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Summary

Structural genomics projects are leading to the discovery of relationships between proteins
that would not have been anticipated from consideration of sequence alone. However the
assignment of function via structure remains difficult as some structures are compatible
with a variety of functions. In this study we explore the relationships between structural
diversity and functional diversity within distantly related members of SCOP superfamilies.
We use the Gene Ontology functional classification scheme and Greens path entropy to
measure functional diversity. We observe a negative correlation between the functional
entropy of a superfamily and the size of the conserved core.

1 Introduction

A major obstacle to the exploitation of the huge amount of genome data now available is the
lack of any functional annotation for many of the proteins. Typically some 30-40% of open
reading frames cannot be assigned function on the basis of close sequence similarity to a protein
of known function [15]. Such open reading frames are usually designated as ‘hypothetical
protein’ or ‘protein of unknown function’. Despite the development of powerful algorithms
for the detection of remote sequence signals that facilitate probing below the so-called twilight
zone of sequence similarity, functional annotation still remains a problem.

Many new structures are being solved through structural genomics [18, 26]. A recent analysis
of solved target structures revealed that for 29% of domains, the 3-D structure revealed relation-
ships not apparent from sequence [25]. This increasing amount of 3-dimensional information
should impact significantly on our understanding of key properties that determine function and
will aid the recognition of distant sequence relationships via structure. If a hypothetical pro-
tein shares structural similarity to that of a functionally characterised protein we might expect
this to narrow down the possible functional roles of the protein and thereby aid in functional
annotation.

Protein structure classification databases such as the Structural Classification of Proteins (SCOP)
enable us to explore the characteristics of proteins that adopt the same global structures [16].
SCOP is a hierarchical categorisation in which a structural domain is classified according to
class (secondary structure content), fold (broadly the spatial arrangement of the secondary
structural elements), superfamily and family. Proteins at the superfamily level are believed
to be related although this may not be apparent from consideration of sequences alone. Some
folds are associated with a wide range of functions, while others seem less functionally versa-
tile. For example, the TIM barrel fold contains 28 superfamilies and is associated with 4 of the
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6 possible enzyme commission numbers [10]. Knowledge that a hypothetical protein adopts a
functionally diverse fold such as a TIM barrel will not immediately narrow down the functional
space. In contrast, the globins show a very specific repertoire of function despite large sequence
diversity [3].

Here the relationship between structural and functional diversity at the level of protein super-
families is explored. Many authors have developed pairwise measures of similarity for sequence
[17, 23, 1], structure [11, 28] and function [13, 21]. The relationships between metrics have
also been examined [7, 21]. The approach investigated in this paper is to examine, rather than
pairwise similarity, the breadth of diversity of function among homologous groups of proteins.
The analysis is restricted to superfamilies which show large numbers of sequences with less
than ten percent sequence similarity, as these have the capacity for differing functions [27].
Two classification schemes are used: SCOP for structural classification and Gene Ontology
(GO) for functional classification. A novel method for characterising the functional repertoire
of a protein family is suggested, and the range of functional diversity exhibited under the metric
is discussed. It is shown that the functional diversity of a superfamily shows some correlation
with the numbers of proteins in the superfamily and the size of the conserved core of the super-
family.

2 Methods

2.1 Dataset

The SCOP database (version 1.67) is used as a classification of protein structure. The ASTRAL
database is then used to select a non-redundant subset of SCOP domains showing no more than
ten percent sequence identity with each other [5]. The dataset was formed by choosing from
ASTRAL all superfamilies with more than ten members at this level of sequence diversity.
This dataset contains 1260 domains distributed in 58 superfamilies. It is envisaged that this
dataset will grow considerably as high throughput experimental structure determination projects
progress.

2.2 Structural Diversity

Two measures of structural diversity are examined: the average RMSD (root mean square de-
viation) between members of the superfamily and the size of the core conserved structure of
the superfamily. In order to measure the average RMSD, all against all structural alignments
for domains in a given superfamily are performed using the SAP program [24]. This program
reports 3 RMSD scores: a weighted RMSD, an unweighted RMSD over a ’best’ set of closely
aligned atoms and an RMSD for the whole alignment. The weighted RMSD is used for the
measure as this will not be overly affected by outliers.

To measure the size of the conserved core, the number of positions marked as core in a structure-
based multiple alignment of the superfamily is divided by the average length of a domain in the
superfamily. The multiple alignments were constructed as described in [6] requiring that no two
domains shared more than 10% sequence identity as defined by ASTRAL. Core positions were
defined as those positions where the gap content is less than twenty percent and the average
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separation is less than three Angstroms. This measure is termed the core size — if most of the
structure is conserved across all domains in the superfamily, this value will be close to 1.0.

2.3 Functional diversity

To measure functional diversity, diversity amongst GO terms is used. To obtain GO terms for
domains in the dataset, the program InterProScan [29] was used to assign GO terms. This pro-
gram scans a query sequence against all databases in InterPro [2]. Significant hits are reported,
with a corresponding InterPro record. InterPro mappings to GO are used to convert the InterPro
records into GO terms. We consider only the molecular function ontology in this study.

The GO terms for the superfamily are enumerated and Green’s path entropy function is used
to measure the functional diversity [9]. Unlike Shannon’s entropy which has no method for
incorporating knowledge of relationships between states, Green’s path entropy allows for the
entropy to be considered where the relationship between states is pre-determined, in this case
by GO.

For a given leafl in a tree specifying a unique pathPl = u0, ...un, l, the path entropy is defined
as:

H(l) =
∑

ui∈Pl

log d(ui)

Whered(u) is the outward degree of nodeu. The entropy of a given tree is then the average of
these path lengths, or given a weighting over the leavesw(lj), which we can assume

∑
j w(lj) =

1, the leaf weighted tree entropy is the expected path length under the weighting,
∑

j p(lj)H(lj).
A slight modification of the path entropy function is introduced by weighting the entropic
contribution of a decision according to the depth in the tree. For a leafl the path entropy
becomes:

H(l) =
∑

ui∈Pl

f(i) log d(ui)

The tree entropy remains the weighted sum of path entropies.

A possible weighting scheme isf(i) = Ki whereK < 1 is a constant. This gives a relative
weighting ofK to a decision at depthn + 1 compared to a decision at depthn. This function
reduces to the normal classification entropy forK = 1. For an example of why this weighting
is desirable, see figure 1.

In order to measure the functional diversity, for each domain we take the GO terms assigned
above and all their parent terms and combine them to form a tree. GO is not strictly a tree struc-
ture, however, we induce a tree structure by only observing parent terms forming the shortest
route to the root. This tree represents the functional range of the superfamily. To measure the
functional diversity, the entropy of this tree is measured. We weight the leaves by the proportion
of domains observed with that term (or terms), and calculate the entropy.

However, the annotation stage may, and usually does, return more than one GO term for each
domain. This is not surprising given that GO contains three main ontologies for process, func-
tion and location. Nevertheless, it may even return more than one term in each of the main
ontologies. Some of these can be explained by the fact that InterProScan may report several
different levels of detail, e.g. a protein may be reported to be both a ‘binding’ and an ‘ATP-
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A,B,C,D

A,B C,D

A B C D

Figure 1: An example of the effect of depth weighting. Consider as an example the classification
shown. Imagine we were to observe a set of objectsX with labels {A, B}, and a set of objects
Y with labels {A, C}. Taking X first, we prune the leavesC and D and the new leafC, D and
calculate the classification entropy. Clearly, there is a classification entropy of 1. Now looking at
Y , we pruneB and D and calculate the classification entropy, again it is 1. BothX and Y have a
classification entropy of 1 despite the fact thatX is clearly a more related set of examples lying in
a more constrained subtree. In order to overcome this problem, we use the depth weighted clas-
sification entropy. For this example example, consider the depth weighted classification entropy
with K = 1/2. Now, for X it is 1/2, whereas forY it is 1. Thus the depth weighted entropy reflects
the level in the classification at which the branching is made.

binding’ protein. Therefore, a preliminary comparison of terms associated to each domain is
made, and any terms which are parents of other terms are removed.

Even after removing related terms, a given protein would still have more than one annotation
in an ontology. This is because gene ontology terms are usually only ‘atomic’, a functional
description requires more than one term. For example, a globin may be described as both
‘heme binding’ and ‘oxygen binding’. The functional description is the combination of both
terms.

It is undesirable that two GO terms representing a single domain should contribute to the func-
tional diversity of the superfamily. If the functional description is both terms, then ideally we
would like there to exist a single node in the tree labelled with both terms where we can place
the domain. A domain should exist at only one point in the hierarchy, else it will increase the
functional diversity measure artificially. To achieve this we can use Greens tree product to cre-
ate a tree that contains all combinations of terms across each level in GO (but still observing
the hierarchy) by taking the product of the GO tree with itself [9]. This generates all possible
combinations of terms. However, the product of a classification tree with itself is a special case
of the product. When taking the product any nodes which represent the product of a term with
itself become simple the term (i.e., term (A,A) becomes term A) and the terms are required to
be ordered so that term (B,A) is the same as term (A,B). The product can be taken multiple
times if more than two GO terms are given for a domain. Lastly, if any annotations belonging
to a domain are parents of another term on the tree, a ‘sink’ leaf is introduced to represent the
fact that the functional annotation is not specific enough in relation to other terms, since each
domain must appear at the leaf. The result is a tree where a domain’s annotations appear at one
leaf only. An example of a such a tree showing the functional range of a superfamily can be
seen in figure 2.
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all,

molecular_function,

binding,

oxygen binding,
tetrapyrrole binding,

oxygen binding,
binding,

sink,

heme binding,
oxygen binding,

Figure 2: An example of a GO tree representing the ”Globin-like” superfamily. A combination of
functions can be observed in some domains, as well as a ‘sink’ leaf introduced for those domains
that were only annotated as binding.

Superfamily sunid functional diversity
P-loop containing nucleoside triphosphate hydrolases52540 4.33
NAD(P)-binding Rossmann-fold domains 51375 3.27
Nucleic acid-binding proteins 50249 2.70
Ribosomal protein S5 domain 2-like 54211 2.66
PLP-dependent transferases 53383 2.64
PH domain-like 50729 0.56
Thiamin diphosphate-binding fold (THDP-binding) 52518 0.42
RNA-binding domain, RBD 54928 0.42
Acyl-CoA N-acyltransferases (Nat) 55729 0.18
DEATH domain 47986 0.00

Table 1: Most and least diverse superfamilies in the dataset using a depth weighting of 0.75

3 Results

Across the superfamilies in the dataset there exists a large range of functional diversity. Figure
3 shows that the diversity ranges from highly conserved to very diverse. Most superfamilies
however, are, by our measure, in the range 0.5-3.

In table 1 the five most functionally diverse and the five least functionally diverse SCOP su-
perfamilies (out of the 58 superfamilies in our dataset) according to our metric are shown. The
Enzyme Commission (EC) number presents a high level view of function where the first digit
of EC number represents the class of the enzyme and can take 6 possible values [12]. From
the top five, two superfamilies, the NAD(P)-binding Rossmann-fold domains and the P-loop
containing nucleotide triphosphate hydrolases are associated with 4 different 1st digit EC num-
bers [8]. The PLP-dependent transferases are associated with 3 different 1st digit EC numbers
and the Ribosomal protein S5 domain 2-like superfamily with a single 1st digit EC number.
Functional diversity among the PLP-dependent transferases, a coenzyme binding domain (PLP,
pyridoxal-phosphate is a cofactor) has been studied by Bray et al [4]. From the five least
functionally diverse superfamilies, the Thiamin diphosphate-binding fold (THDP-binding) is
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Figure 3: Histogram showing numbers of superfamilies with a given functional diversity (depth
weighting of 0.75)
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Figure 4: Scatter showing number of domains against functional diversity (depth weighting of
0.75)
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Figure 5: Scatter showing average RMSD of superfamily against functional diversity (depth
weighting 0.75)
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Figure 6: Scatter showing core size of superfamily against functional diversity (depth weighting
of 0.75)

associated with 3 1st digit EC numbers and the Acyl-CoA N-acyltransferases (Nat) with 1.

The most functionally diverse superfamilies, namely the P-loop containing nucleoside triphos-
phate hydrolases, the NAD(P)-binding Rossmann-fold domains and the Nucleic acid-binding
proteins are large sequence diverse families with 81, 54 and 50 domains in our dataset. The Ri-
bosomal protein S5 domain 2-like superfamily and the PLP-dependent transferases superfamily
have 24 and 18 domains in our dataset. Among the least functionally diverse superfamilies, the
Thiamin diphosphate-binding fold (THDP-binding) superfamily, the RNA-binding domain, and
the DEATH domain are considerably smaller each with 11 domains in our dataset. However,
also having low functional diversity are the PH domain-like superfamily and the the Acyl-CA
N-acyltransferases which have 21 and 17 domains in our dataset. We see that some of the most
functionally diverse superfamilies are among the more populated superfamilies in our sequence
diverse dataset and some of the least functionally diverse have far fewer domains.

Figure 4 shows a plot of superfamily size against the functional diversity of the superfamily.
The plot shows a correlation between superfamily size and functional diversity, as confirmed by
a correlation coefficient of 0.59. This trend was also observed by Shakhnovich et al. [19]. How-
ever, all but ten superfamilies have between ten and thirty domains. Amongst these domains,
the correlation is much less pronounced, with a correlation coefficient of 0.18.

Figures 5 and 6 show plots of functional diversity against average RMSD and core size respec-
tively. The figures show that, although there is no correlation between RMSD and functional
diversity, there is a correlation between the core size and functional diversity. This correla-
tion is weak and statistical in nature, but is confirmed by the correlation coefficient on -0.50.
Moreover, this relationship remains for superfamilies with between ten and thirty domains (cor-
relation coefficient -0.4).

4 Discussion

The function of a protein is not a trivial matter to describe. The level of abstraction best suited
to functional annotation is not clear, and it may only be possible to define a function in a very
specific context [22]. Despite this, in order to understand genomics data computationally, a
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controlled ontology is a valuable tool. In order to proceed with the development of the method
we have used the available data and tools (InterProScan) which are based on sequence similarity
and other methods. We remain aware of the limitations of transfer of functional annotation by
computational methods and that precise functional annotation is generally only revealed from
experiment.

We have shown a method for describing and measuring the functional repertoire of a protein
family based on a given ontology. Nevertheless, other measures of functional diversity could
be adopted. A recent approach by Shakhnovich et al also calculates a functional flexibility
score by averaging the Shannon entropy over each level of GO, but this definition does not
fully account for the underlying hierarchy of function described by the gene ontology [20, 19].
A parwise distance for functional similarity within GO has been developed, but the distance
measure cannot quantify the entropy of a set of GO labels [21]. Other groups have examined
the lowest node in a hierarchy, whether GO or enzyme commission, that describes the function
of a group of proteins [10, 13]. However, applying Greens path entropy to the Gene Ontology
functional classification considers the hierarchy of function in calculating the entropy and also
handles multiple functional labels through the tree product.

We remain aware that an automated functional annotation scheme could produce errors which
would, in turn, affect the measure of functional diversity. It should also be noted that annotating
function at the level of the domain may be problematic in the case of multi-domain proteins, or
even multi function domains.

Our results have shown a correlation between functional diversity and the size of the conserved
core of the superfamily. This core measure is arbitrary and, again, other measures could be used.
For instance, another measure we examined was the average length of conserved residues across
pairwise alignments. Although these results were not shown, they agreed with the results using
the measure based on the multiple alignment as shown in the text. It does appear, however, that
RMSD is not a useful measure when considering functional diversity. Perhaps this is because
RMSD measures how conserved the core residues are, and not how many of the residues are in
the core.

Global studies of the structure-function relationship are limited in their use when considering
a particular example of a protein family. These results do, however, relate to previous studies
investigating structure-function relationships. Matsuo and Bryant found that the size of the
conserved core was greater between homologs than analogs, and that presence of this conserved
core was discriminatory between the two (and that RMSD was not) [14]. We find that the size
of the homologous core structure affects the functional diversity of homologous structures. It
would be interesting to relate the functional specialisation with patterns of conservation in the
core.
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