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Abstract. Convolutional neural networks (CNN) is a contemporary technique for 
computer vision applications, where pooling implies as an integral part of the deep CNN. 
Besides, pooling provides the ability to learn invariant features and also acts as a regularizer 
to further reduce the problem of overfitting. Additionally, the pooling techniques 
significantly reduce the computational cost and training time of networks which are equally 
important to consider. Here, the performances of pooling strategies on different datasets are 
analyzed and discussed qualitatively. This study presents a detailed review of the 
conventional and the latest strategies which would help in appraising the readers with the 
upsides and downsides of each strategy. Also, we have identified four fundamental factors 
namely network architecture, activation function, overlapping and regularization 
approaches which immensely affect the performance of pooling operations. It is believed 
that this work would help in extending the scope of understanding the significance of CNN 
along with pooling regimes for solving computer vision problems.  

Keywords: Pooling strategies, convolutional neural network, visual recognition, 
regularization, overfitting.   

1. Introduction

Computational models of neural network have evolved more than half a century. 
McCulloch and Pitts developed the very first model in 1943 which is known as linear 
threshold gate [33, 37, 52]. To train such neural models, Hebbian contributed a learning 
algorithm known as the Hebbian learning rule. The Hebbian rule performs well only when 
all the input patterns are orthogonal [20]. The presence of orthogonality in input patterns is 
a serious demand for a good performance of this rule [40]. In order to surpass this demand, 
a more powerful learning rule, i.e. Delta rule came into existence. However, Delta rule is  
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unable to solve the problems that are not linearly separable [10]. To overcome the entire 
problem associated with the above-discussed learning rules, backpropagation emerged as a 
more complex learning algorithm. Backpropagation having the ability to learn many layers 
arbitrarily and can approximate any computable function [10, 39]. Backpropagation is a 
conventional method to train a Feed-Forward Neural Network (FFNN). The simplest FFNN 
composed of at least one hidden layer sandwiched between an input and output layer. In an 
FFNN, each pair of neurons has an acyclic and directed connection between each other as 
depicted in Figure 1.  

 
Figure 1.  Architecture of Feed Forward Neural Network (FFNN) 

 
In multilayer FFNN, a weighted summation process is used to specify the flow wherein 

every layer is fully connected to the next layer. So that, each neuron can be capable enough 
to send its current activation to any connected unit. The transmitted activation is multiplied 
by the weight of the connection and at the receiving neuron moved through some squashing 
function (like sigmoid, ReLU, tan h) in order to introduce nonlinearities [15, 51]. The 
learning is performed by updating the weights to minimize an error function which defined 
as the difference between desired and the actual output activation vector [22]. Usually, the 
backpropagation algorithm is used to accomplish the task of learning by taking a partial 
derivative of the error with respect to the weights of the last layer and then used to modify 
the weights. Similarly, the partial derivative is computed for the errors with respect to the 
weights of the second to last layer, and this process is repeated until all the weights 
connected to the input layer get updated.  In spite of being a universal function 
approximator, FFNNs are poor in dealing with many forms of practical problems such as 
object and face recognition [5, 34-35, 49, 57]. The reason is full connectivity of the network 
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due to which the number of weights grows rapidly with the input dimension. In addition, 
the disconcerting fact about the FFNN is their spatial ignorance [9], because separate 
weights are involved in learning the same object at different location instead of weight 
transferring. All this happens because every pair of neurons between two layers has their 
weights. In order to eradicate the problems related with the implemenation of FFNN, the 
convolutional neural networks (CNNs) are then come into existence. CNNs can exploit the 
two dimensional spatial constraints imposed by the input modality and at the same time 
reduce the number of parameters involved in the training process. 

1.1 General Convolutional Network Architecture 

CNNs are a special class of deep network which has been applied successfully to the data 
with grid-like topology (image data and time-series data) [26-27, 42, 44]. CNN mainly 
composed of convolutional, pooling, activation and fully connected layer. The 
convolutional layer is the integral part of a CNN, where the convolution operation is 
applied to the input. Convolution operation leverages the three important ideas named as 
equivalent representations, sparse connectivity and tied weights which play an essential role 
in the improvement of machine learning systems specifically to solve the tasks related to 
computer vision [43]. Since the architecture of CNN consists of multiple convolutional 
layers so as for images. In this context, a bank of filters is applied to an image (at every 
convolutional layer), and the output is obtained in a piled manner. The piling of outputs 
increases the abstract feature and makes the pixel-wise analysis more complicated. In order 
to alleviate this complexity, pooling layers are inserted after the convolutional layers. A 
schematic representation of the most commonly used CNN architecture with a pooling 
operation is depicted in Figure 2 with an explanation. 

1.1.1 Pooling  

Pooling is a non-linear transformation that permits to summarize the output of a net at a 
certain location with a single value. This single value is obtained from the statistic of the 
neighboring outputs which makes the feature descriptions more robust and invariant to 
small translations of the input data [27, 53]. The pooling layer progressively cuts down the 
dimensionality of the input, consequently reduces the demand of memory for storing the 
parameters, and improves the statistical efficiency [3, 16-18, 25, 28-30, 41, 53-54]. In deep 
networks, over-fitting is also controlled with the application of the pooling layers [16, 54]. 
Numerous application fields of CNN such as visual recognition, tracking, object detection, 
and face recognition have been used pooling operation to create invariance to small shifts 
and distortions of the input data. Average, max, fractional-max out, stochastic pooling and 
mixed pooling are some popular pooling regimes which have been used in numerous 
variant of CNN to solve the problems related to computer vision. Not only CNN, the Scale 
Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) methods of 
feature extraction also utilize pooling regimes to design a robust object detection system 
that can firmly recognize the objects in clutter and occlusion [6, 32]. 
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In general, choice of pooling regime matters a lot in solving the computer vision 
problem as its foremost objective is to convert the joint feature representation (mapped by 
convolution) into useable one. Thus, the pooling operation plays a significant role in 
various computer vision architectures. Pooling operation also reduces computational cost as 
it cut down the resolution of feature map while preserving the useful features required for 
the task to perform. In short, the results desired from pooling operation are compact 
representation, robustness to noise and clutter, and invariance to shift, skew or lightening 
condition. Many research communities are working in the direction of development of 
advanced pooling mechanisms to make efficient use of these pivotal features of pooling 
regimes. The motivation behind this study is to appraise the readers from the regular 
advancements in the development of pooling regimes. Additionally, the survey provides a 
common platform to discuss all the popular pooling schemes with their pros and cons. 

 

Figure 2. Illustration of CNN architecture. The image is break down in overlapped tiles by 
using a sliding window approach, where each pixel of the image is represented by a number 
value for its three channels: red, green and blue. Zero padding is applied to each tile in 
order to maintain the size of final output. To perform a convolution operation, image tiles 
are fed to a CNN which is composed of N filters with size (3x3x3) and the filter is slid over 
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each channel of the image tile by considering a local region of size 3x3. A dot product is 
computed between the local region of image tile and the filter, which results in single value. 
This value is then put down in the left most cell of the local region. The filter is then moved 
with stride 1 to the right and looks at the next local region. After filling the cells, the values 
of all the three channels are summed up which represents the contribution of this filter for 
the final output and known as feature map. Similarly, the remaining filters also provide the 
feature maps as their contribution to the output of CNN. An activation function (ReLU) is 
then applied to introduce non-linearity in the network, where negative values in the feature 
maps are replaced by ‘0’. After activation, max-pooling operation is performed to obtain 
the feature map with reduced dimensionality by considering the highest value from each 
window of size 2x2. 

2. Pooling Regimes 

In this section, the pooling regimes are discussed that are important and applied to several 
computer visions related tasks. Few popular pooling regimes are illustrated with the help of 
schematic representations for better understanding and the important characteristics are 
summarized in Table 1. 

2.1 Average Pooling 

In this pooling strategy, the input image is partitioned into a set of the disjoint rectangular 
box. The output for each rectangle is the average of entries in that box [28-29]. A pictorial 
representation of average pooling is depicted in Figure 3. Mathematically, the average 
pooling can be expressed as [26]: 

    𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) =  1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1                (1) 

 where 𝒙𝒙 is a vector consist of activation values from a rectangular area of 𝑵𝑵 pels (for 
example: dimensions of  the rectangular area in Figure 3 is 2x2) in an image or a channel. 
Earlier, the use of average pooling was common but their use has been limited with the 
advent of max pooling operation [3]. The loss of informations in term of contrast is the 
major rationale behind their failure. In the computation of mean, all the activation values 
which are present in rectangular box are considered. If the magnitude of all the activations 
is low, the computed mean would also be low and give rise to reduced contrast. The 
situation will be worst when the most of the activations in the pooling area come with a 
zero value. In that case, feature map characteristic would reduce by a large amount. 
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Figure 3. Illustration of average pooling with a pooling area of size 2x2 and stride of 2.                                                                                                                                                                                                                                    

2.2 Max Pooling 

In this pooling strategy, activation with the maximum value is selected from all the 
activations that present in a rectangular field, as shown in Figure 4. This regime is widely 
applied in most of the architecture which are similar to CNN's [16, 30, 41]. Max pooling 
strategy trims down the computation of upper layers with the elimination of non-maximal 
components. Max pooling provides a better performance with sparse coding and simple 
linear classifiers. Due to this reason, it has gained popularity in the past few years [3]. The 
statistical properties of max pooling make it considerably fit sparse representations, which 
is another appeasement for its fame. Mathematical expression for max-pooling is given as 
[30]: 

    𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖(𝑥𝑥𝑖𝑖)                                   (2)                                     

The major drawback of max pooling is that the pooling operator considered only the 
maximum element from the pooling area and ignores other elements. If the majority of the 
elements in the pooling area would be of high magnitudes, the discerning features get 
disappeared after performing max pooling operation. As a matter of this fact, the situation 
leads to unacceptable results due to the loss of information.  

 
Figure 4. Illustration of max pooling with a pooling area of size 2x2 and stride of 2. 

  

308 S. Sharma, R. Mehra



2.3 ‘Mixed’ Max-Average Pooling 

Mixed pooling is a blend of max and average pooling, so termed as max-average pooling. 
This pooling scheme is stochastic because of the random employment of max and average 
pooling during the training of CNN [30, 53]. Stochastic nature of the mixed pooling helps 
in prevention of over-fitting to some extent. In this regime, mixing proportion parameters 
(𝑎𝑎) are learned in various fashions (for each net, for each layer, layer/region, layer/channel 
or layer/region/channel combinations) [30]. A graphical representation of this regime is 
illustrated in Figure 5(a). The mathematical expression for mixed pooling is [30]:  

   f𝑚𝑚i𝑥𝑥(x) =  𝑎𝑎 ∗ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) + (1 − 𝑎𝑎) ∗ 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)                (3) 
 
where 𝑎𝑎 ∈ [0, 1] is a scalar factor which determine the blending of max and average 

pooling and termed as mixing proportion. In order to learn each mixing proportion 
automatically, we have to define the output loss function (E). For this learning, vanilla 
back-propagation is represented as [30]: 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕f𝑚𝑚i𝑥𝑥(x)

𝜕𝜕f𝑚𝑚i𝑥𝑥(x)
𝜕𝜕𝜕𝜕

= 𝛿𝛿 �maxi(xi) −  1
N
∑ xiN
i=1 �               (4) 

Note: To solve this,  𝜕𝜕f𝑚𝑚i𝑥𝑥(x) factor is multiplied in numerator and denominator. Later, 
partial differentiation is performed on 𝜕𝜕𝜕𝜕

𝜕𝜕f𝑚𝑚i𝑥𝑥(x)
 and 𝜕𝜕f𝑚𝑚i𝑥𝑥(x)

𝜕𝜕𝜕𝜕
 which correspond to 𝛿𝛿 (the error 

which is propagated back from the succeeding layers) and maxi(xi) −  1
N
∑ xiN
i=1 , 

respectively.  
 
Moreover, it is necessary to compute the error signal that propagated back to former layer 
because pooling layers are generally placed in the midst of a deep network.  

 𝜕𝜕𝜕𝜕
𝜕𝜕xi

= 𝜕𝜕𝜕𝜕
𝜕𝜕f𝑚𝑚i𝑥𝑥(xi)

𝜕𝜕f𝑚𝑚i𝑥𝑥(xi)
𝜕𝜕xi

= 𝛿𝛿 �a ∗ 1[xi = maxi(xi) + (1 − 𝑎𝑎) ∗ 1
N
�              (5) 

 
The mixed pooling strategy is insensitive towards the important features in the pooled 

area due to the fixed mixing proportion. Non-responsive behaviour is the major drawback 
of this pooling scheme. However, Lee et al. experimentally demonstrated a significant 
improvement in the classification performance of CNN with the mixed-pooling which is 
also compared with the max pooling and average pooling for the standard datasets namely- 
SVHN, MNIST, CIFAR10 and CIFAR100 [30]. The details are tabulated in Table 2.  
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Figure 5. Mixed Pooling, (a) “Mixed” Max-Average Pooling where, ‘a’ is the mixing 
proportion (fixed, once learned). The range in which mixing proportion lie is 0 to 1. (b) 
“Gated” Max-Average Pooling where, ‘w’ is the gating mask, multiplied with the region 
being pooled. The resultant of product passed through a sigmoid ‘σ’ to get the value of 
mixing proportion (adaptive to pooling region’s characteristics). Modified and regenerated 
from [30] 

2.4 ‘Gated’ Max-Average Pooling 

‘Gated’ max-average pooling is similar to mixed max-average pooling as both originates 
from the combinations of max pooling and average pooling (Figure 5(b)). However, 
responsive nature of “gated” max-average pooling makes it different from the mixed max-
average pooling. In this pooling strategy, a dot product is made between the “gating mask” 
and the “region being pooled”, where both are having the same spatial dimension. The 
resultant scalar from this product is run through a sigmoid that yields a value known as 
mixing proportion. According to the strategy, the actual mixing proportion can adapt itself 
to the features that are present in the pooling region.  Similar to “Mixed” max-average 
pooling, “Gated” max-average pooling strategy has the same options to learn mixing 
proportion parameters. The mathematical representation for gated max-average pooling is 
expressed beneath [30]:  

  f𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(x) =  𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) + (1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥)) ∗ 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)              (6) 

The gradient concerning “gating mask” (𝑤𝑤) can be computed by adopting the same 
procedure which is used in “Mixed” max-average pooling:   

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕

𝜕𝜕f𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(x)
𝜕𝜕f𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(x)
𝜕𝜕𝜕𝜕

= 𝛿𝛿 �𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ (1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥))𝑥𝑥 �maxi(xi) −  
1
N
� xi

N

i=1

�� 
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𝜕𝜕𝜕𝜕
𝜕𝜕xi

=
𝜕𝜕𝜕𝜕

𝜕𝜕f𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(xi)
𝜕𝜕f𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(xi)

𝜕𝜕xi
 

= 𝛿𝛿 �𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ (1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥))𝑤𝑤𝑖𝑖 �maxi(xi) −  1
N
∑ xiN
i=1 � + 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ 1[xi = maxi(xi) +

(1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ 1
N
�                           (7) 

The experimental work by Lee et al. is an evident that “Mixed” strategy involves fewer 
parameters as compared to the “Gated” strategy but still “Gated” network surpasses the 
“Mixed” option on MNIST, CIFAR10, and CIFAR100 except for the SVHN dataset [30] 
(Table 2). 

2.5 Tree Pooling 

In this pooling scheme, the learning of pooling operation is carried out in form of the values 
in pooling filters and further learning is performed to combine these learned filters 
responsively. Both the learning procedures are executed within a binary tree that consists of 
leaf nodes. In this tree-like representation, each leaf node (child node) is related to a 
“pooling filter” with an area of pooling (𝑥𝑥 ∈  ℝ𝑁𝑁) and denoted by (𝑣𝑣𝑚𝑚 ∈  ℝ𝑁𝑁), where 𝑚𝑚 is 
an indexing for the node. The values of two child nodes are further combined into a parent 
node with single value. At each parent node, the mixture is learned responsively with 
learned “gating masks” and denoted by (𝑤𝑤𝑚𝑚 ∈  ℝ𝑁𝑁) which is similar to “gated max-
average” pooling. The parent nodes are also known as internal nodes of a tree. Eventually, 
the parent values are combined into the root node value in a responsive manner to represent 
the overall output of the tree (Figure 6). 
 
Purposely, the tree pooling is proposed to perform the following actions: 

1. Pooling filters are learned directly from the input dataset.  
2. It learns how to “blend” pooling filters in a differentiable manner. 
3. The former characteristics are brought together inside a tree with hierarchal 

structure.  

𝑓𝑓𝑚𝑚(𝑥𝑥) = �
𝑣𝑣𝑚𝑚𝑇𝑇 𝑥𝑥                                                                                           𝐼𝐼𝐼𝐼 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝜎𝜎(𝑤𝑤𝑚𝑚𝑇𝑇𝑥𝑥)𝑓𝑓𝑚𝑚,   𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) + �1 − 𝜎𝜎(𝑤𝑤𝑚𝑚𝑇𝑇𝑥𝑥)�𝑓𝑓𝑚𝑚,   𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝑥𝑥)           𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    (8) 

Note: A tree pooling function with “2” leaf nodes and “3” internal nodes can be specified 
as: (𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)𝑣𝑣1𝑇𝑇𝑥𝑥 + (1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥))𝑣𝑣2𝑇𝑇𝑥𝑥). The chain rule is applied on the tree 
pooling function to compute the gradient with respect to leaf node pooling filters (v1 & v2) 
and internal node gating mask (w3), which is expressed as [30]: 

   𝜕𝜕𝜕𝜕
𝜕𝜕v1

= 𝜕𝜕𝜕𝜕
𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)
𝜕𝜕v1

= 𝛿𝛿[𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)𝑥𝑥]                            (9) 

   𝜕𝜕𝜕𝜕
𝜕𝜕v2

= 𝜕𝜕𝜕𝜕
𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)
𝜕𝜕v2

= 𝛿𝛿[(1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)). 𝑥𝑥]                         (10) 
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 𝜕𝜕𝜕𝜕
𝜕𝜕w3

= 𝜕𝜕𝜕𝜕
𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)
𝜕𝜕w3

= 𝛿𝛿�𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)�1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)�𝑥𝑥(𝑣𝑣1𝑇𝑇 − 𝑣𝑣2𝑇𝑇)𝑥𝑥�                   (11) 

Whereas, the error signal back-propagated to the former layer is given as: 

𝜕𝜕𝜕𝜕
𝜕𝜕x

= 𝜕𝜕𝜕𝜕
𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)
𝜕𝜕𝜕𝜕

= 𝛿𝛿�𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)�1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)� w3(𝑣𝑣1𝑇𝑇 − 𝑣𝑣2𝑇𝑇)𝑥𝑥 +  𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)v1 + (1 −

𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥))v2�                   (12) 

The tree pooling is different from the traditional decision tree in which decisions makes 
by the tree are “hard decisions”.  The hard decision functions are neither differentiable nor 
continuous with respect to its input as the mixing proportion can take value either 0 or 1. 
This makes the traditional decision tree non-useful for backpropagation in every prospect. 
Due to all these reasons, sigmoid “gate” function (i.e., 𝜎𝜎(𝑤𝑤𝑚𝑚𝑇𝑇𝑥𝑥) ∈ [0, 1]) is used by the 
internal node in tree pooling; which makes tree pooling differentiable with respect to inputs 
as well as its parameters. Lee et al. [30] have observed through their experiment that the 
tree pooling is useful at the lower network layers where the feature responses are dense. 
However, the “mixed” and “gated” max-average pooling are more advantageous where the 
feature responses are sparse which present at the higher network layers. From this 
observation, an idea of a combined strategy which consist of tree pooling at lower layers 
and max-average pooling at higher layers is implemented on various data sets such as 
MNIST, CIFAR10, CIFAR100 and SVHN, that outperforms not only baseline but also a 
network with tree pooling method alone. This scheme is termed as “tree + max-average 
pooling”. 

 
Figure 6. Tree pooling.  The child node composed of pooling filters (v1

T, v2
T, v3

T, v4
T) that 

learn directly from the input. Like “Gated” max-average pooling, gating mask are used to 
determine the blending of the child node’s output at parent node. The procedure is repeated 
until the root node is attained, where the mixture of parent node is also computed by gating 
mask. Modified and regenerated from [30] 
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2.6 Spatial Pyramid Pooling (SPP) 

Spatial pyramid pooling is also known as spatial pyramid matching (SPM). This pooling 
scheme has a unique characteristic to eliminate the need of input image with fixed size [17, 
25], which is a foremost requirement in CNN [18]. The constraint of fixed size is imposed 
by the fully-connected layers, not the convolution layer. Before the existence of pyramid 
pooling, cropping [23, 55] and warping [8, 13] are the only methods to fix the size of an 
image in order to fit within the CNN. But cropping and warping process lead to content loss 
and geometric distortion in an image, respectively. To obviate the involvement of cropping 
and warping, the SPP layer is added on top of the last convolution layer which gives rise to 
a new network, SPP-net [18]. The schematic representation of SPP operation is shown in 
Figure 7.  

In the SPP-net, the SPP layer is made adaptive to the size of feature maps and the 
numbers of spatial bins are kept constant at every pyramid level. However, the size of bins 
may vary. Consider an image of size 128x128 and 4 numbers of bins at first level of 
pyramid and then create a patch of size “32x32” with 4 bins. At second level of pyramid, 
since the number of bins is 16, patches of size “8x8” are created and maximum value within 
each bin is taken as an activation value. The pooling of activations for each bin give rise to 
a vector of fixed dimension as an output of SPP layer which has a fixed length, equal to the 
multiplication of the number of filters in the last convolutional layer and the number of bins 
in the SPP layer. Thus, the SPP technique has the ability to generate an output of fixed 
length without considering the input size. The involvement of multi-level bins is an asset in 
SPP scheme which makes it robust to the object deformation [25]. In addition, SPP have 
flexibility toward input image scales during the testing and training phases which enhance 
the scale-invariance property and reduce the problem of overfitting in the network [19]. 
SPP technique has been proved as state-of-the-art techniques for classification on 
Caltech101 [12] and Pascal VOC 2007 [11] and also surpassed even the R-CNN in object 
detection with faster computation [13].  
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Figure 7. SPP-net. SPP layer is inserted between the Conv4 (the last convolutional layer of 
considered network) and the fully connected layer. The feature maps of arbitrary size from 
the Conv4 fed to the SPP layer which consists of three level of pyramid: level 0, level 1, and 
level 2 and the number of bins in each level is 1, 4, and 16, respectively. Remember that the 
number of bins is fixed in each level but the size of bins may vary. In each bin, we pool the 
response of each filter present in the Conv4 layer which gives rise to a vector of fixed 
dimension i.e. equal to the product of number of bins and the number of filters in the Conv4 
layer. In this example, 256 depicting the filter number of the Conv4 layer. According to this, 
the dimension of the output vector would be 21*256. Modified and regenerated from [19] 

2.7 Stochastic Pooling 

The key idea behind this strategy is to replace the conventional forms of pooling with a 
stochastic process [54]. In the stochastic pooling, the pooled map response is selected 
randomly from a multinomial distribution of activations which are obtained from each 
pooling region after the application of a linear rectification function (ReLU). This strategy 
involved only the non-negative activations and suppressed the negative activations to zero. 
Therefore, only the strong activations are considered for sampling. Concurrently, it also 
assures the accountability of non-maximal activations due to a random selection of 
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activations from a multinomial distribution which helps in prevention of network over-
fitting. But before the selection, the probability (𝑝𝑝) for each region (𝑅𝑅𝑚𝑚) is computed by 
normalizing the activations and then the selection is performed on the basis of (𝑝𝑝) to pick 
up a location (l) within the region [54]: 

    pi = ai
∑ akk∈Rm

                          (13)  

The pooled activation is then set as: 
   sm = al where l ~ P (p1, … … , p|Rm|)                          (14) 

The major drawback of stochastic pooling lies in the constraint to use non-negative 
activation only. Further, it can be observed from the equation 13 that the strategy is not 
applicable to negative activations. Since the ReLU activation function set the negative 
activations to zero, so the stochastic pooling is used with ReLU activation function only. In 
addition, stochastic pooling leads to the problem of overfitting with the limited training 
dataset due to high probability in selection of strong activations during the training process. 
These entire problems in stochastic pooling are known as scale problem.   

 

Figure 8. Stochastic Pooling. The selection of sample is carried out from the multinomial 
distributions of the activations on the basis of the probability computed by normalizing the 
activations. The larger the activation, the larger is the possibility to be chosen. In this 
example, there are two activations 1.6 and 2.4 which are having the probability of 40% and 
60%, respectively. However, 1.6 is chosen as sampled activation, despite the higher 
probability of 2.4. Therefore, the important features may be lost in stochastic pooling as one 
cannot determine that which part of the input will be chosen. Modified and regenerated 
from [54] 

2.8  S3Pool 

The S3Pool strategy is a new method of pooling and proposed by Zhai et al. [56] in 2017. 
In this scheme, the pooling operation is performed in two steps. In step 1, the max-pooling 
operation is performed on the entire feature maps (received from the convolutional layer) 
with stride (s) 1. Whereas in step 2, down-sampling is performed on the output of step 1 
which is carried out stochastically by first partitioning the feature map of size 𝑥𝑥 × 𝑦𝑦 into 
specified number of horizontal (h) and vertical (v) strips, respectively. Where, ℎ = 𝑥𝑥 𝑔𝑔�  and 
𝑣𝑣 = 𝑦𝑦

𝑔𝑔� . The ‘g’ is a hyper-parameter known as grid size which decides the number of 
horizontal and vertical strips in a feature map. Once the partitioning is over, 𝑔𝑔 𝑠𝑠�  rows and 
𝑔𝑔
𝑠𝑠�  columns are then selected randomly from each of the horizontal and vertical strip. 
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Eventually, a down-sampled feature map of size 𝑥𝑥 𝑠𝑠⁄ × 𝑦𝑦
𝑠𝑠�  is obtained. A schematic of 

S3Pooling is shown in Figure 9. 

  

Figure 9. (a) S3Pool, in this example the size of feature map is 4x4 where, x = 4 and y = 4. 
In step 1, zero padding is applied at the edges and max-pooling operation is performed with 
stride 1, while the size of grid and stride will be taken as 2 for step 2. Therefore, the number 
of horizontal (h) and vertical (v) strips will be 2 according to the scheme. In step 2, the stars 
are depicting the randomly selected rows and columns in order to obtain downsampled 
feature map. (b) and (c) Flexibility to control the distortion or stochasticity by the varying 
the grid size in step 2. Modified and regenerated from [56]  

In S3Pool, a random distortion is introduced in the feature maps at each epoch for the 
same training instance since the sampling performed in step 2 is stochastic. These spatially 
distorted feature maps give rise to a “virtual” data augmentation at the intermediate layers 
due to which S3Pool emerged as a firm regularizer. S3Pool also provides flexibility to 
control the distortion just by changing the grid size to suit different architectures and 
applications. In order to determine the effectiveness of S3Pool in comparison of other 
pooling methods, Zhai et al. [56] performed experiments for CIFAR-10, CIFAR-100 and 
SIT datasets using two architectures: network in network (NIN) and residual network 
(ResNet). From the experimentation results, the authors have been observed that S3Pool 
without any data augmentation outperforms the NIN and ResNet with dropout as well as 
with stochastic pooling even when employed with flipping and cropping technique of data 
augmentation during testing phase. In terms of computational costs, S3Pool has been found 
as an efficient method as it provides a computational overhead of 8% and 4% in case of 
NIN and ResNet, respectively. While for the same networks, stochastic pooling increases 
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the training time by 66% (NIN) and 27% (ResNet). Hence, the S3Pool technique has a good 
generalization ability and less computational cost as compared to stochastic pooling. 

2.9 Rank-Based Pooling (RBP) 

In 2016, a new regime of pooling “rank based pooling” was proposed by Shi et al. [45] to 
alleviate the scale problems which is confronted by value based pooling methods such as 
stochastic pooling.  In RBP, a rank is assigned to all the activations in a pooling region, 
where  the activations are sorted in descending order and rank are assigned in ascending 
order (start from one) (Figure 10). Mathematically, rank assigning procedure can be 
represented as [45]: 

    𝑎𝑎(𝑖𝑖) > 𝑎𝑎(𝑗𝑗) ⇒ 𝑟𝑟(𝑖𝑖) < 𝑟𝑟(𝑗𝑗)             (15) 

where ‘a’ is the activations in the pooling region, ‘i’ and ‘j’ defined the position of 
activations in the pooling region, r(i) and r(j) denotes the rank of activation  at ‘i’ and ‘j’, 
respectively. 

If the two activations are of same value, then the rank will be assigned as: 
   𝑎𝑎(𝑖𝑖) = 𝑎𝑎(𝑗𝑗) ∧ 𝑖𝑖 < 𝑗𝑗 ⇒ 𝑟𝑟(𝑖𝑖) < 𝑟𝑟(𝑗𝑗)              (16) 

Further, weights are allocated to all the activations and summed up to get the final 
output. On the basis of different weighting mechanisms, the RBP is categorized into three 
new pooling mechanisms namely; rank-based average pooling (RAP), rank-based 
stochastic pooling (RSP), and rank-based weighted pooling (RWP). 

2.9.1 Rank-based Average Pooling (RAP) 

In RAP, top (t) highest activations are considered, while the remaining activations are 
discarded. The highest activations are then averaged to obtain the pooling output. The 
mathematical expression for the RAP can be given as[45]: 

𝑠𝑠𝑚𝑚 =
1
𝑡𝑡

� 𝑎𝑎𝑖𝑖
𝑖𝑖∈𝑅𝑅𝑚𝑚,𝑟𝑟𝑖𝑖≤𝑡𝑡

                                                         (17) 

Where t is the rank threshold (a hyper-parameter to decide how many activations would 
be involved in averaging) and Rm denotes the pooling area ‘m’ in the feature map. It is 
important to consider that the RAP turns into max-pooling for t = 1 and average pooling for 
t = n (the size of pooling area).  So the selection of rank threshold should be proper, neither 
too small nor too large. According to Shi et al. [45], the setting ‘t’ to median value result in 
satisfactory performance and provides a good trade-off between max-pooling and average 
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pooling. Therefore, RAP is a wonderful mixture of max and average pooling as well as has 
better discriminating ability than the conventional methods of pooling.    

 

Figure 10. Rank-based average pooling scheme. The activations in a pooling area are 
sorted in descending order and ranking is assigned in ascending order. Since t=4, four 
highest activations are averaged to obtain the pooling output. Modified from [45] 

2.9.2 Rank-based Weighted Pooling (RWP) 

The RWP strategy is based on the idea that each region in an image is not having an equal 
importance as the image features are not spatially fixed.  Therefore, the reasonable weights 
are assigned to all the activation in RWP. The smallest weight is assigned to the lowest 
activation and the largest weight to the highest activation (Figure 11). The distribution of 
weights is carried out on the basis of computed probability for all the activations by using 
formula [45]:   

𝑝𝑝𝑟𝑟 = ∝ (1−∝)𝑟𝑟−1, where r = 1, 2, … , n               (18) 
∑ 𝑝𝑝𝑟𝑟 = 1 − (1−∝)𝑛𝑛𝑛𝑛
𝑟𝑟=1  , when  0 < ∝ < 1              (19) 

lim
𝑛𝑛→+∞

�𝑝𝑝𝑟𝑟

𝑛𝑛

𝑟𝑟=1

= 1                                                             (20) 

Where the computed probability relies on the rank of the activations and ∝ is a hyper-
parameter which controls the probability of the highest activation. Later, the activations 
within the pooling area are weighted by the probability and then summed up.  

𝑠𝑠𝑚𝑚 = � 𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖
𝑖𝑖∈𝑅𝑅𝑚𝑚

                                                              (21) 

According to Shi et al. [45], RWP preserved more discriminating information as 
compared to max, average, value-based stochastic pooling and also RAP which confirms 
their good discriminate ability. It all happens due to assigning of reasonable weights to the 
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activations within a pooling area. However, equal importance is given to all the activations 
in RAP, which became the major reason behind the lack in their discriminate ability.      

 

Figure 11.  Rank-based stochastic pooling (RSP) and rank-based weighted pooling (RWP). 
Activations are sorted in term of ranking and probability is computed for the entire 
activations that present within the pooling area. In RSP, random selection of activation is 
performed on the basis of calculated rank based probabilities and in RWP, reasonable 
weights are assigned to the activations according to the computed probabilities. Modified 
and regenerated from [45] 

2.9.3 Rank-based Stochastic Pooling (RSP) 

RSP is just similar to the value based stochastic pooling, where the activations are selected 
from the multinomial distribution of the probabilities. The only difference lies in the 
computation of probability which is based on the rank of the activation (equation 18), not 
on the value of the activation (Figure 11). More randomness in selection of the activation is 
the major advantage of this regime. There is a single hyper-parameter (∝) which controls 
the probability of the highest activation. According to Shi et al. [45], the setting (∝= 0.5) 
leads to the adequate performance by introducing more randomness. Better capacity to 
preserve more diverse information is another advantage of RSP as it preserves more 
appropriate and task-specific frequencies in the feature maps. In addition, the RSP regime 
has potential to avoid the scale problem confronted by stochastic pooling, where the 
negative activations are substituted by zero to compute the probability. Although, the 
negative activations are not suppressed to zero in RSP as the probabilities are based on the 
rank. Thus, no constraint of activation function is imposed on the implementation of RSP 
which provides the flexibility to choose the activation function.   
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2.10 Fractional Max-out Pooling 

As the name suggests “fractional max-out pooling” is a fractional version of max-pooling in 
which multiplicative factor (∝) is allowed to take non-integer value within a range of 1 < ∝ 
< 2. In this regime, size of hidden layers is reduced by a fractional factor which provides an 
opportunity to view an image at a different scale. The visualization of an image at a 
“proper” scale make it easy to recognize the discerning features that used in identification 
of an object [16]. Fractional max pooling introduces randomness that associated with the 
choice of pooling region due to its stochastic nature. The region of pooling can either be 
overlapped or disjoint which can be selected either randomly or pseudo-randomly with the 
use of dropout and training data augmentation. According to Graham B. et al. [16], the use 
of fractional max pooling with overlapped region of pooling works better than the disjoint 
one. Besides, they have observed that the pseudorandom selection of pooling region with 
data augmentation performs better as compared to random selection.  

Table 1. Evaluation of pooling strategies in terms of upsides and downsides 
Pooling  Upsides Downsides Reference 

Average 
 

• Easy to understand. 
• Implementation is simple. 

• Deterministic in nature. 
• Resulted in reduced contrast 

if low magnitudes are taken 
into consideration. 

 
[3, 28-29] 

Max 
 

• Statistical properties make it fit 
sparse representations. 

• Perform better when coupled 
with sparse coding and simple 
linear classifiers. 

• Reduce computation for upper 
layers with elimination of non-
maximal components. 

• Deterministic in nature. 
• The discerning features get 

disappeared when majority 
of the elements in the 
pooling area are present with 
high magnitudes. 

[16, 30, 
41] 

‘Mixed’ 
Max-

Average 
 

• Stochastic in nature 
• Helps in prevention of the 

problem of over-fitting. 

• Unresponsive to the 
characteristics or features of 
the area being pooled as 
mixing proportion remain 
fixed once it learned. 

[30] 

‘Gated’ 
Max-

Average 
 

• Responsive in nature. 
• Adaptive in nature as the 

mixing proportion can adapt 
according to the features present 
within the pooling region. 

• Resulted in additional 
parameters for training. 

[30] 

Tree 
 

• Responsive in nature. 
• Differentiable with respect to 

inputs as well as parameters. 
• Useful at the lower layers of the 

network. 

• Non-useful for the dense 
layers of network. 

[30] 

Pyramid 
 

• Ability to handle input of 
arbitrary size. 

• Multi-level spatial bins. 
• Flexibility towards input image 

scales.   

• Complex implementation 
during training stage in deep 
networks. [19] 

320 S. Sharma, R. Mehra



Stochastic 
 

• Stochastic in nature. 
• Non-maximal activations can be 

utilized. 
• Possible combination with any 

other regularization approach 
like dropout, data augmentation, 
weight decay etc. 

• No hyper-parameter to tune 
• Negligible computation 

overhead. 

• Difficult to understand. 
• Inapplicable to the negative 

activations. 
• Lead overfitting when 

training data is limited due 
to participation of strong 
activations only in process 
updating. 

• Scale problem. 

 
[4, 54] 

S3Pool 
 

• Easy to understand and 
implement. 

• Fast to compute during training. 
• Flexibility to change the level of 

distortion. 
• Introduce data-augmentation at 

pooling layer level which 
provides it good generalization 
ability. 

• Introduce computational 
overhead by little in comparison 
of max-pooling. 

• In each pooling layer, setting 
of grid size should be proper 
that depends upon the 
application for which it being 
used.  

• Higher grid size may lead to 
increment in testing error.  [56] 

RBP 

• Stochastic in nature. 
• Avoid scale problem. 
• Introduce more randomness in 

selection of activations than 
stochastic pooling. 

• Single parameter to control the 
probability of the maximum 
activation. 

• Preserve more diverse 
information. 

• Poor performance with 
respect to fractional max-
pooling. 

• No fixed rule to set the value 
of hyper-parameter. [45] 

Fractional 
Max 

 

• Stochastic in nature. 
• Randomness or pseudo-

randomness in selection of 
pooling region. 

• Good performance of 
pseudorandom selection with 
data augmentation.  

• Superior result obtained by 
overlapping instead of disjoint 
fractional max pooling 

• Besides data augmentation, 
random selection of the 
pooling region reduces the 
model performance.  

• Performance degradation 
occurs with the disjoint 
fractional max pooling  

 

[16] 

3. Performance Analysis of Pooling Strategies 

In this section, the performance of latest pooling strategies has been reviewed and explored 
for the task of image classification. This paper enlightened the idea of applying pooling 
operation in the various CNN based architectures. However, the utilization of pooling 
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operation is negated by Geoffrey Hinton. According to him “the pooling operation used in 
convolutional neural networks is a big mistake and the fact is that it works so well is a 
disaster”[1]. In this context, he proposed “capsule networks” to discard the pooling layer 
which are different from the CNN and utilized only a fraction of the data to achieve state-
of-the-art performance as compared to the CNN. We note that the goal of our study is not to 
determine the best architecture in terms of classification, rather to provide a fair analysis on 
the implications of the pooling strategies in the CNNs.  
The performance comparison of different pooling schemes on the various benchmark 
dataset such as MNIST, CIFAR-10, CIFAR-100 and SVHN is presented in Table 2. The 
table highlights the network and the type of activation functions which have been utilized 
during the implementation of these strategies. It has been observed from the Table 2 that 
the average pooling showed the lowest performance with the error rate of 0.83% for the 
MNIST dataset. While the gated pooling outperformed the other pooling strategies in which 
the max-pooling and average pooling are mixed responsively. Further, the performance of 
gated pooling is followed by the mixed, tree-max-average pooling, and fractional max-
pooling with a difference of 0.01%, consecutively. A good performance of these pooling 
strategies confirms their firm regularization and generalization ability. Since the NIN and 
maxout networks also claimed a good performance with an error rate of 0.45% and 0.47%, 
respectively. But the performance is still lower than that achieved by employing the pooling 
methods. The rank based pooling provides the error rates for MNIST dataset ranging from 
0.42% to 0.59% and observed that the error rate provided by the RSP is higher than that 
provided by the stochastic pooling for the same network with the ReLU activation function. 
However, the performance of RSP improved when the ReLU activation function is replaced 
with the parametric ReLU (PReLU) and leaky ReLU (LReLU). 
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Table 2. Comparison of different pooling strategies on various standard datasets 

Pooling 
Strategies Network Activation 

Function 

Classification Error Rate (%) on Dataset 
Ref. 

MNIST CIFAR-
10 

CIFAR-
100 SVHN 

Gated 6 Conv. Layer 
(3x3) ReLU 0.29 7.90 33.22 ---- 

[30] 
Mixed 6 Conv. Layer 

(3x3) ReLU 0.30 8.05 33.35 ---- 

Tree + Max-
Avg 

6 Conv. Layer 
(3x3) ReLU 0.31 7.62 32.37 1.69 

Max-pooling 6 Conv. Layer 
(3x3) ReLU 0.39 9.10 34.21 1.91 

Fractional 
Max-

Pooling 

Sparse Conv. 
Network 

Leaky 
ReLU 0.32 3.47 26.39 ---- [16] 

Spatial 
Pyramid ---- ---- 0.64 ---- 54.23 ----  

Stochastic 3 Conv. Layer + 
64 filters (5x5) ReLU 0.47 15.13 42.51 2.8 

[54] 
Avg-pooling 6 Conv. Layer 

(3x3) ReLU 0.83 19.24 47.77 3.72 

RAP 3 Conv. Layer + 
64 filters (5x5) ReLU 0.56 18.68 46.22 ---- 

[45] 

RWP 3 Conv. Layer + 
64 filters (5x5) ReLU 0.50 19.05 48.19 ---- 

RSP 3 Conv. Layer + 
64 filters (5x5) ReLU 0.50 15.44 46.83 ---- 

RAP 3 Conv. Layer + 
64 filters (5x5) 

Leaky 
ReLU 0.59 17.97 45.66 ---- 

RWP 3 Conv. Layer + 
64 filters (5x5) 

Leaky 
ReLU 0.53 19.92 46.69 ---- 

RSP 3 Conv. Layer + 
64 filters (5x5) 

Leaky 
ReLU 0.45 13.84 43.91 ---- 

RAP 3 Conv. Layer + 
64 filters (5x5) 

Parametric  
ReLU 0.58 18.52 45.82 ---- 

RWP 3 Conv. Layer + 
64 filters (5x5) 

Parametric 
ReLU 0.53 18.91 47.05 ---- 

RSP 3 Conv. Layer + 
64 filters (5x5) 

Parametric 
ReLU 0.42 14.90 44.79 ---- 

RAP NIN ReLU ---- 9.78 34.81 ---- 

RWP NIN ReLU ---- 10.08 35.28 ---- 

RSP NIN ReLU ---- 9.44 36.23 ---- 

RAP NIN Leaky 
ReLU ---- 9.43 32.17 ---- 

RWP 
NIN Leaky 

ReLU ---- 9.84 32.16 ---- 

RSP 
NIN Leaky 

ReLU ---- 9.26 32.15 ---- 

RAP 
NIN Parametric 

ReLU ---- 8.73 34.82 ---- 

RWP 
NIN Parametric 

ReLU ---- 8.91 34.48 ---- 
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RSP 
NIN Parametric 

ReLU ---- 8.67 34.42 ---- 

RSP 
(With data 

augmentation) 

NIN 
ReLU ---- 8.76 ---- ---- 

RSP 
(With data 

augmentation) 

NIN Leaky 
ReLU ---- 8.54 30.41 ---- 

RSP 
(With data 

augmentation) 

NIN Parametric 
ReLU ---- 7.76 33.67 ---- 

---- 
NIN 

ReLU 0.47 10.41 35.68 ---- 

---- 
Maxout 
Network ReLU 0.45 11.68 ---- ---- 

---- 

Densely 
Supervised 
Network ReLU ---- 9.78 34.57 ---- 

S3Pool 
(With 

flip+crop) 
NIN+dropout ReLU ---- 7.71 30.90 ---- 

[56] 
---- NIN+dropout 

(With flip+crop) ReLU ---- 9.34 32.36 ---- 

S3Pool 
(With 

flip+crop) 
ResNet ReLU ---- 7.09 29.36 ---- 

---- ResNet 
(With flip+crop) ReLU ---- 7.72 30.88 ---- 

---- 
ALL-CNN 
(With data 

augmentation) 
ReLU ---- 7.25 ---- ---- 

[46] 

---- 
ALL-CNN 
(Without data 
augmentation) 

ReLU ---- 9.08 33.71 ---- 

In case of the dataset CIFAR-10 and CIFAR-100, fractional-max-pooling provided the 
outstanding performance, followed by the S3Pool (ResNet+data augmentation). Fractional-
max-pooling and S3Pool, both of the pooling regimes surpassed nearly all the architectures 
that have been developed to discard the pooling layer such as NIN and ALL-CNN. The 
worst performance for CIFAR-10 and CIFAR-100 has been shown by RWP (LReLU 
activation) and the spatial pyramid pooling, respectively. While, the average pooling holds 
the second position as a worse performer for both the datasets. In addition, it has been 
observed that the employment of rank based pooling within the NIN network (with or 
without data augmentation) for different activation functions provided an acceptable 
performance and better than the NIN, maxout network, and densely supervised network 
alone. However, the use of rank based pooling within the network of 3 convolutional layer 
and 64 filters of size 5x5 decline the performance considerably. Through these empirical 
observations, it is clear that the average pooling is the worst pooling strategies in 
comparison of other pooling methods. The performance of pooling strategies largely 
depends on the network and the activation function which are chosen for the 
implementation. Moreover, the techniques of data augmentation also influence the overall 
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performance of the network, where the RSP provided a lower error rate with data 
augmentation as compared to no augmentation for CIFAR-10 and CIFAR-100 datasets 
(Table 2). 

4. Pooling – A Firm Prior and Regularizer 

In general, the prior is the distribution of probability for an uncertain quantity which shows 
an impression about the quantity before the acquisition of relevant evidence. Simply, the 
prior distribution of the probability over the parameters of a model is performed to estimate 
a reasonable model for a specified task, before seeing the testing data. Prior can be weak or 
strong which depends on the probability density concentrated in the prior. A prior with low 
entropy (low variance) is considered as strong prior and with high entropy (high variance) 
as weak prior. In neural networks, pooling can be used as an infinitely strong prior. An 
infinitely strong prior distributed zero probability to some parameters and even excluded 
from the use, regardless of the data. By implementing the pooling operation, each unit in 
the network is supposed to be invariant to small translations in the input data. Hence, 
pooling act as a strong prior for example: max-pooling, where only the maximum value is 
considered, whereas the other values are discarded. But in some cases, pooling may cause 
underfitting if the assumption made by the prior is inaccurate. For instance, image 
classification and object detection task greatly depends on preserving the spatial 
information and the application of pooling on all the features may results in information 
loss, which ultimately increase the training errors.  In order to alleviate this problem of 
underfitting, some convolutional networks are designed to get highly invariant features and 
features that will not under fit when the pooling prior is inaccurate [48]. The networks are 
designed in such a way that they use pooling on few channels instead of all the channels to 
minimize the training error.    

Regularization is another key role of the pooling operation in the CNN. In deep 
networks, regularization approach is used to trim down the test error [2]. Dropout [21, 47], 
weight decay [14, 24, 38], data augmentation [31], weight tying [36] and cutout [7] are 
different forms of regularization technique which assists the model in achieving high-
quality performance on the test set and prevent the model from overfitting. Dropout is the 
most popular regularization approach in which some nodes in the neural network are 
dropped out randomly. But, dropout is only applicable to the fully connected layers, not to 
the convolutional layers. Therefore, stochastic pooling emerges as a new regularization 
approach for convolutional layers [54] in which activations are picked randomly on the 
basis of multinomial distribution of probability during training. Max-pooling-dropout [50] 
is another regularization approach in which dropout is applied to the input of the max-
pooling layers. The max-pooling-dropout is similar to stochastic pooling in term of 
activation picking and inspired by the dropout regularization approach. In addition, both the 
strategies adopted probabilistic weighting for model averaging at test time. Despite of these 
similarities, max-pooling-dropout is different from stochastic pooling in performance for 
retaining probability. The max-pooling-dropout outperforms the stochastic pooling by a 
significant margin when the retaining probability (typically around 0.5) is neither too small 
nor too large [50]. Data augmentation is the easiest and one of the simplest methods of 
regularization to reduce overfitting on the test data. However, S3Pool is only the pooling 
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regime which implicitly augments the data and improves the generalization ability of the 
model. The results from the experimental work of Zhai et al. [56] confirmed that S3Pool 
have ability to surpass even the dropout (with data augmentation) and the stochastic pooling 
approach with the marginal increment in the training time. It has also been observed from 
the Table 2 that the pooling strategies act as a stronger regularizer and even able to surpass 
the other popular regularization approaches (dropout, data augmentation, maxout network), 
except cutout. The cutout is a variant of dropout technique in which the nodes are dropped 
at the input stage instead of hidden layers [7]. The cutout approach of regularization also 
has the ability to augment the data implicitly by generating occluded versions of the input 
sample and overcome the problem of occlusion encountered in the most of computer vision 
tasks. The cutout approach has provided a state-of-the-art performance for the CIFAR-10 
and CIFAR-100 dataset (with and without data augmentation). Therefore, the pooling 
strategies can be combined easily with the other regularization approaches in order to 
enhance the performance of the network (Table 2). Hence, the designing of new 
methodologies comprises of pooling methods in conjunction with different regularization 
approaches can be an interesting topic of research in future. The influence of different 
combinations of pooling strategies on the performance of the model can also be another 
aspect of future work.  

5. Conclusions 

The pooling is a powerful concept in deep architecture and widely used in CNN's to solve 
the task related to computer vision. Most of the studies focused on max-pooling due to its 
easy implementation and sparse representation, but its deterministic nature is its major 
drawback. We find stochasticity as an important asset for a variety of pooling regimes such 
as ‘mixed’ max-average, stochastic, S3Pool, RSP and fractional max pooling. Since 
stochasticity in these regimes, introduces randomness to select activation or pooling region 
that helps in reducing the overfitting and improve generalization ability of the model. In 
addition, pooling operations assist the deep architectures in terms of computational cost by 
reducing the number of parameters involved in training by virtue of its dimensionality 
reduction property. However, the “Gated” Max-Average pooling regime is an exception 
which increases the computational overhead by introducing additional parameters for 
training. Based on the detailed analysis of the pooling regimes and their performance for 
the task of classification, we found that the pooling operations largely depend upon the 
network architecture and the activation function for their performance. Overlapping is 
another factor that affects the performance of the network as it decreases the chances of 
information loss during the pooling operation. While the step size of overlapping is very 
necessary to consider because a blind increment in step size can drop the model 
performance significantly. We also found that S3Pool act as the strongest regularization 
approach because it augments the data implicitly. Moreover, it is able to form possible 
combinations with other regularization methods. Thus, it would not be wrong if we say that 
the choice of pooling operation is a kind of empiricism, but we believe that our work could 
pave a leading step in the better understanding of pooling methods and factors involved in 
the improvement of pooling performance. 
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	where 𝒙 is a vector consist of activation values from a rectangular area of 𝑵 pels (for example: dimensions of  the rectangular area in Figure 3 is 2x2) in an image or a channel. Earlier, the use of average pooling was common but their use has been...

