
such as milk, cheese, and butter are frequently found in the market. Consequently, the in-line and
off-line evaluation of these types of products are of great importance. Therefore, application of NIR
spectroscopy coupled with multivariate analysis to develop new quality control methodologies for
dairy products has been deemed of great importance within the scientific community.

Various groups have developed NIR spectroscopy methods for quality control of milk
samples [192,199-202]. Milk, the principal consumed dairy product, could be adulterated in several
ways by addition of different substances such as urea, hydrogen peroxide, vegetable proteins, water,
and others [203,204]. Teixeira et al. [200] evaluated adulteration of goat milk with urea, bovine whey,
water, and cow milk as adulterants. In this work, 300 authentic goat milk samples and 300 adulterated
samples were analyzed using NIR spectroscopy. These adulterated samples were created by addition of
four adulterants at different concentrations (1, 5, 10, 15, and 20% V/V). Before classification, NIR spectra
were preprocessed to eliminate negative effects of light scattering through application of standard
normative variance (SNV) and multiplicative scatter correction (MSC). NIR spectra were then centered
to the mean through application of Savitzky—Golay derivative. Following this, principal component
analysis (PCA) was applied to these data, and Q or T? Hoteling residue values were employed to
evaluate distribution of samples and to eliminate possible outliers. Researchers divided these samples,
where two thirds of them were employed to build the model, while the remaining third were employed
as validation samples. Three different algorithms, namely k-nearest neighbor (k-NN), partial least
square-discriminant analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA),
were employed by the authors to achieve classification. Performance of the models were evaluated
through use of sensitivity and selectivity. First, algorithms were applied to classify samples into two
classes: authentic and adulterated samples. Then, algorithms were employed for discrimination of
the samples into five classes: authentic, milk-adulterated, urea-adulterated, bovine whey-adulterated,
and water-adulterated samples. Classification results obtained with all three models were reliable and
capable of discriminating between authentic and adulterated samples. However, based on the three
algorithms employed, PLS-DA provided the best performance in both types of classification (two and
five classes), reaching 100% sensitivity and selectivity for cross-validation and prediction samples.

Another research group analyzed the adulteration of goat milk with cow milk, as well as the protein
and fat content in the samples using NIR coupled PLS algorithms [198]. In this work, Pereira et al.
collected goat and cow milk samples and randomly adulterated them generating a total of 112 samples.
Before calibration, NIR spectra were preprocessed employing the following techniques: linear baseline
correction (LBC), baseline offset (BO), standard normal variate transformation (SNV), and multiplicative
scatter correction (MSC). Pereira et al. first applied PCA to classify samples into three groups: goat,
cow, and adulterated samples. Researchers observed that the first five principal components (PC)
accounted for 99% of the variance. As a result, the use of only PC1 and PC2 was not enough to
discriminate the samples into the original three groups. To resolve this problem, Pereira et al. applied
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PLS-DA to the data, achieving 100% sensitivity, accuracy and specificity for classification of samples.
Another type of classification into these three classes was performed using fat and protein content in the
samples, but this information was not enough to reach accurate discrimination. To overcome this issue,
these scientists analyzed NIR spectra using internal PLS (iPLS) and Successive Projections Algorithm
for interval selection in PLS regression (iSPA-PLS) to develop regression models to quantify fat and
protein content in those milk samples. As a result, these researchers achieved good classification with
iSPA-PLS, employing 11 latent variables that contained spectral information corresponding to water,
protein, and fat content.

NIR spectroscopy coupled with chemometrics has been employed by Strani and coworkers [205]
to analyze the renneting conditions of milk to produce high quality cheese. In this study, they evaluated
the effect of temperature, pH, and fat concentration on the renneting procedure through a Box-Behnken
experimental design. NIR spectra obtained from 17 trials were analyzed with interval-PCA (i-PCA) and
analysis of variance (ANOVA)-simultaneous component analysis (ASCA). From this study, i-PCA model
allowed Strani et al. to predict how the renneting procedure will be affected with different operating
conditions. A similar work published by the same group, analyzed NIR spectra and rheological data
of fifteen samples at various renneting conditions with multivariate curve resolution—alternating least
square (MCR-ALS) to build multivariate statistical process control (MSPC) charts [201]. The analysis
performed with MCR-ALS demonstrated that three components represented the major phases of
the renneting procedure under different cheese fabrication conditions. After this, these researchers
built MSPC with the calibration matrix from MCR-ALS and profiles from PCA to obtain T? and Q
residuals values. The accuracy of these charts was evaluated through use of sensitivity and specificity
values. The Q residuals values presented a better performance than T? residual values with specificity
and sensitivity values of 94% and 100%, respectively. These results proved that the evaluation of
NIR spectra, as well as rheological properties of the renneting process, could be followed in-line.
Thus, allowing manufacturers to change the production conditions in real time in order to produce a
high-quality product.

Visconti et al. [190] evaluated the adulteration of grated hard cheese using NIR spectroscopy
coupled to discriminant classification techniques such as k-NN and PLS-DA and class modeling
techniques SIMCA. Based on all models studied, PLS-DA yielded the greatest discrimination
results between authentic and adulterated cheese samples with high values of sensitivity, specificity,
and precision. Bergamaschi et al. [206] analyzed the content of fatty acids (FA) in cheese that were
prepared with milk sourced from cows raised in different farming systems, employing NIR spectroscopy
with partial least squares regression. Results obtained by this group allowed for the quantification of
FA content in validation samples with high accuracy, and the model developed was deemed to be a
valuable tool for the determination of FA in unknown samples and identify the milk source [206].

11.2. Edible Oils

Edible oils are important products for human consumption because they provide fatty acids, energy,
and other nutrients. Moreover, some vegetable oils contain certain molecules with biological properties.
Some of them include anti-carcinogenic effects, reduction of cholesterol absorption, and decrease in
blood levels of low-density lipoprotein (LDL) [207,208]. For these reasons, several scientific groups
have focused on development of NIR spectroscopy methods for evaluation of quality, as well as
determination of various components present in edible oils [194,209-213]. Liu and co-workers [209]
developed a chemometric method using NIR spectroscopy for quantification of phytosterols in peanut,
corn, soybean, and colza oils. In this work, authors evaluated 62 oil samples through NIR spectroscopy
and gas chromatography coupled to mass spectroscopy (GC-MS). These samples were divided into the
two groups of calibration and prediction samples. Spectra from calibration samples were employed to
examine three optimized PLS calibration models obtained through different preprocessing methods.
Good values of correlation coefficient (R) and ratio of prediction to deviation (RPD) indicated high
accuracy for each calibration model. Moreover, concentration values obtained for prediction samples
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were compared to those obtained from GC-MS. Slopes of both calibration techniques employed by
these authors are in good agreement, demonstrating that PLS calibration models could be employed
as a non-destructive, fast, and easy methodology for the quantification of phytosterols in edible oils.
Another research group investigated the free fatty acids (FFA) content in palm oil using a portable
NIR spectrometer coupled to unsupervised and supervised multivariate analysis [210]. In this case,
Kaufmann et al. were able to discriminate palm oils samples with different contents of FFA through
linear discriminant analysis (LDA) and k-NN algorithms achieving 100% accuracy.

Another edible oil commonly used is olive oil. Several groups have investigated the quality
and nutritional properties of this type of oil [194,211,213,214]. For example, Jiménez-Carvelo and
coworkers evaluated discrimination of extra virgin olive oils (EVOO) from Argentina according to their
registered denomination of origin (RDO) and adulteration through combination of NIR and fluorescence
spectroscopy coupled with multivariate analysis [195]. Jiménez-Carvelo et al. demonstrated that
first order NIR data processed using PCA followed by PLS1-DA, and second order fluorescence data
processed using both PCA and a multidimensional version of PLS1-DA (NPLS-DA), allowed for the
classification of the RDO of each sample with 100% accuracy.

11.3. Agricultural Products

Due to an increase in world population, a concomitant increase on demand of high quality
agricultural products is of major concern [215]. For this reason, several research groups have been
focusing their attention on developing simple, fast, non-destructive, and low-cost methodologies
for evaluating quality of agricultural products. For example, Santos and co-workers employed NIR
spectroscopy to determine if sorghum grains were infested with insects [216]. This model, developed
using PLS-DA, was able to discriminate 100% infested from non-infested samples. In another
work, Biancolillo et al. evaluated the insect infestation of stored rice using NIR spectroscopy
coupled to PLS-DA and SIMCA to analyze infested and edible samples from different countries [217].
Models developed by Biancolillo and co-workers allowed for the classification of the two samples with
high accuracy. Moreover, the PLS-DA model allowed independent discrimination of infested samples
by country of origin.

Another concern within the global community is the availability of organic products [218-220].
As a result, investigations on the presence of pesticides in these agricultural products is also important.
Yazici and partners developed a NIR-based prediction model for detection of pesticide residues in
strawberry samples [218]. In this case, the authors built a robust PLSR model for quantification of two
pesticides that was in good agreement with values obtained through LC-MS/MS. In addition, Xiao and
coworkers performed a pilot study in China to discriminate between organic and conventional rice
samples through NIR spectra coupled to PCA and PLS regression [220]. The model obtained after
NIR spectra were preprocessed demonstrated discrimination capability between these two types of
rice samples.

NIR spectroscopy has proven to be a simple, yet commanding tool that can provide an
overwhelming amount of information. When coupled with chemometric tools and multivariate
analysis, this information proves even more useful for providing scientists with detection and
discrimination of molecular components. Overall, these strategies of pairing NIR spectroscopy with
chemometrics and/or multivariate analyses have proven to be a powerful, non-destructive, rapid,
and simple analytical technique that may be employed for quality control of food products in either an
in-line or off-line production procedure.
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12. Quartz Crystal Microbalance (QCM) Coupled with Multivariate Analyses for Food
Quality Assessment

12.1. Quartz Crystal Microbalance

Quartz crystal microbalance (QCM) systems present a valuable alternative to standard analytical
methodologies for quality food assessment. The QCM offers major advantages such as economic
feasibility, rapid sample processing, high analyte sensitivity and selectivity, and portability, among other
properties. Samples may be processed via either liquid or gas phase analyte adsorption onto a coated
quartz crystal resonator (QCR) and further monitoring of changes in frequencies. Another advantage of
this approach lies in the ability to reuse coated sensors as a result of the ease of desorption of analyte from
the coating material. There have been several recent reviews describing electronic operation of QCM
and further exploration of coating-specific VOC detections in greater detail [221-223]. As a result of the
gravimetric mechanism of operation [224], a multitude of coatings have also been explored for analyte
specificity and multi-sensor array (MSA) development [225]. In a similar manner, multiple harmonic
analyses may also lead to one sensor providing analyte specific responses to complex mixtures that
result in production of a virtual sensor array (VSA) [226-231]. Thus, QCM has the potential to be a
uniquely useful analytical tool for food quality analyses [232]. In the following sections, we explore
recent developments of liquid phase and VOC detection and discrimination in QCM-based techniques
for food quality analyses.

12.2. Liquid-Phase QCM Advances

As noted in the previous section, many industries employ NIR spectroscopy for food quality
control. However, other emerging, non-destructive methodologies are also under consideration in
this area. Liquid phase QCM systems are another method that scientists have explored to investigate
quality control in food samples and detection of proteins and pesticides [233-236]. Gelatin is an
animal protein widely used in confectionary products [237], and has become more popular as a
gelling agent in food and pharmaceutical industries [238]. In some cultures, the source of gelatin
(from porcine or beef) is strictly prohibited for consumption and certification of analysis is required
for consumers to assess before purchasing [237,239]. For this reason, and owing to its high sensitivity
and ease of operation, Muharramah and coworkers have employed a liquid phase QCM system for
determination of gelatin sources from ice cream samples [239]. These investigators electropolymerized
an aniline solution in dilute hydrochloric acid onto a gold QCR using cyclic voltammetry. Two types of
gelatins, from bovine and porcine sources, were employed in production of two ice cream batches.
After processing both ice cream samples, polyaniline coated QCRs were exposed to dilute aqueous
solutions of each batch. Investigators observed that ice cream samples prepared with bovine gelatin
presented positive frequency shifts, while batch samples containing porcine gelatin resulted in negative
frequencies. Thus, investigators demonstrated that electropolymerized polyaniline coating successfully
detected different sources of gelatin samples [239].

Another protein contaminant that often leads to health and cultural concerns is pork serum
albumin (PSA) [240]. As an incentive to reduce costs, manufacturers often mix pork products with beef
or other meats [241]. In an attempt to address these potential adulteration concerns, Cheubong and
coworkers developed a novel molecularly imprinted nanogel (MIP-NG) coating as sensing material for
PSA [242]. After preparation of MIP-NG sensors, these investigators optimized sensor responses with
the dilution factor of real beef samples and investigated the binding behaviors of PSA with MIP-NGs.
Finally, these researchers conducted a controlled study of adulterated beef sample, where PSA amounts
were varied, and QCM responses were collected and analyzed. They determined that the limit of
detection (LOD) was 1%, or 12 pug/mL, of pork protein. Thus, these investigators demonstrated the
utility of MIP-NG as a useful coating for QCRs to provide the sensitive, rapid detection of porcine
protein adulteration [242].
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Other investigators have explored the utility of MIPs for sensing small molecules, such as
pesticides, using liquid phase QCM [243]. In 2019, Cakir et al. [243] used a 2,4-dichlorophenoxyacetic
acid (2,4-D) imprinted ethylene glycol dimethacrylate-N-methacryloyl-(L)-tryptophan methyl ester
polymer film (p[EGDMA]-[MATrp]). The herbicide, 2,4-D, is commonly found as a contaminant in
food, soil, and ground water. When examining the selectivity of this novel MIP sensor with other
structurally similar compounds, such as 2,4,6-trichlorobenzoic acid and 2,4-dichlorophenol, selectivity
toward 2,4-D remained highest. The linearity range and LOD were also determined to be 50-1770 ng/L
and 24.57 ng/L, respectively. When these investigators spiked real samples of apples at 250, 500,
and 1000 ng/L, they determined that no false positives were obtained and there were low relative
standard deviations, which demonstrated high accuracy and precision for this method [243].

In another report, Sroysee and coworkers [244] designed two new MIPs for detection of carbofuran
(CBF) and profenofos (PFF). These compounds were chosen for this study because of their widespread
application as pesticides and detrimental effects to the environment and to the health of humans
and animals. CBF-MIPs were prepared using methacrylic acid and ethylene glycol dimethacrylate
(MAA-EGDMA), while PFF-MIPs were fabricated from polyurethane-based poly(4-vinylphenol)
(PUPPVP). Concentration-based studies were performed to determine linear ranges for each analyte.
Analyses of CBF-MIPs have a linear response range between 0.5 and 1000 uM, and PFF-MIPs responded
in a linearly in the range of 5-1000 M. LODs for CBF and PFF were determined to be 0.21 and 0.38 1M,
respectively. In this regard, these investigators successfully demonstrated the selectivity and sensitivity
of their MIP QCR sensors.

12.3. Gas-Phase QCM Advances

Gas phase analysis of VOCs is also an area of increasing interest. Many plant-based fragrant
components, such as secondary metabolites, essential oils, polyphenols, terpenes, and other compounds,
are volatile compounds that may be used as early onset indicators for age, health, and methods of
plant production [245-249]. In food products, they are often present as odor indicators for food
freshness, shelf life, and/or pathogen contamination [250-252]. Mangos, for example, are the fifth most
commercialized fruit around the world [253]. They contain high amounts of vitamin C, fiber, and are
commonly free from heavy metals. Mangos are also rich in terpenes, ketones, and hydrocarbons [254],
and different mangos may have slightly different flavors depending on the presence of a variety of
VOCs [255]. Recently, Ghatak and coworkers developed a coating based on mustard oil for identifying
an unsaturated alkene VOC component of mango fragrance, known as ocimene [256]. Other vegetable
oils were studied in comparison to the sensing performance of mustard oil. However, mustard oil was
determined to have the highest sensitivity and resulted in a low LOD of 1.04 ppm. These researchers
hypothesized that this was principally a result of the unique mixture of saturated and unsaturated
compounds present in this oil. Results obtained with this sensor were also determined to have a
high correlation value of 0.96 in relation to the values obtained by the gas chromatography technique.
In a similar work, investigators used an ethyl cellulose QCR coating to selectively detect 3-myrcene
from mangos, a terpene VOC [257]. By increasing the concentration of their target VOC, investigators
confirmed a 0.1 Hz shift of sensor per ppm of terpene. In addition, greater sensitivity was found
for B-myrcene relative to other volatile components present in mango samples, such as ocimene,
(3-carophyllene, carene, and humulene.

Noting the importance of discrimination of mango vapors, and also employing a sensor developed
from an earlier investigation [258], another group of researchers compiled a QCM-based sensor
array using multivariate analysis for mango crop discrimination with principal component analysis
(PCA) [259]. Debabhuti and coworkers employed sensors coated with polydimethylsiloxane (PDMS),
B-cyclodextrin, f-mercaptobenzothiazole, polyethyleneglycol 1500, maltodextrin, and gum acacia as
QCR coatings to determine the ripening stages of mango samples. Three sources of Indian mangos,
Langra, Amrapali, and Himsagar, were obtained and studied, while three stages of ripeness were
considered for each crop. Datasets were generated from 24 samples for each crop and employed
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for PCA analysis. With each crop analysis, the first three principal components accounted for more
than 99% of the variance and used to visualize the various stages of ripeness using three-dimensional
plots. From resultant PCA graphs, all three mango sources display distinct clusters of unripe, midripe,
and ripe harvest samples [259]. In effect, researchers concluded that their QCM-based multi-sensor
array was successful in discriminating ripeness and maturity stages among Indian mango crops.

Meat products are commonly known to generate odors after prolonged storage time, and these
are a well-known indicator of market freshness. For this reason, Chen and coworkers recently focused
on the detection of two VOCs (hexanal and 1-octen-3-ol) from grass carp [260]. Since these VOCs
are known to increase over time, these investigators employed a copper(I)-cysteine nanocomposite
as a sensing material. Investigators observed that the nanocomposite was unresponsive to changes
in humidity and further conducted experiments at 80% relative humidity to replicate water related
effects under refrigerated conditions. Comparative studies with other VOCs confirmed selectivity
toward the targeted hexanal and 1-octen-3-ol. These investigators employed this sensor using a real
sample, exposing vapors from refrigerated grass carp fillets within four storage days. Frequency
responses were determined to have a correlation coefficient of 0.96 when compared to results obtained
using solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GCMS).
Although they achieved this high correlation value, the investigators noted that the amplitude of the
frequency change within the first two days of exposure did not display the large signal change observed
during the last two days of exposure. To further enhance this sensitivity, Chen and coworkers [261]
also focused on using graphene oxide as a hydrophobic nanocomposite coating material to detect
different aldehydes such as hexanal, octanal, and nonanal, under similar relative humidity conditions
in fish samples: grass carp and hairtail fillets. Similar characterizations were performed in fish samples,
and investigators further confirmed that increased storage time lead to stable and sufficient responses
from their sensor over time. In this work, correlation coefficients from SPME-GCMS of both real
samples were determined to be 0.98. While this sensor was not further evaluated in an array using
multivariate analysis, the sensitivity of the coating material showed potential use as a suitable material
in sensor array applications.

Kalinichenko and Arseniyeva [262] also recently explored the utility of QCM to identify adulterated
meat products, such as sausages with different mass percentages of soy protein isolates (SPIs),
using QCM coupled with multivariate analysis. By employing seven different polymer-sensing
materials, investigators established fingerprint patterns for four different sausage types with varying
percentages of SPI adulteration (0, 10, 20, and 30% w/w). These researchers first employed an algorithm
to visualize sensor responses to sausage VOCs in a polygon pattern. This technique provided qualitative
information for non-adulterated versus systematically adulterated samples, relaying samples quality
via “star” profiles. For qualitative grouping analyses, PCA was employed as an unsupervised method
of analysis, while probabilistic neural network (PNN) was used as a supervised method. When the area
values (5;) and maximum value of sensor response (AF;;;,;) were employed, unsupervised PCA analysis
accounted for 96% and 97% of the total variance within the first three principal components, respectively.
However, both PCAs were unable to discriminate between 20% and 30% w/w SPI samples. Investigators
then reasoned that a PNN analysis would be best to process this data. Investigators also examined if
data training was necessary. After training the raw data with three different methods, via normalizing,
auto scaling, and centering, investigators found that the best results for PNN construction were
obtained using raw data of AF;;x and S;, resulting in 100% accuracy and 95.8%, respectively. Ultimately,
this work highlights the use of a QCM coupled with multivariate analysis to provide a simple method
to assess levels of sausage authentication and introduce novel techniques for food control.

Overall, QCM is a non-destructive, facile, and rapid technique that can be useful in both liquid
and gas phase protocols. Thus, from the investigations demonstrated above, QCM may be useful to
determine a variety of food quality measures, ranging from adulteration investigations, contamination,
and potential harvest queries. As investigations into coating materials, sensor arrays, and exploration
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with multivariate analyses increases and become available, we hypothesize that this method will
become even more useful for analyses in food industries.

13. Electrochemical Biosensors for the Detection of Foodborne Pathogens

The detection of foodborne pathogens is a crucial step in the food quality assessment process [263].
Major foodborne illnesses are caused by the contamination of foods with bacteria, such as Salmonella,
Clostridium, Listeria and Vibrio cholerae, or viruses like norovirus, or protozoans [264]. Electrochemical
biosensors have been intensively used to detect such microorganisms in food because of their higher
specificity, sensitivity, simplicity, portability, and rapidity in comparison to conventional methods.
In this section of the review, we will be discussing recent developments in electrochemical biosensors
designed to detect pathogenic microorganisms in food. Figure 1 represents the basic construction
and the key components of an electrochemical biosensing strategy specifically designed to detect
foodborne pathogens.
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Figure 1. Schematic representation of the key components of a biosensor platform for the detection of
foodborne pathogens.

In a typical electrochemical biosensor, the analyte is transported towards the working electrode
(or the transducer surface) with high mass transport efficiency and it is detected by bio-recognition
elements immobilized on the electrode surface which are complementary to the analyte. The analyte
concentration is then determined by an electrochemical technique such as voltammetry, amperometry
and impedimetry (Figure 1).

Nucleic acids, antibodies, phages, peptides and aptamers are commonly used as biorecognition
elements and they play a significant role to determine the specificity of the biosensor. Qian et al. have
recently developed a DNA biosensor to detect Clostridium perfringens in dairy products [265]. On the
other hand, antibodies are considered to be the gold-standard of bio-recognition elements for pathogen
detection and such immuno sensors were recently developed to detect Escherichia coli O157:H7 [266,267]
and Staphylococcus aureus in milk samples [268]. Bael et al. [269] have investigated the efficiencies of
novel synthetic peptides for electrochemical sensing of human norovirus. In addition, Eissa et al. [270]
have constructed a peptide-based electrochemical biosensor for simultaneous detection of two of the
most common food-borne pathogens: Listeria monocytogenes and Staphylococcus aureus. Moreover,
aptamers, single-stranded oligonucleotides, are also capable of binding to various food-borne pathogens
with high affinity and selectivity. Electrochemical aptasensors have been reported recently for the
detection of Salmonella enterica [271], Cronobacter sakazakii [272], and Escherichia coli [273]. Zhou et al.
have used T2 bacteriophage (a virus) as the biorecognition element on a screen-printed electrode for
rapid and selective detection of Escherichia coli.
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Nanomaterials have emerged as powerful materials for electrode fabrication due to characteristic
features such as high conductivity, surface area to volume ratio, and robustness. Therefore,
materials such as nanotubes, nanosheets, and nanoparticles have been extensively utilized to
construct biosensor platforms [274,275]. Appaturi et al. have modified a glassy carbon electrode
with reduced graphene oxide-carbon nanotube nanocomposites to detect Salmonella spp. in food
samples [276]. In another recent study, a gold microelectrode was fabricated with single-walled
carbon nanotubes for detection of Yersinia enterocolitica in fermented vegetable products [277].
Various graphene-based nanocomposites were also reported for the detection of Salmonella enterica and
Escherichia coli [271,278,279]. Moreover, gold nanoparticles have also been extensively incorporated into
electrochemical biosensors used in food born pathogen detection, due to their excellent physiochemical
properties and biocompatibility [280-283].

In accordance with the electrical signal output, electrochemical biosensors can be divided into three
major categories: voltammetric biosensors, amperometric biosensors, and impedimetric biosensors
(Figure 1). In voltammetric techniques such as cyclic voltammetry, differential pulse voltammetry,
or square wave voltammetry, the current caused by an electrochemically active redox probe which is
directly or indirectly related to the analyte concentration, is measured by varying the potential of the
working/sensing electrode. Such voltammetric biosensor platforms have been successfully utilized
to detect food-borne pathogens in recent years [282,284]. In amperometric biosensors, the potential
of the sensing electrode is maintained at a constant value with respect to a reference electrode and
the current is measured as a function time [285]. Amperometric detection of Escherichia coli [266,286]
and Samonella spp. [287,288] in various food samples and Brettanomyces bruxellensis [289] in wine
products have been investigated. Impedimetry is a label free electrochemical strategy that has become
a commonly used technique for pathogen detection in food samples. In contrast to voltammetric and
amperometric sensors, the electrochemical impedance is measured when foodborne microorganisms
are selectively captured on the sensing electrode surface. The use of impedimetric sensors for the
inspection of food quality has been recently reviewed by He and Yuan [290].

14. Conclusions and Future Trajectory

This review article reported on the challenges and recent breakthroughs in quality control and
the assessment of food products. Overall, recent technological innovations and advances in QCM,
electroanalytical devices, real-time polymerase chain reaction methods, DNA barcoding scanners,
and NIR spectrometer development have facilitated the accurate, fast, and reliable quality assessment
of diverse food products, food raw materials, and ingredients. It has also resulted in effective detection
of bacteria, viruses, and other foodborne pathogens in food products. The use of multivariate regression
analyses of NIR spectra has incredibly enhanced instrumental calibration, facilitated accurate food
sample analyses and reliable quality assessments of various food products. Nonetheless, global quality
control and assessment of food products is envisioned to continue to be a global challenge in the coming
years for various, complex, and divergent reasons. As a result, the development of effective quality
checks, food assessment monitoring strategies, and assessment of food quality schemes by industrial
producers, public safety officials, regulatory agencies, and other food stakeholders to ensure global
public health and safety is projected to continue to be a top priority. New low-cost instrumentation and
technology that will enhance robust, sensitive, and accurate food quality assessment in the field and/or
on the production line in the food manufacturing and processing industries are expected to continue
to be developed. Many articles are envisioned to report on the use of portable NIR spectrometers
for the assessment of food products. Several studies are also anticipated to report on the use of new
electroanalytical devices, such as electrode noses and electrode tongues, chemical sensors, multiplex
real-time polymerase chain reaction (PCR) techniques, and DNA barcoding scanners for food quality
assessment and detection foodborne pathogens in food products. Studies are projected to report on
chemometric approaches to instrumental calibration for food quality assessment in the field and/or on
the production line in food manufacturing and processing industries. Additionally, numerous articles
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are expected to report on the use of multivariate regression analysis of NIR spectral data for food
analysis and the detection of food adulteration. Emphasis will be placed on the quality control and
assessment of processed food shelf-life, evaluation of agricultural produce maturity, and harvest times.
Furthermore, quality assessment of edible oils, dairy products, processed foods, and food supplements
are projected to be of a considerable research area of interest and a top priority in the coming years.
Moreover, several studies are envisioned to report on the quality control and assessment of beverages,
meat, pork, fish, eggs, and seafood.
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