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Abstract: A comparative study of two state-of-the-art stochastic model predictive controllers for
linear systems with parametric and additive uncertainties is presented. On the one hand, Stochastic
Model Predictive Control (SMPC) is based on analytical methods and solves an optimal control
problem (OCP) similar to a classic Model Predictive Control (MPC) with constraints. SMPC defines
probabilistic constraints on the states, which are transformed into equivalent deterministic ones.
On the other hand, Scenario-based Model Predictive Control (SCMPC) solves an OCP for a specified
number of random realizations of uncertainties, also called scenarios. In this paper, Classic MPC,
SMPC and SCMPC are compared through two numerical examples. Thanks to several Monte-Carlo
simulations, performances of classic MPC, SMPC and SCMPC are compared using several criteria,
such as number of successful runs, number of times the constraints are violated, integral absolute
error and computational cost. Moreover, a Stochastic Model Predictive Control Toolbox was developed
by the authors, available on MATLAB Central, in which it is possible to simulate a SMPC or a
SCMPC to control multivariable linear systems with additive disturbances. This software was used
to carry out part of the simulations of the numerical examples in this article and it can be used for
results reproduction.

Keywords: model predictive control (MPC); scenario-based model predictive control (SCMPC);
stochastic model predictive control (SMPC); chance constraints; parametric and additive uncertainties;
additive disturbances

1. Introduction

Model Predictive Control (MPC) is a widely used strategy for the control of industrial
processes [1–3], robotics and automation [4–6], energy efficiency of buildings and renewable
energies [7–11]. This is due to its “ability to predict” the future behavior of the real process, using
an explicit model of it. At each sampling time and with current information of the process variables,
it makes predictions of the process dynamics along a prediction horizon [12–14]. These predictions,
which depend on the future controls (not known), are incorporated into a cost index to solve an open
loop Optimal Control Problem (OCP) subject to constraints. As a solution, the sequence of optimal
controls that minimize such index is obtained. Finally, the moving horizon (or receding horizon)
technique is used, where only the first element of the solution (corresponding to the input at the
current instant) is applied to the process, discarding the rest and repeating the OCP with updated
information in the next sampling time.

A classic MPC requires a model of the process to be controlled. Since uncertainties,
either parametric or external disturbances, are always present, it could be troublesome using a model
that does not represent the real process, leading to erroneous predictions and affecting the control
performance, stability and feasibility [12,15].
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Robust Model Predictive Control (RMPC) approaches [15–17] were devised to control systems
under the premise that process uncertainties are bounded with known limits in order to build a
family of process models, where one of them represents the current system. In that case, a polytopic
system is conformed containing the nominal system. Then, an OCP will not be formulated for a single
predicted trajectory, but for as many vertices as the polytope has, forming a band around the trajectory
of the nominal model. Finally, the set of optimal sequences is calculated by minimizing the worst
case (MINMAX).

Stochastic predictive control strategies [18–20] consider that most processes have parametric
uncertainties and independent disturbances of stochastic nature (bounded or not) with known
probability distributions, mostly of the Gaussian type. As mentioned in [21,22], most of these
techniques can be grouped into two approaches, depending on how this statistical information
is incorporated into the OCP: the deterministic strategies (stochastic MPC or SMPC) and the
scenario-based approaches (or SCMPC).

Those of the first group (SMPC) propose an OCP based on the expected value of a quadratic cost
index replacing the hard constraints in the states with probabilistic ones. In SMPC, it is required that the
probability of constraint violation in a state does not exceed a level of allowed risk [23–26]. Based on
the knowledge of the covariances of random variables and their propagation along the prediction
horizon, an SMPC problem is converted into a deterministic one. The resulting problem is an OCP with
a cost index of the nominal states trajectory subject to deterministic constraints, considering that the
uncertainties are a function of the nominal states. Since SMPC does not have bounded uncertainties,
recursive feasibility cannot be guaranteed [19,27] since it is not possible to obtain a cost and terminal
set. However, by bounding the uncertainties, it is possible to generate a minimum invariant set [23,24]
and adjusted constraints in such a way as to ensure feasibility and stability.

The scenario-based group (SCMPC) presents similarities to RMPC since optimization is performed
for various scenarios based on a nominal trajectory or a worst case scenario. Unlike in the RMPC
approach, the scenarios to be optimized are not the vertices of a polytope, but the number of models
obeys a formula based on an established confidence level [22,28–30], which at each control period
is generated randomly for different values of the uncertainties. These techniques are widely used
when uncertainties do not obey any type of known distribution. However, in addition to its high
computational load (due to the random generation of scenarios and their subsequent optimization),
its “randomness” can lead to erratic closed-loop behaviors [29], since most scenarios may not represent
the behavior of the current system.

The aim of this article is to present a comparative study of two stochastic model predictive
controllers, for linear systems with parametric and additive uncertainties, belonging to the SMPC and
SCMPC groups. The main highlights are:

• A detailed description of the theoretical background of each strategy is presented. Emphasis is
made on the formulation of the optimal control problem and how uncertainties are addressed. In
addition, the SCMPC formulation for worst case OCP is analyzed.

• The ways in which OCPs are stated in each strategy are compared with respect to the cost function
and constraints on the states according to the statistical information. The structural similarity
between the SMPC approach and classic MPC is shown by transforming probabilistic constraints
into deterministic ones.

• The viability of these two control strategies is analyzed through two numerical examples: a
two-mass spring SISO system with parametric and additive uncertainties and a nonlinear
quadruple-tank system with additive uncertainties. The controllers comparison is made by
using performance indices such as number of successful runs, number of times the constraints are
violated, mean value of the integral absolute error and the computational cost.

• As complementary material, the specialized software Stochastic Model Predictive Control Toolbox,
developed by the authors, is available in MATLAB Central [31]. This tool allows readers
to reproduce part of the results here presented or to tune and simulate SMPCs or SCMPCs
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for controlling multivariable systems with additive disturbances which present Gaussian
probability distributions.

The results of the numerical examples show that the two stochastic schemes have higher
probability of success than the classic MPC. The SCMPC presents the highest probability of success,
but with the highest computational cost. The SMPC has similar computational cost to the classic MPC,
but with a considerable increase in the probability of success.

This article is organized as follows. Section 2 presents a review of classic MPC. Stochastic MPC
approaches based on probabilistic constraints on states (SMPC) and scenario-based (SCMPC) for
control of linear systems are shown in Section 3. Two numerical examples comparing the performance
of stochastic MPCs and classic MPC are presented in Section 4, using simulations to control mechanical
and liquid level systems. For comparison purposes, a set of indicators related to control performance,
constraint violations and computational cost, among others, was calculated for both examples. Finally,
the conclusions are presented in Section 5.

2. Model Predictive Control Strategy

MPC is a strategy that uses an explicit model of the process where, at each sampling time and with
the current information of the process variables, predictions of process future behavior along a horizon
are managed. Such predictions are incorporated into a cost index to solve an open loop Optimal
Control Problem (OCP) subject to constraints, which results in the sequence of future optimal controls.

Consider the discrete linear system (1), where variables xk+i ∈ Rnx and uk+i ∈ Rnu represent the
state vectors and system inputs, respectively, at the instant k + i ∈ N; A ∈ Rnx×nx is the state matrix
and B ∈ Rnx×nu is the system input matrix

xk+i+1 = Axk+i + Buk+i (1)

For every instant k, based on (1) and with the availability of the current state of the plant
x̂k, predictions are made for the states xk+i+1|k and inputs uk+i|k, along a prediction horizon N,
∀i ∈ {0, 1, . . . , N − 1}. These predictions are included in the quadratic cost index (2), which is
subsequently minimized at the OCP (3)

JN(x̂k, uk) =
N−1

∑
i=0

(
x>k+i|kQxxk+i|k + u>k+i|kRuuk+i|k

)
+ x>k+N|kPN xk+N|k (2)

min
uk|k ,uk+1|k ,...,uk+N−1|k

JN(x̂k, uk) (3)

where the current state x̂k is known, thus xk|k = x̂k; matrices Qx ∈ Rnx×nx , Ru ∈ Rnu×nu and
PN ∈ Rnx×nx are weighting matrices that penalize the first N predicted states, predicted inputs and
terminal state, respectively. The matrices Qx and Ru are defined by the designer such that Qx ≥ 0
and Ru > 0 and PN is obtained from a quadratic stability analysis [13,32,33]. Notice that the subscript
k + i|k indicates the predicted value of the variable for the instant k + i, based on the information
available at time k.

Each control period, the problem stated in (3) is solved, obtaining the vector of optimal decision
variables u∗k = {u∗k|k, u∗k+1|k, . . . , u∗k+N−1|k} which drive the system states to a desired operating
point [34] or as a regulator towards the origin. Next, applying the receding horizon strategy, only the
first element u∗k|k from the control sequence u∗k is used, so that OCP (3) is performed again at time k + 1.

The cost function (2) obeys the dual mode prediction paradigm [12,13,15], which ensures stability
for an appropriate (or long enough) horizon N, incorporating a terminal cost x>k+N|kPN xk+N|k which
penalizes the terminal state xk+N|k. Another condition, also used to ensure closed-loop stability, is to
complement the dual mode by adding the terminal constraint xk+N|k ∈ XT [12,14] to the OCP (3), with
X being the set of allowed values for the states. The purpose of this is to force the terminal state xk+N|k
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and the following states to remain within a safe zone or terminal set XT , positively invariant [32,35,36],
under the terminal control law uk+i|k = Kxk+i|k, ∀i ∈ {N, N + 1, . . . , ∞}, such that XT ⊂ X.

If the sequence of future controls uk = {uk|k, uk+1|k, . . . , uk+N−1|k} are ruled by a state feedback
control law expressed by (4) [13,32,33]

uk+i|k = Kxk+i|k + vk+i|k (4)

where K ∈ Rnu×nx is a feedback matrix that stabilizes the system, then the cost index (2) can
be expressed in terms of vk ∈ Rnu , replacing (4) in (2). Now, the index is expressed in terms
of the constant matrices Qxx = Qx + K>RuK, Qxv = 2K>Ru and the new decision variables
vk = {vk|k, vk+1|k, . . . , vk+N−1|k}

JN(x̂k, vk) =
N−1

∑
i=0

(
x>k+i|kQxxxk+i|k + x>k+i|kQxvvk+i|k + v>k+i|kRuvk+i|k

)
+ x>k+N|kPN xk+N|k (5)

Classic MPC: Given the current state xk|k = x̂k, model (1) and control law (4), classic MPC
recursively makes predictions of states xk+i+1|k and inputs uk+i|k along an horizon N, ∀i ∈
{0, 1, . . . , N− 1}. With matrix Acl = (A + BK) strictly stable, xk+i+1|k as a function of vk+i|k is given by

xk+i+1|k = Acl xk+i|k + Bvk+i|k (6)

Incorporating (6) in (5), the OCP (7a) is stated subject to constraints (7b)–(7f)

min
vk|k ,vk+1|k ,...,vk+N−1|k

JN(x̂k, vk) (7a)

s.t.

xk+i+1|k = Acl xk+i|k + Bvk+i|k (7b)

Hxk+i+1|k ≤ h (7c)

Duk+i|k ≤ d (7d)

xk|k = x̂k (7e)

∀i ∈ {0, 1, . . . , N − 1} (7f)

Notice that constraint (7b) indicates that the predicted state xk+i+1|k is computed recursively using
the state and inputs from previous state k + i|k, where xk|k = x̂k. However, since (7b) is implicit
in (7a), its incorporation in the set of constraints is not required. Linear inequalities (7c) and (7d)
are constraints for the predicted states and input trajectories, respectively, with H ∈ Rcx×nx and
D ∈ Rcu×nu ; vectors h ∈ Rcx and d ∈ Rcu represent the constraint limits; and cx and cu are the number
of state constraints and input constraints, respectively.

Given the quadratic and convex nature of (5), the linear model (6) and the type of constraints (7c)
and (7d), a finite horizon OCP stated as in (7a) can be solved at each control period. This OCP is a
quadratic programming problem (QP) with a global optimum whose solution results in the optimal
control vector v∗k = {v∗k|k, v∗k+1|k, . . . , v∗k+N−1|k}, where only the first element v∗k|k is applied to the input
at that instant. This is uk|k = Kx̂k + v∗k|k.

3. Stochastic MPC

Let us consider the dynamics of an uncertain system defined by Equation (8)

xk+i+1 = A(δk+i)xk+i + B(δk+i)uk+i + G(δk+i)wk+i (8)
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where w ∈ Rnw are additive disturbances, G ∈ Rnx×nw is a matrix that relates the influence of w on
system states and δ are parametric uncertainties.

Stochastic model predictive control approaches were inspired by this type of systems, in which
δ and w are stochastic in nature, independent and with known probability distributions. Since this
statistical information is taken into account in the solution of the OCP [18–21], stochastic predictive
control has been widely accepted and has been applied in different areas such as building air
conditioning [37–39], renewable energy management [40,41], process control [3,42], robotics and
automotive [5,22,43–45]. A more extensive review of these and other applications is presented
in [18,19,21,25,46], where network control systems, air traffic, finance, path planning and training
control are discussed.

Most stochastic model predictive control strategies can be classified into two groups: (1) those
based on analytical methods (SMPC) [23–25,47], which solve an OCP based on the expected value of a
cost index, subject to probabilistic constraints (usually on the predicted states); and (2) those based
on random scenarios (SCMPC) [22,28,29], which solve an OCP for a determined number of random
realizations of uncertainties also called scenarios.

3.1. SMPC Strategy

In the SMPC approach, the cost index is expressed as the expected value of a quadratic index
and hard constraints in the states are replaced by probabilistic ones. The aim of SMCPC is that the
probability of constraint violation in a state does not exceed a permitted risk level. By obtaining a
deterministic equivalent of this stochastic approach, it is possible to solve an OCP similar to (7a).

Let us consider the uncertain system defined in (8) such that the state prediction xk+i+1|k ∀i ∈
{0, 1, . . . , N − 1} is given by

xk+i+1|k = A(δk+i)xk+i|k + B(δk+i)uk+i|k + G(δk+i)wk+i (9)

where δ is associated with bounded parametric uncertainties [30] with probability distribution
Pδ, while w (which is not necessarily bounded [21,24,26]) has a distribution Pw and the
sequence {wk, wk+1, . . . , wk+N−1} has zero mean (E[wk+i] = 0) with its values independent and
identically distributed (i.i.d.).

Let us define variables zk+i|k = Ek[xk+i|k] and ek+i|k = xk+i|k − zk+i|k representing the expected
value of xk+i|k and its deviation, respectively. Let us split the prediction of xk+i|k into two parts:
a deterministic part which involves its predicted nominal value zk+i|k and another stochastic one
corresponding to the effect of the disturbances, represented by ek+i|k and whose mean is zero

xk+i|k = zk+i|k + ek+i|k (10)

Replacing (10) in the state feedback control law (4) [23,47] (a common alternative in SMPC is
based on feedback of the deviation [24,25] as uk+i|k = Kek+i|k + vk+i|k), expression (11) is obtained

uk+i|k = K(zk+i|k + ek+i|k) + vk+i|k (11)

Predictions ∀i ∈ {0, 1, . . . , N − 1} for the nominal state and the deviation are given by Equations (12)
and (13), respectively, where zk|k = x̂k, ek|k = 0 and Acl(δk+i) = (A(δk+i) + B(δk+i)K) is strictly stable

zk+i+1|k = Acl(δk+i)zk+i|k + B(δk+i)vk+i|k (12)

ek+i+1|k = Acl(δk+i)ek+i|k + G(δk+i)wk+i (13)
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Due to the random nature of δ and w and its influence on xk+i|k and uk+i|k, the cost index to
minimize, given by the expected value of (5), is defined as JS(x̂k, vk), in (14)

JS(x̂k, vk) = Ek

[
N−1

∑
i=0

(
x>k+i|kQxxxk+i|k + x>k+i|kQxvvk+i|k + v>k+i|kRuvk+i|k

)
+ x>k+N|kPN xk+N|k

]
(14)

Replacing (10) in (14), remembering that Ek[xk+i|k] = zk+i|k and that the expected value of a
product involving ek+i|k is zero (since ek+i|k is zero mean), a new cost index (15) is obtained containing
the nominal trajectories of the predicted states zk+i|k

JS(x̂k, vk) =
N−1

∑
i=0

(
z>k+i|kQxxzk+i|k + z>k+i|kQxvvk+i|k + v>k+i|kRuvk+i|k

)
+ z>k+N|kPNzk+N|k + c (15)

where c = Ek[∑
N−1
i=0 (e>k+i|kQxxek+i|k)+ e>k+N|kPNek+N|k] is a constant term that can be excluded from the

cost index, since it does not depend on the decision variables vk+i|k and does not influence the optimum.
Chance Constraints: In view of the stochastic behavior of uncertainty and its influence on the

predicted states, the state constraints in the OCP can be formulated as probabilistic constraints [21,26]
of the form (16) based on a risk level or allowed probability of violation ε ∈ [0, 1]

Pk[Hjxk+i+1|k ≤ hj] ≥ 1− ε j ∀j ∈ {1, 2, . . . , cx} (16)

The constraints expressed as in (16) can be interpreted as: the probability that a predicted state does
not violate the jth constraint must be greater than or equal to the jth desired probability level 1− ε j.

Substituting Equation (10) into (16) and separating the deterministic variable Hjzk+i+1|k from the
stochastic one, hj − Hjek+i+1|k, the constraints can be rewritten as

Pk[Hjzk+i+1|k ≤ hj − Hjek+i+1|k] ≥ 1− ε j

Setting a new bound ηjk+i+1|k calculated in such a way that Hjzk+i+1|k ≤ ηjk+i+1|k then

Pk[ηjk+i+1|k ≤ hj − Hjek+i+1|k] ≥ 1− ε j (17)

The bound ηjk+i+1|k can be obtained from solving a stochastic optimization problem stated as in (18a),
subject to chance constraints and whose decision variable is η

ηjk+i+1|k = max
η

η (18a)

s.t.

Pk[η ≤ hj − Hjek+i+1|k] ≥ 1− ε j (18b)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , cx} (18c)

As an alternative to solve (18a), let us reorder Equation (17)

Pk[Hjek+i+1|k − hj ≤ −ηjk+i+1|k] ≥ 1− ε j (19)

Let us assume that probability distributions of wk and δk are known. Thus, the random variable
Hjek+i+1|k − hj has a known cumulative distribution function (CDF) FHe−h [24,25], and its respective
inverse function F−1

He−h is also known. For this reason, the equivalent of (19) would be

FHe−h(−ηjk+i+1|k) ≥ 1− ε j
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Therefore, the value of ηjk+i+1|k can be calculated evaluating the inverse function F−1
He−h in 1− ε j

ηjk+i+1|k = −F−1
He−h(1− ε j) (20)

It should be noted that the calculation of ηjk+i+1|k, through either (18a) or (20), presents an
advantage in computational terms when it is performed offline since the random variable ek+i+1|k does
not depend on the state xk+i|k or the decision variable vk+i|k (see (13)). Therefore, the deterministic
equivalent of the chance constraints (16) is

Hjzk+i+1|k ≤ ηjk+i+1|k (21)

Based on the nominal index (15) and deterministic constraints (21), the deterministic equivalent
of the SMPC with finite prediction horizon N can be stated as

min
vk|k ,vk+1|k ,...,vk+N−1|k

JS(x̂k, vk) (22a)

s.t.

zk+i+1|k = Acl(δk+i)zk+i|k + B(δk+i)vk+i|k (22b)

Hjzk+i+1|k ≤ ηjk+i+1|k (22c)

Duk+i|k ≤ d (22d)

zk|k = x̂k (22e)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , cx} (22f)

Notice that inclusion of (22b) in the set of constraints is not required since it is implicit in (22a).
This OCP, as well as (7a), can be solved using quadratic programming, where at each sampling time
only the first element v∗k|k of the optimal sequence v∗k is applied to the system, that is uk|k = Kx̂k + v∗k|k.

3.2. SCMPC Strategy

The aim of SCMCP is to solve a convex OCP whose cost index for a prediction horizon N is
composed not by a single trajectory of the states, but by the sum of a set of M trajectories generated
due to random realizations of the disturbances also known as scenarios [28,29]. The optimal controls
u∗k = {u∗k|k, u∗k+1|k, . . . , u∗k+N−1|k} are those that minimize such an index satisfying the constraints for
each scenario. For this reason, the selection of the number of scenarios, M, requires special attention in
order to guarantee a defined minimum level of confidence or non-violation of constraints.

Let us consider the uncertain system defined in (8) with control inputs calculated with
the control law (4). For a given instant k, the state predictions xk+i+1|k and future inputs
uk+i|k, ∀i ∈ {0, 1, . . . , N − 1} are given by

xk+i+1|k = A(δk+i|k)xk+i|k + B(δk+i|k)uk+i|k + G(δk+i|k)wk+i|k (23)

uk+i|k = Kxk+i|k + vk+i|k (24)

where stochastic variables δ and w are independent, δ is bounded and the sequence
{wk|k, . . . , wk+N−1|k} is independent and identically distributed (i.i.d.). Replacing (24) in (23), the
discrete model (25) is obtained as a function of vk+i|k, where Acl(δk+i|k) = (A(δk+i|k) + B(δk+i|k)K),
being Acl(δk+i|k) strictly stable

xk+i+1|k = Acl(δk+i|k)xk+i|k + B(δk+i|k)vk+i|k + G(δk+i|k)wk+i|k (25)
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For a given instant k, let us define the jth scenario denoted by the pair γ
[j]
k = (δ

[j]
k , w[j]

k ), ∀j ∈
{1, 2, . . . , M}, as

δ
[j]
k = {δ[j]k|k δ

[j]
k+1|k . . . δ

[j]
k+N−1|k}, w[j]

k = {w[j]
k|k w[j]

k+1|k . . . w[j]
k+N−1|k}

where δ
[j]
k and w[j]

k are random and known realizations along N of the parametric and additive
uncertainties, respectively. Thus, the set Γk of M random and independent scenarios for the instant k is
Γk = {γ

[1]
k , γ

[2]
k , . . . , γ

[M]
k }.

An advantage of SCMPC is that knowledge about probability distributions Pδ and Pw is not
required since the sequence Γk is obtained at each instant k from experimental data or by means of
a random number generator. Therefore, predictions expressed by equations (24) and (25) for the jth
scenario are given by (26) and (27), where it is fulfilled that the initial condition x[j]k|k = x̂k and the
decision variables {vk|k, vk+1|k, . . . , vk+N−1|k} are the same for each j

x[j]k+i+1|k = Acl(δ
[j]
k+i|k)x[j]k+i|k + B(δ[j]k+i|k)vk+i|k + G(δ

[j]
k+i|k)w

[j]
k+i|k (26)

u[j]
k+i|k = Kx[j]k+i|k + vk+i|k (27)

Then, taking (5), a cost index J[j]N (x̂k, vk) can be formulated for each scenario j, representing the

trajectory of x[j]k+i|k along N

J[j]N (x̂k, vk) =
N−1

∑
i=0

(
x[j] >k+i|kQxxx[j]k+i|k + x[j] >k+i|kQxvvk+i|k + v >

k+i|kRuvk+i|k

)
+ x[j] >k+N|kPN x[j]k+N|k (28)

From (28) a global cost index JSc(x̂k, vk) is defined as the sum of the M trajectories generated,
which conform a band around a nominal trajectory

JSc(x̂k, vk) =
M

∑
j=1

J[j]N (x̂k, vk) (29)

Under (29), an scenario-based optimal control problem is stated (30a), whose solution at time
k yields the optimal controls {v∗k|k, v∗k+1|k, . . . , v∗k+N−1|k} that minimize JSc(x̂k, vk) and do not violate
the constraints (notice that constraint (30b) is implicit in (30a), and it is not required to solve the
optimization problem)

min
vk|k ,vk+1|k ,...,vk+N−1|k

JSc(x̂k, vk) (30a)

s.t.

x[j]k+i+1|k = Acl(δ
[j]
k+i|k)x[j]k+i|k + B(δ[j]k+i|k)vk+i|k + G(δ

[j]
k+i|k)w

[j]
k+i|k (30b)

Hx[j]k+i+1|k ≤ h (30c)

Du[j]
k+i|k ≤ d (30d)

x[j]k|k = x̂k (30e)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , M} (30f)

The constraints (30c) and (30d), whose matrices are the same as in (7c) and (7d), indicate that they
must be met for each scenario j.
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A robust SCMPC approach is achieved by replacing (30a) with (31), so that the sequence vk
that minimizes the worst case (min–max optimization) [21,28] of the M realizations is calculated,
as opposed to (30a), in which a nominal trajectory is minimized

min
vk|k ,vk+1|k ,...,vk+N−1|k

max
j=1,2,...,M

J[j]N (x̂k, vk) (31)

This robust approach is expensive computationally, because the worst case of all the scenarios is
obtained first, to subsequently perform a minimization on it. Another drawback is that the worst case
does not always correspond to reality at that moment, so an optimum applied to the real process could
lead to poor behavior.

Number of Scenarios: The value of M [18,19] demands special attention, in order to guarantee
compliance with the constraints in the states with at least a specified probability level. By establishing
an allowable violation probability ε ∈ [0, 1], a very low confidence level β ∈ [0, 1] (e.g., β = 10−9) and
with the number of decision variables given by d = nuN, the probabilistic constraints Pk[xk+i+1|k ∈
X] ≥ 1− ε, where X is a set of allowed values for the states, can be transformed into the M deterministic
constraints (30c) where

M ≥ d + 1 + ln(1/β) +
√

2(d + 1) ln (1/β)

ε
(32)

With the minimum number of scenarios given by (32), the non-violation of state constraints is
met, at least with a confidence level (1− ε) [21,48], where the lower is the probability of violation, the
greater is the number of scenarios M.

As pointed out in [18,29], a disadvantage is that the random nature of scenarios can cause unlikely
circumstances (i.e., the scenario is far from the reality of the process), so the closed-loop system may
exhibit erroneous behavior. For this reason, in [29], a removal of R scenarios from the previously
defined M is proposed. In [22], the concept of scenarios is exploited to generate achievable probabilistic
sets offline, which are used as an MPC formulation based on probabilistic tubes.

4. Numerical Examples, Results and Discussion

In this section, two examples are presented in which various MPCs were evaluated by performing
Nr Monte Carlo simulations for each control scheme, always starting from the same initial state x0|0
and assuming that the state measurements are accurate. The performances of the MPCs were analyzed
through the performance indices listed in Table 1.

Table 1. Performance indices.

Index Description

Ns Number of simulations from Nr where no constraints were violated.
ps Probability of success of a simulation, ps = Ns/Nr.
Nv Number of constraints violated in all Nr simulations.

IAEavg
Mean value of the integral absolute error of the states, based on the closed-loop system
responses of the Nr simulations.

IAUavg Mean value of the integral of the absolute value of the applied inputs of all Nr.
tavg Average time taken for the algorithm to obtain a solution.
σmax Maximum standard deviation of the states with constraints.
POavg Average percentage overshoot of constraints in the violated states.

A 64-bit Windows 10 computer, 16 GB of RAM and 2.5 GHz Intel Core i7 processor was used.
Simulations were run in Matlab R2018b; control actions for classic MPC, SMPC and SCMPC were
calculated using the quadprog toolbox of the Mosek 9.2 optimization software and Matlab fminimax
function for the Robust SCMPC. Furthermore, for reproducible results, the specialized Stochastic
Model Predictive Control Toolbox software was developed in Matlab for the realization of a part of the
simulations in this article. This software allows simulating (Matlab’s quadprog solver is used for
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optimization) a SMPC or SCMPC to control multivariable systems with additive disturbances and is
available in MATLAB Central [31] so that the reader can reproduce the results of this section or use it
in other systems.

4.1. Example 1

Consider the two-mass spring system [16,49] with friction-less sliding of Figure 1 where the
masses m1 with position x1 and m2 with position x2 are linked by a spring with elastic constant ks.
The control input u is a force acting on m1 and w1 and w2 are external disturbances acting on m1

and m2, respectively.

�1
�1

�
1

�

�2

�2

�2

��

Figure 1. Two-mass spring system.

The system’s equations of motion using x3 as the linear velocity of m1 and x4 as the linear velocity
of m2 are

ẋ1 = x3

ẋ2 = x4

m1 ẋ3 = −ks(x1 − x2) + u + w1

m2 ẋ4 = ks(x1 − x2) + w2

Setting the state vectors as x = [x1 x2 x3 x4]
> and additive disturbances as w = [w1 w2]

>;
its representation in the discrete state space by Euler’s approximation method, for a sampling time Ts is

xk+1 = Axk + Buk + Gwk

A =


1 0 Ts 0
0 1 0 Ts

− ksTs
m1

ksTs
m1

1 0
ksTs
m2

− ksTs
m2

0 1

 , B =


0
0
Ts
m1

0

 , G =


0 0
0 0
Ts
m1

0
0 Ts

m2


where m1, m2 = 1 kg are constant, Ts = 0.1 s (this was selected fulfilling the Nyquist–Shannon
sampling theorem, taking the highest frequency of the poles of the system) and the constraints
|x3|, |x4| ≤ 0.12 m/s must be satisfied. The elastic constant ks is associated with parametric
uncertainties δ and it has a uniform probability distribution ks ∼ U ([0.5, 2.0])N/m. The additive
disturbances w have a normal distribution w ∼ N (0, Σw)N with zero mean and covariance matrix
Σw = diag(0.0222, 0.0222). For all controllers, when applying N = 6, Qx = diag(1, 1, 4, 6), Ru = 1;
εSMPC = 0.05; εSCMPC = 0.05, βSCMPC = 10−9 and by means of (32), M = 896.

Three cases were established based on the parameter ks to evaluate the performance of five
MPCs (classic without constraints (MPC n/c), classic with constraints (MPC w/c), SMPC, SCMPC and
Robust SCMPC):

• Case 1: ks is known, constant and it is set to its nominal value ks = 1.25.
• Case 2: ks is unknown and varies according to its probability distribution at every control period.
• Case 3: ks is unknown and remains constant for all instants along each simulation. The ks value

varies according to its probability distribution in each simulation.
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For each case, Nr = 100 simulations with NTs = 100 sampling times of duration were performed,
starting from the initial state x0|0 = x̂0 = [0.5 0.5 0 0]> towards the origin as the desired state.

For Case 1, the feedback matrix K and the terminal state weighting PN are obtained from solving
a Quadratic Optimal Control Problem (LQR) [13,20]

K =
[
−2.876 1.683 −3.187 −0.904

]
, PN =


155.739 −102.335 43.512 77.451
−102.335 117.489 −26.755 −30.134

43.512 −26.755 40.392 15.371
77.451 −30.134 15.371 126.794


For Cases 2 and 3, they are obtained by solving an eigenvalues problem (EVP); through a stability
analysis of Lyapunov’s approach [13,32,33], such matrices are

K =
[
−56.563 41.356 −15.171 −45.156

]
, PN =


4509 −3280 971 3801
−3280 2450 −709 −2706

971 −709 244 791
3801 −2706 791 3462


Case 1 Results: Table 2 shows high probabilities of success ps (0.84, 0.74 and 0.64) by the stochastic

MPCs. However, the biggest success of the SCMPC and Robust SCMPC required longer times tavg

(79.0 ms and 235.7 ms) to obtain the control sequence than SMPC (5.7 ms), which works as a classic
MPC with constraints. This makes sense since in each iteration SMPC and SCMPC select 896 random
realizations for w and solve the OCP (30a) for all of them using (29) or (31).

Figure 2 shows the Nr = 100 trajectories made by the real states and input (thin solid lines),
starting from x̂0 = [0.5 0.5 0 0]> towards the origin. The MPC n/c (Figure 2a), having no constraints,
presents the highest violations (Nv = 2416) and overshoots (POavg = 20.98%), while the mean
trajectories (thick solid lines) of the constrained MPCs do not exceed the limits (black dashed lines).
Notice how stochastic approaches (Figures 2c–e) are within these limits or barely exceed them, showing
that the probability that a state is within the allowed limits is 68%. The largest standard deviations
σmax occurred in the scenario-based MPCs (0.036 and 0.054) due to the randomness mentioned in [29]
and because the worst case is not always the closest to reality (hence, the highest IAEavg (52.50) and
IAUavg (8.70) of all).

Table 2. MPCs performance indices for Case 1.

MPC Ns ps Nv IAEavg IAUavg tavg σmax POavg

MPC n/c 0 0.00 2416 43.88 5.35 5.6 ms 0.009 20.98%
MPC w/c 3 0.03 702 49.01 7.29 5.9 ms 0.031 2.45%
SMPC 64 0.64 135 49.85 7.39 5.7 ms 0.029 1.78%
SCMPC 84 0.84 168 50.61 7.55 79.0 ms 0.036 6.78%
SCMPC (robust) 74 0.74 30 52.50 8.70 235.7 ms 0.054 6.01%
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(a) MPC n/c (b) MPC w/c

(c) SMPC (ε = 0.05) (d) SCMPC (ε = 0.05, M = 896)

(e) Robust SCMPC (ε = 0.05, M = 896)

Figure 2. Case 1: Two-mass spring system controlled with different MPCs, for 100 Monte Carlo
simulations. Trajectories of the real states and input (thin solid lines), mean value (thick solid lines),
mean value with standard deviation (dotted lines), minimum and maximum values (blue dashed lines)
and constraints (black dashed lines) |x3|, |x4| ≤ 0.12.
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Case 2 Results: The performance indices and the real trajectories of the states are shown in Table 3
and Figure 3 respectively. As in Case 1, stochastic MPCs had the highest ps, observing an increase in
the scenario-based schemes (0.94 and 0.86), despite the randomness of ks. Nevertheless, these schemes
are the ones who take the longest to calculate the solution (tavg (220.3 ms and 311.8 ms) due to the fact
that, in addition to selecting 896 random scenarios for w, it should also be done for ks.

As seen in Figure 3, the mean trajectories that include the standard deviations of the stochastic
MPCs are the only ones that stay within the limits (the probability that a state is within the allowed
limits is 68%). This kind of robustness on stochastic strategies implies high values of IAEavg and
IAUavg indicators compared to the others.

Case 3 Results: As can be seen in Table 4 and Figure 4, it is once again corroborated that the highest
ps and average trajectories with standard deviations within the limits belongs to stochastic MPCs.
Regarding Case 2, the indicators tavg are very similar, but for this case higher standard deviations
σmax of the three cases are observed. The high POavg (28.23%) presented by the robust SCMPC
can be seen in the trajectories of the x3 (Figure 4e) state; however, this strategy presents the lowest
Nv (27) of all MPCs.

Table 3. MPCs performance indices: Case 2.

MPC Ns ps Nv IAEavg IAUavg tavg σmax POavg

MPC n/c 0 0.00 611 50.58 6.16 6.3 ms 0.010 20.97%
MPC w/c 4 0.04 362 51.37 5.59 6.4 ms 0.027 1.75%
SMPC 65 0.65 77 51.98 5.87 6.3 ms 0.031 1.13%
SCMPC 94 0.94 7 52.91 6.96 220.3 ms 0.045 13.67%
SCMPC (robust) 86 0.86 21 53.14 8.70 311.8 ms 0.055 6.29%

Table 4. MPCs performance indices for Case 3.

MPC Ns ps Nv IAEavg IAUavg tavg σmax POavg

MPC n/c 0 0.00 754 51.27 6.14 5.8 ms 0.028 19.38%
MPC w/c 1 0.01 462 52.16 5.74 6.1 ms 0.032 2.07%
SMPC 57 0.57 107 52.56 5.73 5.9 ms 0.036 1.90%
SCMPC 85 0.85 28 53.42 6.95 220.9 ms 0.046 11.22%
SCMPC (robust) 79 0.79 27 53.97 8.67 327.5 ms 0.062 28.23%
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(a) MPC n/c (b) MPC w/c

(c) SMPC (ε = 0.05) (d) SCMPC (ε = 0.05, M = 896)

(e) Robust SCMPC (ε = 0.05, M = 896)

Figure 3. Case 2: Two-mass spring system controlled with different MPCs, for 100 Monte Carlo
simulations. Trajectories of the real states and input (thin solid lines), mean value (thick solid lines),
mean value with standard deviation (dotted lines), minimum and maximum values (blue dashed lines)
and constraints (black dashed lines) |x3|, |x4| ≤ 0.12.
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(a) MPC n/c (b) MPC w/c

(c) SMPC (ε = 0.05) (d) SCMPC (ε = 0.05, M = 896)

(e) Robust SCMPC (ε = 0.05, M = 896)

Figure 4. Case 3: Two-mass spring system controlled with different MPCs, for 100 Monte Carlo
simulations. Trajectories of the real states and input (thin solid lines), mean value (thick solid lines),
mean value with standard deviation (dotted lines), minimum and maximum values (blue dashed lines)
and constraints (black dashed lines) |x3|, |x4| ≤ 0.12.
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4.2. Example 2

Consider the quadruple-tank system [50,51] of Figure 5, in which the aim is to control the level
of liquid hi in tank i ∀i ∈ {1, 2, 3, 4}, by means of pumps 1 and 2 whose flows are proportional to the
applied voltage (QP1 = k1v1, QP2 = k2v2) and are distributed by the valves in proportions determined
by γ1, γ2 ∈ [0, 1]

4

1 2

( ) ( )

Figure 5. Quadruple-tank system.

Let Ai be the cross section of tank i; ai and a12 are the areas of the tank outlet pipes; and g is the
acceleration due to gravity. By performing a mass balance and applying Bernoulli’s law, the equations
that describe the behavior of the nonlinear system are given by

dh1

dt
= − a1

A1

√
2gh1 −

a12

A1
sgn(h1 − h2)

√
2g|h1 − h2|+

(1− γ2)k2

A1
v2

dh2

dt
= − a2

A2

√
2gh2 +

a12

A2
sgn(h1 − h2)

√
2g|h1 − h2|+

(1− γ1)k1

A2
v1

dh3

dt
=

a1

A3

√
2gh1 −

a3

A3

√
2gh3 +

γ1k1

A3
v1

dh4

dt
=

a2

A4

√
2gh2 −

a4

A4

√
2gh4 +

γ2k2

A4
v2

(33)

Let us define the state vectors x = [x1 x2 x3 x4]
> and inputs u = [u1 u2]

>; where xi = hi − h0
i

and ui = vi − v0
i represent the deviations from the operating point P0 = {h0

1, h0
2, h0

3, h0
4, v0

1, v0
2} =

{7.873 cm, 8.187 cm, 7.720 cm, 8.039 cm, 4.0 V, 3.5 V}. Linearizing around P0 and using Euler’s
approximation, for a sampling period Ts, the linear model in the discrete state space can be
represented by
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xk+1 = Axk + Buk

A =


− β1+βx

A1
+ 1 βx

A1
0 0

βx
A2

− β2+βx
A2

+ 1 0 0
β1
A3

0 − β3
A3

+ 1 0

0 β2
A4

0 − β4
A4

+ 1

 , B =


0 (1−γ2)k2

A1
Ts

(1−γ1)k1
A2

Ts 0
γ1k1
A3

Ts 0

0 γ2k2
A4

Ts



where βi = ai
√ g

2h0
i
Ts, βx = a12

√ g
2|h0

1−h0
2|

Ts; Ai = 144 cm2, a1, a2, a12 = 0.352 cm2, a3, a4 = 1.006 cm2;

k1, k2 = 33.333cm3/Vs; γ1 = 0.6, γ2 = 0.7; g = 981cm/s2, Ts = 5 s.
The constraints |x3|, |x4| ≤ 1.5cm, |u1|, |u2| ≤ 1.0V must be satisfied and the process has additive

disturbances w in its states, with normal distribution w ∼ N (0, Σw)cm with zero mean and covariance
matrix Σw = diag(0.12, 0.12, 0.12, 0.12), which are truncated |wi| ≤ 0.3cm and G = diag(1, 1, 1, 1).

To analyze the effect of the allowed violation probabilities in the states, ε, on the number of
considered scenarios M and on the different performance indicators, this example compares the
performance of an SCMPC for five values of ε(0.4, 0.3, 0.2, 0.1, 0.05) with a constrained classic
MPC (MPC w/c). For each scheme, Nr = 100 runs were carried out on the nonlinear model (33),
each one with NTs = 40 sampling times of duration, starting from the initial state x0|0 = x̂0 =

[−5.5 − 6.9 − 0.5 − 0.2]> towards the origin as the desired state.
For all controllers, N = 5, Qx = diag(10, 10, 1, 1), Ru = diag(1, 1), β = 10−9. The matrices K and

PN , obtained from solving a Quadratic Optimal Control Problem (LQR) [13,20], are

K =

[
−0.745 −0.649 −0.153 0.054
−0.556 −0.662 0.045 −0.245

]
, PN =


13.275 3.341 −0.839 −0.811

3.341 13.438 −0.884 −0.809
−0.839 −0.884 1.870 0.140
−0.811 −0.809 0.140 1.689


Results: Table 5 shows the performance indices of the MPC w/c and the SCMPC, for the Nr = 100

runs, while Figure 6 depicts the closed loop simulations. SCMPCs showed the lowest violations, in
both quantity Nv (15, 14, 10, 7 and 6) and percentage of deviation POavg (1.55%, 1.60%, 1.78%, 1.06%
and 0.48%) compared to the MPC w/c (Nv = 263 and POavg = 5.76%). Furthermore, the stochastic
scheme shows high values of successful runs Ns (87, 88, 91, 93 and 94) and probabilities of success
ps (0.87, 0.88, 0.91, 0.93 and 0.94), which increase as ε decreases. However, this improvement in ps

leads to an increase in the number of scenarios M (133, 177, 266, 531 and 1062) to be considered in the
OCP (30a), and hence an increase in the average time that the algorithm takes to find a solution at each
instant k (tavg (12.3 ms, 14.2 ms, 18.1 ms and 30.3 ms). Regarding the indices IAEavg, IAUavg and σmax,
despite not observing a considerable difference between controllers, it can be concluded that the lower
the ε the lower the performance values.

As can be seen in the Figure 6, all the Nr = 100 trajectories made by the states (thin solid lines)
start from Nr = 100 towards the origin, where the mean trajectories (thick solid lines) of the SCMPCs
are considerably far from the constraints (black dashed lines), opposite to that of the MPC w/c that
passes very close and even violates them (that’s why the highest POavg = 5.76% of them). On the
other hand, for SCMPCs, the average trajectories that include the standard deviations (dashed lines)
are within the limits. It means that the probability that a state is within the allowed limits is 68%. As
for the applied inputs, they start at their maximum allowed values and decrease as the states converge
towards the origin
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(a) MPC w/c (b) ε = 0.4, M = 133)

(c) SCMPC (ε = 0.3, M = 177) (d) SCMPC (ε = 0.2, M = 266)

(e) SCMPC (ε = 0.1, M = 531) (f) SCMPC (ε = 0.05, M = 1062)

Figure 6. Quadruple-tank system controlled with a constrained MPC and a SCMPC for multiple ε values,
for 100 Monte Carlo simulations. Trajectories of the real states and inputs (thin solid lines), mean value
(thick solid lines), mean value with standard deviation (dotted lines), minimum and maximum values
(blue dashed lines) and constraints (black dashed lines) |x3|, |x4| ≤ 1.5, |u1|, |u2| ≤ 1.0.



Electronics 2020, 9, 2078 19 of 22

Table 5. Performance indices.

MPC Ns ps Nv IAEavg IAUavg tavg σmax POavg

MPC w/c 2 0.02 263 78.63 21.51 6.7 ms 0.218 5.76%
SCMPC

(
ε=0.4

M=133
)

87 0.87 15 78.40 21.22 12.3 ms 0.218 1.55%
SCMPC

(
ε=0.3

M=177
)

88 0.88 14 78.39 21.21 14.2 ms 0.218 1.60%
SCMPC

(
ε=0.2

M=266
)

91 0.91 10 78.38 21.18 18.1 ms 0.218 1.78%
SCMPC

(
ε=0.1

M=531
)

93 0.93 7 78.36 21.15 30.3 ms 0.217 1.06%
SCMPC

(
ε=0.05

M=1062
)

94 0.94 6 78.35 21.14 57.3 ms 0.217 0.48%

5. Conclusions and Future Work

Two stochastic predictive control approaches are compared in this article; one based on analytical
methods (SMPC) and the other based on scenarios (SCMPC). The low computational cost of the SMPC
is because the uncertain statistical information is used offline to adjust the states constraints. However,
if this information changes, it cannot be considered during operation. On the other hand, this new
statistical information can be incorporated into the SCMPC to generate the scenarios online, but it
leads to a high computational cost.

It is shown that the SMPC can be summed up in a deterministic OCP (22a) whose structure is
similar to that of a classic MPC with constraints (7a), with similar computational cost tavg, but with a
considerable increase in the probability of success ps, due to offline constraint adjustment.

Scenario-based approaches SCMPC and robust SCMPC, compared to the others, gave the highest
probabilities of success, at the expense of a high computational cost, since they need to solve an OCP
with M random scenarios for each control period. From results shown in Table 5, can be concluded that
a decrease in the parameter ε, related to the probability of violation allowed for the state constraints,
produces an increase in the probability of success ps. However, this improvement results in an increase
in the number of M scenarios to be considered in the OCP and therefore an increase in the average
time tavg that the algorithm takes to find a solution at each sampling time.

It is clear that the consideration of statistical process information, through its inclusion in the OCP,
significantly improves the probability of success ps. This can be verified in Figures 2–4 and 6, where it
is observed that only stochastic approaches reached mean trajectories with standard deviations within
the limits or barely exceeding them. Thus, for a normal distribution, it means that the probability a
state is within the allowed limits is 68%.

Scenario-based schemes are attractive in the sense that they have a greater probability of
success and the inclusion of new statistical information online without necessarily known probability
distributions. However, due to the randomness of scenarios, their solution can show undesirable
behaviors despite their high computational cost. This drawbacks would prevent their implementation
for the control of systems with fast dynamics such as the two-mass spring system in the example, which
has Ts (0.1 s) close to the lowest tavg (79.0 ms) of the SCMPCs of the three cases. Given these drawbacks,
future work continues on the proposal of new SCMPC schemes that reduce the computational load
and unlikely scenarios.

Finally, the specialized software Stochastic Model Predictive Control Toolbox is available in MATLAB
Central for the keen readers. This tool was created by the authors to carry out part of the simulations
in this article. It also allows readers to reproduce the results here presented or to tune and simulate
SMPCs or SCMPCs for controlling multivariable systems with additive disturbances which present
Gaussian probability distributions.
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