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ABSTRACT The parallel learning in neural networks can greatly shorten the training time. Its prior efforts 
were mostly limited to distributing inputs to multiple computing engines. It is because the gradient descent 
algorithm in the neural network training is inherently sequential. This paper proposes a novel CNN parallel 
training method for image recognition. It overcomes the sequential property of the gradient descent and 
enables the parallel training with the speculative backpropagation. We found that the Softmax and ReLU 
outcomes in the forward propagation for the same labels are likely to be very similar. This characteristic 
makes it possible to perform the forward and backward propagation simultaneously. We implemented the 
proposed parallel model with CNNs in both software and hardware, and evaluated its performance. The 
parallel training reduces the training time by 34% in CIFAR-100 without the loss of the prediction accuracy 
compared to the sequential training. In many cases, it even improves the accuracy. 

INDEX TERMS Deep learning, Parallel training, Speculative backpropagation, Training accelerator, 
FPGA 

I. INTRODUCTION 
Artificial neural networks (ANNs) have successfully been 
applied in various applications such as text recognition [1], 
image classification [2], and speech recognition [3]. 
Especially, deep neural networks (DNNs) are drawing 
attention due to its accuracy and practicability in tandem with 
the advancement of computing technology. Large scale 
models in DNN could improve its inference accuracy [4-13]. 
Ciresan et al [6] reported that the prediction performance 
could be greatly improved as the number of model parameters 
such as neurons and layers increases. For example, ResNets [7] 
with more than 100 layers achieved a 3.57% top-5 error rate 
on the ImageNet test set.  

As a DNN model grows in size, there are a large number of 
vector-matrix multiplication (VMM) operations for training. 
The computational complexity of VMM usually grows with 

2( )O n . Thus the computational complexity of larger 
networks increases proportionally with the number of layers 
and parameters. It means that DNN requires a huge amount of 
time for training. Accordingly, many prior works were aimed 
at speeding up the training [13-25]. Some studies [13-15] have 
been pursuing in the direction of the parallel training where 
the multiple devices undertake each portion of the DNN 

computations simultaneously. There are also a few works [18, 
19] for optimizing synchronizations, which occur when 
multiple devices process DNN calculations in parallel. There 
are efforts to develop and utilize DNN hardware accelerators 
for training. HiSilicon [20] introduced a specialized neural 
processing unit (NPU) aimed at processing vector and matrix-
based computations fast, which are common operations in 
deep learning. More recently, Cerebras, a startup company, 
has developed a 16nm wafer-sized processor array [21] for 
training neural networks. Intel also has introduced a neural 
network processor dubbed as Spring Crest [21] with a direct 
proprietary interconnect, with which it avoids passing through 
external memory for the efficient processing of large neural 
networks. 

For training, the forward propagation should proceed before 
the backpropagation. It is because the gradient descent 
algorithm is inherently sequential. The gradient descent 
algorithm is used in the aforementioned studies [7-15] for the 
weight update. In this paper, we propose a novel idea of 
breaking the sequential property of the gradient descent 
algorithm for CNN parallel training. It enables performing the 
forward and backward propagations in parallel. The core idea 
is speculating the forward outcomes for backpropagation. This 
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paper shows that the speculative backpropagation speeds up 
the training time without the prediction accuracy loss (in some 
cases, it even improves the accuracy). We implemented the 
training accelerator in both software and hardware. The 
experiments show that the parallel training reduces the training 
time by up to 38%. The hardware accelerator exhibits a 
superior performance per watt because it only requires a 1.2 % 
of more memory.  

 
II.  RELATED WORK 
There are studies on distributed and parallel DNN training 
using GPUs [18, 19, 22-25]. The parallel training is largely 
divided into data parallelism and model parallelism; The data 
parallelism means that different portions of the input are 
processed in parallel on computing engines where the same 
network model is deployed to. Since each computing engine 
is processing the same DNN with weights and related 
parameters, there is an inevitable synchronization issue. 
Accordingly, several studies were focusing on 
synchronization optimization [18, 19]. Zinkevich et al [18] 
proposed a data-parallel stochastic gradient descent algorithm, 
where the training data is accessed locally and the 
communication occurs at the very end. Feng Niu et al [19] 
studied the lock-free approach by taking advantage of the 
sparse feature of neural networks. Ahn et al [25] proposed a 
virtual shared memory framework in parallel distributed deep 
learning. It enables the memory sharing in remote nodes and 
improves the communication performance via parameter 
sharing. 

The model parallelism means that different layers of the 
network are assigned to different cores. Thus, the data transfer 
occurs after processing assigned layers on each core. Some 
works [22, 24] combined the model parallelism and the data 
parallelism together. DistBelief [22] utilizes 512 cores, each 
of which is assigned a portion of the training data and hidden 
layers. Then, it performs asynchronous weights update with 
the centralized parameter server. Krizhevsky [24] proposed 
applying the data parallelism to convolutional layers and the 
model parallelism to fully connected layers in CNN.  

There are also prior works on the hardware accelerators for 
speeding up the training [26-29]. Qiu et al [26] proposed a 
method to reduce the resource consumption of the convolution 
operation for large-scale image classification and evaluated its 
performance using FPGAs. Gaunt et al [27] proposed the 
DNN training accelerator by applying synchronous and 
asynchronous pipelines for speeding up the training. There are 
some research works employing low-bit quantization for ANN 
weights and activations [30, 31]. Such a quantization greatly 
reduces the model size and computational complexity, making 
it suitable for hardware implementation. S. Fox et al [32] 
implemented a training accelerator based on 8-bit integer 
operations. It processes the forward and backward 
computations on FPGA with 8-bit integers, while the weight 
update computation is processed in full-precision on an ARM 
processor. L. Yang et al [33] implemented a binarized neural 

network (BNN) on FPGA, which replaces the original binary 
convolution layer with two parallel binary convolutional 
layers for fast inference. These previous studies [22-33] follow 
the sequential order in processing according to the gradient 
descent algorithm. 

There are several studies on breaking the forward and 
backward dependency for speeding up the training [34-36]. 
Jaderberg et al [34] proposed removing the locking in 
backpropagation by employing additional neural networks to 
approximate gradients. In the backward pass, all neurons use 
the approximated gradients to update weights, through which 
it avoids incurring a delay. Nøkland et al [35] broke the local 
dependencies between successive layers in the backward pass. 
They used the direct feedback alignment (DFA) where the 
hidden layers receive the error information from the output 
layer directly using a random matrix. Our work is different in 
that the history information (instead of the random matrix in 
[35]) is used for the weight update, and the additional neural 
networks in [34] are not required. 

III. THE NEURAL NETWORK TRAINING 
ANN is a group of multiple neurons and each neuron is 
connected to the next layer neurons through the weights. ANN 
can be trained to infer the target outputs based on inputs. The 
convolutional neural network (CNN) is one type of ANNs and 
is prevalently used in the image recognition. It is because CNN 
trains the filters capturing the spatial features from an input 
image. For the neural network training, three sequential 
operations are performed: forward propagation, 
backpropagation, and weight update. In the forward 
propagation process, input data is propagated from the input 
layer to the output layer; Each neuron computes a weighted 
sum of the inputs from the connected neurons in its prior layer, 
and then adds it with a bias, as shown in Eq. (1). Its output 
goes through an activation function in Eq. (2) that determines 
data to pass to the next layer. The widely used activation 
functions are Rectified Linear Unit (ReLU), Tanh, and 
Sigmoid. The ReLU is especially used in many ANNs because 
it effectively reduces the computation cost. The ReLU 
propagates zero to the next layer when the input is negative, 
and otherwise bypasses the input value to the next layer. CNN 
has pooling layers, which reduce the dimensions of the data by 
combining the outputs of the neurons. Max pooling selects the 
maximum value of neurons from its prior layer and propagates 
it to the next layer. Average pooling takes the average from a 
cluster of neurons at its prior layer. In the output layer, the 
Softmax function in Eq. (3) is widely used in the deep learning 
architecture [37-39]. It computes the probability distribution 
of outcomes ( oyz ). 
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where 1 ,1i N l O£ £ £ £ (i, j, z, k = neuron index, l = layer index) 
 

The backpropagation is used to adjust the weights ( l
ijw ) by 

calculating derivatives. This phase begins from the output 
layer, which is based on Softmax in our work. The derivative 
in the output layer is expressed in Eq. (4). It calculates the 
difference between the forward propagation outcome ( o

zy ) 
and target output ( zt ). The derivative of the error with respect 
to the weight is calculated with Eq. (5). The derivative of the 
ReLU activation function is calculated with Eq. (6), which is 
zero when the outcome of Eq. (2) is zero, and one otherwise. 
In the max pooling, the error is passed back to the next layer 
from the winning neuron which has a maximum value in the 
forward pass. All the other neurons get a zero gradient. In the 
average pooling, the error is computed by dividing by the 
pooling size. 
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In the ANN training, the weights are adjusted based on the 
errors computed in the backpropagation. First, l

ijwD is 
calculated by multiplying the result of the backpropagation l

id
and the result of the forward propagation 1l

jy - , as shown in Eq. 
(7). Weights ( l

ijw ) are then updated according to the learning 
rate h , which determines the degree of learning in Eq. (8). 
This process is repeated for all the weights. 

1l l l
ij i jw yd -D =  (7) 

l l l
ij ij ijw w w h= - D  (8) 

IV.  SPECULATIVE BACKPROPAGATION 
In the ANN training, the backpropagation is performed based 
on the forward propagation outcomes. It means that the 
backpropagation can be carried out only after the forward 

propagation is finished. However, if it is feasible to speculate 
the forward outcomes in advance, the backpropagation can 
be performed simultaneously with the forward computation. 
We have found one interesting behavior in the ANN training 
that makes the speculation possible; The Softmax and ReLU 
outcomes for the same labels in the temporally near-forward 
propagations tend to be very similar. Thus, the previous 
forward outcomes can be used for the current 
backpropagation. Figure 1 illustrates the comparison 
between the typical sequential training scheme and the 
proposed parallel method. In the typical training scheme 
shown in Figure 1(a), the backward computation is 
performed only after the forward propagation. In our 
proposed method shown in Figure 1(b), the forward and 
backward computations occur at the same time. The 
backward propagation in Figure 1(b) is based on the 
accumulated previous forward outcomes, which is detailed in 
Section IV-A and Section IV-B. To demonstrate its 
feasibility and practicability, we experimented with two 
types of CNN models: modified LeNet [9] and VGG16 [10], 
where the ReLU, Softmax, and average pooling are used. The 
MNIST handwritten and fashion [40], and the CIFAR-10 and 
CIFAR-100 [41] were used for the LeNet and VGG16, 
respectively. We used a Weight decay, Adam [42], Dropout 
and Data augmentation techniques for training the CIFAR 
datasets to improve the training accuracy. The batch size is 
32 for both MNIST and CIFAR. 
 
A.  SPECULATION OF SOFTMAX OUTCOMES IN 
OUTPUT LAYER  
During the ANN training process, the inputs with the same 
label are very likely to generate similar Softmax outcomes. 
To demonstrate the similarity, we use a metric, called the 
mean-difference. The mean-difference is the average of the 
differences between Softmax outcomes for the inputs with 
the same label. For example, assuming that there are four 
neurons in the output layer, let’s say that the current Softmax 
outcomes for the label 2 are 1 0.1,Oy = 2 0.7,Oy = 3 0.1,Oy =
and 4 0.1Oy = . In the next training step, if the Softmax 
outcomes for the same label are 1 0.05,Oy = 2 0.74,Oy =

3 0.14,Oy = and 4 0.07Oy =  the mean difference is 0.04 (=
(0.05 0.04 0.04 0.03) / 4+ + + ).  

Figure 2 shows the mean-difference distribution during the 
training process. For 95% of MNIST handwritten in Figure 2 
(a), the mean-difference is smaller than 0.02. For roughly 90% 
of input images in the MNIST and CIFAR, it is smaller than 
0.1. Moreover, as the training progresses, the mean-
difference becomes smaller and smaller. In the epoch #30 of 
the Handwritten, Fashion and CIFAR-10, it is smaller than 
0.1 for 99.4%, 92.7% and 95.2% of the input data, 
respectively. Figure 2 (d) reports the mean-difference for 
CIFAR-100, which requires more training steps than the 
other datasets. In the epoch #90 of the CIFAR-100, it is 
smaller than 0.018 for 94.7% of the input data. Note that the FIGURE 1.  a) Backpropagation ONLY after forward propagation 

b) Simultaneous execution of forward and backward propagations with the 
speculative backpropagation. 
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mean difference in the x-axis of Figure 2 (d) is relatively 
small compared with the other datasets.  

The similarity of the Softmax outcomes for the same labels 
means that the past result could be used in the current 
backpropagation. To take advantage of this behavior, we store 
the Softmax output per label when the forward propagation 
finishes. In supervised learning, the label is provided with the 
input data. Thus, it can be used to read the stored Softmax 
outcomes for inputs with the same label, and the backward 
propagation is initiated with the past stored data. Figure 3 
shows an example of how the speculative backpropagation is 
performed in parallel when the input image and its label (a 
number 7) are provided as an input. At time t(i), the forward 
propagation processes a current input image. At the same time, 
the stored data (red neurons in Figure 3) for the same label is 
used for the backpropagation.  

Even though the speculated data ( 'oy ) is similar to the 
current Softmax output ( oy ) in general, it is important to 
perform speculation more accurately because the difference 
directly affects the training performance. We found that Eq. (9) 
considering both the most recent forward outcome and the 
history of the forward computations helps reduce the 
difference. In other words, Eq. (9) accumulates all the Softmax 
outcomes so far. a and b are weights for the most recent 
outcome and the previous history, respectively. In general, 
settinga and b to 0.5 works well across all the datasets, and 
there is room for improvement by adjusting a and b as 
discussed in Section VII. In the MNIST, a more weight on the 

accumulated Softmax outcome ( 'oy ) achieves roughly 0.2% 
smaller mean-difference (a = 1/3, b = 2/3). On the other 
hand, in the CIFAR, the mean-difference was roughly 0.4% 
smaller when giving more weight to the most recent Softmax 
outcome (a = 2/3, b = 1/3).  

' '( ) ( )o o oy y ya b= + where ( 1)a b+ =  (9) 

oy = current Softmax outcome, 'oy = accumulated Softmax outcome 
 
Nevertheless, there are still cases where there is a large 

difference between speculated and actual data. In these cases, 
we treat it as the wrong speculation, and perform the 
backpropagation again with the current Softmax outcome. 
More elaborately, the difference between the speculated and 
the actual data is computed before calculating Eq. (7) for the 
weight update. It is because the actual one is available at the 
end of the forward computation. If the difference is larger than 
a threshold, the speculated execution is nullified and the 
backpropagation is performed again with the actual data 
(yellow neurons in Figure 3). Thus, the performance of the 
speculative backpropagation is dependent upon the threshold, 
and Section VI reports the performance trade-off and 
sensitivity on thresholds. 

 
B.  SPECULATION OF RELU OUTCOMES IN HIDDEN 
LAYER 
ReLU is one of the most widely used activation functions in 
ANN. It tends to create a sparse ANN, where some neurons 
are never activated [43]. We take it as an opportunity for 
parallel training. While training ANN, we found a 
characteristic that activated neurons in the past are more likely 
to be activated in the future for inputs with the same label. 
Table 1 - 4 show our experiment outcomes showing the 
probability that the same neurons are activated in the previous 
and current forward propagations, according to the MNIST 
and CIFAR datasets. As the training progresses, the activation 
probability of the same neurons increases. In the epoch #30 of 
the Handwritten, Fashion and CIFAR-10, the activation 

 

FIGURE 2.  Mean difference distribution of Softmax outcomes for the 
same label inputs; (a) and (b) are for the MNIST dataset, (c) and (d) are 
for the CIFAR dataset. 

 

FIGURE 3.  Parallel execution of forward and backward computations 
with speculative backpropagation, which uses the accumulated 
previous forward outcomes. The red neurons are accumulated Softmax 
outcomes until time t(i-1), and the blue neurons are previous ReLU 
outcomes. These are used for speculative backpropagation at time t(i), 
instead of using current forward outcomes (yellow and green neurons). 
Note that the weights in time t(i) are used to perform the speculative 
backpropagation. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

 

VOLUME XX, 2020      

probabilities of the same neurons are 82.7%, 88.8%, and 83.7% 
on average, respectively for all convolution layers. In the 
epoch #90 of the CIFAR-100, the activation probability of the 
same neurons is 87.8% on average. The activation 
probabilities of the first few convolution layers for the CIFAR 
are relatively lower than the MNIST. It is because the data 
augmentation is applied only for CIFAR datasets, and it 
randomly changes the training input to increase the diversity 
of data available for training. In a fully connected layer, the 
activation probabilities of the same neurons are more than 80% 
for all datasets. This characteristic makes it possible to 
speculatively perform the backpropagation. 

Equation (6) in the backpropagation computes the 
derivative of the activation function. Unlike other activation 
functions such as tangent and sigmoid, ReLU has a slightly 
different derivative property. The derivative of tangent and 
sigmoid requires a real number computed in the forward step. 
However, the derivative computation of the ReLU only 

demands whether the neuron is activated or not in the forward 
phase. Thus, if the binary result (activated or non-activated) of 
ReLU in the forward step can be speculated, its derivative in 
Eq. (6) can be performed simultaneously with the forward 
propagation. Based on this observation and the high activation 
probability of the same neurons, Eq. (6) can be computed 
speculatively. We store the ReLU outputs ( ( )l

jf u ) per label in 
the hidden layers when the forward propagation finishes. Then, 
the speculative backpropagation is performed using the stored 
values (blue neurons in Figure 3). As mentioned in Section IV-
A, if the speculation turns out to be wrong, then it normally 
performs the backpropagation with the current ReLU 
outcomes (green neurons in Figure 3). 

 
C.  SPECULATION OF DERIVATIVE OUTCOMES IN 
POOLING LAYERS 
There are two common pooling methods in CNNs; Max 
pooling and Average pooling. In the max pooling, the gradient 
is passed back to the next layer to the winning neuron in the 
forward pass. All the other neurons get zero gradients. 
Therefore, the position of the winning neuron should be 
predicted for the speculative backpropagation. In the average 
pooling, the output gradient is calculated by dividing the input 
gradient by the pooling size. Thus, it does not require any 
speculation. Our work uses the average pooling and leaves the 
max pooling as future work. Thus far, all the ingredients for 
the speculative backpropagation for the CNNs have been 
addressed.  

V.  IMPLEMENTATION AND OPTIMIZATION OF HW 
PARALLEL TRAINING  
This section reports the implemented hardware design of 
LeNet with the proposed parallel training. 
 
A.  EXPERIMENTAL ENVIRONMENT 
For prototyping the hardware implementation, we used a 
ZCU102 FPGA board, which is based on Zynq UltraScale+ 
MPSoC with a 4GB DDR4. The UltraScale+ is composed of 
the processing system (PS) and programmable logic (PL) 
sections: The PS has a quad-core Cortex-A53 processor 
operating at 1.5 GHz. The PL is configured with the 
hardware accelerator in our work. SDSoC 2019.1v [44], a 
CAD tool from Xilinx, is used for hardware and software 
implementation. It provides the capability of automating the 
system-level integration for C/C++/OpenCL code, targeting 
the Zynq programmable SoCs. The system-level integration 
includes the software-to-hardware translation, its device 
driver generation, and kernel creation; Users can specify 
software functions to be translated to hardware in SDSoC.  

B.  IMPLEMENTATION AND OPTIMIZATION 
We implemented LeNet with the average pooling using the C 
language. The ReLU and Softmax are used in the hidden and 
output layers, respectively. We designed two C functions 
performing the forward propagation and the speculative 
backpropagation. Then, the C functions were translated to 
hardware by the SDSoC. Two directives are used to generate 

TABLE I 
MNIST HANDWRITTEN (LENET)  

Epochs 

ACTIVATION PROBABILITY  
OF THE SAME NEURONS 

CONV. 
LAYER #1 

CONV. 
LAYER #2 

CONV. 
LAYER #3 

FULLY 
CONNECTED 

LAYER #1 
10 81.5% 74.7% 82.1% 85.6% 
20 82.8% 77.3% 82.4% 85.2% 
30 84% 78.1% 85.9% 86.2% 

TABLE 2 
MNIST FASHION (LENET)  

Epochs 

ACTIVATION PROBABILITY  
OF THE SAME NEURONS 

CONV. 
LAYER #1 

CONV. 
LAYER #2 

CONV. 
LAYER #3 

FULLY 
CONNECTED 

LAYER #1 
10 94.5% 86.9% 87.2% 85.9% 
20 94% 84.4% 84.6% 83.2% 
30 95.1% 85.1% 86.1% 84.1% 

TABLE 3 
CIFAR-10 (VGG16)  

Epochs 

ACTIVATION PROBABILITY  
OF THE SAME NEURONS 

CONV. 
LAYER #4 

CONV. 
LAYER #8 

CONV. 
LAYER #12 

FULLY 
CONNECTED 

LAYER #1 
10 65.7% 70.2% 94% 80.1% 
20 66.4% 78.8% 97.2% 84.2% 
30 67.8% 78.9% 98.4% 84.6% 

TABLE 4 
CIFAR-100 (VGG16) 

Epochs 

ACTIVATION PROBABILITY  
OF THE SAME NEURONS 

CONV. 
LAYER #4 

CONV. 
LAYER #8 

CONV. 
LAYER #12 

FULLY 
CONNECTED 

LAYER #1 
30 73% 70.2% 89.8% 80% 
60 77.8% 72.5% 93.7% 86.2% 
90 80.1% 72.4% 95% 88.8% 
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the target hardware: #pragma async to generate two different 
hardware operating in parallel and #pragma pipeline to create 
the pipelining for maximal throughput. The synthesized 
accelerator operates at 100MHz, and the S/W portion in the 
application is processed on the Cortex-A53 in the PS. 

Table 5 shows the resource utilization and performance of 
implemented hardware. The forward computation takes 
roughly 44ms on UltraScale+, and there is a 1,186,900-cycle 
difference in the execution latency between the forward 
propagation and speculative backpropagation (4,465,266 and 
3,278,366 cycles, respectively). The difference comes from 
the fact that the forward propagation performs more 
computations than the one in the backpropagation. 
Specifically, the forward propagation requires computations in 
Eq. (1) from the input layer to the first hidden layer, whereas 
there is no computation in the opposite direction in the 
backpropagation. Since the weight update requires both 
forward and backward outcomes as in Eq. (7), this difference 
makes the weight update wait for the forward computation to 
complete. Thus, the backpropagation hardware becomes idle 
for 1,186,900 cycles.  

There is an opportunity to balance the latencies and 
consequently reduce the overall training time. All the weight 
updates in Eq. (7) require the forward propagation outcomes, 
except the weights between the input and the first hidden 
layers; Specifically, all weights are updated based on 

l l
ij iw dD = × 1l

jy - where 1l
jy - is the forward propagation 

outcome and l
id is the backpropagation outcome. However, 

the weights between the input and the first hidden layer are 
updated based on 1 1

ij iw dD = × 0
jy , where 0

jy is an input image. 

Thus, when the backpropagation is completed early,  1
ijwD  can 

be computed during otherwise idle time. Figure 4 compares 
without and with the optimized scheme. In Figure 4(a), the 
weight update computation is performed only after the 
forward propagation. In the optimized version shown in Figure 
4(b), the weight update of the first layer is computed right after 
the backpropagation. The last row of Table 5 reports the 
optimized version and shows a similar execution latency to the 
forward computation, which reduces the overall training time.  

VI. EVALUATION 
This section compares the performance of the parallel training 
accelerator of LeNet against the baseline. The baseline is a 
training accelerator without speculation. The baseline 
accelerator was implemented with SDSoC as well. We also 
implemented the VGG16 using C language with OpenMP and 
CUDA framework for the parallel training of the CIFAR-10 
and CIFAR-100, and evaluated their performance using a 32-
core AMD 3970X based machine with 64GB main memory 
and GeForce 2080Ti GPU. We report the training 
performance according to the thresholds mentioned in Section 
IV-A. 

Figure 5 reports the accuracies with speculative 
backpropagation according to thresholds. Figure 5(a) shows 
accuracies for the Handwritten. When the threshold is set to 
0.1, the parallel training was more accurate than the baseline; 
the accuracy is 99.1%, which is even superior to the baseline 

FIGURE 5.  Accuracies with speculative backpropagation scheme 
according to thresholds. The threshold is the speculation allowance 
range, which is the difference between the speculated and the actual 
Softmax outcomes. 

FIGURE 4. a) Without optimization, there is a latency imbalance between 
forward and backward processes, b) With optimization, it reduces the 
overall training time by balancing the forward and backward computations. 

TABLE 5 
RESOURCE UTILIZATION AND EXECUTION TIME OF HARDWARE 

ACCELERATORS ON ZYNQ ULTRASCALE+ 

Hardware 
Accelerators  

#BRAMs 
(18Kbit) 

#DSPs 
(48E) #FFs #LUTs Maximum 

Frequency 

Execution 
Cycle at 
100MHz 

Forward 
propagation 

62 
(3%) 

31 
(1%) 

28,938 
(5%) 

32,713 
(11%) 273MHz 4,465,266 

cycles 

Speculative 
backpropagat

ion 

206 
(11%) 

5 
(~0%) 

29,634 
(5%) 

26,795 
(9%) 287MHz 3,278,366 

cycles 

Optimized 
speculative 

backpropagat
ion 

210 
(11%) 

8 
(~0%) 

31,402 
(5%) 

29,073 
(10%) 274MHz  4,298,658 

cycles 
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98.6% (0.5% improvements). Figure 5(b) shows the 
accuracies for the Fashion. With the threshold set to 0.14, there 
is also an accuracy enhancement by 0.5% to 88.1% compared 
with the baseline 87.6%. Figure 5(c) shows the training 
accuracies for the CIFAR-10. When the threshold is set to 0.05, 
the accuracy is improved by 0.2% to 88.1% compared with the 
baseline 87.9%. Figure 5(d) shows the training accuracies for 
the CIFAR-100. With the threshold set to 0.01, there is no 
accuracy loss compared with the baseline (70.2%). When the 
threshold is set to 0.004, the accuracy is even improved by 0.4% 
to 70.6%.  

While a lower threshold improves the accuracy, it increases 
the number of miss speculations because the speculation 
allowance range becomes smaller. Tables 6-9 show the miss 
speculation rates according to thresholds. In Table 6 for 
Handwritten. the miss speculation rate in epoch #10 is 4.1%, 
with the threshold set to 0.1. In Table 7 for Fashion, the miss 
speculation rate in epoch #50 is 27.7%, with the threshold of 

0.14. Table 8 is for CIFAR-10. When the threshold is set to 
0.05, the miss speculation rate in epoch #50 is 9.4%. Table 9 
is for CIFAR-100. With the threshold set to 0.004, the miss 
speculation rate in epoch #300 is 5.9%. As the epoch 
progresses, the miss speculation rate decreases in all datasets. 
This is because, as the network gets trained, the difference in 
Softmax outcomes for the same label becomes smaller, as 
shown in Figure 2. 

Note that the miss speculation rates for CIFAR-10 and 
CIFAR-100 are smaller than MNIST fashion. We believe that 
it comes from the Adam optimization technique, which takes 
advantage of the momentum by using the moving average of 
the gradients instead of the gradient itself like stochastic 
gradient descent (SGD). The training with considering the 
previous gradients could lead to the smaller differences in 
Softmax outcomes for inputs with the same label. Compared 
with the training without Adam, it reduces the miss 
speculation rate by 7.1% and 8.9% with the threshold set to 
0.1 and 0.004 for the CIFAR-10 and CIFAR-100, respectively.  

The miss speculation rate in turn influences the execution 
time for the parallel training. It is because the proposed 
method performs the normal training upon a miss speculation. 
Figure 6 shows normalized execution times of the parallel 
training over the baseline according to thresholds. With the 
thresholds set to 0.25 and 0.22 for Handwritten and Fashion, 
the training times were reduced by 1.38x and 1.28x over the 
baseline, respectively. With the threshold set to 0.15 for 
CIFAR-10, the performance is enhanced by 1.34x over the 
baseline. When the threshold is set to 0.01 for CIFAR-100, the 
performance is improved by 1.35x over the baseline. The last 

FIGURE 6.  Normalized execution times of parallel training over 
baseline (baseline is the training without speculation) 

TABLE 6 
MNIST HANDWRITTEN (LENET) 

Thresholds 
MISS SPECULATION RATE 

Epoch 
#2 

Epoch 
#4 

Epoch 
#6 

Epoch 
#8 

Epoch 
#10 

0.25 9.9% 6.3% 5.6% 3.8% 2.6% 
0.2 10.8% 6.9% 5.9% 4.1% 3.1% 
0.15 11.5% 7.3% 5.8% 4.2% 3.2% 
0.1 13.7% 8.4% 6.5% 4.9% 4.1% 

TABLE 7 
MNIST FASHION (LENET) 

Thresholds 
MISS SPECULATION RATE 

Epoch 
#10 

Epoch 
#20 

Epoch 
#30 

Epoch 
#40 

Epoch 
#50 

0.22 26.6% 24.8% 23.1% 23.0% 22.3% 
0.18 30.1% 29.6% 27.5% 26.5% 25.1% 
0.14 35.3% 32% 31.7% 29.2% 27.7% 
0.1 39.2% 36.8% 34.9% 32.1% 30% 

TABLE 8 
CIFAR-10 (VGG16) 

Thresholds 
MISS SPECULATION RATE 

Epoch 
#10 

Epoch 
#20 

Epoch 
#30 

Epoch 
#40 

Epoch 
#50 

0.15 8.4% 7.5% 5.7% 4.8% 2.8% 
0.1 13.3% 11.1% 9% 6.4% 3.6% 

0.05 28.5% 23.3% 17.9% 13.4% 9.4% 
0.03 43.1% 36% 28.8% 21.7% 16.2% 

TABLE 9 
CIFAR-100 (VGG16) 

Thresholds 
MISS SPECULATION RATE 

Epoch 
#60 

Epoch 
#120 

Epoch 
#180 

Epoch 
#240 

Epoch 
#300 

0.01 8.9% 2.8% 2.2% 2.1% 2.1% 

0.008 10.0% 3.3% 2.1% 2.3% 2.2% 

0.006 12.1% 4.8% 3.4% 3.6% 3.4% 

0.004 17.2% 7.6% 5.7% 6.0% 5.9% 

0.002 30.0% 15.2% 12.2% 12.8% 12.6% 
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epoch benefits comparably more from the speculative 
execution due to the lowest miss speculation rate in all datasets. 

Table 10 shows the resource utilizations and power 
consumption of the hardware accelerators on Ultrascale+. In 
terms of the resource utilization, there is almost no difference 
between the parallel accelerator and the baseline. This is 
because the parallel accelerator is composed of roughly the 
same components as the baseline; Both accelerators should 
perform the two operations (forward and backward 
propagations) anyway. In tandem with the similar resource 
utilizations, the power consumption is also similar in both 
accelerators. Therefore, the parallel accelerator offers a better 
performance per watt than the baseline, due to its higher 

accuracy with a faster training speed. The amount of resources 
in Table 10 is a little higher than the one in Table 5. For 
example, the parallel accelerator utilizes a 23.9% of FFs and 
33.4% of LUTs on Zynq UltraScale+. It is because the 
hardware components such as AXI interconnects and DMA 
engines are required for the full system integration and 
operation. 

VII. DISCUSSION 
There are some design considerations when architecting and 
designing a parallel training accelerator. The performance of 
the parallel accelerator depends on the speculation accuracy. 
It comes from the similarity of the Softmax and ReLU 
outcomes for the same label. The proposed equation (Eq. (9)) 
reflects the history of Softmax outcomes. In Equation (9), 
giving more weight to the accumulated Softmax means that it 
could reflect the history well but does not train sensitively with 
the recent input. Conversely, giving more weight to the current 
Softmax means that it could train sensitively with the recent 
input but the history would not be properly reflected.  
Therefore, we believe that the proper balancing is important. 
With setting both a and b to 0.5, the speculative 
backpropagation works well for all datasets. To find out 
additional room for improvement, we experimented with 
different pairs of a  and b . Table 11-13 summarize the 

TABLE 10 
OVERALL RESOURCE UTILIZATION AND POWER CONSUMPTION OF 

TRAINING ACCELERATORS ON ZYNQ ULTRASCALE+ 

Hardware 
Accelerators  

#BRAMs 
(18Kbit) 

#DSPs 
(48E) #FFs #LUTs 

Power 
Consu
mption 

Baseline 
accelerator 

258 
(28.34%) 

36 
(1.43%) 

131,184 
(23.93%) 

91,756 
(33.41%) 4.624W 

Parallel 
accelerator 

258 
(28.34%) 

36 
(1.43%) 

131,184 
(23.93%) 

91,841 
(33.48%) 4.636W 

TABLE 11 
THE PARALLEL TRAINING PERFORMANCE ACCORDING TO DIFFERENT PAIRS OF a AND b  FOR MNIST HANDWRITTEN: THE NORMALIZED 

EXECUTION TIMES AND ACCURACIES ARE FOR THE EPOCH #10 WITH THE THRESHOLD 0.1.  

Hyperparameters value 
0.1

0.9

a

b

=

=
 

0.2

0.8

a

b

=

=
 

0.3

0.7

a

b

=

=
 

0.4

0.6

a

b

=

=
 

0.5

0.5

a

b

=

=
 

0.6

0.4

a

b

=

=
 

0.7

0.3

a

b

=

=
 

0.8

0.2

a

b

=

=
 

0.9

0.1

a

b

=

=
 

1.0

0.0

a

b

=

=
 

Likelihood (<0.1) 93.2% 96.8% 98.5% 98.3% 98.3% 98.3% 98.3% 97.9% 97.7% 97.4% 
Normalized execution 

times of parallel 
training over baseline 

1.338x 1.353x 1.36x 1.358x 1.358x 1.359x 1.358x 1.356x  1.356x 1.354x 

Accuracies with the 
validation set 98% 98.4% 99% 98.9% 99% 98.9% 98.9% 98.2% 97.7% 97% 

TABLE 12 
THE PARALLEL TRAINING PERFORMANCE ACCORDING TO DIFFERENT PAIRS OF a AND b  FOR CIFAR-10: THE NORMALIZED EXECUTION TIMES 

AND ACCURACIES ARE FOR THE EPOCH #50 WITH THE THRESHOLD 0.1.  

Hyperparameters 
value 

0.1

0.9

a

b

=

=
 

0.2

0.8

a

b

=

=
 

0.3

0.7

a

b

=

=
 

0.4

0.6

a

b

=

=
 

0.5

0.5

a

b

=

=
 

0.6

0.4

a

b

=

=
 

0.7

0.3

a

b

=

=
 

0.8

0.2

a

b

=

=
 

0.9

0.1

a

b

=

=
 

1.0

0.0

a

b

=

=
 

Likelihood (<0.1) 81.9% 85% 89.6% 93.5% 93.6% 93.6% 94% 93.2% 93% 92.2% 
Normalized 

execution times  1.285x 1.302x 1.312x 1.334x 1.335x 1.335x 1.336x 1.331x 1.33x 1.327x 

Accuracies  87.6% 87.7% 87.8% 87.9% 88.1% 88% 88% 87.9% 87.4% 87% 

TABLE 13 
THE PARALLEL TRAINING PERFORMANCE ACCORDING TO DIFFERENT PAIRS OF a AND b FOR CIFAR-100: THE NORMALIZED EXECUTION TIMES 

AND ACCURACIES ARE FOR THE EPOCH #300 WITH THE THRESHOLD 0.01.  

Hyperparameters 
value 

0.1

0.9

a

b

=

=
 

0.2

0.8

a

b

=

=
 

0.3

0.7

a

b

=

=
 

0.4

0.6

a

b

=

=
 

0.5

0.5

a

b

=

=
 

0.6

0.4

a

b

=

=
 

0.7

0.3

a

b

=

=
 

0.8

0.2

a

b

=

=
 

0.9

0.1

a

b

=

=
 

1.0

0.0

a

b

=

=
 

Likelihood (<0.01) 94.1%  96.7%  97.6% 97.6% 97.8% 98% 98.1% 97.9% 97.8% 97.5% 
Normalized 

execution times 1.33x 1.342x 1.346x 1.346x 1.348x 1.349x 1.35x 1.349x 1.347x 1.345x 

Accuracies  69.7% 69.7% 69.8% 69.8% 70.1% 70.1% 70.2% 69.8% 69.6% 69.3% 

* With a = 0 and b = 1, almost all speculations fail because the accumulated Softmax outcome ( 'oy ) is not changed according to Eq. (9).  
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performance differences. The likelihood in Tables means the 
probability that the mean-difference is less than 0.1 and 0.01. 
As shown, the performance differences are negligible 
according to different pairs of a and b ; The likelihood is the 
highest when a = 0.3 and b = 0.7 for MNIST and when a
= 0.7 and b = 0.3 for CIFAR-10 and CIFAR-100. However, 
it reduces the training time roughly by 0.2% with the similar 
accuracies. Therefore, it would be optional to tune a and b
for small improvements using optimization techniques such as 
Bayesian optimization.  

Another important factor to consider is the trade-off 
between the training time and accuracy. It depends on the 
thresholds, i.e., speculation allowance range. If it is more 
sensitive to accuracy, the threshold should be set to a 
minimum. On the other hand, if sensitive to the training time, 
it should be set to a higher value. According to our 
experiments, the reciprocal of the number of classes in the 
dataset can be a good candidate for the threshold. Figure 5 and 
Figure 6 report the performance for the datasets. With the 
threshold of 0.1 for the datasets with 10 classes (MNIST and 
CIFAR-10), there are accuracy improvements by 0.5% and 0.1% 
for MNIST handwritten and CIFAR-10, respectively, and 
there is no accuracy loss in case of the MNIST fashion. The 
training times were reduced by 1.35x, 1.24x and 1.32x over 
the baseline for MNIST handwritten, fashion and CIFAR-10, 
respectively. With the threshold set to 0.01 for the dataset with 
100 classes (CIFAR-100), it reduces the training time by 1.35x 
with no accuracy loss.  

We found that the performance of the speculative 
backpropagation is closely related to the optimization 
techniques in training. In our experiments, when training 
VGG16 with Adam, the miss speculation rate was reduced by 
7.1% and 8.9% with CIFAR-10 and CIFAR-100, respectively. 
It means that the optimization techniques can shorten the 
training time with less miss speculation. The parallel training 
also tends to show a better accuracy compared with the 
baseline. We believe that it is because the speculative 
backpropagation has an effect of regularizing the model. A 
common type of regularization is to inject noises during the 
training process. The noise is typically added to inputs, 
weights, gradients, and even activation functions. This kind of 
technique is frequently adopted in many applications for the 
performance improvement [45]. Our technique has a similar 
effect of adding noises to gradients and activation function by 
speculation.  

Our proposed approach breaks the sequential flow of 
forward and backward propagations and enables the parallel 
execution. There are two approaches in implementing the 
parallel training: software-based training with GPUs and 
hardware-based training with the accelerator. When training 
with GPUs, our method requires higher power consumption 
and more memory at a certain point in time in return for the 
faster training. It is because the forward and backward passes 
are performed simultaneously. When implementing the 
hardware accelerator, the memory access for loading weights 

has a huge impact on the training time [46, 47]. For the fair 
comparison of the training time with the parallel accelerator, 
we implemented the baseline accelerator with forward and 
backward passes with separate BRAMs in hardware. Our 
method enables the efficient utilization of the forward and 
backward hardware resources. Nevertheless, the parallel 
accelerator requires some memory overhead because the 
Softmax outputs and 1-bit ReLU outputs should be stored per 
label. For example, it requires an additional 0.71MB of 
memory for CIFAR-10, which is only a 1.2% of the memory 
required for storing weights. 

VIII. CONCLUSION 
In this paper, we proposed a novel CNN parallel training 

architecture for image recognition. It takes advantage of the 
characteristics that the Softmax and ReLU outcomes in the 
forward propagation for the same labels are likely to be very 
similar. We implemented the parallel training accelerator in 
hardware on Zynq UltraScale+ and optimized it further for 
balancing the latencies for forward and backward 
computations. The speculative backpropagation shows 
different performance characteristics according to the 
thresholds, which incur trade-offs between the accuracy and 
the training speed. With the threshold set to 0.1 for the 
Handwritten, it shows a superior performance to the baseline, 
in both the training time (38% reduction) and the accuracy (0.5% 
improvement). With the threshold set to 0.14 for the Fashion, 
it also provides a noticeable performance in both the training 
time (26% reduction) and the accuracy (0.5% improvement). 
With the thresholds set to 0.1 for the CIFAR-10, the training 
time has been reduced by 33% without the accuracy loss. With 
the thresholds set to 0.004 for the CIFAR-100, it shows a 
performance enhancement to the baseline, in both the training 
time (34% reduction) and the accuracy (0.4% improvement). 
In the future, we plan to extend our work to other CNNs such 
as ResNet [48] and other datasets such as ImageNet [49]. We 
also plan to apply our method to transfer learning as well.  
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