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ABSTRACT This study employs a dual deep neural network (D-DNN) to accurately estimate the absolute 

longitudinal speed of a vehicle. Accuracy in speed estimation is crucial for vehicle safety, because 

longitudinal speed is a common parameter employed as a state variable in active safety systems such as anti-

lock braking system and traction control system. In this study, DNNs are applied to determine the gain of an 

adaptive filter to estimate vehicle speed. The used data consists of longitudinal acceleration, wheel speed, 

filter gain, and estimated vehicle speed. The data generated from Carsim software are collected and 

preprocessed using a Simulink model. To acquire data with numerous wheel slip patterns, various 

acceleration and deceleration conditions are applied to four different road conditions. Though, it is 

challenging to achieve a single DNN model that is optimally cope with the various driving situations. Thus, 

we adopt two DNN models that were individually trained in low and high acceleration regions. The dual 

DNN model results in error reductions of 74% and 65%, compared with a single DNN and classical adaptive 

Kalman filter approaches, respectively.  

INDEX TERMS Adaptive filter, deep neural network, slip ratio, vehicle speed estimation

I. INTRODUCTION 

Active safety technologies are used in most vehicles. 

Typical examples are adaptive cruise control, autonomous 

emergency braking system, an anti-lock braking system 

(ABS), and a traction control system (TCS). Precise 

information on vehicle state is crucial for these systems [1]. 
For example, as the slip ratio is a controlled variable in ABS 

and TCS [2], an accurate longitudinal speed is required to 

determine the slip ratio. Maintaining a slip ratio in the 

desired region is essential for vehicle safety and performance 

because it allows the wheel to sustain a friction coefficient 

with the road surface above a certain level. In other words, 

the performance and safety of the vehicle can be improved 

by enhancing the accuracy of its longitudinal speed data. 

However, the longitudinal speed of a vehicle is complex 

or expensive to measure [3–4], additional sensors such as 

radar may be required [5]. Its estimation rather than 

measurement is therefore sometimes preferred. Researches 

related to vehicle speed estimation have primarily been 

conducted using either indirect or direct methods.  

Indirect methods based on observers or Kalman filters 

uses precise vehicle models and dynamics to determine a 

filtering method that estimates longitudinal speed. In the 

observer-based method, vehicle dynamics and a precise 

vehicle model were used to design the state observer. In a 

previous study, yaw-and-roll models of a vehicle were 

employed for switching observer schemes, and a full-state 

observer was used in speed estimation [6]. Another study 

utilized a six-degrees-of-freedom vehicle model with a 

second-order sliding-mode observer [7]. The Kalman-filter-

based model also requires accurate vehicle parameters and a 

complex vehicle model. A nine-degrees-of-freedom bicycle 

model and extended Kalman filter (EKF) have been 

presented [1]. In addition, an unknown input Kalman filter 

was applied with a nonlinear tire model to estimate vehicle 

speed [8]. A mixed EKF algorithm was applied to a six-

degrees-of-freedom vehicle model with longitudinal and 

lateral velocities, yaw rate, and four-wheel rotational speeds 

as state vector [9]. Although indirect methods can estimate 

the speed of a vehicle with high accuracy, they are time-
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consuming and complex because they require a complex 

vehicle model. This requirement refers that all vehicle 

parameters must be accurately determined to develop a 

reliable speed-estimation algorithm in various vehicle 

models and road conditions. 

The direct method requires a relatively simple vehicle 

model, and thus, does not need to identify all vehicle 

parameters. This method is generally classified by the 

diversity of used sensor data. A typical combination is wheel 

speed data and/or longitudinal acceleration data. The vehicle 

speed was estimated using only wheel speed data applied to 

an adaptive nonlinear filter [10]. In this work, an 

experimental algorithm was used to estimate the true speed 

of the vehicle during braking. This approach has the 

advantage that it only uses wheel speed sensor data. However, 

when the data are noisy, the estimation result is not reliable. 

Additively, data on both wheel speed and longitudinal 

acceleration were used [11–13] to estimate vehicle speed. 

These studies focused on designing the best filter algorithms 

for vehicle speed estimation, by controlling the weights of 

the wheel speed and longitudinal acceleration, in given 

vehicle driving conditions. A gain-tuning algorithm based on 

the Kalman filter [11] sets the weight of the wheel speed data 

to zero under certain conditions, so that only the longitudinal 

acceleration is used when a slip occurs. Fuzzy logic can also 

be applied to vehicle speed estimation [12, 13]. Fuzzy logic 

was employed to determine the P, Q, and R matrices of the 

Kalman filter according to wheel speed and longitudinal 

acceleration data [12]. Another method using fuzzy logic has 

been proposed to directly determine the weights of the wheel 

speed, longitudinal acceleration, and previous estimates [13]. 

All these studies presented accurate estimation results using 

weight-tuning algorithms. However, these algorithms are 

heavily dependent on experiments and experiences, implying 

that it is difficult to define an algorithm that will reliably 

enable optimized performance in all driving situations.  

Recently, neural network techniques have been vigorously 

applied to estimating various vehicle states [14–21]. Neural 

network structures can overcome the limitations of empirical 

methods because they can identify data characteristics that a 

human observer cannot detect [22]. Simple deep neural 

network was applied for predict the vehicle sideslip angle 

[14]. Another study employed a feedforward neural network 

with a fully connected model to estimate road grade and 

vehicle mass [15]. Depending on the purpose, neural 

network models have been adopted in various forms [16-18]. 

Time variant data were processed by a time-delayed neural 

network in a sideslip angle estimation [16]. An integrated 

time-series model based on a multivariate deep recurrent 

neural network with long short-term memory was 

demonstrated to estimate vehicle brake pressure [17]. 

Another effort attempted to solve the lateral state estimation 

problem of a preceding target vehicle using multiple neural 

networks, consisting of a nonlinear autoregressive 

exogenous model net, feedforward net, and Elman net [18]. 

In addition, hybrid approaches, combining a neural network 

with other methods, have been applied to estimate vehicle 

states [19-21]. Vehicle roll dynamics based unscented 

Kalman filter coupled with an artificial neural network 

provided a good estimation of vehicle roll angles [19]. A 

recurrent neural network combined with a vehicle kinematic 

model was trained using simulation data to estimate vehicle 

sideslip angles [20]. A principal component analysis was 

adopted for the preprocessing of input data of a neural 

network to estimate vehicle sideslip angles [21]. These 

methods reportedly lowered computational loads with 

increased accuracy.  

A neural network has also been applied to a longitudinal 

speed estimation problem [23], using a simple regression 

method with a feedforward net. The study presented   

promising estimation performance using wheel speed and 

longitudinal acceleration data. However, the results were 

only evaluated using data derived from limited road-surface 

conditions. Moreover, the simple regression technique is 

disadvantageous in that the range to be estimated is too wide. 

In this study, a neural network is not used to estimate 

vehicle speed directly. Instead, two deep neural networks 

(DNNs) are employed to accurately estimate the gain of an 

adaptive filter. The dual DNN structure was evaluated in four 

road conditions (dry, wet, snowy, and icy) and two vehicle 

situations (ABS on and off). The results were compared with 

the accuracy achieved with either a single DNN structure or 

a conventional adaptive Kalman filter (AKF).  

Our proposed approach is the first attempt to estimate 

vehicle longitudinal speed using two DNNs with an adaptive 

filter, which has generally not been used for this purpose. In 

our dual DNN (D-DNN) approach, the training data are 

sorted by their accelerations and used to train each of the two 

DNN models. Owe to this, one of the two DNN models is 

optimized to the data having low accelerations while the 

other is optimized to high-acceleration data. Thus, it is   

anticipated to achieving superior optimized models 

compared with using only one DNN model, named as a 

single DNN.  

 The overall structure of this study is depicted in Fig. 1. 

Wheel speed (Vw
k) and longitudinal acceleration (Ax

k) data 

are acquired using Carsim software and preprocessed using 

a low-pass filter. The preprocessed data is stored in data 

storage with the estimated speed (𝑉𝑥̂
𝑘

) and filter gain (Kk-1) of 

the previous step. They are stacked in a time order to be the 

input feature (uk) for the DNN. The features are sorted by the 

amplitude of the vehicle acceleration (|Ax
k|) and individually 

used to generate the two DNN models optimized at high and 

low accelerations. The dual DNN derives the adaptive filter 

gain (Kk) as its output. The adaptive filter structure is 

designed to function as a state observer. The adaptive filter 

receives an estimated longitudinal speed of the previous step 

(𝑉𝑥̂
𝑘

), current longitudinal acceleration (Ax
k), current wheel 

speed (Vw
k) and the gain (Kk). The filter outputs the 
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longitudinal speed of a vehicle ( 𝑉𝑥̂
𝑘+1

) as adaptively 

determined by the filter gain. The proposed DNN model is 

trained using 640,000 samples and evaluated using 320,000 

samples. 

 
II. DESIGN OF ADAPTIVE FILTER AND DEEP NEURAL 
NETWORK 

This section describes the overall system design procedure. 

First, the structure of the adaptive filter is introduced. Then, 

the characteristics of the desired gain and the method for 

determining the target gain are explained. The DNN models 

used in this study are introduced, including the DNN training 

process. The DNN output corresponds to the current filter gain 

Kk, which is compared with the target gain of the current step 

𝐾𝑘  . The mean square error between the Kk and 𝐾𝑘   is used as 

the loss function to update the weights and biases of each 

DNN model. The structure of the DNN model is explained in 

the last subsection. 

A. ADAPTIVE FILTER: FILTER STRUCTURE 

The adaptive filter derives the estimated speed by 

receiving the wheel speed and longitudinal acceleration as 

input. It also uses the estimated speed and filter gain of the 

previous step. The filter equations employed in this study are: 

𝑉𝑥̂
𝑘+1

= 𝑉𝑥̂
𝑘

+ 𝐴𝑥
𝑘 ∙ ∆𝑡 + 𝐾𝑘 ∙ (𝑉𝑤

𝑘 − 𝑉𝑤̂
𝑘

), (1) 

𝑉𝑤̂
𝑘

= 𝐻 ∙ 𝑉𝑥̂
𝑘

   (𝐻 = 1), (2) 

𝑉𝑤
𝑘 =  𝑟𝑒𝑓𝑓 ∗ 𝜔𝑤

𝑘 (3) 

where 𝑉𝑥̂
𝑘+1

and 𝑉𝑥̂
𝑘
 are the estimated speeds of the current 

and previous steps, respectively. ∆t represents a sampling 

time of 0.01s and Ax
k is the measured longitudinal 

acceleration at time step k. Kk indicates the current filter gain, 

and Vw
k is the measured wheel speed, which is a product of 

the measured wheel angular speed ωw
k and efficient wheel 

radius reff. The 𝑉𝑤̂
𝑘
 is the estimated speed of the front right 

wheel. 

B. ADAPTIVE  FILTER: TARGET GAIN 

As shown in Eq. (1), Ax
k and Vw

k are used to estimate 

vehicle speed. The magnitude of the current filter gain 

determines whether the measurement of Ax
k or Vw

k is reliable. 

If |Kk| is low, Ax
k is highly weighted, which means the 

integration value of the acceleration is primarily used to 

obtain the longitudinal speed. Conversely, when the |Kk| is 

high, Vw
k is more reliable than Ax

k, and thus, the wheel speed 

is principally used.  

The reliability of Ax
k or Vw

k is determined by the wheel slip 

condition. The wheel slip ratio (λ) is defined in Eq. (4) to 

denote the difference between the vehicle and wheel speeds. 

𝜆 = (𝑉𝑥
𝑘 − 𝑉𝑤

𝑘)/𝑚𝑎𝑥 (𝑉𝑥
𝑘,  𝑉𝑤

𝑘), (4) 

When a wheel slip occurs, the gain should be lowered, 

because the wheel speed is inaccurate, and the longitudinal 

acceleration is more reliable. Alternatively, under non-slip 

conditions, the wheel speed is almost the same as the vehicle 

speed and the integration of acceleration has a cumulative 

error, and thus, the gain should be elevated.  

Equation (5) shows the estimated speed updated by the 

integration value of Ax
k. Note that the cumulative error can 

be explained by measurement noise.  

𝑉𝑎̂
𝑘+1

= 𝑉𝑎̂
𝑘

+ 𝐴𝑥
𝑘 ∙ ∆𝑡 (5) 

Here, the true speed value of the next step, Vx
k+1, can be 

acquired from offline data. Therefore, the target gain value 

of the current step 𝐾𝑘 can be derived by Eq. (6), following 

Eq. (1). 𝐾𝑘 is used as the desired value of the DNN output, 

which estimates the true speed.  

𝐾𝑘 =  (𝑉𝑥
𝑘+1 − 𝑉𝑥̂

𝑘
+ 𝐴𝑥

𝑘 ∙ ∆𝑡)/(𝑉𝑤
𝑘 − 𝑉𝑤̂

𝑘
) (6) 

 

FIGURE 1. Overall structure of this work 
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C. DEEP NEURAL NETWORK: TRAINING PROCEDURES  

A DNN is an artificial neural network comprising an input 

layer, hidden layers, and an output layer, and is equipped 

with weights, biases, and activation functions such as a 

rectified linear unit (ReLU) [24]. Figure 2(a) depicts the 

simplified DNN structure used in this study. As shown in the 

figure, two hidden layers are used. The numbers of input and 

output data items are 24 and 1, respectively, and the number 

of nodes in the hidden layers is discussed in the next 

subsection. The DNN input is denoted as uk and comprises 

six consecutive steps of φk, which consists of αk
, βk

, K
k, 

and 𝑉𝑥̂
𝑘
. The total number of DNN input data items for each 

sample is therefore 24. One DNN structure in Fig. 2(a) is 

employed in the single DNN shown in Fig. 2(b), while two 

DNN structures, labeled by DNN model 1 and 2, are adopted 

in the dual DNN. 

 

(a) 

 
(b) 

FIGURE 2. A simplified structure of the used DNN structure and diagram 
of single and dual DNN model 

𝒖𝑘 = [𝝋𝑘−5, 𝝋𝑘−4, 𝝋𝑘−3, 𝝋𝑘−2, 𝝋𝑘−1, 𝝋𝑘] (7) 

𝝋𝑘 = [𝛼𝑘, 𝛽𝑘, 𝐾𝑘−1, 𝑉𝑥̂
𝑘

] (8) 

𝛼𝑘 =  𝑉𝑤̂
𝑘

− 𝑉𝑤
𝑘 (9) 

𝛽𝑘 =  𝐴𝑥
𝑘 − 𝐴𝑤

𝑘
 (10) 

In these equations, αk represents the error between the 

estimated wheel speed  𝑉𝑤̂
𝑘

 and the measured wheel speed 

Vw
k. βk is the error between the derivative of the wheel speed 

Aw
k and Ax

k. As wheel speed and vehicle longitudinal speed 

differ when wheel slip occurs, both αk and βk values become 

higher compared with non-slip conditions. As a consequence, 

αk and βk are useful measures representing slip situations, and 

they are selected as input variables to the DNN.  

The DNN training procedure can be divided into two steps: 

feedforward and backward. In feedforward, the output of 

DNN Kk is computed using the activation function, weights 

and biases given in Eq. (11).  

𝐾𝑘 =  𝑓(𝑾4 ∙ 𝑓(𝑾3 ∙ 𝑓(𝑾2 ∙ 𝒖𝑘 + 𝒃2) + 𝒃3) + 𝒃4) (11) 

Wi and bi (I = 2, 3, 4) indicate the weights and biases of the 

hidden and output layers. In this study, the ReLU activation 

function is applied to all layers, and f in Eq. (11) represents 

the ReLU function. In backward process, loss function is 

selected as the mean squared error of gain (MSEG) between 

the output of DNN Kk and the target gain 𝐾𝑘.  

𝑀𝑆𝐸𝐺 =
1

𝑛
∑ (𝐾𝑘 − 𝐾𝑘)2𝑛

𝑘=1 . (12) 

The loss function is minimized by updating the weights of 

layers. The RMSprop optimizer is applied to the update. 

After the backward process, the adaptive filter derives the 

estimated speed 𝑉𝑥̂
𝑘+1

 using the output of the DNN, Kk. 

Additionally, the mean squared error of speed (MSES) is 

derived to define the speed estimation performance.  

𝑀𝑆𝐸𝑆 =
1

𝑛
∑ (𝑉𝑥

𝑘 − 𝑉𝑥̂
𝑘

)2𝑛
𝑘=1 . (13) 

Finally, for each training step, the estimated speed 𝑉𝑥̂
𝑘+1

 and 

gain of filter Kk are stored for the next training procedure. 

Once an over-fitting is observed, the training procedure is 

reset and re-initialized using the He initialization method.  

D. DEEP NEURAL NETWORK: STRUCTURE SELECTION 

Several DNN structures are examined to find the optimal 

structure for the data used in this study. Table I compares the 

MSES of eight DNN structures after training. The quantity 

of nodes in the input and output layers is the same for all 

structures. Structure 5 is selected because the MSES value is 

lowest. 
TABLE I 

COMPARISON OF TRAINING MSES’S FOR EIGHT DNN STRUCTURES  

 Shape of the structure 

(input, hidden1, hidden2, output) 
MSES 

   Structure 1 (24,12,12,1) 1.001 

Structure 2 (24,24,24,1) 1.730 

Structure 3 (24,24,12,1) 2.873 

Structure 4 (24,36,24,1) 0.403 

Structure 5 (24,36,12,1) 0.106 

Structure 6 (24,48,36,1) 0.393 

Structure 7 (24,48,24,1) 0.113 

Structure 8 (24,28,12,1) 0.895 
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III. DATA ACQUISTION CONDITIONS 

Wheel speed and longitudinal acceleration data are 

acquired considering the generalized performance of the 

selected DNN structure. The generalized performance 

indicates a proper operation even in unlearned circumstances 

and is crucial when applied to vehicle control and estimation 

systems. This requires training the DNN with the various slip 

data features that may occur when driving. For this purpose, 

data collection was conducted in three simulation conditions 

that can affect vehicular wheel slip: acceleration, road, and 

ABS conditions. 

A.  ACCELERATION CONDITIONS  

Vehicular wheel slip is affected by the magnitude of 

acceleration and deceleration even on the same road 

condition. Thus, the simulated vehicle is exposed to various 

acceleration and deceleration conditions by setting its 

desired speed as shown in Fig. 3. Note that the slope in the 

figure changes with every cycle, indicating the acceleration 

and deceleration also changes. Figure 4 shows the wheel 

speed Vw
k and true speed Vx on a wet surface following the 

target speed scenario in Fig. 3. If the gradient of Vx (which is 

proportional to Ax
k) exceeds a certain value, the difference 

between the true and wheel speeds increases, indicating the 

occurrence of wheel slip.  

 

FIGURE 3.  Desired longitudinal speed of the test vehicle to be exposed 
to various acceleration and deceleration conditions 

 

FIGURE 4.  Comparison of true speed and wheel speed. The difference 
between the blue and green data represents the wheel slip.  

 

FIGURE 5.  Slip ratio distributions of four road surface conditions 

B. ROAD CONDITIONS 

Road conditions also affect the vehicular wheel slip. To 

achieve a generalized performance, the DNN should be able 

to function in various road conditions. We selected four 

normal road conditions [25]: ice-covered, snow-covered, wet, 

and dry roads. The road friction coefficient of each road 

condition is set to 0.2 (ice), 0.3 (snow), 0.5 (wet), or 0.85 

(dry). Figure 5 depicts the distribution of the slip ratio in the 

different road conditions following the target speed scenario 

in Fig. 3. Each road condition has 40,000 data points. The 

blue, yellow, green, and red lines represent the slip ratio 

distribution on icy, snowy, wet, and dry roads, respectively. 

For icy roads, which has the lowest road friction coefficient, 

the data are heavily distributed in a high slip-ratio region. 

This means that slip occurs more easily on icy roads than on 

other road conditions. Conversely, on the dry road, the data 

are distributed in the low slip-ratio region, meaning that the 

slip occurrence is relatively rare.  

C. ANTI-LOCK BRAKING SYSTEM CONDITIONS 

The features of Ax
k and Vw

k differ depending on whether or 

not ABS is activated, because the ABS controller activates 

the brake actuator to follow the desired slip [26]. In addition, 

as Ax
k and Vw

k are entered as DNN input, the DNN must be 

able to correctly respond to given situations. Therefore, we 

collected data when the ABS was on or off. 

The dataset for training and testing (Table II) is divided 

into eight cases for the four road surfaces and two ABS 

conditions. Each case consists of 120,000 data samples, of 

which 80,000 are used for training and the left 40,000 

samples are used for testing.  

As an example, the “D-F” datasets in the table are acquired 

when a vehicle drives on a dry road condition (initialed by 

“D”) with ABS-off (abbreviated by “F”) following the speed 

scenario in Fig. 3. Likewise, the data obtained on a snowy 

road condition (initialed by “S”) with ABS-on (abbreviated 

by “N”) are marked as “S-N” in the table.  
TABLE II 

DATASET FOR TRAINING AND TESTING 

 Dry Wet Snow Ice 

ABS off D-F W-F S-F I-F 

ABS on D-N W-N S-N I-N 
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IV. SPEED ESTIMATION RESULTS 

After the training, the developed DNN model is validated 

using test data. For comparison purposes, the dual DNN is 

compared with a single DNN. In addition, the estimation 

results using a conventional AKF are also compared as a 

reference, because it is a typical case of an empirically 

determined indirect speed estimation method. 

A. SPEED ESTIMATION USING A SINGLE DNN 

Figure 6 shows the process of speed estimation using a 

single DNN. The procedure is the same as explained in Fig. 

1, except the single DNN is employed instead of a dual DNN. 

The DNN input uk is derived from the data storage, and the 

DNN computes the filter gain Kk using Eq. (11). The adaptive 

filter determines the estimated speed using Eq. (1). Kk and 

estimated speed Vx̂
k+1

are stored in the data storage for the 

next step. In the figure, 𝒙𝟏
𝒌 is the vector of data that acts as 

the input to the data storage and 𝒙𝟐
𝒌 is the longitudinal 

acceleration and wheel speed data that are used in the 

adaptive filter for speed estimation. 

 
FIGURE 6.  Speed estimation procedure using a single DNN 

𝒙𝟏
𝑘 =  [𝐴𝑥

𝑘, 𝑉𝑤
𝑘, 𝐴𝑤

𝑘],  𝒙𝟐
𝑘 =  [𝐴𝑥

𝑘, 𝑉𝑤
𝑘]. (14) 

The estimated speed and filter gain are illustrated in Fig. 

7. This is the estimation results of structure 5 (in Table I) 

using the test data generated from the wet and ABS-off 

condition (W-F in Table II). The blue, red, green, and yellow 

lines represent the vehicle’s true speed, estimated speed 

using the single DNN, wheel speed, and integration of 

longitudinal acceleration obtained by Eq. (5), respectively. 

As shown in Fig. 7, a slip occurs during acceleration and 

deceleration situations, where the true speed (blue) and 

wheel speed (green) significantly differ. This judgment is 

based on Eq. (4).  The gain of filter Kk (black) is shown to be 

almost zero in the slip regions, meaning that no weighting is 

applied to the wheel speed data. Conversely, in the non-slip 

region, the Kk has a value between zero and one, which 

implies that the DNN is now applying a higher weight to Vw
k 

than to Ax
k.  

Specific regions of Fig. 7, which are specified as A and 

B, are enlarged and depicted in Fig. 8. It is clear that the 

wheel slip occurs at the acceleration and deceleration 

conditions. In the non-slip regions, the yellow graph, 

calculated by Eq. (5), drifts over time and is obviously  

 

FIGURE 7.  Speed estimation results and corresponding filter gains from 

a single DNN. The red- and blue-boxed regions indicate examples of the 
slip and non-slip regions, respectively. The focused A and B regions are 
further explained in Fig. 8. 

 

(a)   

 
(b)  

FIGURE 8. Enlarged images of speed estimation results from Fig. 7, 
noted as (a) region A and (b) region B  

different from other three speed values. It is because of the 

accumulated error stemming from the integration of the 

acceleration Ax
k. However, the red line, showing the 𝑉𝑥̂

𝑘
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estimated by the single DNN, follows the true vehicle speed 

closely across entire regions. In addition, the estimated speed 

has less noise than the wheel speed Vw
k. These observations 

result in a low average test MSES of 0.293.  

B. SPEED ESTIMATION USING A DUAL DNN 

   Although the single DNN provides a relatively high 

degree of estimate accuracy, it would be challenging for one 

DNN model to optimally handle diverse vehicle driving 

conditions. This motivated the introduction of the D-DNN 

approach employing two different DNN models. The key 

strategy is the threshold value of the current longitudinal 

acceleration, 𝐴𝑡ℎ𝑟, classifying current vehicle states.  

Figure 9 shows the estimation procedure considering the 

threshold 𝐴𝑡ℎ𝑟. If the absolute value of Ax
k is higher than the 

threshold value, DNN1 is employed as a gain-tuning model. 

Otherwise, DNN2 is used. This rule is applied to training as 

well as test processes. The structure of each DNN is the same 

as that of a single DNN described in the previous section.    

 
FIGURE 9.  Speed estimation procedure using a dual DNN 

The longitudinal acceleration threshold value is selected 

empirically. Table III shows the test MSES of the eight data 

conditions, according to several 𝐴𝑡ℎ𝑟  values. Based on the 

observations, the threshold value is set at 0.2, because the 

average MSES value is lowest.  

 
TABLE III 

TEST MSES’S OF DIFFERENT ACCELERATION THRESHOLDS 

          𝐴𝑡ℎ𝑟  

 

 
Test data 

 

None 

 

0.2 

 

0.5 

 

0.7 

 

1.0 

 

2.0 

D-F 0.388 0.016 0.014 0.014 0.015 0.050 

W-F 0.291 0.020 0.022 0.024 0.022 0.130 

S-F 0.262 0.203 3.463 0.346 2.176 0.331 

I-F 0.094 0.091 0.094 0.091 1.278 0.367 

D-O 0.389 0.015 0.014 0.014 0.014 0.055 

W-O 0.394 0.021 0.021 0.034 0.020 0.133 

S-O 0.434 0.154 0.158 0.078 0.410 0.198 

I-O 0.095 0.089 0.143 0.117 0.384 1.556 

Average  0.293 0.076 0.491 0.089 0.539 0.352 

C. COMPARISION OF SPEED ESTIMATION ERRORS 

Figure 10 compares the speed estimation errors of the 

three methods. The green line indicates the AKF method. An 

adaptive filter using a single DNN is visualized using a red 

line. The blue line represents the proposed model: an 

adaptive filter using a D-DNN. The figure includes errors of 

all eight considered conditions (four road surfaces in two 

ABS conditions). The speed estimation error is derived using 

the following equation:  

𝑒𝑟𝑟𝑜𝑟𝑘 =  |𝑉𝑥
𝑘 − 𝑉𝑥̂

𝑘
| (15) 

All three methods are found to make accurate estimations. 

Most error values are less than 0.3 m/s. More specifically, 

81.81%, 75.02%, and 73.13% of the error points are less than 

0.3 m/s in the dual DNN, single DNN, and AKF methods, 

respectively. As Fig. 10 shows, in all eight conditions, the 

error of the AKF method often rises rapidly, compared with 

the other two methods. The AKF and single DNN methods 

produce larger errors when the ABS is on, compared with 

conditions in which the ABS is off. These results imply that 

the two methods may be more dependent on vehicle driving 

conditions.  

 Conversely, when using the D-DNN method, whether the 

ABS is on or off does not change the errors notably. Another 

advantage is that the error value is noticeably small and 

rarely rises suddenly. Consequently, our proposed model is 

expected to offer superior accuracy.  

Table IV compares the test MSES values of the three 

methods used to estimate vehicle speed. Our proposed model 

has the lowest MSES for all test conditions. The D-DNN 

greatly reduces the average MSES value by 74% and 65% 

compared with a single DNN and AKF, respectively, 

confirming that the proposed dual DNN model provides a 

generalized performance with a high degree of accuracy for 

vehicle speed estimation. 
TABLE IV 

TEST MSES VALUES FOR THE THREE COMPARED METHODS 

 Single 

DNN 

Dual 

DNN 
AKF 

D-F 0.388 0.016 0.035 

W-F 0.291 0.020 0.233 

S-F 0.262 0.203 0.3464 

I-F 0.094 0.091 0.094 

D-O 0.389 0.015 0.042 

W-O 0.394 0.021 0.2625 

S-O 0.434 0.154 0.3624 

I-O 0.095 0.089 0.3698 

Average  0.293 0.076 0.218 

VI. CONCLUSION 

In this study, a filter-gain tuning method using a dual DNN 

to estimate the absolute speed of a vehicle was proposed. The 

generalized performance and high degree of accuracy of the 

resulting speed estimation were achieved with a trained D-

DNN model. Although our proposed method produced 

accurate estimation of longitudinal speeds, the trained model 

was optimized for the datasets used in this study. This 

implies that the trained model presented here could be 

trained further using additional datasets, generated from 

different road or driving conditions, and become a more 

generalized model. 
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            (a)                                                                                                             (b)     

 
           (c)                                                                                                              (d) 

 
           (e)                                                                                                              (f) 

 

 
           (g)                                                                                                              (h) 

FIGURE 10.  Speed estimation errors of the three compared methods for the eight cases in Table II. (a) error on D-F, (b) error on W-F, (c) error on 
S-F, (d) error on I-F, (e) error on D-N, (f) error on W-N, (g) error on S-N and (h) error on I-N cases 
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