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ABSTRACT The advances in image editing and retouching technology have enabled an unskilled person

to easily produce visually indistinguishable forged images. To detect and localize such forgeries, many

image forensic tools rely on visually imperceptible clues, e.g. the subtle traces or artifacts introduced

during image acquisition and processing, and slide a regular, typically square, detection window across

the image to search for discrepancies of specific clues. Such a sliding-window paradigm confines the

explorable neighborhood to a regular grid and inevitably limits its capability in localizing forgeries

in a broad range of shapes. While image segmentation that generates segments adhering to object

boundaries might be a promising alternative to the sliding window-based approach, it is generally

believed that the potential of the segmentation-based detection scheme is hindered by object removal

forgeries where meaningful segments are often unavailable. In this work, we take forgery localization

based on photo-response non-uniformity (PRNU) noise as an example and propose a segmentation-

based forgery localization scheme that exploits the local homogeneity of visually indiscernible clues to

mitigate the limitations of existing segmentation approaches that are merely based on visually perceptible

content. We further propose a multi-orientation localization scheme that integrates the forgery probabilities

obtained with image segmentation and multi-orientated detection windows. The multi-orientation scheme

aggregates the complementary strengths of image segmentation and multi-oriented detection window

in localizing the object insert and object removal forgeries. Experimental results on a public realistic

tampering image dataset demonstrate that the proposed segmentation-based and multi-orientation forgery

localization schemes outperform existing state-of-the-art PRNU-based forgery localizers in terms of both

region and boundary F1 scores.

INDEX TERMS Digital image forensics, image forgery localization, image segmentation, multimedia

security, multi-orientation detection, photo-response non-uniformity noise

I. INTRODUCTION

The ease of manipulating images with increasingly powerful

image editing tools has also led to the growing appearance

of digitally altered forgeries, which raise serious concerns

about the credibility of digital images. Developing image

forgery detection and localization techniques, therefore,

becomes essential under the circumstances where digital

images serve as critical evidence. A variety of approaches

have been proposed to detect and localize image forgeries.

Active techniques such as digital watermarking [1, 2] are

effective in verifying the authenticity of an image, but the

requirement of embedding additional information at the

creation of the image limits their widespread use. On the

contrary, passive or blind techniques rely on the image data

itself without requiring any pre-embedded information and

thus have attracted great interests over the past two decades.

The passive image forgery detection and localization tech-

niques in the literature mainly fall into five categories:

(1) The first category is based on specific statistical prop-

erties of natural images such as higher-order wavelet

statistics [3, 4], image texture features [5] and residual-

based features [6, 7].
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(2) The second category includes the techniques that seek

the traces left by specific image manipulations such

as resampling [8, 9], contrast enhancement [10, 11],

median filtering [12], copy-move manipulations [13]

and JPEG compression [14–16].

(3) The third category relies on the regularities or con-

straints that make images physically plausible. For in-

stance, anomalies in lighting [17], shadows [18, 19],

reflections [20] and perspective constraints [21] have

been exploited for exposing image manipulations.

(4) The fourth category exploits the artifacts introduced in

the image acquisition pipeline of digital camera. These

artifacts can be either caused by specific processing

components such as demosaicking artifacts [22], camera

response function abnormalities [23, 24], optical aberra-

tions [25] and imaging sensor noise [26–28], or caused

by the complex interplay of multiple components, such

as local noise levels [29].

(5) Inspired by the success of convolutional neural networks

(CNN) in various multimedia tasks, the fifth category

comprises the techniques that automatically learn the

features for image forgery detection or localization

using CNN [30–32].

Besides the above-mentioned techniques, recent years

have seen some works on fusing the outputs of multiple

forensic detectors, e.g. under the framework of fuzzy logic

[33], the Dempster-Shafer theory of evidence (DSTE) [34],

simple logical rules [35, 36] or Bayesian inference [37],

but the performance of the overall system depends on

that of each individual forensic detector. To localize the

forgeries in an image, a prevailing paradigm is to move a

regular, typically square, detection window across the image

and analyze the forensic clues in the detection window at

different locations. Such a sliding-window paradigm allows

for the convenient and efficient processing of the image

but also has two inherent limitations: 1) The regular shape

of the detection window hinders the detection of forgeries

in various possible shapes. For instance, a square detec-

tion window is not suitable for detecting tree branches or

human limbs. 2) Due to the object boundary unawareness

of the sliding-window detection scheme, pixels of different

natures, e.g. some pixels are forged and others are pristine,

are often contained in the same window. Jointly processing

those ‘heterogeneous’ pixels without any distinction makes

the detection highly error-prone.

The above limitations can be alleviated by image seg-

mentation. Local structure of visual content is typically

exploited by segmentation algorithms to divide an image

into a number of ‘segments’ or ‘superpixels’, each of which

consists of a group of connected pixels that are perceptually

or statistically similar. The resultant superpixels provide

informative clues for inferring the boundaries of the forged

regions. However, given the variability of possible forgeries,

the limitations of image segmentation are also apparent: 1)

There might be no distinct local structure information in

homogeneous regions to guide the segmentation. 2) The

boundaries of the forged regions do not always align with

the object boundaries. For instance, it is not uncommon

to copy some collateral background pixels along with the

forged object to make it blended into the background more

naturally. In such cases, pixels of different natures, i.e.

the collateral forged pixels and their neighboring authentic

pixels, might be grouped into the same superpixel and cause

further uncertainties.

In this paper, we take forgery localization based on photo-

response non-uniformity (PRNU) noise as an example and

show that it is possible to mitigate the limitations of segmen-

tation merely based on visual content by incorporating the

local homogeneity of visually imperceptible clues. The main

contributions of our work can be summarized as follows.

• We identify the essential criteria that a superpixel seg-

mentation algorithm should satisfy for the task of forgery

localization and propose a multi-scale segmentation-based

localization scheme in cooperation with some segmenta-

tion algorithm that fulfills the identified criteria.

• We propose a novel superpixel segmentation algorithm

that encodes both visual content and visually impercepti-

ble clues for content forgery localization. Different from

all previous works that only use visual boundary infor-

mation for image segmentation, the proposed algorithm

incorporates the information from visually imperceptible

forensic clues to guide the segmentation for forgery

localization.

• We propose a multi-orientation fusion strategy that aggre-

gates the complementary strengths of image segmentation

and multi-oriented detection in localizing various types of

image forgeries.

• We conduct comprehensive experiments on the effects

of various segmentation algorithms on different forgery

types, i.e. hard-boundary and soft-boundary forgeries, in

terms of both region and boundary F1 scores.

The rest of this paper is organized as follows. In Section

II, we will revisit the background of PRNU-based forgery

localization and some related work. In Section III, the details

of the proposed segmentation-based and multi-orientation

forgery localization schemes will be given. Section IV

presents the experimental results and analysis on realistic

forgeries. Finally, Section V concludes the work.

II. RELATED WORK

In this section, we will first revisit the background of

the PRNU-based forgery localization. PRNU noise mainly

arises from the inhomogeneity of silicon wafers introduced

during imaging sensor fabrication and manifests itself as

the pixel-to-pixel variation in light sensitivity. It is present

in every image and practically unique to the sensor that

captures the image. Therefore, its absence can be used to

signify the forgery in an image under investigation, provided

that the reference PRNU z of the source camera is available

for comparison. For this purpose, a binary hypothesis test

is typically carried out for each pixel i in the image’s noise
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residual ω, i.e. the difference between the original image

and its denoised version:
{
h0 : ωi = υi

h1 : ωi = zi + υi
(1)

where υi is Gaussian random noise. If pixel i is forged, zi
is supposed to be absent in ωi, which corresponds to the

null hypothesis h0. Otherwise, the alternative hypothesis h1

is accepted.

Due to the weak nature of z, the above hypothesis testing

usually requires joint processing of a large amount of pixels,

so it is typically conducted in a sliding-window fashion

by calculating the normalized cross-correlation ρi over the

pixels within a w×w detection window Ωi centered at each

pixel i:

ρi =

∑
j∈Ωi

(ωj − ω̄)(zj − z̄)
√∑

j∈Ωi
(ωj − ω̄)2

√∑
j∈Ωi

(zj − z̄)2
, (2)

where the overbar stands for the respective arithmetic mean

within the detection window. Provided that the distributions

of the test statistic ρi under h0 and h1, i.e. p(ρi|h0) and

p(ρi|h1), are available, either Neyman-Person [26] criterion

or Bayes’ rule [27, 28] can be used to make the final deci-

sion on the authenticity of pixel i. We will adopt the Bayes’

rule as in [27, 28] for the easier formulation of multi-clue

fusion under a uniform probability framework. We model

p(ρi|h0) as a zero-mean Gaussian distribution N (0, σ̂2
0)

and estimate the variance using the images captured by the

cameras that are different from the source camera. While

p(ρi|h1) can also be modeled as a Gaussian distribution

N (ρ̂i, σ̂
2
1), its estimation is more challenging since the

expected correlation ρ̂i is highly dependent on the image

content. To address this problem, we adopt the correlation

predictor [26] based on local image features, namely the

image intensity, texture, signal flattening, texture-intensity

features and their second-order terms, to estimate the mean

ρ̂i and variance σ̂2
1 of p(ρi|h1). Finally, the forgery proba-

bility of pixel i is formulated as

Pi =
p(ρi|h0)

p(ρi|h0) + p(ρi|h1)

=

(
1 + exp

(
ρ2i
2σ̂2

0

−
(ρi − ρ̂i)

2

2σ̂2
1

− ln
σ̂1

σ̂0

))−1

. (3)

In the above sliding window-based framework, the test

statistic ρi is calculated over all the pixels within the

detection window. It becomes problematic if the detection

window falls across the boundary between the pristine and

the forged regions. In such case, both the pristine and

forged pixels contribute to the calculation of ρi, which gives

rise to the chance of the pixels near the boundaries being

undetected. This problem can be alleviated by means of

hard segmentation, as shown in Chierchia et al.’s work

[38], but its rely on accurate manual segmentation makes it

infeasible in most practical scenarios. They further proposed

a method [39] based on guided filtering [40] to enforce

the calculation of ρi more aligned with the boundaries of

objects. However, its effectiveness relies on the visually

perceptible boundary information of the image and thus is

largely compromised for object removal forgeries where no

meaningful boundary information is available. In light of

the fact that meaningful forgeries usually appear in a group

of connected pixels, another direction of improvement lies

in taking into account pixels’ spatial dependencies in the

final decisions. For instance, Chierchia et. al [27] sought

to improve the localization performance by modeling the

decision statistic as a Markov Random Field (MRF) and

recasting the forgery localization as an optimization problem

under the Bayesian framework. This method only considers

the neighborhood consistency of the final decisions but

ignores the content similarity within the neighborhood.

To allow for localizing small-sized forgeries, Korus and

Huang [28] proposed a segmentation-based strategy that

calculates the test statistic ρi only using the pixels with

similar intensity levels as the central pixel i, as well as

two fusion strategies, i.e. multi-scale and adaptive-window,

that combine multiple candidate forgery probability maps

obtained with detection windows of different sizes. Addi-

tionally, they adopted the Conditional Random Fields (CRF)

model to incorporate the content-dependent neighborhood

interactions into the final decisions. Although only the inten-

sity difference between individual pixels is considered, the

incorporation of image content in the simple segmentation-

based strategy and the CRF-based model results in sig-

nificant performance improvement [16, 28]. Further along

this path, it poses an interesting question that whether

further improvement can be gained if the image content is

exploited in a more sophisticated and comprehensive way.

This motivates us to resort to explicit image segmentation

that fully exploits the local structure and homogeneity of the

image for improving the forgery localization performance.

III. PROPOSED METHODS

A. SEGMENTATION-BASED FORGERY LOCALIZATION

SCHEME

For PRNU-based forgery localization, a straightforward way

to exploit image content would be segmenting the image

into a number of superpixels according to the visual content

and calculating the forgery probability for each superpixel.

However, compared to the methods based on regular detec-

tion windows that are able to generate pixel-wise probability

maps, this will result in a low-resolution forgery probability

map because the pixels belonging to the same superpixel

are assigned with the same probability. Consequently, the

chance of mis-detection for object removal forgeries will

be considerably increased if the size of the superpixel is not

appropriately specified. For this reason, we apply image seg-

mentation at different scales and fuse the resultant forgery

probability maps to form a single informative probability

map. The framework of the proposed segmentation-based

multi-scale localization scheme is illustrated in Fig. 1.
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1) Multi-Scale Image Segmentation: Given the variety of

superpixel segmentation algorithms, not all of them suffice

for our purpose. We identify a few important criteria that

the superpixel segmentation algorithms should satisfy for

the task of forgery localization:

• Boundary adherence. This criterion measures the agree-

ment between the boundaries of the objects and the

resultant superpixels. A superpixel algorithm with good

boundary adherence effectively avoids segmenting dif-

ferent objects or different parts of an object into the

same superpixel, thus reducing the risk of generating

heterogeneous superpixels containing both pristine and

forged pixels for object insert forgeries.

• Controllability over superpixel number. Some algorithms

do not provide direct control over the number of generated

superpixels. As the segmentation needs to be carried out at

different scales, easy control over the number of generated

superpixels is preferable.

• Balanced segmentation granularity. Some superpixel al-

gorithms generate superpixels of heavily unbalanced

size. The over-sized superpixels substantially increase the

chance of generating heterogeneous superpixels while the

under-sized superpixels reduce the reliability of the detec-

tion. Thus, an algorithm capable of generating superpixels

of balanced size is desirable.

Based on these criteria, we shortlist three superpixel algo-

rithms for multi-scale segmentation:

• Simple Linear Iterative Clustering (SLIC) [41]: SLIC al-

gorithm iteratively updates superpixel centers and assigns

pixels to their closest centers in the 5-dimensional pixel

color and coordinate space until the algorithm converges.

Its simplicity, computational efficiency and high-quality

overall segmentation results make it one of the most

widely used superpixel algorithms in various applications.

• Entropy Rate Superpixel segmentation (ERS) [42]: ERS

algorithm considers each pixel as a vertex in a graph and

formulates the segmentation as an optimization problem

of graph topology. It incrementally optimizes an object

function consisting of the entropy rate of random walks on

the graph and a balancing term to achieve homogeneous

and similar-sized superpixels. ERS exhibits remarkable

boundary adherence, which is desirable for localizing

object insert forgeries.

• Extended Topology Preserving Segmentation (ETPS) [43,

44]: ETPS algorithm initially partitions the image into the

desired number of regular superpixels and continuously

modifies the boundary pixels in a coarse-to-fine manner

by optimizing an objective function that encodes informa-

tion about colors, positions, boundaries and topologies.

The diversity of information encoded in the objective

function and the efficient coarse-to-fine optimization make

ETPS one of the state-of-the-art superpixel algorithms in

terms of both segmentation quality and efficiency.

For more details about the above superpixel algorithms, we

refer the reader to the original papers. Note that the multi-

scale framework in Fig. 1 is similar to the work of Zhang et

al. [45]. However, their analysis is only limited to the SLIC

algorithm and falls short in the impact of segmentation on

different types of image forgeries.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Adaptive Window (AW) fusion Multi-Scale (MS) fusion

Color-coded forgery map

Segmentation Segmentation

Threshold drift + CRF

Threshold drift + CRF

FIGURE 1: The segmentation-based forgery localization

scheme. For more details about the Adaptive Window (AW)

and Multi-Scale (MS) fusion algorithms, please refer to

Section IV-C or [28].

2) Exploiting Homogeneity of PRNU: As mentioned in

Section II, only relying on the visual content for image

segmentation might become problematic for object removal

forgeries where no distinct visual information is available.

Although this problem can be mitigated by the multi-scale

strategy, it would be beneficial if the additional information

from PRNU can be incorporated to guide the segmentation

at each scale. The perceptually invisible PRNU not only

provides useful clues when salient visual information is

unavailable but also serves as a supplement to the visual

information to eliminate the ambiguity in regions containing

complex patterns or structures. In what follows, we will

describe how the homogeneity of PRNU can be integrated

to guide the segmentation.

Let N be the number of pixels in the image and K
be the desired number of superpixels. The partitioning of

the image into superpixels can be represented by a set of

random variables s = (s1, ..., sN ), where si ∈ {1, ..,K}
denotes the superpixel to which pixel i belongs. Following

the ETPS algorithm in [43, 44], we formulate the image

segmentation as an optimization problem with the following

energy function

E(s,µ, c,P ) =
∑

i

Ecol(si, csi) + λpos

∑

i

Epos(si, µsi)

+ λb

∑

i

∑

j∈N8(i)

Eb(si, sj) + Etopo(s) + Esize(s)

+ λetp

∑

i

Eetp(si, Psi), (4)

where c=(c1, ..., cK), µ=(µ1, ..., µK), and P=(P1, ..., PK)
are respectively the set of the mean colors, the mean
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macropixel division

coarse level fine level

Energy optimization 

governed by Eq. (4)

FIGURE 2: Demonstration of macropixel division for the coarse-to-fine optimization. The regions enclosed by red lines are

superpixels and the regular grids bounded by blue dotted lines are macropixels.

positions, and the forgery probabilities for K superpixels.

The details of different energy terms in Eq. (4) are given

below.

Appearance Coherence:

Ecol(si, csi) = ||I(i)− csi ||
2
2 (5)

This term measures the squared Euclidean distance in the

CIELAB color space between pixel i and the mean color

of the superpixel that i belongs to. It encourages the color

homogeneity within superpixels.

Shape Regularity:

Epos(si, µsi) = ||L(i)− µsi ||
2
2. (6)

It measures the coordinate distance between pixel i and the

mean position of the superpixel that i belongs to. This term

encourages compact superpixels of regular shapes.

Boundary Length:

Eb(si, sj) =

{
1, if si 6= sj

0, otherwise
(7)

This term measures the length of borders between superpix-

els. Irregular boundaries normally have a length longer than

regular boundaries, thus this term penalizes local irregulari-

ties in the superpixel boundaries. Note that encouraging the

shape and boundary regularity of the generated superpixels

does not contradict with our aim to localize forgeries of

various shapes because forged objects or regions rarely have

wiggly shapes and boundaries.

Topology Preservation: The term Etopo(s) is used to en-

force that each superpixel is composed of a single connected

component without holes. This is done by checking if

changing the assignment of a boundary pixel will violate

connectivity.

Minimal Size: The term Esize(s) returns a value of ∞ if

the size of each resultant superpixel is less than 1/4 of its

initial size. It encourages superpixels with similar sizes.

PRNU Homogeneity:

Eetp(si, Psi) = (255 ·H(Psi))
2
, (8)

where Psi is the forgery probability of superpixel si and

H(Psi) = −Psi log2 Psi − (1 − Psi) log2(1 − Psi) is the

entropy of a Bernoulli process characterized by Psi . If

a superpixel contains both pristine and forged pixels, the

estimated forgery probability Psp will tend to be closer

to 0.5, where H(Psi) attains its maximum value. Thus,

H(Psi) is an indicator of the homogeneity of PRNU within

a superpixel. Actually, a similar measurement has been used

in [28, 46] to assess the confidence or reliability of the

estimated forgery probability. The factor 255 is used to

promote Eetp(si, Psi) to the comparable level as the color

energy term Ecol(si, csi). Hereafter, we will refer to this

algorithm as entropy-guided ETPS (EG-ETPS) algorithm.

We adopt the coarse-to-fine optimization framework in

[43] to minimize the objective function in Eq. (4). As

shown in Algorithm 1, the algorithm starts by equally

partitioning the image into K non-overlapping square grids

of size ⌊
√

N/K⌋×⌊
√

N/K⌋ px, where N is the total

number of pixels and ⌊·⌋ is the floor function. Each grid

is considered as an initial superpixel and further divided

into a number of macropixels of size M×M pixels. M
is initially set to 64 but will be reset to ⌊

√
N/K⌋/2 if

⌊
√
N/K⌋ < 64 to allow for macropixel division at the

beginning of the algorithm. As demonstrated in Fig. 2, a

macropixel is a square image block that will be jointly

considered to evaluate the objective energy function, i.e.

what pixel i is referred to in Eq. (4), and at the finest

level, each macropixel only consists of one pixel. Initially,

the statistics of mean color µ, mean position c and forgery

probability P are computed for each superpixel based on the

corresponding statistics of the macropixels comprising the

superpixel. Then, the following coarse-to-fine optimization

iteratively updates the segmentation by proposing small

local changes at boundaries.

First, all the boundary macropixels, i.e. those with at least

one adjacent macropixel belonging to a different superpixel,

are put into a FIFO priority list and popped out one by one to

check if changing the label of the popped macropixel i will

VOLUME 4, 2016 5
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Algorithm 1 Entropy-Guided ETPS Algorithm

Input:

I: image to be segmented;

r: camera reference PRNU;

n: noise residual extracted from I;

Ĩ , T̃ : intensity and texture feature maps;

S̃, Υ̃: signal-flattening and texture-intensity feature

maps;

Ψ: camera parameters incl. predictors under h0 and h1;

λ: weighting factors in the objective energy function;

K: the desired number of superpixels;

Output:

s: resultant segmentation of the image;

1. Partition I into K non-overlapping square superpixels;

2. Partition each superpixel into regular macropixels of

size 64×64 and set current maximal macropixel size

m = 64;

3. Calculate the initial energy, Eq. (4), for each superpixel;

4. do

5. if m < 16 then

6. set λetp = 0
7. end if

8. Initialize a FIFO list with all boundary macropixels;

9. while list is not empty do

10. Pop out boundary macropixel i from list;

11. if invalid_connectivity(i) then

12. continue

13. end if

14. ŝi = argminsi E(s,µ, c,P )
15. if ŝi is updated then

16. Incrementally update µ, c and P for the

17. two superpixels involved;

18. Append any boundary macropixel j in the

19. 4-connected neighborhood of i to the list;

20. end if

21. end while

22. if m > 1 then

23. Bisect or quadrisect any divisible macropixel;

24. Update maximal macropixel size m←
⌈
m
2

⌉
;

25. else

26. break

27. end if

28. while

violate connectivity. If the label change is admissible and

results in an energy decrease, we assign macropixel i to one

of its neighboring superpixels that gives the lowest energy.

Meanwhile, we incrementally update the mean colors, mean

positions and forgery probabilities of the two involved

superpixels (i.e. the superpixel that macropixel i belonged

to and the superpixel that macropixel i is newly assigned

to) and append the boundary macropixels adjacent to i at

the end of the list. This process is repeated until the list is

(a) pristine (b) forged (c) ground truth

(d) ETPS (K=1800) (e) EG-ETPS (K=1800) (f) Discrimination

FIGURE 3: The effect of PRNU homogeneity term on the

segmentation results. For ETPS and EG-ETPS, we used the

same parameters except for λetp, which was set to 2 for the

results shown above.

empty, at which point the optimization will proceed to next

finer level by bisecting or quadrisecting each macropixel to

a smaller size.

Unlike other terms in Eq. (4), the PRNU homogeneity

term can only be reliably evaluated when the size of

macropixel is sufficiently large due to the weak nature

of PRNU. The above coarse-to-fine framework makes it

possible to reliably integrate the PRNU homogeneity infor-

mation at coarse levels. We set λetp = 0 when the maximal

macropixel size m<16 when the information from PRNU is

no longer reliable. One of the key steps in Algorithm 1 is the

incremental update of the mean colors, mean positions and

forgery probability for calculating the energy value for each

superpixel. Just as other terms, the PRNU homogeneity term

can also be efficiently updated in an incremental manner

as the assignment of a macropixel changes. The reader is

referred to the Appendix for more details.

To see how the PRNU homogeneity term affects the seg-

mentation, we show an example of object removal forgery

in Fig. 3. We use the ratio of the average forgery probability

P̄f in the forged regions to the average forgery probability

P̄p in the pristine regions as the indicator to differentiate

the forged regions from the pristine ones. For the image

of size 1920 × 1080 px, we vary the superpixel number

K from 1000 to 3000 and show the result in Fig. 3f. We

can observe a higher ratio EG-ETPS when the superpixel

number K < 2200, which indicates an easier separation of

the forged and the pristine regions. The forgery probability

maps when K = 1800 are shown in Fig. 3e. It can be

observed that EG-ETPS outputs a more homogeneous and

coherent probability map.

B. MULTI-ORIENTATION FORGERY LOCALIZATION

SCHEME

1) Multi-Orientation Forgery Detection: Most existing im-

age forgery detectors apply square detection windows. Such

an isotropic detection scheme inherently limits the capability

6 VOLUME 4, 2016
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to detect arbitrary-shaped and arbitrary-oriented forgeries.

For instance, subtle forgeries such as human body limbs or

tree branches might be undetectable with a square detection

window. Although this issue can be mitigated by the use of

detection windows of smaller size, the reliability will also be

compromised at smaller scales. To allow for more accurate

forgery localization, the various shapes and orientations of

the forged regions need to be taken into consideration in the

design of the localization framework. Inspired by the great

success of faster R-CNN [47] in detecting objects based on

anchor boxes, which are a set of predefined bounding boxes

of certain scales and aspect ratios, we extend the multi-scale

forgery localization scheme in [28] by adopting detection

windows of various aspect ratios and orientations at each

scale.

Based on the multi-scale framework in [28], we replace

the square detection window at each scale with detection

windows of multiple aspect ratios and orientations, as il-

lustrated in Fig. 4. To reduce the computation, we only

use 5 scales, i.e. w∈{32, 48, 64, 96, 128}, rather than the

7 scales in [28]. For each scale, we use detection windows

of 3 aspect ratios (1:1, 1:2 and 1:3) and rotate the window

with a specific aspect ratio by a specific set of orientations.

Specifically, we consider 11 orientations: 1 orientation {0}
for aspect ratio 1:1, 4 orientations {0, π

4 ,
π
2 ,

3π
4 } for aspect

ratio 1:2, and 6 orientations {0, π
6 ,

π
3 ,

π
2 ,

2π
3 , 5π

6 } for aspect

ratio 1:3. Such configuration ensures that each window does

not have too much overlap with its rotated versions. Note

that the numbers of pixels within the detection windows

at the same scale are approximately the same. Taking the

scale w=32 as an example, the sizes of detection windows

of the 3 aspect ratios are configured to 32×32, 22×44 and

18×54 px. For this reason, the offline-trained correlation

predictor at one scale can be used to predict the intra-camera

correlations, i.e. p(ρi|h1) in Eq. (3), for detection windows

of different orientations at the same scale.
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FIGURE 4: Detection windows used in our multi-orientation

forgery localization scheme.

2) Multi-Orientation Fusion: Having obtained 11 candidate

forgery probability maps at each scale (corresponding to

each of the 11 multi-oriented detection windows), we need a

fusion scheme to form a single informative probability map.

At first thought, a simple pixel-wise maximum fusion rule,

i.e. selecting the largest value of the candidate probabilities

for each pixel, will suffice for the task since we aim to detect

any possible forgery, but this will also introduce substantial

false positives, i.e. mis-labeling pristine pixels as forged.

Ideally, the best detection result can be obtained if the

detection window is perfectly aligned with the forged region.

Thus, it is reasonable to accept the forgery probability

calculated with the detection window that agrees best with

the segmentation result. Suppose Pb, b ∈ {1, ..., 11} are the

candidate forgery probabilities obtained with 11 detection

windows centered at pixel i. We adopt the following fusion

strategy for pixel i:

Pi = rPb⋆ + (1− r)Psi , (9)

where Psi is the forgery probability of the superpixel si that

pixel i belongs to, b⋆ is the index of the detection window

that has the best agreement with si, i.e.

b⋆ = argmax
b∈{1,...,11}

Wb ∩ si. (10)

r is the proportion of the detection window Wb⋆ that

overlaps with si. It measures how much of the probability

obtained with window b⋆ contributes to the final result.

r = 1 when the detection window completely falls within a

superpixel, which means we only rely on the result obtained

with one of the detection windows and is similar to the

traditional detector merely based on sliding windows. r < 1
when the detection window Wb⋆ falls across two or more

superpixels and (1 − r)Psi will be used to compensate

for the pixels falling outside of the superpixel that pixel

i belongs to. Note that the above fusion is performed at

each scale based on the superpixel segmentation and forgery

probability maps obtained with 11 detection windows. We

introduce a parameter ξ to control the average size of

superpixels relative to the size of detection window at each

scale. Specifically, if the size of the detection window is

w×w px, the number of superpixels K is set to

K = ⌊
N

ξw2
⌉, (11)

where N is the total number of pixels in the image and

⌊·⌉ is the rounding operator. To see how the fusion strategy

forged
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forged
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forged

forged
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FIGURE 5: Three simplified scenarios for multi-orientation

forgery probability fusion. The pixel of interest is high-

lighted in yellow and different color appearances are high-

lighted in different colors.

affects the final forgery probability when r < 1, we analyze

the following simplified scenarios as shown in Fig. 5:

• Scenario I: Two forged regions with different color ap-

pearances are segmented into two different superpixels

si and sj , which often occurs inside a forged region.

Suppose the forgery probability obtained with the detec-

tion window Wb⋆ is Pb⋆ and the forgery probabilities
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for si and sj are Psi and Psj , respectively. The pixels

considered in this scenario are all forged pixels, so we

can simply assume that Psi ≈ Psj ≈ Pb⋆ since the corre-

lation predictor has been designed to account for different

color appearances. Therefore, the final forgery probability

Pi ≈ Pb⋆ , which means that the fusion is equivalent to

selecting the probability corresponding to the detection

window that agrees best with the segmentation results.

• Scenario II: Two neighboring regions, with one forged

and the other pristine, have different color appearances

and are segmented into two superpixels si and sj . This

case usually occurs for object insert forgeries, where the

inserted object usually has a different color appearance

from the background. In such case, the pixels within the

detection window falling outside the forged region lead to

an attenuated Pb⋆ . The above fusion strategy compensates

the attenuated Pb⋆ by adding a term (1−r)Psi . As Psi is

calculated over forged pixels and is expected to be > Pb⋆ ,

it results in a Pi > Pb⋆ compensating for the attenuation

caused by the pixels falling outside the forged region.

• Scenario III: In this scenario, the forged and pristine

regions have the same or similar color appearance, which

often occurs in the case of object removal forgery. Due to

the lack of distinguishable color appearance, some parts

of the two regions are quite likely to be segmented into

the same superpixel. For instance, the segmentation may

end up with two superpixels si and sj separated by the red

line. If we assume that si and window Wb⋆ are equally

possible to contain heterogeneous pixels, this scenario is

similar to the detection merely based on regular detection

windows. In practice, because most superpixel algorithms

will try to utilize as much local information as possible

to perform the segmentation, the above fusion is expected

to deliver comparable or even better performance than the

methods merely based on regular detection windows.

Finally, we apply the multi-scale fusion strategies as pro-

posed in [28] for the fused forgery probability maps ob-

tained at different scales. The framework of our proposed

multi-orientation forgery localization scheme is demon-

strated in Fig. 6.

IV. EXPERIMENTS

A. DATASETS

Our experiments were conducted on the realistic image

tampering dataset (RTD) [28, 48], which contains 220

realistic forgeries captured by 4 different cameras: Canon

60D, Nikon D90, Nikon D7000, Sony α57 (each camera

responsible for 55 forgery images). The images in the

RTD dataset are 1920×1080 px RGB images stored in the

TIFF format and cover various types of forgeries including

object insert and object removal forgeries. The RTD dataset

provides a good benchmark to evaluate the performance of

camera-based content authentication techniques. Consider-

ing the nature of our proposed methods, it is reasonable

to conduct evaluations separately on the object insert and

object removal forgeries. However, the wide variety of
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FIGURE 6: The multi-orientation forgery localization

scheme. For more details about the Adaptive Window (AW)

and Multi-Scale (MS) fusion algorithms, please refer to

Section IV-C or [28].

forgeries in the RTD dataset makes it hard to simply divide

them into two categories. Therefore, we divided the RTD

dataset into three subsets:

(i) Hard-boundary Forgeries (HBF): This subset contains

the forged images with visually distinguishable bound-

aries between the pristine and the forged regions. It

mainly consists of the forgeries created by object insert,

object replacement, color altering, etc.

(ii) Soft-boundary Forgeries (SBF): This subset contains

the forged images with visually smooth and indis-

tinguishable boundaries between the pristine and the

forged regions. It mainly consists of the forgeries

created by background texture synthesis or content-

aware filling.

(iii) Mixed-boundary Forgeries (MBF): This subset contains

the images with both hard and soft boundaries between

the pristine and the forged regions.

The dataset division was done by visually inspecting each

image in the RTD dataset. This results in 100, 80 and 40

images in the HBF, SBF and MBF subsets, respectively.

Some examples in these three subsets are shown in Fig. 7.

Considering the relatively small size of the MBF subset, we

merged MBF with both HBF and SBF to create two subsets,

i.e. HBF+MBF (140 images) and SBF+MBF (120 images),

for evaluating the localization performance on forgeries of

two boundary types.

B. EVALUATION PROTOCOLS

The localization performance is commonly evaluated by the

region F1 score. For an image Ii, 1 ≤ i ≤ S , let Gi be its

binarized ground truth forgery map and Li(τ) be the binary

forgery map output by a forgery localization algorithm with
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FIGURE 7: Examples of forged images in hard-boundary

forgeries (HBF), soft-boundary forgeries (SBF) and mixed-

boundary forgeries (MBF).

a threshold τ . The region F1 score is defined as

Fr(Gi, Li(τ)) =
2 · Pr(Gi, Li(τ)) · Rr(Gi, Li(τ))

Pr(Gi, Li(τ)) +Rr(Gi, Li(τ))
, (12)

where Pr(Gi, Li(τ)) and Rr(Gi, Li(τ)) are the precision

(the fraction of correctly detected forgery pixels) and the

recall (the fraction of ground-truth forgery pixels detected),

respectively. Like in [28], we measured the overall perfor-

mance with a curve of average F̄r(τ) score (each point in

the curve is the Fr score averaged over S images for a

given τ ) and an average peak F̂r score (i.e. the average of

the highest achievable Fr score over all possible thresholds

for S images):




F̄r(τ) =
1

S

S∑

i=1

Fr(Gi, Li(τ))

F̂r =
1

S

S∑

i=1

max
τ∈(0,1)

Fr(Gi, Li(τ)).

(13)

Fr score measures the localization performance by con-

sidering the overlapping area (in terms of pixel counts)

between Gi and Li(τ). However, as pointed out in [48],

the region F1 score is insufficient to accurately assess the

contour adherence between the ground-truth and localized

forgery regions. In fact, the contour conveys key information

about the object shape and provides inferable clues to

uncover the potential forged object, which is particularly

desirable in the scenario of soft-boundary forgeries. We thus

also evaluated the localization performance with boundary

F1 score [49], which has been widely used to assess the

boundary adherence for image segmentation. For an image

Ii, 1 ≤ i ≤ S , let Bi be the contour map of the binarized

ground-truth forgery map and Di(τ) be the contour map

of the binary forgery map output by a forgery localization

algorithm given a threshold τ . The boundary F1 score is

defined as

Fb (Bi, Di(τ)) =
2 · Pb (Bi, Di(τ)) · Rb (Bi, Di(τ))

Pb (Bi, Di(τ)) +Rb (Bi, Di(τ))
,

(14)

where Pb(Bi, Di(τ)) and Rb(Bi, Di(τ)) are the boundary

precision and the boundary recall given a distance tolerance

θ:




Pb(Bi, Di(τ)) =
1

|Di(τ)|

∑

z∈Di(τ)

Jd(z,Bi) < θK

Rb(Bi, Di(τ)) =
1

|Bi|

∑

z∈Bi

Jd(z,Di(τ)) < θK.

(15)

Here, JzK is the Iversons bracket notation, i.e. JzK = 1 if

z = true and 0 otherwise, d(·) is the Euclidean distance,

and θ determines whether a boundary point has a match or

not and is set to 0.75% of the image diagonal throughout

our evaluation. Similarly to the region F1 score, we evaluate

the overall boundary quality with a curve of average F̄b(τ)
score and an average peak F̂b score:





F̄b(τ) =
1

S

S∑

i=1

Fb(Bi, Di(τ))

F̂b =
1

S

S∑

i=1

max
τ∈(0,1)

Fb(Bi, Di(τ)).

(16)

C. EVALUATED ALGORITHMS AND PARAMETER

SETTINGS

We considered the following single-orientation forgery lo-

calization algorithms for the comparison with our proposed

schemes:

• Simple Thresholding (ST) based algorithm [26]: For ST,

we first generated a binarized forgery map by comparing

the forgery probability map obtained by a detection win-

dow of 128×128 px with a threshold τ ∈ [0, 1]. Then we

removed the connected forged regions with pixels fewer

than 64×64 px and applied image dilation with a disk

kernel with a radius of 16 px to generate the final decision

map. Note that ST algorithm is a single-scale detector

with no image content involved in the final decision-

making process.

• Single-Orientation Multi-Scale (SO+MS) fusion based

algorithm [28]: SO+MS formulates the forgery localiza-

tion as an image labeling problem and solves it by the

conditional random field (CRF) model. The data term of

the CRF model is the average of the threshold-drifted

[16, 28] forgery probability maps obtained with single-

oriented detection windows at 7 different scales, and the

neighborhood interaction of image content is encoded in

the regularization term. The final binary decision map is

obtained by optimizing the CRF model.

• Single-Orientation Adaptive Window (SO+AW) fusion

based algorithm [28]: SO+AW aims to fuse the forgery

probability maps obtained with single-oriented detection

windows of 7 scales. Starting from the smallest scale,

it looks for a sufficiently confident decision (i.e. forgery

probability that is far from 0.5) for each location in

the image. If the decision at a smaller scale is not

confident enough, it proceeds to the next larger scale
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until a sufficiently confident decision and an agreement

between two consecutive scales are reached. Finally, the

final binary decision map is obtained by applying the

threshold drift strategy and optimizing the CRF model.

• Segmentation-Guided (SG) based algorithm [28]: SG al-

gorithm calculates the forgery probability by only con-

sidering the pixels with an intensity value close to the

central pixel (the average L1 distance in RGB space less

than 15) within a detection window of 128 × 128 px.

It implements the idea of image segmentation but only

exploits the intensity difference between individual pixels.

Similarly to SO+AW and SO+MS, the threshold drift

strategy and CRF are applied to obtain the final binary

decision map.

Note that the notations ‘SO+MS’, ‘SO+AW’, ‘SG’ used

in this paper correspond to the ‘MSF’, ‘AW+’ and ‘SG+’

algorithms in [28]. We use the notations ‘AW’ and ‘MS’

to denote the adaptive window and multi-scale strategies

proposed in [28] for multi-scale fusion. For our proposed

segmentation-based schemes, we will use the notation

‘SEG+FUSION’ to represent the FUSION∈{AW, MS} fu-

sion of the probability maps calculated based on the super-

pixels generated by SEG∈{SLIC, ERS, ETPS, EG-ETPS}

algorithm. Similarly, for our proposed multi-orientation

forgery localization scheme, we will use the notation

‘SEG+MO+FUSION’ to represent the FUSION∈{AW, MS}

fusion of the integrated probability maps obtained with

multi-oriented detection windows and the superpixel algo-

rithm SEG∈{SLIC, ERS, ETPS, EG-ETPS}.

For SO+MS, SO+AW and SG, we used exactly the same

parameters as summarized in Table II of [28]. For the

segmentation algorithms used in this work, their parameters

are given as follows:

• SLIC [41]: We set both the compactness parameter and

the iteration number of pixel assignment and centroid

updating to 10.

• ERS [42]: As suggested in [42], we set the weighting fac-

tor of the balancing term λ′=0.5 and the Gaussian kernel

bandwidth σ=5.0 for calculating the pixel similarities.

• ETPS [43]: We set the weighting factors of both the shape

regularity term and the boundary length term to 0.2, i.e.

λpos = 0.2 and λb = 0.2.

• EG-ETPS: We used exactly the same parameters as ETPS

except for the weighting factor λetp of the PRNU homo-

geneity term. As can be expected, the setting of λetp will

depend on the quality of PRNU. Thus we empirically set

λetp = 2.5 · exp(−(R2 − 1)2/0.3). R2 is the adjusted

R-squared coefficient for the correlation predictor trained

at the scale of 64 × 64 px, which is a good indicator of

the quality of PRNU. This results in a λetp ∈ [1.8, 2.2]
for the four cameras in the RTD dataset.

For our proposed multi-orientation scheme, we set ξ = 0.2,

which controls the average size of superpixels relative to the

window size at each scale.

1) Results for Segmentation-based Localization Schemes:

In this experiment, we applied the adaptive window and

multi-scale fusion strategies directly on the probability maps

obtained by calculating the forgery probability on each

generated superpixel. To make the average superpixel size

consistent with the detection window size at each scale,

we specified the desired superpixel number K of each

segmentation algorithm as ⌊ N
w2 ⌉, where N is the number

of pixels in the image, w×w is the size of the detection

window at a specific scale and ⌊·⌉ is the rounding operator.

We only used 5 scales, i.e. w ∈ {32, 48, 64, 96, 128}, for

our segmentation-based schemes, while for the compared

methods SO+AW and SO+MS proposed in [28], we still

used 7 scales.

we show the average score curves F̄r and F̄b in Fig. 9

as well as the average peak scores F̂r and F̂b in Fig. 8,

respectively. For easy comparison, we also summarized the

highest average F̄r, F̄b and the performance gain of the best

segmentation-based scheme relative to the corresponding

single-orientation scheme in Table 1. Note that ST and SG

are not included in Table 1 because they have inferior per-

formance than multi-scale methods as clearly shown in Fig.

9. We can see that even with only 5 scales, the segmentation-

based forgery localization schemes are able to deliver better

performance than SO+AW and SO+MS on the entire RTD

dataset. The advantage of the segmentation-based schemes

is more evident if the performance is measured by F̄b (the

3rd and 4th columns of Fig. 9), which is increased by 12.4%
and 11.8% for AW and MS multi-scale fusions, respectively.

Regarding the localization performance on two different

boundary types, it is not surprising to see that segmentation-

based schemes outperform the single-orientation schemes by

large margins on HBF+MBF, with 9.6% increase in F̄r and

21.8% increase in F̄b when MS is applied. However, due to

the lack of distinct local information to guide the segmen-

tation, segmentation-based schemes perform slightly worse

than those based on detection windows when localizing the

forgeries in SBF+MBF.

As for the comparison between different segmentation

algorithms, we can observe that EG-ETPS benefits from

the integration of PRNU homogeneity information and

slightly outperforms other segmentation algorithms. It is

worth mentioning that the benefits of EG-ETPS are mainly

reflected in detecting the boundaries of the forgeries, so

its overall performance gain over other segmentation algo-

rithms depends on the amount of soft boundaries and is

more evident when the performance is measured in terms of

boundary measurement Fb. For the other three segmentation

algorithms, ETPS delivers generally better performance than

SLIC and ERS. An interesting observation is that the

superpixels generated by ERS exhibit excellent boundary

adherence and provide the best F̂b performance among the

four segmentation algorithms on HBF+MBF (see Fig. 8),

but the trade-off is that its capability in detecting forgeries

in SBF+MBF is greatly compromised.
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(c) F̄b w. AW on entire RTD
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(f) F̄r w. MS on HBF+MBF
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(g) F̄b w. AW on HBF+MBF
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(h) F̄b w. MS on HBF+MBF

ST[26]
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(i) F̄r w. AW on SBF+MBF
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ETPS+MS
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(j) F̄r w. MS on SBF+MBF

ST[26]
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ETPS+AW

EG-ETPS+AW

(k) F̄b w. AW on SBF+MBF
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(l) F̄b w. MS on SBF+MBF

FIGURE 8: Segmentation-based vs. single-orientation forgery localization schemes in terms of average score curves. The

F̄r and F̄b on the RTD dataset (220 images), HBS+MBF (140 images) and SBF+MBF (120 images) subsets are shown in

the 1st, 2nd and 3rd row, respectively.

2) Results for Multi-Orientation Localization Schemes: In

this experiment, we aim to compare the performance of

our proposed multi-orientation localization schemes and the

methods based on single-oriented detection windows. The

comparison results are shown in Fig. 10 and Fig. 11. Simi-

larly, for easy comparison, we also summarized the highest

average measures F̄r and F̄b across all thresholds and

the performance gain of the best multi-orientation scheme

relative to the corresponding single-orientation scheme in

Table 2.

We can see that the MS fusion strategy achieves con-

siderably better performance than the AW fusion for our

proposed multi-orientation schemes. A closer inspection

revealed that AW is more likely to introduce false posi-

tives especially in the regions where PRNU is substantially

attenuated. In addition, compared to the single-orientation

schemes, significant performance improvement can be ob-

served for the multi-orientation localization schemes when

the MS fusion strategy is applied, with the highest F̄r and

F̄b increased by 7.5% and 18.7% respectively on the entire

RTD dataset. The multi-orientation schemes are even more

advantageous on the HBF+MBF subset as evidenced by the

performance gains of 10.9% in F̄r and 28.6% in F̄b. While

on the SBF+MBF subset, the multi-orientation schemes still

deliver comparable performance as the best two single-

orientation schemes SO+AW and SO+MS.

Another important observation for the proposed multi-

orientation schemes is that the performance gap between

the four segmentation algorithms becomes very small. For

the segmentation-based localization schemes, the difference

between the segmentation algorithms are much more no-

ticeable when localizing the forgeries in the SBF+MBF

subset (see the fourth row of Fig. 9). However, for the

multi-orientation localization schemes, the capability of

localizing soft-boundary forgeries mainly stems from the

detection based on multi-oriented detection windows rather

than the segmentation algorithms, which narrows the per-

formance gaps between different segmentation algorithms.

Some examples of forgery localization can be found in

Fig. 12, where we only show the results of EG-ETPS and

MS for the proposed multi-orientation forgery localization

schemes. Note that for MS, we show the average of the

probability maps across different scales to approximate the

fused probability map in Fig. 12.
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ETPS+AW

EG-ETPS+AW
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(a) F̂r&F̂b on entire RTD
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SO+AW[28]

SO+MS[28]

SLIC+AW

ERS+AW

ETPS+AW

EG-ETPS+AW
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(b) F̂r&F̂b on SBF+MBF

ST[26]

SG[28]
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SO+MS[28]
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ETPS+AW

EG-ETPS+AW
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(c) F̂r&F̂b on SBF+MBF

FIGURE 9: Segmentation-based vs. single-orientation forgery localization schemes in terms of average peak scores. The F̂r

and F̂b on the RTD dataset (220 images), HBS+MBF (140 images) and SBF+MBF (120 images) subsets are shown in the

1st, 2nd and 3rd column, respectively. The vertical dash lines indicate the best performance of single-orientation schemes,

i.e. ST, SG, SO+AW and SO+MS.

Dataset Method
highest F̄r highest F̄b

AW MS AW MS

E
n
ti

re
R

T
D

SO [28] 0.528 0.523 0.363 0.363

P
ro

p
o
se

d

SLIC [41] 0.543 0.529 0.398 0.387

ERS [42] 0.527 0.524 0.388 0.382

ETPS [43] 0.539 0.538 0.398 0.394

EG-ETPS 0.547 0.545 0.408 0.406

Increased by 3.6% 4.2% 12.4% 11.8%

H
B

F
+

M
B

F

SO [28] 0.511 0.522 0.346 0.357

P
ro

p
o
se

d

SLIC [41] 0.556 0.572 0.414 0.432

ERS [42] 0.540 0.572 0.406 0.435

ETPS [43] 0.542 0.563 0.406 0.427

EG-ETPS 0.550 0.571 0.420 0.435

Increased by 8.8% 9.6% 21.4% 21.8%

S
B

F
+

M
B

F

SO [28] 0.554 0.537 0.384 0.374

P
ro

p
o
se

d

SLIC [41] 0.535 0.497 0.378 0.341

ERS [42] 0.519 0.476 0.362 0.320

ETPS [43] 0.537 0.515 0.383 0.353

EG-ETPS 0.545 0.516 0.395 0.365

Increased by -1.6% -3.9% 2.9% -2.4%

TABLE 1: Segmentation-based vs. single-orientation

forgery localization schemes in terms of the highest

average region F̄r scores and boundary F̄b scores across

all thresholds. ‘SO’ stands for the fusion of probability

maps obtained with single-oriented detection windows as

proposed in [28]. The best performance on each dataset is

highlighted in bold.

D. ROBUSTNESS AGAINST JPEG COMPRESSION

One of the main threats to PRNU-based forgery localization

is JPEG compression. Thus, another experiment was con-

ducted to evaluate the robustness against JPEG compression.

We generated 6 new versions of each image by re-saving

the corresponding TIFF images with JPEG quality factors of

100, 95, 90, 85, 80 and 75. We then ran all the localization

algorithms on the image set of each version and calculated

the performance statistics. To calculate the corresponding

forgery probabilities, we used the reference PRNU and

Dataset Method
highest F̄r highest F̄b

AW MS AW MS

E
n
ti

re
R

T
D

SO [28] 0.528 0.523 0.363 0.363

P
ro

p
o
se

d

SLIC+MO 0.521 0.555 0.385 0.423

ERS+MO 0.523 0.562 0.381 0.435

ETPS+MO 0.527 0.560 0.391 0.428

EG-ETPS+MO 0.534 0.562 0.395 0.431

Increased by 1.1% 7.5% 8.8% 18.7%

H
B

F
+

M
B

F

SO [28] 0.511 0.522 0.346 0.357

P
ro

p
o
se

d

SLIC+MO 0.549 0.564 0.399 0.435

ERS+MO 0.559 0.579 0.424 0.459

ETPS+MO 0.554 0.574 0.411 0.447

EG-ETPS+MO 0.556 0.575 0.414 0.449

Increased by 9.4% 10.9% 22.5% 28.6%

S
B

F
+

M
B

F

SO [28] 0.554 0.537 0.384 0.374

P
ro

p
o
se

d

SLIC+MO 0.516 0.548 0.366 0.403

ERS+MO 0.490 0.537 0.345 0.393

ETPS+MO 0.513 0.544 0.363 0.399

EG-ETPS+MO 0.517 0.544 0.376 0.401

Increased by -6.8% 2% -2.1% 7.8%

TABLE 2: Multi-orientation vs. single-orientation forgery

localization schemes in terms of the highest average region

F̄r scores and boundary F̄b scores across all thresholds.

correlation predictors trained with TIFF images for JPEG

images of different quality levels.

The results on the entire RTD dataset in terms of F̂r

and F̂b are illustrated in Fig. 13. For the readability of

the figure, we did not show the adaptive-window fusion

results for the segmentation-based and multi-orientation

localization schemes. As can be observed, when the im-

age quality is above 90, both the segmentation-based and

the multi-orientation schemes consistently outperform the

single-orientation methods ST, SG, SO+AW and SO+MS

on the entire RTD dataset. We can also observe that the F̂r

of SG deteriorates more slowly than that of other methods

as the compression becomes more severe (see Fig. 13a

and 13c), but this phenomenon was not observed if the
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FIGURE 10: Multi-orientation vs. single-orientation forgery localization schemes. The F̄r and F̄b on the RTD dataset (220
images), HBS+MBF (140 images) and SBF+MBF (120 images) subsets are shown in the 1st, 2nd and 3rd row, respectively.
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(a) F̂r&F̂b on entire RTD
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(c) F̂r&F̂b on SBF+MBF

FIGURE 11: Multi-orientation vs. single-orientation forgery localization schemes in terms of average peak scores. F̂r and

F̂b on the RTD dataset (220 images), HBS+MBF (140 images) and SBF+MBF (120 images) subsets are shown in the 1st,

2nd and 3rd column, respectively. The vertical dash lines indicate the best performance of single-orientation schemes, i.e.

ST, SG, SO+AW and SO+MS.

performance is measured by F̂b.

V. CONCLUSIONS

In this work, we investigated the potential of explicit image

segmentation for content forgery localization. We have

shown that image segmentation by exploiting the visual

content is beneficial for improving the performance of

forgery localization based on imperceptible forensic clues,

especially for hard-boundary forgeries. While the effec-

tiveness of segmentation merely based on visual content

can be compromised for soft-boundary forgeries, such lim-

itation can be mitigated by further integrating the local

homogeneity of imperceptible forensic clues to guide the

segmentation. To better resolve the issue of detecting soft-

boundary forgeries, we also proposed a localization scheme

based on the multi-orientation fusion of the forgery prob-

ability maps obtained by multi-orientation detection and

image segmentation. With the aid of the multi-scale fusion,

the multi-orientation detection is effective in detecting soft-

boundary forgeries and the segmentation is particularly good
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forgery probability maps color-coded decision maps︷ ︸︸ ︷ ︷ ︸︸ ︷
pristine forged mask ST SG SO+AW SO+MS

EG-ETPS

+MS

EG-ETPS

+MO+MS
ST SG SO+AW SO+MS

EG-ETPS

+MS

EG-ETPS

+MO+MS

FIGURE 12: Example forgery localization results. Color coding: green: detected forged regions (true positives); red: detected

pristine regions (false positives); blue: mis-detected forged regions (false negatives).

at identifying hard-boundary forgeries. Integrating them in

a complementary way leads to the superior localization

performance for our proposed multi-orientation schemes at

the expense of extra computation complexity. Although we

used PRNU-based forgery localization as an example in

this paper, we believe that similar ideas can also apply

to forgery detectors based on other forensic clues. Further

investigations on the potential of image segmentation in

other forensics detectors as well as the combination of them

will be conducted in our future work.

APPENDIX: INCREMENTAL UPDATE OF FORGERY

PROBABILITY

We calculate the forgery probability Psi of superpixel si
using Eq. (3):

Psi =

(
1 + exp

(
ρ2si
2σ̂2

0

−
(ρsi − ρ̂si)

2

2σ̂2
1

− ln
σ̂1

σ̂0

))−1

,

(17)

where ρsi and ρ̂si are respectively the real and the expected

correlations between the reference PRNU and the noise

residual of superpixel si, and σ̂0 and σ̂1 are the standard

deviations of the correlation distributions under hypotheses

h0 and h1. Like in [28], we use spline interpolation to dy-

namically obtain σ̂0 and σ̂1 based on the number of pixels in

si and the standard deviations of the correlation distributions

for scales {32, 48, ..., 256} estimated from training data. By

assuming that PRNU noise is locally zero-mean, we simplify

Eq. (2) as

ρsi =
||rsi · nsi ||1
||rsi ||2 · ||nsi ||2

(18)

to allow for the efficient incremental update for each su-

perpixel si. For the expected correlation ρ̂si , we adopt the

correlation predictor based on least-square estimator [26] :

ρ̂si = fsi θ̂si , (19)

where θ̂si is a 15×1 least-square parameter vector corre-

sponding to the scale closest to the number of pixels in

si, and fsi is a 1×15 vector composed of four image

features (i.e. the intensity, texture, signal-flattening and

texture-intensity features) and their second-order terms for

superpixel si. Since the calculation of the image feature is a

local operation, e.g. the intensity feature is the mean of the

attenuated intensity of an image block, fsi can be updated

incrementally if a macropixel j is removed from or added

to si:

f (t)
si

= f (t−1)
si

−
Nj

Nsi

(
f (t−1)
si

± fj

)
, (20)

where f
(t−1)
si and f

(t)
si are the image features of superpixel

si before and after the update, fj and Nj are respectively

the image features and the number of pixels in macropixel

j, and Nsi is the number of pixels in si after the update.
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