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Abstract 
Motivation: Although it circumvents hyperparameter estimation of ordinary differential equation (ODE) 

based models and the complexities of many other models, the computational time complexity of a fuzzy 

logic regulatory model inference problem, particularly at higher order of interactions, quickly ap-

proaches those of computationally intractable problems. This undermines the benefits inherent in the 

simplicity and strength of the fuzzy logic-based molecular regulatory inference approach.  

Results: For a sample inference problem – molecular regulation of vorinostat resistance in the HCT116 

colon cancer cell lines, our modeled, designed and implemented “multistaged-hyperparallel” optimiza-

tion approach significantly shortened the time to model inference from about 485.6 hours (20.2 days) 

to approximately 9.6 hours (0.4 days), compared to an optimized version of a previous implementation. 

Availability: The multistaged-hyperparallel method is implemented as a plugin in the JFuzzyMachine 

tool, freely available at the GitHub repository locations https://github.com/paiyetan/jfuzzymachine and 

https://github.com/paiyetan/jfuzzymachine/releases/tag/v1.7.21. Source codes and binaries are freely 

available at the specified URLs. 

 

Contact: paiyetan@gmu.edu 

 

 

1 Introduction  

Fundamental to low- and high-throughput expression profiling is an 

enumeration of significant regulators of the biological processes under in-

vestigation. Among many known methods, the fuzzy logic approach ap-

pears most fascinating – simple, yet able to address or enunciate very com-

plex relationships from expression profiles. Based on partial or imprecise 

classification of entities, the fuzzy logic describes an entity across multiple 

classifications. It ascribes a degree of membership for each possible class 

an entity may be classified [1,2]. Given a universe of objects, U, a subset 

or class of objects A can be described by applying a function (membership 

function, f) on a random selection of objects, X to derive a numeric value 

in the range [0,1]. An element, xi in X can be said to belong to class A if 

derived value is greater than zero and the nearer the value of fA(x) to unity, 

the higher the ‘grade of membership’ of x in A. When A is a set in the 

ordinary sense of the term, its membership function can take only two val-

ues 0 and 1 [2]. In which case respective elements xi in X are either not of 

or are of the class A. 

 

  

For a fuzzy set, different functions (membership functions) on A, fA can 

be considered – typically subjective and context dependent [3]. 

In its simplest description, fuzzy logic is the use of fuzzy sets in the 

representation and manipulation of vague information for the purpose of 

making decisions or taking actions [3]. It is a form of many-valued logic 

in which the truth values of variables may be any real number between 0 

and 1 both inclusive, and employed to handle the concept of partial truth, 

where the truth value may range between completely true and completely 

false [4] contrasting Boolean logic (a two-valued logic), where the truth 

values of variables may only be the integer values 0 or 1 [5][6]. Many 

other specific examples do abound, including the Priest’s logic of paradox, 

the Bochvar’s internal three-valued logic, Belnap logic, Gödel logics, 

Product logic, Post logics, Rose logics, among others [7–9]. 

Though similar to probability in terms of range of value of between 

[0,1], fuzzy logic is not probability [3,10] because the forms of uncertainty 

addressed in both are different. The fuzzy logic jointly model uncertainty 

and vagueness unlike probability theory [11]. Bart Kosko argues that 

probability theory is a sub-theory of fuzzy logic [12]. Fuzzy logic extends 

classical logic to address uncertainty outside of classical logic and situa-

tions not amenable to probability theory. 

With respect to regulatory processes, a fuzzy logic approach is thought 

to mitigate known challenges of modeling the biological system. These 

include inconsistencies and inaccuracies associated with high-throughput 

characterizations; challenges of dealing with noise and those of dealing 

with semi-quantitative data [13]. Like Boolean networks, fuzzy logic 

methods are simple and are fit to model imprecise and or highly complex 

networks [14,15]. But contrary to differential equation-based models, they 

are relatively less computationally expensive and less sensitive to impre-

cise measurements [14 – 16]. The fuzzy approach compensates for the in-

adequate dynamic resolution of a Boolean (or discrete) network, while 

simultaneously addressing the computational complexity of a continuous 
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network [17]. With simple and easily scalable linguistic rules, a fuzzy 

logic-based inference system can make inference as would a trained expert 

looking into patterns of expressions among regulatory features. 

Advantages with respect to using the fuzzy logic for expression dataset 

include; 1) An inherent account for noise in the data -- dealing with trends, 

not absolute values. 2) In contrast to other automated decision-making al-

gorithms, such as neural networks or polynomial fits, algorithms in fuzzy 

logic are presented in the same language used in day-to-day conversations. 

Thus, fuzzy logic regulatory networks are more easily understood and can 

be extrapolated in predictable ways. And 3) fuzzy logic approaches are 

relatively computationally efficient and can be scaled to include an unlim-

ited number of components [18].  

A general fuzzy logic-based modeling and control system entails three 

major steps, 1) fuzzification, 2) rule evaluation and, 3) defuzzification 

[19]. 

1. Fuzzification: Considering expression as a linguistic variable and ap-

plying defined membership functions on observed expression data, the 

fuzzification step derives qualitative values – mapping non-fuzzy inputs 

to fuzzy linguistic terms [19]. A normalization technique may be applied 

to scale values to within a preferred range before fuzzification [17,19,20]. 

2. Rule evaluation: Driven by an inference engine, constructed rules in 

the form of “IF-THEN” are used to evaluate input variables and draw in-

ference on the outputs alongside methods to aggregate results into defini-

tive output. These include the maximum, bounded sum or normalized sum 

methods [19]. The fuzzy set operations (AND, OR, or NOT) are used to 

evaluate the fuzzy rules [1, 2] 

3. Defuzzification: The defuzzification step produces a quantifiable ex-

pression result or value given the input sets, the fuzzy rules, and member-

ship functions. Defuzzification technically interprets the membership de-

grees of the fuzzy sets into a specific decision or real value. The most 

common defuzzification approach is the center of gravity approach. This 

computes the center of gravity of the area under the membership function 

[21]. Where X is an ordinary non-void set, a mapping A from X into the 

unit interval [0,1] is the a fuzzy set on X, the value A(x) of A in x ∈ X is 

the degree of membership, the center of gravity defuzzification is given 

by [21]: 

  

 

Other methods that are variants of the COG method include the basic 

defuzzification distributions (BADD) [22], mean of maxima (MeOM), in-

dexed center of gravity (ICOG) among others [21]. 

Woolf and Wang (2000) presented one of the first applications of fuzzy 

logic to elucidate regulatory networks. Describing gene expression levels 

in linguistic terms of three possible states - low, medium, and high, they 

sort to find interacting gene triplets modeled as targets (T), activators (A), 

and repressors (R). Membership functions were employed to characterize 

expression levels as LOW, MEDIUM, and HIGH. With these, quantitative 

sets of rules were used to model regulatory networks. A sample predefined 

rule takes the form of “if A is LOW and R is HIGH, then T is LOW (Table 

1). On each possible triplet, the expression linguistics were tested against 

the rules presented in the Table. 

In other words, their method entailed fuzzifying the expression data; 

creating and comparing gene triplets (activator-repressor-target) to gener-

ate a prediction value for the target (T) at points where the predicted values 

of A and R overlap; defuzzification to derive crisp values of target predic-

tions; and triplet screening. Screening entailed comparing target predic-

tions against observed expression values across biological experiments. 

 

Table 1: Woolf and Wang’s rule table 

 HIGH MED LOW 

LOW LOW LOW MED 

MED LOW MED HIGH 

HIGH MED HIGH HIGH 

 

 

Almost immediately apparent is the computational complexity that is 

associated with Woolf and Wang’s approach - scaling in exponential time 

on the order O(n3) [18], where n is the number of interacting molecules. 

This quickly limits the number of interacting molecules that can be mod-

eled to only three, i.e. two inputs and one output. Without improvement, 

the algorithm may only model simple regulation patterns and be unable to 

scale well to more complex models whose implementation time would be 

on the scale of years instead of hours [23]. Extending preliminary works 

of Reynolds [24], and by modifying the data preprocessing steps, Ressom 

and others did improve Woolf and Wang’s approach [25]. Although 

achieving an up to 50% improvement in computational time complexity 

over Woolf and Wang’s, we reason that Ressom and colleague’s prepro-

cessing steps may tend to converge optimal models towards a local mini-

mum. Also, the model inference time are still subjected to the problem of 

exponential growth in the number of rules to evaluate at higher orders of 

interacting molecules. 

This problem of the exponential growth in the number of rules as inputs, 

compromising performance, associated with the intersection-rule config-

uration obtained in conventional fuzzy inference methodology of Woolf 

and Wang’s and others ([18,25,26] was addressed by Combs and Andrews 

[27]. They proposed an alternate rule configuration called the union-rule 

configuration (URC), together with a corresponding rule matrix called the 

union-rule matrix (URM) [28], to model the entire problem space without 

incurring any combinatorial penalty. Having first demonstrated the utility 

of the URC to qualitatively model the lac operon of E. coli [29,30], So-

khansaj et al extended the URC approach to model the yeast cell cycle 

from a time series expression data. In addition, their elucidated model was 

capable of qualitatively predicting data from another time series experi-

ment [17].  

To facilitate higher order model inferences in significantly faster com-

putational time beyond Sokhansaj and others previously proposed meth-

ods, we performed a computational time complexity analysis of the fuzzy 

logic regulatory model inference system and, we developed and imple-

mented a “multistaged hyperparallel” optimization approach. An alternate 

approach that achieves optimal model inferences in significantly faster 

computation time. In addition, it is generally agreed that fuzzy logic ap-

proaches to regulatory network inference can be scaled to include an un-

limited number of components, but the associated time complexity bench-

marked studies with available tools for future facilitation of comparisons 

is almost generally lacking. We anticipate this study would also provide 

both needed reference materials to benchmark future developments of the 

fuzzy logic-based regulatory model. 

2 Methods 

The methods in this study simply entailed; first, an analysis of Sokhan-

sanj and colleagues optimized fuzzy logic method. Sokhansanj et al’s ap-

proach represent an improvement to the approach of Woolf and Wang, 

and that of Ressom et al’s.  After an analysis of computational time com-

plexity, we constructed a computation DAG (directed acyclic graph) 
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associated with the algorithm. With the DAG, we estimated the algo-

rithm’s ‘work’ and ‘span’ as described by Cormen et al. With values we 

obtained from the analysis of the DAG, we were able to describe effi-

ciencies (theoretically, and validated empirically) using the Amdahl and 

Gustafson’s models. Furthermore, with the DAG, we were able to de-

scribe a multistaged hyperparallel approach to improve computation time 

inference. 

2.1 The Fuzzy Logic Algorithm Analysis 

As earlier mentioned, the impact of the computation algorithm employed 

can significantly affect the utility of the fuzzy logic approach to elucidate 

regulatory networks. The classical fuzzy logic triplet model of Woolf and 

Wang is reported to run on the order O(n3). Where n is the number of 

interacting molecules. This is a very conservative estimate as it accounts 

for only the number of fuzzy rule evaluations performed for a specific 

combination (activator-repressor-target) of triplet. It does not account for 

those of other combinations nor does it account for all other possible tri-

plets. These can have a combinatorial explosion-like growth function that 

quickly become significant in comparison to that observed with the rules 

evaluated with increasing n. Employing the union-rule configuration 

(URC), Sokhansanj et al were able to reduce the complexity of Woolf and 

Wang’s solution from O(mNN) to O(mN). Where N is the number of (input) 

genes regulating an output gene and m is the number of possible rules de-

scribing the effect of each single input gene on an output gene. The num-

ber of possible rules for each gene-gene interaction (m) is given by nn, 

where n is the number of fuzzy sets that describe the state of a variable 

[17]. Similarly, this is a very conservative estimate. It accounts for only 

the number of fuzzy rule evaluations performed for a specific combination 

of a particular set of inputs (regulators) and output genes. It does not ac-

count for those of other combinations of input genes nor does it account 

for all other possible combinations of inputs (regulators) and output genes 

which may similarly exhibit a combinatorial explosion-like growth func-

tion. 

 

2.1.1 Theoretical Analyses of computational time complexity 

To analyze the computational time complexity of the Sokhansanj ap-

proach, a pseudocode is presented here  

2.1.2 The Exhaustive search 

1. Read-in the configuration file 

2. Initialize object 

3. Initialize table of expression 

4. Initialize fuzzy Matrix (fuzzified values of expression values)  

5. // to enable a constant-time access to fuzzy sets of expression values 

    // do exhaustive search: 

6.  get the output nodes (output genes), ON1, ON2, ON3···ONN 

7. // these may be all the genes in expression matrix or a pre-specified 

number 

8.   for each of the output gene node: 

9.       get other genes (potential inputs to the current output node) 

10.     get the ‘number of inputs’ nodes to consider 

11.      // may consider a maximum number of input nodes INMax 

12.      // defaults to a specific user specified number of inputs 

13.      // do deeper search: 

14.      get the desired e-value cut-off (e-cutoff) 

15.      get combinations (permutations) of input nodes; 

CIN1···CINp 

16.      get output gene expression values 

17.      get mean expression value of output gene 

18.      get the sum of squared deviations (dss) of output gene ex-

pression values 

19.      get combinations of inputs 

20.      for each combination (of inputs): 

21.           get all possible combinations of fuzzy rule to evaluate 

//nested for loops 

22.           for each possible combinations of fuzzy rule 

23.                instantiate a string array for the input genes 

24.                // compute residuals 

25.               for each expression value of the output gene across all 

samples, time series or perturbations 

26.                    get input genes 

27.                    get the fuzzy set values for respective input genes 

28.                    perform a union rule configuration (URC) evalua-

tion 

29.                    defuzzify aggregate fuzzy set 

30.                    compute residual squared sum (rss) 

31.                    // sum squared residual 

32.                    compute fit (error) = 1   

33.                    if computed fit is greater than or equals e-cutoff 

34.                         populate fuzzy ‘rule’ arrays with valid rule in-

stances... 

35.                         instantiate a result object 

36.                         // may add result object into a collection of re-

sult objects 

37.                         print acceptable result 

38.                    end if 

39.               end for 

40.          end for 

41.     end for 

42. end for 

  

From a set of output nodes (gene features to be included in the derived 

regulatory network), the algorithm independently and exhaustively 

searches for models (combinations of inputs to output), across samples, 

that meet prespecified fit cut-off (lines 6 - 42). From a calculation of op-

erations in the outlined pseudocode, time complexity is approximately: 

  

Where 

N is the number of output genes being considered. 

m is the number of possible rules for each gene-gene interaction, this is 

the square of the number of fuzzy sets that describe a variable. For a three-

fuzzy-sets (LOW, MEDIUM, and HIGH) model, this would be 33, which 

is 27. And,  

n is the number of input nodes being considered. 

 

2.2 Analyzing ‘work’ and ‘span’ 

The fuzzy logic algorithm consists of solving many smaller, independ-

ent comparisons; lending itself to parallel computing and anticipated to 

potentially scale linearly with the number of available compute processors 

[18]. In recent times, more readily available workstations with much faster 
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clock-speeds and multicore/multithreaded abilities, including ready access 

to high performance computing environments present opportunities to in-

vestigate larger regulatory inference problem sizes such as those of higher 

degrees of interactions at individual nodes of a regulatory network with 

the fuzzy logic model. For a theoretical analysis of a potential many-pro-

cessors solution, we described a computation directed acyclic graph 

(DAG) from the previously outlined algorithm (pseudocode) and we de-

fined two metrics - “work” and “span”, as specified by Cormen et al [36]. 

Work is defined as the total time to execute the entire computation on one 

processor. For our computation DAG in which each edge is assumed to 

take a unit time, work is equivalent to the total number of vertices. Span 

is the longest time to execute the strands along any path in the DAG. A 

strand is a chain of instructions containing no parallel control, in the DAG. 

For our DAG, the span equals the number of vertices on a longest or crit-

ical path in the DAG (colored path in Supplementary Figure 1). For our 

example computation DAG, the total number of vertices would be given 

as: 

 

+1),  

 

Where, 

Outputs is the number of output genes being considered,  

N is the number of genes in the network, and  

n is the number of input genes being considered.  

For a single output and two input genes from a fifty gene set, our com-

putation DAG would have approximately 1177 vertices (work of 1177 

time units, see results and discussion section) and a span of 2 vertices (2-

time units). 

2.3 Measuring performance (theoretical efficiency) 

To theoretically estimate efficiency, we employed both Amdahl and 

Gustafson models. Gene Amdahl on what eventually became known as 

Amdahl’s law made a submission for a single processor approach to large 

scale computing, arguing that for most applications, there exist a sequen-

tial potion that cannot be parallelized. He argued that, with an increasing 

number of processors, this sequential portion may constitute up to 50% - 

80% of the total execution time and thus have a diminishing effect. Also 

referred to as the fixed-size speed up model, Amdahl’s law states that if a 

portion of a computation, f, can be improved by a factor m, and there exists 

another portion that cannot be improved, then the portion that cannot be 

improved will quickly dominate the performance, and further improve-

ment of the improvable portion will have little effect [ 31 - 34]. This is 

given by:  

 

 

SpeedupAmdahl =   

 

 

Where f is a parallelizable portion, and m the number of processors; as 

m→∞, 

 

SpeedupAmdahl =   

 

 

However, together with colleagues at the Sandia National Laboratories 

working on a 1024 processor system, Gustafson and colleagues demon-

strated that the assumptions of Amdahl’s argument were inappropriate to 

describe observed results with massive parallelism [31–34]. Identifying 

the shortfall in an implicit assumption in Amdahl’s law - that the number 

of processors is independent of size of the problem, Gustafson proposed 

that it would be more realistic to assume run time, not problem size as 

constant. This was subsequently referred to as the fixed-time speedup 

model [32] (SpeedupFT), and is given as: 

 

SpeedupFT  =   

 

Known as the Gustafson’s law, it is a linear function of m if the work-

load is scaled to maintain a fixed execution time.  

From our analysis, the fractional part of the fuzzy algorithm that cannot 

be made parallel relative to the entire computation is the ratio of estimates 

of ‘span’ to ‘work’ described above. 

2.4 The “Multistaged Hyperparallel” Optimization 

The approach simply divides the inference problem to its many com-

putable units, grouped at two stages in its computation directed acyclic 

graph (DAG) (see section below, and Supplementary Figures 1 and 2).  

2.4.1 Multistaging 

With respect to modelling parallel executions, Cormen et al suggested that 

it helps to think of a computation as a directed acyclic graph G = (V, E), 

called a computation DAG (Supplementary Figure 1). Conceptually, the 

vertices in V are instructions and data objects, and the edges in E represent 

dependencies between instructions and data objects, where (u, v) ∈ E 

means that the set of instruction u must execute before instruction v [36]. 

Logically, if a vertex v has a direct path from another vertex u, both pro-

cesses, u and v are described as (logically) in series but logically in parallel 

if not [36].  

Practically, a closer examination of outlined fuzzy logic algorithm 

pseudocode shows multiple lines of dependent instructions and blocks of 

potentially parallel operations (Supplementary Figures 1 and 2). It is com-

pelling that computable units can be grouped at two stages (Supplemen-

tary Figure 2), at a very least. Also compelling is that Staged I computable 

units (Figure 2) can simultaneously be presented to a job scheduler like 

SLURM [40,41] or similar schedule manager within a high-performance 

computing (HPC) environment, to maximize a breaking down of the in-

ference problem and to achieve a distribution across many more processor 

cores not only in parallel but in a parallel-parallel ( hyperparallel) manner 

within a shorter time frame. This may represent a re-formulation of the 

inference problem as one which conforms to Gustafson’s rather than 

Amdahl’s model – increasing core requirement as a function of the prob-

lem size (in this case, the number of output nodes to consider), in order to 

aim for a fixed execution time as seen with a consideration of a single 

output node. 

 The SLURM scheduler is a de facto manager on many HPC envi-

ronments which facilitates dynamic multithreading (parallel processing) 

and allowing computation to specify parallelism without worrying about 

communication protocols between environment nodes, load balancing, 

and other peculiarities of static threads [40, 41]. 

 

3 Results and Discussions 

Given the following number of inputs, and fifty output nodes, ana-

lytical estimates of computational time complexity are estimated in Ta-

ble 2. 
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n mn 
 

 

 

1 

2 

27 

729 

50 

1,225 

1,350 

893,025 

4.75 

9.5 

3 19,683 19,600 385,786,800 14.26 

4 532,441 230,300 122,390,862,300 19.02 

5 14,348,907 2,118,760 30,401,890,195,320 23.77 

Table 2: Theoretical time complexity estimates. Analytical estimates of 

computational time complexity in milliseconds. Note that the total num-

ber of outputs, N, being constant, was omitted in estimating the big O. 

Supplementary Figure 3 shows a plot of the logarithm of the ana-

lytical estimate of time complexity (calculated cost) as a function of in-

puts to the algorithm. The derived log estimates were fitted using a sim-

ple linear regression model to obtain a slope, estimated to be 8.2146. 

This implies that for every additional input considered, the computa-

tional time complexity grows by approximately eight folds, if every 

other variable or factor remains constant. 

 3.1 Empirical analyses of computational time complexity 

 Table 3: Empirical execution time 

To investigate how well our estimates, capture real world situa-

tions, we ran our implementation of the algorithm with up to four inputs. 

Table 3 shows the execution time, considering only one output node. 

Aside from the differing number of input nodes considered, all other fac-

tors remained the same. The computation experiment was performed on 

a compute node (x86_64 Genuine Intel Xeon Gold 6150 

CPU@2.70GHz) with 32 cores and 18GB of available runtime memory 

on the Frederick National Laboratory High Performance Computing 

Cluster Environment. 

We also fitted the observed log value of execution time using a 

simple linear regression model to obtain a growth rate, i.e. slope (Supple-

mentary Figure 4). Though empirical growth rate of the fitted curve ap-

pears to be less than that estimated from a complexity analyses of the al-

gorithm (Supplementary Figure 3), the nature of the empirical curve 

growth rate beyond two inputs appears almost parallel to that of the ana-

lytical estimates. We previously mentioned that a mn computation time 

complexity specification underestimates the real-world nature of the 

fuzzy logic algorithm and here our estimation show that such is the case 

– Supplementary Figure 5 shows the slope of mn curve diverging away 

from the fitted curve of empirical observation, underestimating computa-

tional time as the number of inputs increases. Supplementary Figure 6 

shows a plot of the theoretical or expected speedup that can be achieved 

at varying number of available computing cores in a high-performance 

computing (HPC) environment, not considering node, scheduling, I/O, 

memory or other possible computational overheads. The figure shows 

theoretical speedup for both Amdahl and Gustafson’s models. Speedup 

estimate using Gustafson’s model does appear to increase linearly with 

available computing cores. However, it appears to approach an asymp-

totic maximum with Amdahl’s model.  

Cormen et al described “parallelism” of a multithreaded (and by 

extension a parallel) computation as the average amount of work that can 

be performed in parallel for each step along a critical path. Its estimation 

is described as the maximum (upper bound) speedup that can be 

achieved on any number of processors [36]. Given that work estimates 

from our computation DAG (Figure 1) is T1 = 1177 and span (irrespec-

tive of the number of available processors) is T∞ = 2. Cormen et al de-

fined parallelism as T1/T∞, which approximates to 589. From Supple-

mentary Figure 6, this very closely mirror a possible speedup upper 

bound estimate from Amdahl’s model. 

Measuring performance (empirical efficiency) of our optimized 

fuzzy logic algorithm and to evaluate how well our theoretical evaluation 

mirrors a real-world situation. We ran our algorithm with the same pa-

rameters (a single output gene, two input regulatory genes and a fifty 

genes set) on a multicore machine (64bit x86_64, Genuine Intel 

CPU@1.80GHz) and observed the execution time using 1 to11compu-

ting cores; where T1 is the algorithm’s execution time with just one core 

and TP is the execution time on a specified number of processors p, Ta-

ble 4 shows observed execution time in milliseconds while Supplemen-

tary Figure 7 is a representative bar plot of the execution times. Supple-

mentary Figure 8 shows a plot of speed up versus available computation 

core (processor). Demonstrating that computation time complexity does 

scale linearly, the fitted line of the plot shows an almost linear growth 

curve. The largest change in speedup gradient appears to be between one 

and two cores. 

 

 

Number of cores Execution time (in milliseconds) 

1 340355 

2 126925 

3 95324 

4 79626 

5 66694 

6 60592 

7 52900 

8 49675 

9 44976 

10 40064 

11 37628 

Table 4: Empirical execution time 

n Execution time (in milliseconds) log2 (Execution time) 

1 169 7.40 

2 1,011 9.98 

3 127,132 16.96 

4 43,722,655 25.38 
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Supplementary Figure 9 overlays Amdahl’s and Gustafson’s model 

speedup estimates at the respective number of cores. Empirically ob-

served speedup at one to four processing cores appear higher that both 

predictions of Amdahl and Gustafson speedup models. However, the 

generally slower rate of change of the curve quickly brings the speedup 

gain per increase in core to below Amdahl and Gustafson’s. At a lower 

number of processing cores, both Amdahl’s and Gustafson’s estimates 

appear to trend together, however these begin to diverge at about 8 or 9 

processing cores. 

To show the increase in efficiency obtained with the multistaged 

hyperparallel approach, we applied it to a sample Fuzzy logic based reg-

ulatory network inference problem – one with 50 separate output genes, 

4 input regulatory genes from a fifty-genes set.  From Figure 1, the “mul-

tistaged hyperparallel” optimization approach is demonstrated to signifi-

cantly shorten time to model inference from about 485.6 hours (20.2 

days) to approximately 9.6 hours (0.4 days).  

Representing an almost 50 fold increase in speedup, which almost 

correspond to the number of output genes being considered and also cor-

responds to the number of Stage I grouped computation units (see Figure 

2, and section on multistaging), the multistage hyperparallel approach 

tend to keep execution time constant for every increase in output genes 

considered to gain a corresponding fold speedup, provided all other pa-

rameters remain the same. It may well be assumed that the multistaged 

hyperparallel approach tend to reformulate the fuzzy logic computation 

and inference problem from that which obeys the Amdahl’s law to one 

which approximates the Gustafson’s model.     

4       Conclusions 

 The fuzzy logic regulatory network inference method is a simple yet 

powerful approach to elucidating interacting molecule in regulatory net-

works whose efficiency becomes undermined by high computational 

complexity at higher order interacting molecule inference problems. The 

multistaged hyperparallel approach presented and this benchmark study 

demonstrates that though the fuzzy inference system is amenable and 

readily scales with additional compute cores, the speedup gained per unit 

increase in compute core, within a high-performance computing environ-

ment diminishes and more likely to approach an asymptotic maximum, 

tending to more closely mimic Amdahl’s model than the Gustafson’s 

model. The multistaged hyperparallel optimization approach presented 

however, significantly improves computation time, by reformulating, in 

practical terms, the inference problem from what follows the Amdahl’s 

to that which approximate Gustafson’s model.  

 

Figure 1. Comparison of execution time (in milliseconds) between native algorithm 

and optimized (multistaged hyperparallel) algorithm. For a sampled inference prob-

lem, the “multistaged hyperparallel” optimization approach is demonstrated to sig-

nificantly shorten time to model inference from about 485.6 hours (20 days) to ap-

proximately 9.6 hours (0.4 days). 

5  Availability 

The source code and binaries of the optimized fuzzy logic, with the 

union rule configuration, regulatory network inference engine, including 

enabling the multistaged-hyperparallel configuration are implemented in 

the JFuzzyMachine tool available at the bitbucket git repository locations 

https://bitbucket.org/paiyetan/jfuzzymachine/src/master/ and https://bit-

bucket.org/paiyetan/jfuzzymachine/downloads/. Source codes and bina-

ries are available free for academic and non-commercial use. 
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