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Convolutional and Recurrent Neural Networks for Face Image
Analysis
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Abstract. In the presented research two Deep Neural Network (DNN) models for
face image analysis were developed. The first one detects eyes, nose and mouth and
it is based on a moderate size Convolutional Neural Network (CNN) while the second
one identifies 68 landmarks resulting in a novel Face Alignment Network composed of
a CNN and a recurrent neural network. The Face Parts Detector inputs face image
and outputs the pixel coordinates of bounding boxes for detected facial parts. The
Face Alignment Network extracts deep features in CNN module while in the recurrent
module it generates 68 facial landmarks using not only this deep features, but also
the geometry of facial parts. Both methods are robust to varying head poses and
changing light conditions.

Keywords: deep learning, convolutional neural networks, recurrent neural net-
works, facial landmark localization, facial parts detection, computer vision, image
processing

1. Introduction

Computer vision plays an important role in today’s world, from self-driving cars to
pedestrian tracking it has many different use cases in many different areas [15]. Face
image analysis as a part of computer vision also has its place in plenty divergent real
world applications [18]. In this paper two models that are related to face analysis
were developed. One of which is a novel algorithm for facial landmarks localization,
and the other one is a face parts detector (for eyes, nose and mouth).

The first machine learning system that is presented is a Facial Parts Detector
with acronym CFPD (Convolutional Facial Parts Detector) . The model is based on
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a moderate size Convolutional Neural Network, and given a face image, it outputs
locations of bounding boxes for eyes, nose and mouth. The strength of the presented
model, because of the way it was trained, is that it is very robust to difficult face
poses. The initial purpose of this model was to reduce the area of search of a face
in order to better localize facial landmarks. However it is found that there is no
significant improvement when it is used for this goal, thus it is left as a standalone
facial parts detector.

The second machine learning system that is presented is a Facial Landmark Local-
ization model with acronym COREFAN (Convolutional and Recurrent Face Align-
ment Network). The reason behind the name is that the model consists of two parts:
a traditional convolutional network for feature extraction, and a recurrent network
for landmark localization. Although it can be thought as to have two parts, there is
a single model which is trained end-to-end. Facial landmark localization is a term
used to locate a number of predefined points on a person’s face. The purpose of such
systems is to find the pixel coordinates of these points when a face image is given as
input. Facial expressions recognition [22] , 3D face model extraction [22] , head pose
estimation [24] , normalizing face position in the image are some of the use cases of
these systems.

The paper is organized in the following manner. In section 2 and 3 detailed
descriptions of the proposed methods are provided, and at the end of each of these
sections the models were evaluated. Short discussion and comments to existing works
considered as the state of art!, is postponed to the technical sections in order to avoid
background redundancy.

The main contributions of this paper are;

1. A novel way of using Convolutional Neural Networks to produce a seeding vec-
tor for Recurrent Neural Network type architectures is introduced. This is an
uncommon method that is believed to have lots of potential. Furthermore, pro-
posed LSTM architecture is different than usual ones. It shares input weights in
the predefined time intervals which is the index interval for landmarks belongs
to a facial part.

2. It is shown that image augmentation is a very handy operation that can make
trained models more robust to the obstacles that wants to be overcome. To
illustrate, three models were trained using original images from the dataset,
normalized (to canonical pose) version of these images , and randomly scaled,
translated and rotated images. For CFPD, the model trained using augmented
images reduced the failure rate by 33% compared to the model trained using
original images, and 61% compared to the model trained using normalized im-
ages on the IBUG dataset.

'n the current fast progress in DNN applications, the time span for being considered as the state
of art refers usually to few months.
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2. Convolutional Facial Parts Detector — CFPD

In this section a moderate size convolutional neural network model that runs in real
time for facial parts (eyes + eyebrows, nose and mouth) detection is presented. The
model is an independent model that can run on top of any face detector. Its strong
characteristic is that it is very robust to challenging head poses due to the way it
was trained. It takes a face image returned by a face detector as its input, and it
outputs the bounding boxes for each facial part. Initially the model was trained to
reduce the area of search for facial landmarks localization. However, attempts to
build an accurate and efficient facial landmarks detector with the help of facial parts
detector are failed in all of the cases it was tested. Thus, it was left as a separate
detector for real time facial parts detection. Before using a Convolutional Neural
Network (CNN) , the detector had been tried to be built using Histograms of Oriented
Gradients (HOG) [5]. The main reason for that was to reduce the time complexity
of the detection. HOG descriptors extracts the shape information of objects in an
image, and it can be trained to detect any object based on its shape. Although it can
effectively detect many different kind of shapes such as faces, pedestrians, ships; it is
found to be not efficient enough for facial parts detection. The deficiency is not the
fault of HOG descriptors, but the insufficiency of shape information to differentiate
different parts of the face. This has resulted in many false positives as well as wrongly
classified parts (especially for eyes and mouth). Neural networks for computer vision
applications provides more natural solutions than the traditional algorithms. Instead
of trying to find good features manually, they find convenient features automatically
by their own to give better results. Therefore, conventional sliding window approach
mostly gives worse results than non-sliding window approach. The abundance of false
positives are also the implication of sliding window.

2.1. Data Preprocessing

In order to train the CFPD model, the data released for 300W [14] competition is
used. This dataset is collection of images from five datasets (LFPW [2], AFW [24],
HELEN [12], 300W [14], and IBUG [14]). Each image in the dataset comes with
pixel coordinates of 68 facial landmarks. Having the ground truth landmarks for each
image, parts that wants to be detected had been extracted from each image. As
the main goal here was to detect facial landmarks later on, eyebrows are also taken
together with eyes. Although there are 68 landmarks, for this model only a subset of
them are used to locate the top-left, and bottom-right corner of each face part (c.f.
Figure 1).

Having ground truth landmarks for each image in the dataset, the images can
be easily normalized to a canonical pose using affine transformation to get better
accuracy. As a design choice, resolution of the input images is chosen to be 112 x 112.
Each face image in the dataset is scaled to cover the half of the target resolution,

translated to be in the center, and rotated to have a canonical pose. For these actions,
there are three parameters to be found: the scale coefficient, the rotation angle and



334 K. Yuksel, W. Skarbek

Figure 1. Extraction of ground truth bounding boxes from dataset to be used in
training

the translation vector to fill up the transformation matrix:

1 0 T, cos(6) sin(0) 0 Se 0 0
Translation= |0 1 T,|, Rotation= |—sin() cos(d) 0|, Scale=|0 S, 0 (1)
0 0 1 0 0 1 0 0 1

Hence the transformation matrix (composed firstly from translation, then rotation,
and finally of scaling matrices) has the form:

cos(0)S,  sin(0)S,  cos(0)T, + sin(0)T,
T = |—-sin(0)S; cos(6)S, —sin(0)T,+ cos(6)T, (2)
0 0 1

The center of the facial landmarks is set as rotation center. The eye centers is
found using a subset of 68 facial landmarks, and the angle between them is taken as
the rotation angle (c.f. Figure 2).

The scale parameter is found using the width of the face image. The target shape
for network input is 112 x 112, and the desire is to have the face image’s width equal
to half of the target shape’s width. Lastly, the transition parameter is the difference
between rotation center and the target shape’s center. The resulting normalized face
shape is shown in the figure 2.

After data normalization, the model was trained using a CNN. When the model
is tested, it is seen that for the face images that have canonical head pose in the
testing set it had much higher accuracy than the ones that do not have. To avoid
this, artificial images were added by rotation, scaling, translating, and mirroring of
the images from the training set. The parameters were randomly sampled from a
normal distribution. The Figure 3 shows examples from the augmented training set.
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Figure 2. Left: Finding the rotation angle based on eye centers, Right: Normalized
face shape

Figure 3. Data augmentation by rotating, scaling and translating

2.2. Algorithm Description

This subsection gives details of the proposed model for facial parts detection. The
model takes a face image as input and outputs bounding boxes for each face part.
The augmented training set makes the model very robust to difficult head poses and
diverse scales. The feed forward structure of the neural network can be seen from
the Table 1. Transfer learning was not used in either of the models described in
this paper. This means that for both models, network parameters were trained from
scratch.

The convolutional layers learn necessary features, and the fully connected layers
extracts these features for the defined task. The model outputs 16 dimensional vector
where each four dimensions belong to a single part of a face. Each of these four
dimensions give upper left and downer-right pixel coordinates of bounding boxes for
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Table 1. Feed forward structure of CFPD
Layer Input Shape | Output Shape | Filter Shape
input 112 x 112 x 1 112 x 112 x 1 -
conv-1 112 x 112 x 1 112 x 112 x 64 3x3x1,1
conv-2 112 x 112 x 64 | 112 x 112 x 64 3x3x64,1
maxpool-1 | 112 x 112 x 64 56 x 56 x 64 2x2x1,2
conv-3 56 x 56 x 64 56 x 56 x 128 3x3x64,1
conv-4 56 x 56 x 128 56 x 56 x 128 3x3x128,1
maxpool-2 | 56 x 56 x 128 28 x 28 x 128 2x2x1,2
conv-5 28 x 28 x 128 28 x 28 x 256 3x3x128,1
conv6 28 x 28 x 256 28 x 28 x 256 3 x 3 x256,1
maxpool3 | 28 x 28 x 256 14 x 14 x 256 2x2x1,2
fe-1 14 x 14 x 256 1x1x128 -
fc-2 1x1x128 1x1x16 -

different parts. Mean squared error is used as the loss function, and Adam optimizer
[8] with initial learning rate 0.01 ( which was decayed every 10 epochs by 0.4 ) was
chosen to minimize the mse error:

1 12
mse = = 3" (y— 1) 3)
n=1

Although the model was initially trained to reduce the search area for locating facial
landmarks, it was not used for this purpose and left as a standalone facial parts
detector. The reason for that is (partially) because it did not give any significant
improvements compared to the other models. Therefore a better way of aligning
facial landmarks, that will be explained later, had to be developed.

2.3. Experiments

Dataset is split into three parts for training, validating, and testing. The validation
set was used to monitor the progress of learning, and early stop if the model exhibits
overfitting during training. The testing set was also split into three categories to test
the accuracy of the model. The first category is called “common set”, and it consists
of subset of 300W public testing set, namely testing sets of LFPW and HELEN. The
second category is called “challenging set”, as its name refers it consists of challenging
images from IBUG dataset. And the last one is 300W private testing set. Some of
the outputs of the model is given in the figure 4.

With Nvidia GeForge GTX 1050Ti graphics card, single step with batch size of
64 takes approximately 0.5s. Training time of the model can be inferred from this
according to the number of images that are used. The model was also tested with a
camera using Dlib [7] library’s face detector. The fps score of the model can be seen
from 3
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Figure 4. The results of the trained model (CFPD). Up: Randomly sampled images
from the testing set, down: Images that the network gave highest errors.

Table 2. Mean squared error for facial parts obtained for the testing set. Three
models are trained using original images, normalized images (to canonical pose), and
augmented images as described.

Common Set | Challenging Set | W300 Set
Original images 1.371 4.977 2.986
Normalized images 3.005 8.715 4.832
Augmented images 1.112 3.328 2.604

3. Convolutional and Recurrent Facial Alignment Network —
COREFAN

Recurrent Neural Networks (RNN) have been gaining popularity exponentially in
recent years. One of the reasons is that not only RNN evaluates its input(s) instantly,
but also its evaluation depends on the past input(s). Thus, the output is produced
from a collection of information coming from past and present. Its characteristic
feature that separates it from the other Neural Network components, is the concept
of block memory. This parameterized neural block enables solutions of many different
problems such as image captioning [6], language to language machine translation
[1], sentiment classification/analysis [16], video classification on frame level [21], and
others. The proposed model uses one of the modified RNN architecture that is called
Long-Short Term Memory (LSTM).
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Table 3. Fps score of the model when it is tested with a camera.

fps (frames per second)
CFPD ~ 230
Dlib’s face detector =7
Total ~ 6.5

3.1. An example of RNN that inspired the basis of COREFAN

In this subsection, an illustrative example of RNN is discussed. This example is
important for understanding of the proposed architecture. It is commonly used as a
“Hello World” project. The goal of this example is to teach an RNN the sine function.
Since we would like the network to learn the sine function, there is no necessity for
an external dataset, the data can be computer generated.

The first step is to generate the correct output sequences. Our input to the network
will be a subset of the generated sine function in a specific interval [, namely from
time step 7} to time step T34 . Since we want from RNN to generate the next point
in time, the correct output sequence for this time step is going to be the sine function
sampled from the time step T;11 to the time step Tiqi41.

Explanations after this point are written to enlighten why this example is so im-
portant for the proposed face alignment network. Using the trained RNN model,
one can generate new sequences of the training data structure by something called
“seeding”. Instead of inputting a training instance and see what network outputs,
any vector can be used as an input and model’s response can be investigated. For
instance, if we initialize the network with zeros (seed with zeros), and ask from it to
generate new sequences of the trained model for a number of time steps, and next
join the outputs together, we get something like in the figure 5.

Zero seeding to generate a new sequence of the model Seeding with a training instance to generate a new sequence of the model

1.00

sin(T)
°
8

30 20
Time(T) Time(T)

Figure 5. Seeding the trained model with zeros vs with a training instance to
generate new sequences

The important point to notice here is that according to the way the network
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initialized (seeded) the amplitude, the phase and the frequency of the function? is
changed. This detail constitute the basis of the designed face alignment network,
which will be explained in the following subsection.

3.2. Algorithm Description

The idea of training a face alignment network using RNNs came from the sine example
given above (cf. Fig 5). Although RNNs were used to localize facial landmarks before
[17, 19], they are mostly used in the refinement process. The way RNNs are used in
this project is different than the way it was used in these papers.

In MDM [17] authors also used a convolutional neural network for feature extrac-
tion and a recurrent neural network for facial landmarks localization. Their model
starts with an initial estimate of the minimum of the energy landscape to produce a
series of descent directions that iteratively lead to the optimum. The initial estimate
is mean face aligned to the output of a face detector (DAN [9] model also uses initial
face estimation. This is a very common method for face alignment. However, the
method described in this paper does not use any initial estimate of the landmark
coordinates).

In RAR [19] authors also followed the pipeline of cascaded regressions (refining
landmarks’ locations iteratively). Instead of updating all of the landmarks together,
their method instead refines landmarks sequentially using RNN. Authors also intro-
duced two LSTM models namely, attentian LSTM (A-LSTM) and refinement LSTM
(R-LSTM). The purpose of A-LSTM is to identify a reliable landmark as the atten-
tion center. And the purpose of R-LSTM is to sequentially refining landmarks near
or correlated with the attention centers.

Frequency and phase of a sine wave, as function parameters, can change the way
a sine wave looks. Also amplitude of a sine wave can be changed by multiplying
the function with a constant. These are the parameters that changes the shape of
sine function. The idea for the proposed model is: If we stop thinking the facial
landmarks as individual points, and think them as building different shapes when the
subset of them are grouped together (e.g. landmarks for eyebrows, eyes, mouth, nose
and chin), we can train a recurrent neural network to learn these shapes as functions
with parameters, and these parameters change the way these shapes look.

The question is: How to find those parameters for each facial part that is chosen?
In the sine example it is shown that, when the network learns how sine function works,
it produces different shapes of the sine function when it is initialized differently. So
initialization is the key here, it acts as function parameters, to produce different
shapes of facial parts. Therefore, a convolutional neural network can be trained to
extract necessary features from a face image to give the correct initialization values
for desired facial shapes for a particular individual.

The facial landmarks are separated into groups of five classes: Chin, eyes, eye-
brows, nose and mouth. CNN outputs an initialization (seeding) vector S for each

2The frequency modifications make the function more the sine like function, not the original sine
function.
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class, and a feature vector f;; that contains extracted features. Although there are
five different classes/parts, there is not five independent hidden state vectors for each
class. Each part continues to use the latest hidden state vector from previous part as
the initial hidden state vector of itself. The reason for that is because as well as there
is a correlation among the class members, there is one among classes as well. But,
how does the RNN know anything about the extracted features of CNN? The feature
vector f;p is used to initialize the hidden state vectors. Each face part has additional
trainable weights to extract specific features from the general feature vector f; , thus
each part can learn which features are important, combine this information with the
latest hidden state of the previous part, and produce a initial hidden state vector for
itself. The Figure 6 shows the diagram of the proposed method, and the Table 4 gives
the network structure of the CNN part.

The method described in this paper, to the best of our knowledge, is the first
system that uses a CNN to produce a seeding vector to an RNN in order to localize
facial landmarks.

As like the first model, Adam optimizer [8] was used to train the network. The
initial learning rate was set to 0.001 and it was decayed every 20 epochs by 0.5.

Table 4. Feed forward structure of the CNN part of the network (Filter Shape:
(height x width x depth, stride)

Layer Input Shape | Output Shape | Filter Shape
input 112 x 112 x 1 112 x 112 x 1 -
conv-1 112 x 112 x 1 112 x 112 x 64 3x3x1,1
conv-2 112 x 112 x 64 | 112 x 112 x 64 3x3x64,1
maxpool-1 | 112 x 112 x 64 | 56 x 56 x 64 2x2x1,2
conv-3 56 x 56 x 64 56 x 56 x 128 3x3x64,1
conv-4 56 x 56 x 128 | 56 x 56 x 128 3x3x128,1
maxpool-2 | 56 x 56 x 128 | 28 x 28 x 128 2x2x1,2
conv-H 28 x 28 x 128 | 28 x 28 x 256 3x3x128,1
conv-6 28 x 28 x 256 | 28 x 28 x 256 3 x 3 x256,1
maxpool-3 | 28 x 28 x 256 | 14 x 14 x 256 2x2x1,2
conv-7 14 x 14 x 256 14 x 14 x 512 3 x 3 x256,1
conv-8 14 x 14 x 512 14 x 14 x 512 3x3x512,1
maxpool-4 | 14 x 14 x 512 7TXT7x512 2x2x1,2
fc-1 7Xx7x512 1x1x512 -

fe-2 1x1x512 1x1x50 -

The way the feature vector f;;, is included in hidden state calculations is as follows,

ft = U(Wf . [htfla Spart] + bf)7

Cy = tanh(We - [hu—1, Spare] + be),

0oy = U(Wo ' [ht—lv Spart] + bo)v

it = U(Wz : [htfh Spart] + bz)

Ct:ft*ctfl‘f'it*ét

hy = oy x tanh(Cy + Wiy, + fin + bin,)

(4)
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Figure 6. A diagram illustrating the idea of proposed method

Where Spqr: is the seeding vector for the face parts (chin, eyebrows, eyes, nose
and mouth), f;; is the feature vector extracted by the CNN, and the W, and b,
trainable weights and biases for the parts3.

Lastly, to be consistent with other face alignment methods [23] [13] [20] and to
be able to compare the results, the loss function that was used for the network is
landmark location error normalized by the distance between pupils.

3.3. Data Preprocessing

For training the model the same dataset that was used for CFPD (section 2) is used,
and the same data preprocessing steps are followed. The data provided by 300W

3The proposed RNN architecture simulates the time via landmark index. It is presented in an
unfolded form ready to gradient flow at the backward error propagation. However, it differs from
the standard LSTM architectures by sharing input weights in the predefined time intervals. Here
the time interval is the index interval for landmarks included in the same facial part.
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competition comes with the locations of predefined ground truth landmarks. However
these landmarks have to be processed in order to fit our needs. As it was said the
landmarks are grouped into five sets to build different face parts. Every subset of
landmarks for each face part then needs to be processed to build a training sequence.

The seeding parameters for each facial part is coming from the output of CNN.
For sequence length I, CNN outputs 5 x I dimensional vector where each length of size
[ corresponds to seeding parameters for a single facial shape. Since at each time step
we would like to get a single landmark coordinate, the input and output sequence of
the model should share some common values. To illustrate the concept, if we assume
that there are only 10 facial landmarks in each face part, and | = 4, figure 7 show
how the output sequence for training was prepared.

Vector Ground Truth Landmarks

‘ Seeding

t0 1 2 13 4 t5 16 t7 t8 19

Figure 7. Data preprocessing example for a smaller set of ground truth landmarks

3.4. Experiments

In this section extensive evaluation of described model is performed on the same
dataset that was used to evaluate CFPD in subsection 2.3. To test the model two
error measures that was used by other face alignment networks were used:

e the mean distance between the network output and ground truth landmarks
normalized by the inter-ocular distance,

e the mean distance between the network output and ground truth landmarks
normalized by the inter-pupil distance.

Apart from the error measures above, as some of the other models did [9] , area
under the cumulative error distribution curve AUC,, and failure rate of the model is
also tested. The AUC,, is calculated as the area under the cumulative distribution
curve calculated up to a threshold «, then divided by that threshold, and each image
with an inter-ocular normalized error of 0.08 or greater considered to be a failure. The
results are shown in the Table 5 and 7. The separation of the testing set is exactly
the same as it was explained in the subsection 2.3. Lastly, figure 8 shows results on
the randomly selected images from the challenging subset, as well as 4 worst results
based on inter-ocular error.
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Table 5. Comparison of normalized error of different face alignment methods on
the 300-W public testing set

Method Common Set Challenging Set  Full Set
inter-pupil normalization
SDM [20] 5.60 15.40 7.52
ESR [3] 5.28 17.00 7.52
LBF [13] 4.95 11.98 6.32
CFSS [23] 4.73 9.98 5.76
ﬁg]wabkl ot al. 4.62 9.48 5.57
DAN [9] 4.42 7.57 5.03
DAN-Menpo 4.29 7.05 4.83
RAR [19] 4.12 8.35 4.94
cGPRT [11] - - 5.71
COREFAN (Original images) 5.42 12.15 6.73
COREFAN (Normalized images) 7.35 16.74 9.19
COREFAN (Augmented images) 4.87 9.24 5.72
inter-ocular normalization
MDM [17] - - 4.05
ﬁg]wabkl ot al. 3.3 6.56 3.97
DAN [9] 3.19 5.24 3.59
DAN-Menpo 3.09 4.88 3.44
COREFAN (Original images) 3.91 8.40 4.78
COREFAN (Normalized images) 5.30 11.60 6.53
COREFAN (Augmented images) 3.51 6.40 4.07

With Nvidia GeForge GTX 1050T1i graphics card, single step with batch size of
64 takes approximately 0.76s. Training time of the model can be inferred from this
according to the number of images that are used.

4. Conclusions

In this paper, two models for face image analysis are presented. The first model is a
moderate size Face Parts Detector (eye+eyebrows, nose, mouth) that is based on a
convolutional neural network — CFPD, and the second one is a novel Face Alignment
Network that is a combination of a convolutional and a recurrent neural network —
COREFAN.

The first detector takes a face image as input, and it outputs bounding boxes for
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Table 6. Comparison of AUC,, and failure rate of different face alignment methods
on the 300-W public testing set

Method AUCy g Failure(%)
inter-ocular normalization

SDM [20] 12.94 10.89
ESR [3] 43.12 10.45
CFSS [23] 49.87 5.08
MDM [17] 52.12 421
DAN [9] 55.33 1.16
DAN-Menpo [9] 57.07 0.58
COREFAN (Original images) 51.27 0.54
COREFAN (Normalized images) 38.09 13.35
COREFAN (Augmented images) 56.10 0.18

Table 7. Comparison of mean error, AUC,, and failure rate of different face align-
ment methods on the 300-W private testing set

Method Mean Error  AUCyps Failure(%)
inter-ocular normalization

MDM [17] 5.05 45.32 6.80
DAN [9] 4.30 47.00 2.67
DAN-Menpo [9] 3.97 50.84 1.83
ESR [3] - 32.35 17.00
CFSS [23] - 39.81 12.30
COREFAN (Original images) 5.84 32.61 13.5
COREFAN (Normalized images) 7.58 23.52 30.16
COREFAN (Augmented images) 5.12 39.32 6.16

each face part. It can be used on top of any face detector, and its strength is that it
is, because of the way it was trained, very robust to difficult face poses. The model
is tested on the data provided for the 300W competition, and the results are very
satisfying. Even for the challenging subset of the testing set, it gives 3.328 mean
square error.

Recurrent Neural Networks’ characteristic feature is to have a memory, and use
this memory to processing their inputs according to the past information. This allows
very interesting use cases of this type of neural networks. In this paper, a variation
of RNN that is called LSTM is used for face image analysis, and a novel idea of using
convolutional neural networks to produce a seeding vector for RNNs is presented.
Moreover, the proposed architecture it differs from the standard LSTM by sharing
input weights in the predefined time intervals. Here the time interval is the index
interval for landmarks included in the same facial part. The unfolded architecture
makes the gradient flow at the backward error propagation fully specified, contrary to
the traditional architecture unfolding not during the design but during the training
stage.
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Figure 8. The results of the trained model (COREFAN). Up: Randomly sampled
images from the challenging subset, down: Images with highest error based on inter-
ocular normalization.

It is shown that if a convolutional neural network is used to extract features from
a face image in order to produce a seeding vector, an LSTM like network can be used
to recognize shapes of different face parts, and it can adjust these shapes accordingly
for different people and head poses.

We admit that the invariance of the proposed RNN method with respect to varying
pose and light conditions was confirmed only by subjective perceptual tests.
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