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Abstract
Bandwidth extension aims to reconstruct wideband speech sig-
nals from narrowband inputs to improve perceptual quality.
Prior studies mostly perform bandwidth extension under the as-
sumption that the narrowband signals are clean without noise.
The use of such extension techniques is greatly limited in prac-
tice when signals are corrupted by noise. To alleviate such
problem, we propose an end-to-end time-domain framework
for noise-robust bandwidth extension, that jointly optimizes a
mask-based speech enhancement and an ideal bandwidth exten-
sion module with multi-task learning. The proposed framework
avoids decomposing the signals into magnitude and phase spec-
tra, therefore, requires no phase estimation. Experimental re-
sults show that the proposed method achieves 14.3% and 15.8%
relative improvements over the best baseline in terms of percep-
tual evaluation of speech quality (PESQ) and log-spectral dis-
tortion (LSD), respectively. Furthermore, our method is 3 times
more compact than the best baseline in terms of the number of
parameters.
Index Terms: Noise-robust bandwidth extension, multi-task
learning, time-domain masking, temporal convolutional net-
work

1. Introduction
Speech signals with broader bandwidth provide higher percep-
tual quality and intelligibility. Bandwidth extension aims to re-
cover the high-frequency information from narrowband signals,
which is found useful in hearing aids design [1,2], speech recog-
nition [3–5] and speaker verification [6, 7].

Speech bandwidth extension methods, such as deep neu-
ral networks (DNN) [8,9], fully convolutional network [10,11],
generative adversarial network (GAN) [12], and wavenet [13],
mostly perform extension under ideal conditions with clean nar-
rowband signals as inputs. This is called ideal bandwidth exten-
sion. However, in practice, speech signals are always corrupted
by channel or ambient noise, for example, the received pilot
speech via ultra high frequency (UHF) radio for air traffic con-
trol. Without addressing the noise issue, ideal bandwidth exten-
sion techniques are greatly limited in real-world applications.

A typical way to address the noise problem is to perform
speech enhancement on the noisy narrowband signal first (Step
1), and ideal bandwidth extension next (Step 2), as illustrated
in Figure 1. For example, there was a study to apply the itera-
tive Vector Taylor Series (VTS) approximation algorithm [14]
for feature enhancement, which is followed by a Gaussian mix-
ture models or maximum a posterior models to reconstruct the
wideband signals [15, 16].
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Figure 1: The work flow of noise-robust bandwidth extension.
In Step 1, the noisy narrowband signal is enhanced to remove
noise. In Step 2, the enhanced narrowband signal is bandwidth-
extended to generate the clean wideband signal.

With the advent of deep learning, recent studies suggest
[17] an unified approach that combines speech enhancement
and bandwidth extension (UEE) in a joint training neural net-
work. As shown in Figure 2(a), the UEE approach firstly ap-
plies a bi-directional long-short-term-memory (BLSTM) layer
as the speech enhancement module to map the noisy narrow-
band input to enhanced narrowband features. Then, another
BLSTM layer is applied as the ideal bandwidth extension mod-
ule [18] to recover the missing high-frequency information from
the enhanced narrowband features. The speech enhancement
and bandwidth extension module are first trained separately as
the pre-training, which are then fine-tuned with a single mean
square error (MSE) loss between the clean wideband ground-
truth and enhanced-plus-extended output. Overall, the UEE ap-
proach is implemented with a two-stage training scheme, and it
also faces phase estimation difficulty just like other frequency
domain techniques.

In this paper, we propose an end-to-end time-domain
framework for noise-robust bandwidth extension, which is
achieved by jointly optimizing mask-based speech enhance-
ment and ideal bandwidth extension modules with a multi-
task learning (MTL-MBE). As a time-domain technique, the
proposed method inherently avoids phase estimation issues.
Specifically, the noisy narrowband signal is firstly encoded into
acoustic features instead of the short time Fourier transform
(STFT). The speech enhancement module takes the acoustic
features to estimate a mask and obtains the enhanced narrow-
band features for subsequent bandwidth extension. Two speech
decoders are trained to reconstruct the enhanced narrowband
and enhanced-plus-extended features into time-domain signals,
in a similar way like what inverse STFT (iSTFT) does. The net-
work is optimized with a multi-task learning [19–21] over both
narrowband and wideband signals. To the best of our knowl-
edge, this is the first work to explore noise-robust bandwidth
extension in the time domain.
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Figure 2: Block diagrams of (a) frequency-domain noise-robust
bandwidth extension, (b) time-domain noise-robust bandwidth
extension, (c) time-domain mask-based noise-robust bandwidth
extension (MBE), and (d) time-domain mask-based noise-robust
bandwidth extension with multi-task learning (MTL-MBE).⊗ is
an operator that refers to the element-wise multiplication.

2. Enhancement and Extension Multi-Task
Learning

We now propose a time-domain masking for noise-robust band-
width extension with multi-task learning (MTL-MBE), which
is illustrated in Figure 2 (d).

We first examine a noise-robust bandwidth extension net-
work in the time domain, which consists of a 1-D convolutional
encoder to extract acoustic features from input speech, and a
1-D de-convolutional decoder to reconstruct waveforms from
enhanced-plus-extended features, as shown in Figure 2(b). Such
convolutional encoder-decoder-like structure is widely used in
enhancement and separation tasks [22, 23]. The enhancement
and extension are implemented as a pipeline of two similar re-
gression, or mapping-based, neural networks. If trained jointly,
their individual functions of the respective network are not clear.
If trained separately, we face the same issue as other two-stage
training schemes do.

2.1. Time-domain masking

To address the problem in the pipeline scheme of Figure 2(b),
we propose a time-domain masking module to replace the
mapping-based enhancement module, as shown in Figure 2(c),
which has a unique architecture different from the extension
module and is called MBE.

The time-domain masking aims to reduce the additive noise
in noisy narrowband signals prior to extension. As shown in
Figure 2(c), the input narrowband signal x(t) ∈ R1×T is en-
coded to a representation A ∈ RK×M by a 1-D CNN with
M(= 512) filters and a filter size of L(= 16) samples with a
stride ofL/2 samples followed by a rectified linear unit (ReLU)
activation function. Then, a time-domain masking W is esti-
mated to suppress the additive noise in encoder representation
A. It can be formulated as

A′ =W ⊗A (1)

where the estimated mask has the constraint W ∈ [0, 1], ⊗ de-
notes element-wise multiplication, and A′ is the enhanced rep-
resentation output from the mask estimation module.

The mask estimation module consists of a temporal convo-
lutional network (TCN), which is illustrated in Figure 3. TCN

input

 conv

norm

output

r
 conv
sigmoid

 conv

D-conv
prelu+norm

 conv
prelu+norm

 ... 

tcb-

tcb-

tcb-

Figure 3: Block diagram of temporal convolutional network
(TCN). “tcb-2b−1” denotes a temporal convolutional block
(TCB) with the dilation of 2b−1, where b is the total number of
the TCB. “D-conv” is the dilated convolutional layers stacked
in several TCBs to exponentially increase the dilation factors.⊕

is the residual connection.

is not the first time to be explored in speech enhancement. Prior
work [24] utilized TCN as a regression module to map noisy
input to clean signals, but their mapping-based framework is
not suitable as an enhancement module here because it still suf-
fers from the same problem as two-stage training schemes do.
Therefore, we utilize TCN as a mask estimation module, which
is a unique architecture different from the extension module.

As shown in Figure 3, the encoder representationA is firstly
normalized by its mean and variance on channel dimension
scaled by the trainable bias and gain parameters [25]. Then,
a 1 × 1 CNN with N(= 128) filters is performed to adjust the
number of channels for the inputs. To capture the long-range
temporal information of the speech with a manageable number
of parameters, dilated convolutional layers are stacked in sev-
eral temporal convolutional blocks (TCB) by exponentially in-
creasing the dilation factor. Each TCB, as shown in dot box of
Figure 3, consists of two 1× 1 CNNs and one dilated convolu-
tional layer with a parametric rectified linear unit (PReLU) [26]
activation function and normalization operation. The first 1× 1
CNN (with 512 filters and 1 × 1 kernel size) determines the
number of the input channels and the second 1 × 1 CNN (with
128 filters and 1 × 1 kernel size) adjusts the output channels
from the dilated convolutional layer (with 512 filters and 1× 3
kernel size). We form b(= 8) TCBs as a batch and repeat the
batch for r(= 3) times in the TCN of mask estimation module.
In each batch, the dilation factors of the deptwise convolutions
in the b TCBs will be increased as [20, . . . , 2b−1]. To keep the
estimated mask W in a consistent dimension with the encoder
representations A, one 1 × 1 CNN (with 512 filters and 1 × 1
kernel size) is applied with a sigmoid activation function for
ensuring that the estimated mask W ranges within [0, 1].

2.2. Multi-task learning

To provide cogent constraints for the enhancement module
training, we further propose a multi-task loss for MBE as shown
in Figure 2(d), that is designed for two training objectives: en-
hancement (“en”) and extension (“ex”). It can be formulated
as

Ltotal = λLex(y, z) + (1− λ)Len(ŷ, ẑ) (2)

where y denotes the enhanced-plus-extended signal, while z is
its corresponding clean wideband signal as ground-truth target
for training; similarly ŷ denotes the enhanced narrowband sig-
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nal, while ẑ is its corresponding clean narrowband signal as
ground-truth target. All signals are sampled at 16kHz. λ is
a trainable weighting parameter to balance the two loss func-
tions. Lex and Len are optimized by the scale-invariant signal-
to-distortion ratio (SI-SDR) loss function [27–29].

As shown in Figure 2(d), two loss functions are ap-
plied at different places of the processing pipeline. For en-
hancement objective, the enhanced representation A′ is recon-
structed to form an enhanced narrowband signal ŷ by a 1-D
de-convolutional decoder, which is supervised by ẑ. For ex-
tension objective, A′ is taken by the extension module to form
an enhanced-plus-extended signal y, which is supervised by the
clean wideband signals z. The proposed network in Figure 2(d)
is referred to as multi-task learning for mask-based bandwidth
extension, or MTL-MBE.

The extension module consists of a TCN as shown in Figure
3, which is similar to the mask estimation module, except that
there is no element-wise multiplication ⊗, and we use ReLU
as the activation function for the last 1 × 1 CNN instead of a
sigmoid function.

3. Experiments and Results
3.1. Database

We conduct evaluations on the public dataset by Valentini et al.
[30], which is widely used for speech enhancement and band-
width extension [31–35]. This dataset consists of 11,572 mono
audio samples for training and 824 mono audio samples for test-
ing. The speech is sampled at 16kHz. The training dataset has
40 noisy conditions (10 noise types × 4 signal-to-noise (SNR)
values). The test dataset has 20 noise types that are different
from the training set (5 new noise types × 4 new SNR values).
The 2 speakers in the test dataset do not overlap the 28 speak-
ers in the training dataset. We prepare both narrowband and
wideband noisy data at 16kHz. We also prepare the clean wide-
band signals as ground-truth for the extension training and the
clean narrowband signals as ground-truth for the enhancement
training.

3.2. Experimental setup

3.2.1. Network configuration

During the training stage, the noisy narrowband waveforms
were cut to 2-second long segments (T = 32, 000 samples)
for batch training. The network was optimized by the Adam
algorithm [36]. The learning rate started from 0.001 and was
halved when the loss increased on the development set for at
least 3 epochs. Early stopping scheme was applied when the
loss increased on the development set for 20 epochs.

Table 1: PESQ, CSIG, CBAK, COVL, STOI and LSD in a com-
parative study of the proposed time-domain masking and multi-
task loss.

Metrics
Methods Single-loss Multi-loss

MBE w/o mask MBE MTL-MBE
PESQ 2.02 2.46 2.55
CSIG 2.13 2.52 2.64
CBAK 2.11 3.14 3.21
COVL 2.04 2.38 2.46
STOI 0.92 0.94 0.94
LSD 2.82 2.44 2.29

3.2.2. Reference baselines

We implement three reference baselines. Two of them [8, 11]
are for ideal bandwidth extension under noisy conditions. The
other [17] is designed particularly for noise-robust bandwidth
extension.

• LSM [8]: a 3-layer network that predicted the miss-
ing high-frequency components from the low-frequency
log-spectrum in frequency domain. The missing high-
frequency phase was recovered by the imaged phase of
low-frequency signals.

• DRCNN [11]: a fully convolutional encoder-decoder
framework that mapped narrowband signals to wideband
in the time domain. To increase the time dimensions dur-
ing upscaling, subpixel shuffling layers were introduced
in the upsampling blocks. The skip connections were
utilized to speed up training.

• UEE [17]: a unified speech enhancement module and
bandwidth extension module in one frequency-domain
framework that recovered the high-frequency signals
from noisy narrowband signals, as shown in Figure 2(a).

We use the following metrics to evaluate the results. PESQ
[37] stands for perceptual evaluation of the speech quality, rang-
ing from -0.5 to 4.5. Three objective metrics that approxi-
mate mean opinion scores (MOSs) [38]: CSIG, CBAK and
COVL. They are designed for signal distortion evaluation, noise
distortion evaluation, and overall quality evaluation, respec-
tively. Short-time objective intelligibility (STOI) [39] reflects
the improvement of speech intelligibility. Log-spectral dis-
tortion (LSD) [40] is to measure the distance between recon-
structed and target spectrum. Except LSD, higher scores are
better for all metrics.

3.3. Results

3.3.1. Effect of the proposed time-domain masking

We first investigate how the proposed time-domain masking
contributes to the framework MBE in Figure2(c) by experiment-
ing with and without (w/o) the time-domain mask. For fair
comparison, the single loss is utilized in this experiment and
the results are summarized in Table 1. We observe that the per-
formances of MBE w/o time-domain masking decrease sharply
because the noise issue is not addressed. Under the constraint of
the single loss, the MBE achieves 21.8% and 13.5% relative im-
provements in terms of PESQ and LSD, compared with MBE
w/o mask. The experiment also confirms the need to perform
enhancement prior to bandwidth extension operation.

3.3.2. Effect of the proposed multi-task loss

We further investigate how the proposed multi-task learning
contributes to the noise-robust bandwidth extension. The com-
parative results of the MBE in Figure 2(c) and the MTL-MBE
in Figure 2(d) are shown in Table 1. We observe that the per-
formances are improved by utilizing the multi-task loss. Com-
pared with the MBE, the MTL-MBE achieves 3.7% and 6.1%
relative improvements in terms of PESQ and LSD. Such experi-
ments show the performances of noise-robust bandwidth exten-
sion can be further improved by providing constraints for the
enhancement module.

3.3.3. Overall comparisons
Table 2 summarizes the comparison between the proposed
MTL-MBE in Figure 2(d) and other baselines in terms of PESQ,
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Table 2: A comparison of different techniques. “Designed conditions” refers to the conditions the method is designed for (clean or
noisy). We perform all tests under noisy conditions.“#Paras” denotes the number of parameters of the model.“Feature type” denotes
the types of narrowband inputs.“Spectrum” means that the approach is performed in frequency domain, while “waveform” means that
time-domain signals are directly taken as inputs.

Designed conditions Methods #Paras Feature type PESQ CSIG CBAK COVL STOI LSD
clean LSM [8] 13.38M spectrum 1.79 2.45 2.32 2.09 0.92 2.80
clean DRCNN [11] 56.41M waveform 1.74 1.18 1.97 1.38 0.92 2.97
noisy UEE [17] 22.42M spectrum 2.23 2.27 2.39 2.17 0.93 2.72
noisy MTL-MBE 6.82M waveform 2.55 2.64 3.21 2.46 0.94 2.29
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Figure 4: The spectrograms of a sample (p232 005.wav) in the test set for (a) noisy-narrowband input, (b) the best baseline UEE, (c)
enhanced narrowband result of MTL-MBE, (d) the enhanced-plus-extended result of MTL-MBE and (e) wideband signal (ground-truth).

CSIG, CBAK, COVL, STOI and LSD. “LSM” and “DPRNN”
are designed for bandwidth extension under clean conditions
but we evaluate them under noisy conditions in this experiment.
Their results reveal the limitation when working under noisy
conditions. We observe that the proposed MTL-MBE achieves
the best performance. Comparing with the UEE method [17],
MTL-MBE achieves 14.3% and 15.8% relative improvements
in terms of PESQ and LSD. Meanwhile, the parameter size of
MTL-MBE is 3 times smaller than that of UEE.

We extract one speech sample from the test set to illustrate
the differences of recovered enhanced-plus-extended signal be-
tween the best baseline UEE and the proposed MTL-MBE, as
shown in Figure 4. We observe that MTL-MBE (see Figure
4(d)) produces cleaner signal at low-frequency and richer high
frequency content than UEE (see Figure 4(b)). The interme-
diate enhanced-narrowband magnitude spectrum is also shown
in 4(c). We also observe that the enhanced-narrowband repre-
sentations constrained by multi-task supervision provide well-
presented features for subsequent extension operation.

3.3.4. Subjective evaluation

Since the UEE presents the best baseline performances in the
objective evaluation in Table 2, we only conduct an A/B pref-
erence test between the UEE and the proposed MTL-MBE to
evaluate the signal quality and intelligibility for listening. We
randomly select 20 pairs of listening examples and invite 10
subjects to choose their preference according to the quality and
intelligibility. The percentage of the preferences is shown in
Figure 5. We observe that the listeners clearly preferred the
proposed MTL-MBE with a preference score of 84% to the
best baseline UEE with a preference score of 10%. Most sub-
jects significantly preferred the reconstructed wideband signals
by the MTL-MBE with a significance level of p < 0.05, be-
cause the MTL-MBE produces cleaner signals at low-frequency
and richer high-frequency content. Some listening examples are
available at Github1.

1https://nanahou.github.io/mtl-mbe/
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Figure 5: The A/B preference test result of the recovered speech
between the best baseline UEE and the proposed MTL-MBE. We
conducted t-test using a significance level of p < 0.05, which is
depicted with error bars.

4. Conclusions
In this paper, we propose an end-to-end mask-based noise-
robust bandwidth extension framework with multi-task learning
(MTL-MBE). As a time-domain technique, the proposed MTL-
MBE inherently avoids decomposing signals into magnitudes
and phase spectra, and therefore requires no phase estimation.
Experimental results show that the proposed MTL-MBE out-
performs the prior work UEE in terms of PESQ and LSD with
3 times fewer parameters.

5. Acknowledgements
This work was supported by Air Traffic Management Re-
search Institute of Nanyang Technological University, Human-
Robot Interaction Phase 1 (Grant No. 192 25 00054), Na-
tional Research Foundation (NRF) Singapore under the Na-
tional Robotics Programme; AI Speech Lab (Award No. AISG-
100E-2018-006), NRF Singapore under the AI Singapore Pro-
gramme; Human Robot Collaborative AI for AME (Grant
No. A18A2b0046), NRF Singapore; Neuromorphic Com-
puting Programme (Grant No. A1687b0033), RIE2020 Ad-
vanced Manufacturing and Engineering Programmatic Grant.
The work by H. Li is also partly supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy (University Allowance,
EXC 2077, University of Bremen, Germany).

4072



6. References
[1] P. C. Loizou, Speech enhancement: theory and practice. CRC

press, 2007.

[2] C. Liu, Q.-J. Fu, and S. S. Narayanan, “Effect of bandwidth exten-
sion to telephone speech recognition in cochlear implant users,”
The Journal of the Acoustical Society of America, vol. 125, no. 2,
pp. EL77–EL83, 2009.

[3] K. Li, Z. Huang, Y. Xu, and C.-H. Lee, “Dnn-based speech
bandwidth expansion and its application to adding high-frequency
missing features for automatic speech recognition of narrow-
band speech,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[4] P. S. Nidadavolu, C.-I. Lai, J. Villalba, and N. Dehak, “Investi-
gation on bandwidth extension for speaker recognition.” in Inter-
speech, 2018, pp. 1111–1115.

[5] D. Haws and X. Cui, “Cyclegan bandwidth extension acoustic
modeling for automatic speech recognition,” in ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 6780–6784.

[6] R. Kaminishi, H. Miyamoto, S. Shiota, and H. Kiya, “Investiga-
tion on blind bandwidth extension with a non-linear function and
its evaluation of x-vector-based speaker verification,” in Proc. IN-
TERSPEECH, 2019, pp. 4055–4059.

[7] H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker
augmentation and bandwidth extension for deep speaker embed-
ding,” Proc. Interspeech 2019, pp. 406–410, 2019.

[8] K. Li and C.-H. Lee, “A deep neural network approach to speech
bandwidth expansion,” in ICASSP. IEEE, 2015, pp. 4395–4399.

[9] J. Abel and T. Fingscheidt, “Artificial speech bandwidth exten-
sion using deep neural networks for wideband spectral envelope
estimation,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 26, no. 1, pp. 71–83, 2017.

[10] Y. Gu and Z.-H. Ling, “Waveform modeling using stacked dilated
convolutional neural networks for speech bandwidth extension.”
in INTERSPEECH, 2017, pp. 1123–1127.

[11] V. Kuleshov, S. Z. Enam, and S. Ermon, “Audio super resolution
using neural networks,” ICLR, 2017.

[12] S. Kim and V. Sathe, “Bandwidth extension on raw audio via
generative adversarial networks,” CoRR, vol. abs/1903.09027,
2019. [Online]. Available: http://arxiv.org/abs/1903.09027

[13] A. Gupta, B. Shillingford, Y. Assael, and T. C. Walters, “Speech
bandwidth extension with wavenet,” in 2019 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WAS-
PAA). IEEE, 2019, pp. 205–208.

[14] P. J. Moreno, B. Raj, and R. M. Stern, “A vector taylor series ap-
proach for environment-independent speech recognition,” in 1996
IEEE International Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, vol. 2. IEEE, 1996, pp.
733–736.

[15] M. L. Seltzer, A. Acero, and J. Droppo, “Robust bandwidth exten-
sion of noise-corrupted narrowband speech,” in EUSIPCO, 2005.

[16] H. Seo, H.-G. Kang, and F. Soong, “A maximum a posterior-based
reconstruction approach to speech bandwidth expansion in noise,”
in ICASSP. IEEE, 2014, pp. 6087–6091.

[17] B. Liu, J. Tao, and Y. Zheng, “A novel unified framework for
speech enhancement and bandwidth extension based on jointly
trained neural networks,” in 2018 11th International Symposium
on Chinese Spoken Language Processing (ISCSLP). IEEE, 2018,
pp. 11–15.

[18] B. Liu, J. Tao, Z. Wen, Y. Li, and D. Bukhari, “A novel method
of artificial bandwidth extension using deep architecture,” in Six-
teenth Annual Conference of the International Speech Communi-
cation Association, 2015.

[19] R. Caruana, “Multitask learning: A knowledge-based source of
inductive bias icml,” Google Scholar Google Scholar Digital Li-
brary Digital Library, 1993.

[20] S. Ruder, “An overview of multi-task learning in deep neural net-
works,” arXiv preprint arXiv:1706.05098, 2017.

[21] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv
preprint arXiv:1707.08114, 2017.

[22] Y. Luo, C. Han, N. Mesgarani, E. Ceolini, and S.-C. Liu, “Fas-
net: Low-latency adaptive beamforming for multi-microphone au-
dio processing,” in 2019 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU). IEEE, 2019, pp. 260–267.

[23] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–
frequency magnitude masking for speech separation,” IEEE/ACM
transactions on audio, speech, and language processing, vol. 27,
no. 8, pp. 1256–1266, 2019.

[24] A. Pandey and D. Wang, “TCNN: Temporal convolutional neural
network for real-time speech enhancement in the time domain,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 6875–
6879.

[25] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
arXiv preprint arXiv:1607.06450, 2016.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1026–1034.

[27] C. Xu, W. Rao, E. S. Chng, and H. Li, “Time-domain speaker
extraction network,” in 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU). IEEE, 2019, pp. 327–
334.

[28] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr–
half-baked or well done?” in ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 626–630.

[29] C. Xu, W. Rao, E. S. Chng, and H. Li, “Spex: Multi-
scale time domain speaker extraction network,” arXiv preprint
arXiv:2004.08326, 2020.

[30] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi,
“Speech enhancement for a noise-robust text-to-speech synthe-
sis system using deep recurrent neural networks.” in Interspeech,
2016, pp. 352–356.

[31] S. Pascual, A. Bonafonte, and J. Serra, “Segan: Speech enhance-
ment generative adversarial network,” INTERSPEECH, 2017.

[32] N. Shah, H. A. Patil, and M. H. Soni, “Time-frequency mask-
based speech enhancement using convolutional generative adver-
sarial network,” in APSIPA ASC. IEEE, 2018, pp. 1246–1251.

[33] C. Macartney and T. Weyde, “Improved speech enhancement with
the wave-u-net,” arXiv preprint arXiv:1811.11307, 2018.

[34] N. Hou, C. Xu, E. S. Chng, and H. Li, “Domain adversarial train-
ing for speech enhancement,” in 2019 Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference
(APSIPA ASC). IEEE, 2019, pp. 667–672.

[35] X. Hao, C. Xu, N. Hou, L. Xie, E. S. Chng, and H. Li, “Time-
domain neural network approach for speech bandwidth exten-
sion,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 866–870.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[37] I. Rec, “P. 862.2: Wideband extension to recommendation p. 862
for the assessment of wideband telephone networks and speech
codecs,” International Telecommunication Union, 2005.

[38] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures
for speech enhancement,” IEEE Transactions on audio, speech,
and language processing, vol. 16, no. 1, pp. 229–238, 2008.

[39] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted
noisy speech,” in 2010 IEEE international conference on acous-
tics, speech and signal processing. IEEE, 2010, pp. 4214–4217.

[40] L. R. Rabiner and B.-H. Juang, “Fundamentals of speech recog-
nition,” Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

4073


