
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Speculative Backpropagation for CNN Parallel
Training
Sangwoo Park1, Taeweon Suh2
1, 2Computer Science and Engineering, Korea University

Corresponding author: Taeweon Suh (e-mail: suhtw@korea.ac.kr).

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.2019-0-00533, Research on CPU vulnerability detection and validation / No.2019-0-01343, Regional strategic Industry convergence security
core talent training business).

ABSTRACT The parallel learning in neural networks can greatly shorten the training time. Its prior efforts
were mostly limited to distributing inputs to multiple computing engines. It is because the gradient descent
algorithm in the neural network training is inherently sequential. This paper proposes a novel CNN parallel
training method for image recognition. It overcomes the sequential property of the gradient descent and
enables the parallel training with the speculative backpropagation. We found that the Softmax and ReLU
outcomes in the forward propagation for the same labels are likely to be very similar. This characteristic
makes it possible to perform the forward and backward propagation simultaneously. We implemented the
proposed parallel model with CNNs in both software and hardware, and evaluated its performance. The
parallel training reduces the training time by 34% in CIFAR-100 without the loss of the prediction accuracy
compared to the sequential training. In many cases, it even improves the accuracy.

INDEX TERMS Deep learning, Parallel training, Speculative backpropagation, Training accelerator,
FPGA

I. INTRODUCTION
Artificial neural networks (ANNs) have successfully been
applied in various applications such as text recognition [1],
image classification [2], and speech recognition [3].
Especially, deep neural networks (DNNs) are drawing
attention due to its accuracy and practicability in tandem with
the advancement of computing technology. Large scale
models in DNN could improve its inference accuracy [4-13].
Ciresan et al [6] reported that the prediction performance
could be greatly improved as the number of model parameters
such as neurons and layers increases. For example, ResNets [7]
with more than 100 layers achieved a 3.57% top-5 error rate
on the ImageNet test set.

As a DNN model grows in size, there are a large number of
vector-matrix multiplication (VMM) operations for training.
The computational complexity of VMM usually grows with

2()O n . Thus the computational complexity of larger
networks increases proportionally with the number of layers
and parameters. It means that DNN requires a huge amount of
time for training. Accordingly, many prior works were aimed
at speeding up the training [13-25]. Some studies [13-15] have
been pursuing in the direction of the parallel training where
the multiple devices undertake each portion of the DNN

computations simultaneously. There are also a few works [18,
19] for optimizing synchronizations, which occur when
multiple devices process DNN calculations in parallel. There
are efforts to develop and utilize DNN hardware accelerators
for training. HiSilicon [20] introduced a specialized neural
processing unit (NPU) aimed at processing vector and matrix-
based computations fast, which are common operations in
deep learning. More recently, Cerebras, a startup company,
has developed a 16nm wafer-sized processor array [21] for
training neural networks. Intel also has introduced a neural
network processor dubbed as Spring Crest [21] with a direct
proprietary interconnect, with which it avoids passing through
external memory for the efficient processing of large neural
networks.

For training, the forward propagation should proceed before
the backpropagation. It is because the gradient descent
algorithm is inherently sequential. The gradient descent
algorithm is used in the aforementioned studies [7-15] for the
weight update. In this paper, we propose a novel idea of
breaking the sequential property of the gradient descent
algorithm for CNN parallel training. It enables performing the
forward and backward propagations in parallel. The core idea
is speculating the forward outcomes for backpropagation. This

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

paper shows that the speculative backpropagation speeds up
the training time without the prediction accuracy loss (in some
cases, it even improves the accuracy). We implemented the
training accelerator in both software and hardware. The
experiments show that the parallel training reduces the training
time by up to 38%. The hardware accelerator exhibits a
superior performance per watt because it only requires a 1.2 %
of more memory.

II. RELATED WORK
There are studies on distributed and parallel DNN training
using GPUs [18, 19, 22-25]. The parallel training is largely
divided into data parallelism and model parallelism; The data
parallelism means that different portions of the input are
processed in parallel on computing engines where the same
network model is deployed to. Since each computing engine
is processing the same DNN with weights and related
parameters, there is an inevitable synchronization issue.
Accordingly, several studies were focusing on
synchronization optimization [18, 19]. Zinkevich et al [18]
proposed a data-parallel stochastic gradient descent algorithm,
where the training data is accessed locally and the
communication occurs at the very end. Feng Niu et al [19]
studied the lock-free approach by taking advantage of the
sparse feature of neural networks. Ahn et al [25] proposed a
virtual shared memory framework in parallel distributed deep
learning. It enables the memory sharing in remote nodes and
improves the communication performance via parameter
sharing.

The model parallelism means that different layers of the
network are assigned to different cores. Thus, the data transfer
occurs after processing assigned layers on each core. Some
works [22, 24] combined the model parallelism and the data
parallelism together. DistBelief [22] utilizes 512 cores, each
of which is assigned a portion of the training data and hidden
layers. Then, it performs asynchronous weights update with
the centralized parameter server. Krizhevsky [24] proposed
applying the data parallelism to convolutional layers and the
model parallelism to fully connected layers in CNN.

There are also prior works on the hardware accelerators for
speeding up the training [26-29]. Qiu et al [26] proposed a
method to reduce the resource consumption of the convolution
operation for large-scale image classification and evaluated its
performance using FPGAs. Gaunt et al [27] proposed the
DNN training accelerator by applying synchronous and
asynchronous pipelines for speeding up the training. There are
some research works employing low-bit quantization for ANN
weights and activations [30, 31]. Such a quantization greatly
reduces the model size and computational complexity, making
it suitable for hardware implementation. S. Fox et al [32]
implemented a training accelerator based on 8-bit integer
operations. It processes the forward and backward
computations on FPGA with 8-bit integers, while the weight
update computation is processed in full-precision on an ARM
processor. L. Yang et al [33] implemented a binarized neural

network (BNN) on FPGA, which replaces the original binary
convolution layer with two parallel binary convolutional
layers for fast inference. These previous studies [22-33] follow
the sequential order in processing according to the gradient
descent algorithm.

There are several studies on breaking the forward and
backward dependency for speeding up the training [34-36].
Jaderberg et al [34] proposed removing the locking in
backpropagation by employing additional neural networks to
approximate gradients. In the backward pass, all neurons use
the approximated gradients to update weights, through which
it avoids incurring a delay. Nøkland et al [35] broke the local
dependencies between successive layers in the backward pass.
They used the direct feedback alignment (DFA) where the
hidden layers receive the error information from the output
layer directly using a random matrix. Our work is different in
that the history information (instead of the random matrix in
[35]) is used for the weight update, and the additional neural
networks in [34] are not required.

III. THE NEURAL NETWORK TRAINING
ANN is a group of multiple neurons and each neuron is
connected to the next layer neurons through the weights. ANN
can be trained to infer the target outputs based on inputs. The
convolutional neural network (CNN) is one type of ANNs and
is prevalently used in the image recognition. It is because CNN
trains the filters capturing the spatial features from an input
image. For the neural network training, three sequential
operations are performed: forward propagation,
backpropagation, and weight update. In the forward
propagation process, input data is propagated from the input
layer to the output layer; Each neuron computes a weighted
sum of the inputs from the connected neurons in its prior layer,
and then adds it with a bias, as shown in Eq. (1). Its output
goes through an activation function in Eq. (2) that determines
data to pass to the next layer. The widely used activation
functions are Rectified Linear Unit (ReLU), Tanh, and
Sigmoid. The ReLU is especially used in many ANNs because
it effectively reduces the computation cost. The ReLU
propagates zero to the next layer when the input is negative,
and otherwise bypasses the input value to the next layer. CNN
has pooling layers, which reduce the dimensions of the data by
combining the outputs of the neurons. Max pooling selects the
maximum value of neurons from its prior layer and propagates
it to the next layer. Average pooling takes the average from a
cluster of neurons at its prior layer. In the output layer, the
Softmax function in Eq. (3) is widely used in the deep learning
architecture [37-39]. It computes the probability distribution
of outcomes (oyz).

1

N
l l l l
j ij i

i
u w x Bias

=

= +å (1)

()l l
j jy f u= (2)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

1

o
z

o
i

u
o
z n

u

i

ey
e

=

=

å
 (3)

where 1 ,1i N l O£ £ £ £ (i, j, z, k = neuron index, l = layer index)

The backpropagation is used to adjust the weights (l
ijw) by

calculating derivatives. This phase begins from the output
layer, which is based on Softmax in our work. The derivative
in the output layer is expressed in Eq. (4). It calculates the
difference between the forward propagation outcome (o

zy)
and target output (zt). The derivative of the error with respect
to the weight is calculated with Eq. (5). The derivative of the
ReLU activation function is calculated with Eq. (6), which is
zero when the outcome of Eq. (2) is zero, and one otherwise.
In the max pooling, the error is passed back to the next layer
from the winning neuron which has a maximum value in the
forward pass. All the other neurons get a zero gradient. In the
average pooling, the error is computed by dividing by the
pooling size.

o
z zo

z

dE y t
dy

= - (4)

1
1

l
kzl l

zk z

dE dEw
dy dy

+
+=å (5)

l
l k
k l l l

k k k

dydE dE
du dy du

d = = (6)

In the ANN training, the weights are adjusted based on the
errors computed in the backpropagation. First, l

ijwD is
calculated by multiplying the result of the backpropagation l

id
and the result of the forward propagation 1l

jy - , as shown in Eq.
(7). Weights (l

ijw) are then updated according to the learning
rate h , which determines the degree of learning in Eq. (8).
This process is repeated for all the weights.

1l l l
ij i jw yd -D = (7)

l l l
ij ij ijw w w h= - D (8)

IV. SPECULATIVE BACKPROPAGATION
In the ANN training, the backpropagation is performed based
on the forward propagation outcomes. It means that the
backpropagation can be carried out only after the forward

propagation is finished. However, if it is feasible to speculate
the forward outcomes in advance, the backpropagation can
be performed simultaneously with the forward computation.
We have found one interesting behavior in the ANN training
that makes the speculation possible; The Softmax and ReLU
outcomes for the same labels in the temporally near-forward
propagations tend to be very similar. Thus, the previous
forward outcomes can be used for the current
backpropagation. Figure 1 illustrates the comparison
between the typical sequential training scheme and the
proposed parallel method. In the typical training scheme
shown in Figure 1(a), the backward computation is
performed only after the forward propagation. In our
proposed method shown in Figure 1(b), the forward and
backward computations occur at the same time. The
backward propagation in Figure 1(b) is based on the
accumulated previous forward outcomes, which is detailed in
Section IV-A and Section IV-B. To demonstrate its
feasibility and practicability, we experimented with two
types of CNN models: modified LeNet [9] and VGG16 [10],
where the ReLU, Softmax, and average pooling are used. The
MNIST handwritten and fashion [40], and the CIFAR-10 and
CIFAR-100 [41] were used for the LeNet and VGG16,
respectively. We used a Weight decay, Adam [42], Dropout
and Data augmentation techniques for training the CIFAR
datasets to improve the training accuracy. The batch size is
32 for both MNIST and CIFAR.

A. SPECULATION OF SOFTMAX OUTCOMES IN
OUTPUT LAYER
During the ANN training process, the inputs with the same
label are very likely to generate similar Softmax outcomes.
To demonstrate the similarity, we use a metric, called the
mean-difference. The mean-difference is the average of the
differences between Softmax outcomes for the inputs with
the same label. For example, assuming that there are four
neurons in the output layer, let’s say that the current Softmax
outcomes for the label 2 are 1 0.1,Oy = 2 0.7,Oy = 3 0.1,Oy =
and 4 0.1Oy = . In the next training step, if the Softmax
outcomes for the same label are 1 0.05,Oy = 2 0.74,Oy =

3 0.14,Oy = and 4 0.07Oy = the mean difference is 0.04 (=
(0.05 0.04 0.04 0.03) / 4+ + +).

Figure 2 shows the mean-difference distribution during the
training process. For 95% of MNIST handwritten in Figure 2
(a), the mean-difference is smaller than 0.02. For roughly 90%
of input images in the MNIST and CIFAR, it is smaller than
0.1. Moreover, as the training progresses, the mean-
difference becomes smaller and smaller. In the epoch #30 of
the Handwritten, Fashion and CIFAR-10, it is smaller than
0.1 for 99.4%, 92.7% and 95.2% of the input data,
respectively. Figure 2 (d) reports the mean-difference for
CIFAR-100, which requires more training steps than the
other datasets. In the epoch #90 of the CIFAR-100, it is
smaller than 0.018 for 94.7% of the input data. Note that the FIGURE 1. a) Backpropagation ONLY after forward propagation

b) Simultaneous execution of forward and backward propagations with the
speculative backpropagation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

mean difference in the x-axis of Figure 2 (d) is relatively
small compared with the other datasets.

The similarity of the Softmax outcomes for the same labels
means that the past result could be used in the current
backpropagation. To take advantage of this behavior, we store
the Softmax output per label when the forward propagation
finishes. In supervised learning, the label is provided with the
input data. Thus, it can be used to read the stored Softmax
outcomes for inputs with the same label, and the backward
propagation is initiated with the past stored data. Figure 3
shows an example of how the speculative backpropagation is
performed in parallel when the input image and its label (a
number 7) are provided as an input. At time t(i), the forward
propagation processes a current input image. At the same time,
the stored data (red neurons in Figure 3) for the same label is
used for the backpropagation.

Even though the speculated data ('oy) is similar to the
current Softmax output (oy) in general, it is important to
perform speculation more accurately because the difference
directly affects the training performance. We found that Eq. (9)
considering both the most recent forward outcome and the
history of the forward computations helps reduce the
difference. In other words, Eq. (9) accumulates all the Softmax
outcomes so far. a and b are weights for the most recent
outcome and the previous history, respectively. In general,
settinga and b to 0.5 works well across all the datasets, and
there is room for improvement by adjusting a and b as
discussed in Section VII. In the MNIST, a more weight on the

accumulated Softmax outcome ('oy) achieves roughly 0.2%
smaller mean-difference (a = 1/3, b = 2/3). On the other
hand, in the CIFAR, the mean-difference was roughly 0.4%
smaller when giving more weight to the most recent Softmax
outcome (a = 2/3, b = 1/3).

' '() ()o o oy y ya b= + where (1)a b+ = (9)

oy = current Softmax outcome, 'oy = accumulated Softmax outcome

Nevertheless, there are still cases where there is a large

difference between speculated and actual data. In these cases,
we treat it as the wrong speculation, and perform the
backpropagation again with the current Softmax outcome.
More elaborately, the difference between the speculated and
the actual data is computed before calculating Eq. (7) for the
weight update. It is because the actual one is available at the
end of the forward computation. If the difference is larger than
a threshold, the speculated execution is nullified and the
backpropagation is performed again with the actual data
(yellow neurons in Figure 3). Thus, the performance of the
speculative backpropagation is dependent upon the threshold,
and Section VI reports the performance trade-off and
sensitivity on thresholds.

B. SPECULATION OF RELU OUTCOMES IN HIDDEN
LAYER
ReLU is one of the most widely used activation functions in
ANN. It tends to create a sparse ANN, where some neurons
are never activated [43]. We take it as an opportunity for
parallel training. While training ANN, we found a
characteristic that activated neurons in the past are more likely
to be activated in the future for inputs with the same label.
Table 1 - 4 show our experiment outcomes showing the
probability that the same neurons are activated in the previous
and current forward propagations, according to the MNIST
and CIFAR datasets. As the training progresses, the activation
probability of the same neurons increases. In the epoch #30 of
the Handwritten, Fashion and CIFAR-10, the activation

FIGURE 2. Mean difference distribution of Softmax outcomes for the
same label inputs; (a) and (b) are for the MNIST dataset, (c) and (d) are
for the CIFAR dataset.

FIGURE 3. Parallel execution of forward and backward computations
with speculative backpropagation, which uses the accumulated
previous forward outcomes. The red neurons are accumulated Softmax
outcomes until time t(i-1), and the blue neurons are previous ReLU
outcomes. These are used for speculative backpropagation at time t(i),
instead of using current forward outcomes (yellow and green neurons).
Note that the weights in time t(i) are used to perform the speculative
backpropagation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

probabilities of the same neurons are 82.7%, 88.8%, and 83.7%
on average, respectively for all convolution layers. In the
epoch #90 of the CIFAR-100, the activation probability of the
same neurons is 87.8% on average. The activation
probabilities of the first few convolution layers for the CIFAR
are relatively lower than the MNIST. It is because the data
augmentation is applied only for CIFAR datasets, and it
randomly changes the training input to increase the diversity
of data available for training. In a fully connected layer, the
activation probabilities of the same neurons are more than 80%
for all datasets. This characteristic makes it possible to
speculatively perform the backpropagation.

Equation (6) in the backpropagation computes the
derivative of the activation function. Unlike other activation
functions such as tangent and sigmoid, ReLU has a slightly
different derivative property. The derivative of tangent and
sigmoid requires a real number computed in the forward step.
However, the derivative computation of the ReLU only

demands whether the neuron is activated or not in the forward
phase. Thus, if the binary result (activated or non-activated) of
ReLU in the forward step can be speculated, its derivative in
Eq. (6) can be performed simultaneously with the forward
propagation. Based on this observation and the high activation
probability of the same neurons, Eq. (6) can be computed
speculatively. We store the ReLU outputs (()l

jf u) per label in
the hidden layers when the forward propagation finishes. Then,
the speculative backpropagation is performed using the stored
values (blue neurons in Figure 3). As mentioned in Section IV-
A, if the speculation turns out to be wrong, then it normally
performs the backpropagation with the current ReLU
outcomes (green neurons in Figure 3).

C. SPECULATION OF DERIVATIVE OUTCOMES IN
POOLING LAYERS
There are two common pooling methods in CNNs; Max
pooling and Average pooling. In the max pooling, the gradient
is passed back to the next layer to the winning neuron in the
forward pass. All the other neurons get zero gradients.
Therefore, the position of the winning neuron should be
predicted for the speculative backpropagation. In the average
pooling, the output gradient is calculated by dividing the input
gradient by the pooling size. Thus, it does not require any
speculation. Our work uses the average pooling and leaves the
max pooling as future work. Thus far, all the ingredients for
the speculative backpropagation for the CNNs have been
addressed.

V. IMPLEMENTATION AND OPTIMIZATION OF HW
PARALLEL TRAINING
This section reports the implemented hardware design of
LeNet with the proposed parallel training.

A. EXPERIMENTAL ENVIRONMENT
For prototyping the hardware implementation, we used a
ZCU102 FPGA board, which is based on Zynq UltraScale+
MPSoC with a 4GB DDR4. The UltraScale+ is composed of
the processing system (PS) and programmable logic (PL)
sections: The PS has a quad-core Cortex-A53 processor
operating at 1.5 GHz. The PL is configured with the
hardware accelerator in our work. SDSoC 2019.1v [44], a
CAD tool from Xilinx, is used for hardware and software
implementation. It provides the capability of automating the
system-level integration for C/C++/OpenCL code, targeting
the Zynq programmable SoCs. The system-level integration
includes the software-to-hardware translation, its device
driver generation, and kernel creation; Users can specify
software functions to be translated to hardware in SDSoC.

B. IMPLEMENTATION AND OPTIMIZATION
We implemented LeNet with the average pooling using the C
language. The ReLU and Softmax are used in the hidden and
output layers, respectively. We designed two C functions
performing the forward propagation and the speculative
backpropagation. Then, the C functions were translated to
hardware by the SDSoC. Two directives are used to generate

TABLE I
MNIST HANDWRITTEN (LENET)

Epochs

ACTIVATION PROBABILITY
OF THE SAME NEURONS

CONV.
LAYER #1

CONV.
LAYER #2

CONV.
LAYER #3

FULLY
CONNECTED

LAYER #1
10 81.5% 74.7% 82.1% 85.6%
20 82.8% 77.3% 82.4% 85.2%
30 84% 78.1% 85.9% 86.2%

TABLE 2
MNIST FASHION (LENET)

Epochs

ACTIVATION PROBABILITY
OF THE SAME NEURONS

CONV.
LAYER #1

CONV.
LAYER #2

CONV.
LAYER #3

FULLY
CONNECTED

LAYER #1
10 94.5% 86.9% 87.2% 85.9%
20 94% 84.4% 84.6% 83.2%
30 95.1% 85.1% 86.1% 84.1%

TABLE 3
CIFAR-10 (VGG16)

Epochs

ACTIVATION PROBABILITY
OF THE SAME NEURONS

CONV.
LAYER #4

CONV.
LAYER #8

CONV.
LAYER #12

FULLY
CONNECTED

LAYER #1
10 65.7% 70.2% 94% 80.1%
20 66.4% 78.8% 97.2% 84.2%
30 67.8% 78.9% 98.4% 84.6%

TABLE 4
CIFAR-100 (VGG16)

Epochs

ACTIVATION PROBABILITY
OF THE SAME NEURONS

CONV.
LAYER #4

CONV.
LAYER #8

CONV.
LAYER #12

FULLY
CONNECTED

LAYER #1
30 73% 70.2% 89.8% 80%
60 77.8% 72.5% 93.7% 86.2%
90 80.1% 72.4% 95% 88.8%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

the target hardware: #pragma async to generate two different
hardware operating in parallel and #pragma pipeline to create
the pipelining for maximal throughput. The synthesized
accelerator operates at 100MHz, and the S/W portion in the
application is processed on the Cortex-A53 in the PS.

Table 5 shows the resource utilization and performance of
implemented hardware. The forward computation takes
roughly 44ms on UltraScale+, and there is a 1,186,900-cycle
difference in the execution latency between the forward
propagation and speculative backpropagation (4,465,266 and
3,278,366 cycles, respectively). The difference comes from
the fact that the forward propagation performs more
computations than the one in the backpropagation.
Specifically, the forward propagation requires computations in
Eq. (1) from the input layer to the first hidden layer, whereas
there is no computation in the opposite direction in the
backpropagation. Since the weight update requires both
forward and backward outcomes as in Eq. (7), this difference
makes the weight update wait for the forward computation to
complete. Thus, the backpropagation hardware becomes idle
for 1,186,900 cycles.

There is an opportunity to balance the latencies and
consequently reduce the overall training time. All the weight
updates in Eq. (7) require the forward propagation outcomes,
except the weights between the input and the first hidden
layers; Specifically, all weights are updated based on

l l
ij iw dD = × 1l

jy - where 1l
jy - is the forward propagation

outcome and l
id is the backpropagation outcome. However,

the weights between the input and the first hidden layer are
updated based on 1 1

ij iw dD = × 0
jy , where 0

jy is an input image.

Thus, when the backpropagation is completed early, 1
ijwD can

be computed during otherwise idle time. Figure 4 compares
without and with the optimized scheme. In Figure 4(a), the
weight update computation is performed only after the
forward propagation. In the optimized version shown in Figure
4(b), the weight update of the first layer is computed right after
the backpropagation. The last row of Table 5 reports the
optimized version and shows a similar execution latency to the
forward computation, which reduces the overall training time.

VI. EVALUATION
This section compares the performance of the parallel training
accelerator of LeNet against the baseline. The baseline is a
training accelerator without speculation. The baseline
accelerator was implemented with SDSoC as well. We also
implemented the VGG16 using C language with OpenMP and
CUDA framework for the parallel training of the CIFAR-10
and CIFAR-100, and evaluated their performance using a 32-
core AMD 3970X based machine with 64GB main memory
and GeForce 2080Ti GPU. We report the training
performance according to the thresholds mentioned in Section
IV-A.

Figure 5 reports the accuracies with speculative
backpropagation according to thresholds. Figure 5(a) shows
accuracies for the Handwritten. When the threshold is set to
0.1, the parallel training was more accurate than the baseline;
the accuracy is 99.1%, which is even superior to the baseline

FIGURE 5. Accuracies with speculative backpropagation scheme
according to thresholds. The threshold is the speculation allowance
range, which is the difference between the speculated and the actual
Softmax outcomes.

FIGURE 4. a) Without optimization, there is a latency imbalance between
forward and backward processes, b) With optimization, it reduces the
overall training time by balancing the forward and backward computations.

TABLE 5
RESOURCE UTILIZATION AND EXECUTION TIME OF HARDWARE

ACCELERATORS ON ZYNQ ULTRASCALE+

Hardware
Accelerators

#BRAMs
(18Kbit)

#DSPs
(48E) #FFs #LUTs Maximum

Frequency

Execution
Cycle at
100MHz

Forward
propagation

62
(3%)

31
(1%)

28,938
(5%)

32,713
(11%) 273MHz 4,465,266

cycles

Speculative
backpropagat

ion

206
(11%)

5
(~0%)

29,634
(5%)

26,795
(9%) 287MHz 3,278,366

cycles

Optimized
speculative

backpropagat
ion

210
(11%)

8
(~0%)

31,402
(5%)

29,073
(10%) 274MHz 4,298,658

cycles

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

98.6% (0.5% improvements). Figure 5(b) shows the
accuracies for the Fashion. With the threshold set to 0.14, there
is also an accuracy enhancement by 0.5% to 88.1% compared
with the baseline 87.6%. Figure 5(c) shows the training
accuracies for the CIFAR-10. When the threshold is set to 0.05,
the accuracy is improved by 0.2% to 88.1% compared with the
baseline 87.9%. Figure 5(d) shows the training accuracies for
the CIFAR-100. With the threshold set to 0.01, there is no
accuracy loss compared with the baseline (70.2%). When the
threshold is set to 0.004, the accuracy is even improved by 0.4%
to 70.6%.

While a lower threshold improves the accuracy, it increases
the number of miss speculations because the speculation
allowance range becomes smaller. Tables 6-9 show the miss
speculation rates according to thresholds. In Table 6 for
Handwritten. the miss speculation rate in epoch #10 is 4.1%,
with the threshold set to 0.1. In Table 7 for Fashion, the miss
speculation rate in epoch #50 is 27.7%, with the threshold of

0.14. Table 8 is for CIFAR-10. When the threshold is set to
0.05, the miss speculation rate in epoch #50 is 9.4%. Table 9
is for CIFAR-100. With the threshold set to 0.004, the miss
speculation rate in epoch #300 is 5.9%. As the epoch
progresses, the miss speculation rate decreases in all datasets.
This is because, as the network gets trained, the difference in
Softmax outcomes for the same label becomes smaller, as
shown in Figure 2.

Note that the miss speculation rates for CIFAR-10 and
CIFAR-100 are smaller than MNIST fashion. We believe that
it comes from the Adam optimization technique, which takes
advantage of the momentum by using the moving average of
the gradients instead of the gradient itself like stochastic
gradient descent (SGD). The training with considering the
previous gradients could lead to the smaller differences in
Softmax outcomes for inputs with the same label. Compared
with the training without Adam, it reduces the miss
speculation rate by 7.1% and 8.9% with the threshold set to
0.1 and 0.004 for the CIFAR-10 and CIFAR-100, respectively.

The miss speculation rate in turn influences the execution
time for the parallel training. It is because the proposed
method performs the normal training upon a miss speculation.
Figure 6 shows normalized execution times of the parallel
training over the baseline according to thresholds. With the
thresholds set to 0.25 and 0.22 for Handwritten and Fashion,
the training times were reduced by 1.38x and 1.28x over the
baseline, respectively. With the threshold set to 0.15 for
CIFAR-10, the performance is enhanced by 1.34x over the
baseline. When the threshold is set to 0.01 for CIFAR-100, the
performance is improved by 1.35x over the baseline. The last

FIGURE 6. Normalized execution times of parallel training over
baseline (baseline is the training without speculation)

TABLE 6
MNIST HANDWRITTEN (LENET)

Thresholds
MISS SPECULATION RATE

Epoch
#2

Epoch
#4

Epoch
#6

Epoch
#8

Epoch
#10

0.25 9.9% 6.3% 5.6% 3.8% 2.6%
0.2 10.8% 6.9% 5.9% 4.1% 3.1%
0.15 11.5% 7.3% 5.8% 4.2% 3.2%
0.1 13.7% 8.4% 6.5% 4.9% 4.1%

TABLE 7
MNIST FASHION (LENET)

Thresholds
MISS SPECULATION RATE

Epoch
#10

Epoch
#20

Epoch
#30

Epoch
#40

Epoch
#50

0.22 26.6% 24.8% 23.1% 23.0% 22.3%
0.18 30.1% 29.6% 27.5% 26.5% 25.1%
0.14 35.3% 32% 31.7% 29.2% 27.7%
0.1 39.2% 36.8% 34.9% 32.1% 30%

TABLE 8
CIFAR-10 (VGG16)

Thresholds
MISS SPECULATION RATE

Epoch
#10

Epoch
#20

Epoch
#30

Epoch
#40

Epoch
#50

0.15 8.4% 7.5% 5.7% 4.8% 2.8%
0.1 13.3% 11.1% 9% 6.4% 3.6%

0.05 28.5% 23.3% 17.9% 13.4% 9.4%
0.03 43.1% 36% 28.8% 21.7% 16.2%

TABLE 9
CIFAR-100 (VGG16)

Thresholds
MISS SPECULATION RATE

Epoch
#60

Epoch
#120

Epoch
#180

Epoch
#240

Epoch
#300

0.01 8.9% 2.8% 2.2% 2.1% 2.1%

0.008 10.0% 3.3% 2.1% 2.3% 2.2%

0.006 12.1% 4.8% 3.4% 3.6% 3.4%

0.004 17.2% 7.6% 5.7% 6.0% 5.9%

0.002 30.0% 15.2% 12.2% 12.8% 12.6%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

epoch benefits comparably more from the speculative
execution due to the lowest miss speculation rate in all datasets.

Table 10 shows the resource utilizations and power
consumption of the hardware accelerators on Ultrascale+. In
terms of the resource utilization, there is almost no difference
between the parallel accelerator and the baseline. This is
because the parallel accelerator is composed of roughly the
same components as the baseline; Both accelerators should
perform the two operations (forward and backward
propagations) anyway. In tandem with the similar resource
utilizations, the power consumption is also similar in both
accelerators. Therefore, the parallel accelerator offers a better
performance per watt than the baseline, due to its higher

accuracy with a faster training speed. The amount of resources
in Table 10 is a little higher than the one in Table 5. For
example, the parallel accelerator utilizes a 23.9% of FFs and
33.4% of LUTs on Zynq UltraScale+. It is because the
hardware components such as AXI interconnects and DMA
engines are required for the full system integration and
operation.

VII. DISCUSSION
There are some design considerations when architecting and
designing a parallel training accelerator. The performance of
the parallel accelerator depends on the speculation accuracy.
It comes from the similarity of the Softmax and ReLU
outcomes for the same label. The proposed equation (Eq. (9))
reflects the history of Softmax outcomes. In Equation (9),
giving more weight to the accumulated Softmax means that it
could reflect the history well but does not train sensitively with
the recent input. Conversely, giving more weight to the current
Softmax means that it could train sensitively with the recent
input but the history would not be properly reflected.
Therefore, we believe that the proper balancing is important.
With setting both a and b to 0.5, the speculative
backpropagation works well for all datasets. To find out
additional room for improvement, we experimented with
different pairs of a and b . Table 11-13 summarize the

TABLE 10
OVERALL RESOURCE UTILIZATION AND POWER CONSUMPTION OF

TRAINING ACCELERATORS ON ZYNQ ULTRASCALE+

Hardware
Accelerators

#BRAMs
(18Kbit)

#DSPs
(48E) #FFs #LUTs

Power
Consu
mption

Baseline
accelerator

258
(28.34%)

36
(1.43%)

131,184
(23.93%)

91,756
(33.41%) 4.624W

Parallel
accelerator

258
(28.34%)

36
(1.43%)

131,184
(23.93%)

91,841
(33.48%) 4.636W

TABLE 11
THE PARALLEL TRAINING PERFORMANCE ACCORDING TO DIFFERENT PAIRS OF a AND b FOR MNIST HANDWRITTEN: THE NORMALIZED

EXECUTION TIMES AND ACCURACIES ARE FOR THE EPOCH #10 WITH THE THRESHOLD 0.1.

Hyperparameters value
0.1

0.9

a

b

=

=

0.2

0.8

a

b

=

=

0.3

0.7

a

b

=

=

0.4

0.6

a

b

=

=

0.5

0.5

a

b

=

=

0.6

0.4

a

b

=

=

0.7

0.3

a

b

=

=

0.8

0.2

a

b

=

=

0.9

0.1

a

b

=

=

1.0

0.0

a

b

=

=

Likelihood (<0.1) 93.2% 96.8% 98.5% 98.3% 98.3% 98.3% 98.3% 97.9% 97.7% 97.4%
Normalized execution

times of parallel
training over baseline

1.338x 1.353x 1.36x 1.358x 1.358x 1.359x 1.358x 1.356x 1.356x 1.354x

Accuracies with the
validation set 98% 98.4% 99% 98.9% 99% 98.9% 98.9% 98.2% 97.7% 97%

TABLE 12
THE PARALLEL TRAINING PERFORMANCE ACCORDING TO DIFFERENT PAIRS OF a AND b FOR CIFAR-10: THE NORMALIZED EXECUTION TIMES

AND ACCURACIES ARE FOR THE EPOCH #50 WITH THE THRESHOLD 0.1.

Hyperparameters
value

0.1

0.9

a

b

=

=

0.2

0.8

a

b

=

=

0.3

0.7

a

b

=

=

0.4

0.6

a

b

=

=

0.5

0.5

a

b

=

=

0.6

0.4

a

b

=

=

0.7

0.3

a

b

=

=

0.8

0.2

a

b

=

=

0.9

0.1

a

b

=

=

1.0

0.0

a

b

=

=

Likelihood (<0.1) 81.9% 85% 89.6% 93.5% 93.6% 93.6% 94% 93.2% 93% 92.2%
Normalized

execution times 1.285x 1.302x 1.312x 1.334x 1.335x 1.335x 1.336x 1.331x 1.33x 1.327x

Accuracies 87.6% 87.7% 87.8% 87.9% 88.1% 88% 88% 87.9% 87.4% 87%

TABLE 13
THE PARALLEL TRAINING PERFORMANCE ACCORDING TO DIFFERENT PAIRS OF a AND b FOR CIFAR-100: THE NORMALIZED EXECUTION TIMES

AND ACCURACIES ARE FOR THE EPOCH #300 WITH THE THRESHOLD 0.01.

Hyperparameters
value

0.1

0.9

a

b

=

=

0.2

0.8

a

b

=

=

0.3

0.7

a

b

=

=

0.4

0.6

a

b

=

=

0.5

0.5

a

b

=

=

0.6

0.4

a

b

=

=

0.7

0.3

a

b

=

=

0.8

0.2

a

b

=

=

0.9

0.1

a

b

=

=

1.0

0.0

a

b

=

=

Likelihood (<0.01) 94.1% 96.7% 97.6% 97.6% 97.8% 98% 98.1% 97.9% 97.8% 97.5%
Normalized

execution times 1.33x 1.342x 1.346x 1.346x 1.348x 1.349x 1.35x 1.349x 1.347x 1.345x

Accuracies 69.7% 69.7% 69.8% 69.8% 70.1% 70.1% 70.2% 69.8% 69.6% 69.3%

* With a = 0 and b = 1, almost all speculations fail because the accumulated Softmax outcome ('oy) is not changed according to Eq. (9).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

performance differences. The likelihood in Tables means the
probability that the mean-difference is less than 0.1 and 0.01.
As shown, the performance differences are negligible
according to different pairs of a and b ; The likelihood is the
highest when a = 0.3 and b = 0.7 for MNIST and when a
= 0.7 and b = 0.3 for CIFAR-10 and CIFAR-100. However,
it reduces the training time roughly by 0.2% with the similar
accuracies. Therefore, it would be optional to tune a and b
for small improvements using optimization techniques such as
Bayesian optimization.

Another important factor to consider is the trade-off
between the training time and accuracy. It depends on the
thresholds, i.e., speculation allowance range. If it is more
sensitive to accuracy, the threshold should be set to a
minimum. On the other hand, if sensitive to the training time,
it should be set to a higher value. According to our
experiments, the reciprocal of the number of classes in the
dataset can be a good candidate for the threshold. Figure 5 and
Figure 6 report the performance for the datasets. With the
threshold of 0.1 for the datasets with 10 classes (MNIST and
CIFAR-10), there are accuracy improvements by 0.5% and 0.1%
for MNIST handwritten and CIFAR-10, respectively, and
there is no accuracy loss in case of the MNIST fashion. The
training times were reduced by 1.35x, 1.24x and 1.32x over
the baseline for MNIST handwritten, fashion and CIFAR-10,
respectively. With the threshold set to 0.01 for the dataset with
100 classes (CIFAR-100), it reduces the training time by 1.35x
with no accuracy loss.

We found that the performance of the speculative
backpropagation is closely related to the optimization
techniques in training. In our experiments, when training
VGG16 with Adam, the miss speculation rate was reduced by
7.1% and 8.9% with CIFAR-10 and CIFAR-100, respectively.
It means that the optimization techniques can shorten the
training time with less miss speculation. The parallel training
also tends to show a better accuracy compared with the
baseline. We believe that it is because the speculative
backpropagation has an effect of regularizing the model. A
common type of regularization is to inject noises during the
training process. The noise is typically added to inputs,
weights, gradients, and even activation functions. This kind of
technique is frequently adopted in many applications for the
performance improvement [45]. Our technique has a similar
effect of adding noises to gradients and activation function by
speculation.

Our proposed approach breaks the sequential flow of
forward and backward propagations and enables the parallel
execution. There are two approaches in implementing the
parallel training: software-based training with GPUs and
hardware-based training with the accelerator. When training
with GPUs, our method requires higher power consumption
and more memory at a certain point in time in return for the
faster training. It is because the forward and backward passes
are performed simultaneously. When implementing the
hardware accelerator, the memory access for loading weights

has a huge impact on the training time [46, 47]. For the fair
comparison of the training time with the parallel accelerator,
we implemented the baseline accelerator with forward and
backward passes with separate BRAMs in hardware. Our
method enables the efficient utilization of the forward and
backward hardware resources. Nevertheless, the parallel
accelerator requires some memory overhead because the
Softmax outputs and 1-bit ReLU outputs should be stored per
label. For example, it requires an additional 0.71MB of
memory for CIFAR-10, which is only a 1.2% of the memory
required for storing weights.

VIII. CONCLUSION
In this paper, we proposed a novel CNN parallel training

architecture for image recognition. It takes advantage of the
characteristics that the Softmax and ReLU outcomes in the
forward propagation for the same labels are likely to be very
similar. We implemented the parallel training accelerator in
hardware on Zynq UltraScale+ and optimized it further for
balancing the latencies for forward and backward
computations. The speculative backpropagation shows
different performance characteristics according to the
thresholds, which incur trade-offs between the accuracy and
the training speed. With the threshold set to 0.1 for the
Handwritten, it shows a superior performance to the baseline,
in both the training time (38% reduction) and the accuracy (0.5%
improvement). With the threshold set to 0.14 for the Fashion,
it also provides a noticeable performance in both the training
time (26% reduction) and the accuracy (0.5% improvement).
With the thresholds set to 0.1 for the CIFAR-10, the training
time has been reduced by 33% without the accuracy loss. With
the thresholds set to 0.004 for the CIFAR-100, it shows a
performance enhancement to the baseline, in both the training
time (34% reduction) and the accuracy (0.4% improvement).
In the future, we plan to extend our work to other CNNs such
as ResNet [48] and other datasets such as ImageNet [49]. We
also plan to apply our method to transfer learning as well.

ACKNOWLEDGEMENT
This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2019-0-
00533, Research on CPU vulnerability detection and
validation / No.2019-0-01343, Regional strategic Industry
convergence security core talent training business).

REFERENCES
[1] R. Collobert and J. Weston, "A unified architecture for natural language

processing: Deep neural networks with multitask learning," in Proceedings
of the 25th international conference on Machine learning, 2008: ACM, pp.
160-167.R.

[2] D. Claudiu Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
"Deep big simple neural nets excel on handwritten digit recognition," arXiv
preprint arXiv:1003.0358, 2010.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition," IEEE
Transactions on audio, speech, and language processing, vol. 20, no. 1, pp.
30-42, 2011.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020

[4] L. Rokach, "Ensemble-based classifiers," Artificial Intelligence Review, vol.
33, no. 1-2, pp. 1-39, 2010.

[5] E. Xing and Q. Ho, "A new look at the system, algorithm and theory
foundations of large-scale distributed machine learning," in Tutorial in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’15), Sydney, Australia, 2015, pp. 10-13.

[6] D. Cireşan, U. Meier, and J. Schmidhuber, "Multi-column deep neural
networks for image classification," arXiv preprint arXiv:1202.2745, 2012.

[7] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770-778.

[8] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, "On
optimization methods for deep learning," in Proceedings of the 28th
International Conference on International Conference on Machine Learning,
2011: Omnipress, pp. 265-272.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning
applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998.

[10] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[11] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.

[12] A. Coates, A. Ng, and H. Lee, "An analysis of single-layer networks in
unsupervised feature learning," in Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 2011, pp. 215-223.

[13] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing, "On model
parallelization and scheduling strategies for distributed machine learning," in
Advances in neural information processing systems, 2014, pp. 2834-2842.

[14] J. K. Kim et al., "STRADS: a distributed framework for scheduled model
parallel machine learning," in Proceedings of the Eleventh European
Conference on Computer Systems, 2016: ACM, p. 5.

[15] M. Abadi et al., "Tensorflow: A system for large-scale machine learning," in
12th USENIX Symposium on Operating Systems Design and Implementation
2016, pp. 265-283.

[16] De Luca, P., Galletti, A., Giunta, G., & Marcellino, L. (2020, June).
Accelerated Gaussian Convolution in a Data Assimilation Scenario. In
International Conference on Computational Science (pp. 199-211).
Springer, Cham.

[17] Fisher, M., & Gürol, S. (2017). Parallelization in the time dimension
of four‐dimensional variational data assimilation. Quarterly Journal
of the Royal Meteorological Society, 143(703), 1136-1147.

[18] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, "Parallelized stochastic
gradient descent," in Advances in neural information processing systems,
2010, pp. 2595-2603.

[19] B. Recht, C. Re, S. Wright, and F. Niu, "Hogwild: A lock-free approach to
parallelizing stochastic gradient descent," in Advances in neural information
processing systems, 2011, pp. 693-701.

[20] A. Ignatov et al., "Ai benchmark: Running deep neural networks on android
smartphones," in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 0-0.

[21] R. Merritt, "Startup Spins Whole Wafer for AI," 2019. [Online]. Available:
https://www.eetimes.com/document.asp?doc_id=1335043#.

[22] J. Dean et al., "Large scale distributed deep networks," in Advances in neural
information processing systems, 2012, pp. 1223-1231.

[23] T. Chen et al., "Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems," arXiv preprint arXiv:1512.01274, 2015.

[24] A. Krizhevsky, "One weird trick for parallelizing convolutional neural
networks," arXiv preprint arXiv:1404.5997, 2014.

[25] S. Ahn, J. Kim, E. Lim, and S. Kang, ‘‘Soft memory box: A virtual
shared memory framework for fast deep neural network training in
distributed high performance computing,’’ IEEE Access, vol. 6, pp.
26493–26504, 2018.

[26] J. Qiu et al., "Going deeper with embedded fpga platform for convolutional
neural network," in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2016: ACM, pp. 26-35.

[27] A. L. Gaunt et al., "AMPNet: asynchronous model-parallel training for
dynamic neural networks," arXiv preprint arXiv:1705.09786, 2017.

[28] W. Vanderbauwhede and K. Benkrid, High-performance computing using
FPGAs. Springer, 2013.

[29] A. Putnam et al., "A reconfigurable fabric for accelerating large-scale
datacenter services," ACM SIGARCH Computer Architecture News, vol. 42,
no. 3, pp. 13-24, 2014.

[30] M. Courbariaux and Y. Bengio, (Feb. 2016). “Binarized neural networks:
Training deep neural networks with weights and activations constrained to +1
or −1.” [Online]. Available: https://arxiv.org/ abs/1602.02830.

[31] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

[32] S. Fox, J. Faraone, D. Boland, K. Vissers and P. H. W. Leong,
"Training Deep Neural Networks in Low-Precision with High
Accuracy Using FPGAs," 2019 International Conference on Field-
Programmable Technology (ICFPT), Tianjin, China, 2019, pp. 1-9.

[33] L. Yang, Z. He, and D. Fan, “A fully on-chip binarized convolutional neural
network FPGA implementation with accurate inference,” in Proceedings of
the International Symposium on Low Power Electronics and Design, ser.
ISLPED ’18. New York, NY, USA: ACM, 2018, pp. 50:1–50:6.

[34] M. Jaderberg et al., "Decoupled neural interfaces using synthetic gradients,"
in Proceedings of the 34th International Conference on Machine Learning-
Volume 70, 2017: JMLR. org, pp. 1627-1635.

[35] A. Nøkland, "Direct feedback alignment provides learning in deep neural
networks," in Advances in neural information processing systems, 2016, pp.
1037-1045.

[36] Z. Huo, B. Gu, Q. Yang, and H. Huang, "Decoupled parallel backpropagation
with convergence guarantee," arXiv preprint arXiv:1804.10574, 2018.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with
deep convolutional neural networks," in Advances in neural information
processing systems, 2012, pp. 1097-1105.

[38] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep
convolutional encoder-decoder architecture for image segmentation," IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp.
2481-2495, 2017.

[39] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint
arXiv:1312.4400, 2013.

[40] Y. L. a. C. Cortes. "MNIST handwritten digit database."
http://yann.lecun.com/exdb/mnist/.

[41] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny
images," Citeseer, 2009.

[42] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980, 2014.

[43] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve
neural network acoustic models," in Proc. icml, 2013, vol. 30, no. 1, p. 3.

[44] V. Kathail, J. Hwang, W. Sun, Y. Chobe, T. Shui, and J. Carrillo, "Sdsoc: A
higher-level programming environment for zynq soc and ultrascale+ mpsoc,"
in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2016: ACM, pp. 4-4.

[45] NOH, Hyeonwoo, et al. “Regularizing deep neural networks by noise: Its
interpretation and optimization.” In Advances in Neural Information
Processing Systems. 2017. p. 5109-5118.

[46] T. Chen et al., "DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning", Proc. 19th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., pp. 269-284, 2014.

[47] Z. Du et al., "ShiDianNao: Shifting vision processing closer to the
sensor", Proc. 42nd Annu. Int. Symp. Comput. Archit., pp. 92-104,
2015.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep
residual learning for image recognition." In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[49] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li.
"Imagenet: A large-scale hierarchical image database." In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 248–
255, 2009.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040849, IEEE Access

VOLUME XX, 2020 7

Sangwoo Park received the B.S. degree in
Computer Science and Engineering from Soongsil
University, Seoul, South Korea, in 2017, and the
M.S. degree in Computer Science and Engineering
from Korea University, Seoul, South Korea, in
2019, where he is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering.

Taeweon Suh received the B.S. degree in
Electrical Engineering from Korea University,
Seoul, South Korea, in 1993, the M.S. degree in
Electronics Engineering from Seoul National
University in 1995, and the Ph.D. degree in
Electrical and Computer Engineering from the
Georgia Institute of Technology, Atlanta, GA,
USA, in 2006. He is currently a Professor with the
Department of Computer Science and Engineering,
Korea University.

