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ABSTRACT
As the technology for 3D photography has developed rapidly in recent years, an
enormous amount of 3D images has been produced, one of the directions of research
for which is face recognition. Improving the accuracy of a number of data is crucial in
3D face recognition problems. Traditional machine learning methods can be used to
recognize 3D faces, but the face recognition rate has declined rapidly with the increasing
number of 3D images. As a result, classifying large amounts of 3D image data is time-
consuming, expensive, and inefficient. The deep learning methods have become the
focus of attention in the 3D face recognition research. In our experiment, the end-
to-end face recognition system based on 3D face texture is proposed, combining the
geometric invariants, histogramof oriented gradients and the fine-tuned residual neural
networks. The research shows that when the performance is evaluated by the FRGC-v2
dataset, as the fine-tunedResNet deep neural network layers are increased, the best Top-
1 accuracy is up to 98.26% and the Top-2 accuracy is 99.40%. The framework proposed
costs less iterations than traditional methods. The analysis suggests that a large number
of 3D face data by the proposed recognition framework could significantly improve
recognition decisions in realistic 3D face scenarios.

Subjects Computer Vision, Graphics, Multimedia
Keywords 3D textures, Face recognition system, Histogram of oriented gradients features, Deep
learning, Residual neural networks, Fine-tuning, Tensorboard

INTRODUCTION
With the rapid development of the Internet, smart computing equipment and social
networking applications are increasingly used. There are hundreds of millions of 3D images
uploaded every day to platforms such as Snapchat and Alipay, on which a large number of
3D face images are generated. Three main problems in creating 3D face recognition systems
that many researchers report are the 3D face pose, illumination changes, and variations
in facial expression. Extracting better features are a key process for 3D face recognition
(Bagchi, Bhattacharjee & Nasipuri, 2015; Zhang et al., 2016; Nagi et al., 2013; Wang et al.,
2015; Zhu et al., 2017). Furthermore, shallow learning (such asmachine learning) including
only one or no layer of hidden units leads to lack of ability to deal with large-scale data.
These challenges have caused persistent problems for the robustness and reliability of such
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systems, which has driven many researchers to use deep learning for 3D face recognition
tasks.

When deep learning methods are applied in realistic 3D face scenarios, two challenges
confronted are as follows: firstly, the accuracy becomes unstable as 3D face images are
added; this is because different deep learning networks have different generalization ability
extracting images features. When processing a large number of image data, the deeper
the layers of deep learning model are, the more problems such as gradient vanishing and
gradient exploration will be caused. Secondly, as more and more complex deep learning
models will be applied to the actual scenario, the recognition rate may be affected by the
depth of a complex model. In this article we explore both issues. How to recognize a large
number of 3D face graphics with high precision is the main task of this article.

In this work, the primary objective of the approaches we propose is to create a 3D
textures-based end-to-end face recognition system with a high recognition accuracy, a
satisfied performance and robustness while remaining practical. In this system, we have
developed a residual neural network model base on ResNet for the 3D face recognition
task. This model is fine-tuned with different depths using HOG featured 3D face textures.
The primary aim is to solve problems of gradient vanishing and gradient exploration.
We trained fine-tuned ResNet models with different depths using HOG based 3D texture
images to maintain faster calculations and a high accuracy of image growth.

The remainder of this work is prepared as follows. ‘Related Works’ reminds the related
work. ‘Materials & Methods’ presents methodology of extraction of HOG features and the
fine-tuning ResNet model. ‘Experiment’ shows the experimentation, results and discussion
is described in ‘Results and Discussion’. The conclusions are finally stated in ‘Conclusions’.

RELATED WORKS
Deep learning algorithms have received increasing attention in the face recognition
field, and many researchers discovered the importance of studying 3D face recognition
(Maiti, Sangwan & Raheja, 2014; Min et al., 2012; Pabiasz, Starczewski & Marvuglia, 2015;
Porro-Munoz et al., 2014; Hu et al., 2017; Sun et al., 2015; Wu, Hou & Zhang, 2017; Tang
et al., 2013; Zhang, Zhang & Liu, 2019). On one hand, extracting 3D face information is
the key step in 3D face recognition: effective face detection and alignment can increase
the overall performance of 3D face recognition, which is critical in both security and
commercial 3D face recognition systems. On the other hand, researchers have proposed
some methods for exploiting and exerting the deep learning for 3D face recognition, and
they have demonstrated that the performance of deep learning systems is significantly
better than that of machine learning method in the case of a large amount of 3D images.

In recent years, the convolutional neural network (CNN) models have been used for
3D face recognition. Hu et al. (2017) has proposed a method of customizing convolutional
neural networks. Her CNN’s layer configuration uses the same principle to design based
on the LeCun model (LeCun et al., 1989). The structure of her model, called CNN-2,
comprises one convolutional layer, one pooling layer, and a 5×5 filter. However, this
structure cannot effectively extract and analyze 3D face data. When the learning rate rose
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from 0.034 to 0.038, the classification accuracy increased from 84.04% to 85.15%; while,
the accuracy dropped to 81.31% when the learning rate rose to 0.042. Furthermore, using
a 7×7 filter increased the classification accuracy significantly to 84.75% with a learning
rate of 0.034.

In a follow-up study, Sharma & Shaik (2016) have proposed a newmethodology for face
recognition with a higher accuracy of approximately 98%. They suggested a customized
CNN model, including an input layer, a convolutional layer, a pooling layer, and a fully
connected layer. They use the above method to recognize the 3D image with resolution
of 96×96. According to results, their face recognition system takes twenty epochs for
converging the learning rate, which includes the training rate and the testing rate. Especially,
the training losses can be decreased to about 0 before the 6th epoch.

Different methods have been proposed to recognize 3D face images. Kim et al. (2017)
has developed the VGGNet neural network for dealing with 3D face data. The most
representative features of face are extracted from the fine-tuned VGGNet model. The
model includes two convolution layers and two fully connected layers with random initial
weights, using the last fully connected layer with a softmax layer to accommodate the
different sizes of the input images. The fine-tuned VGGNet model achieved an accuracy of
95.15% in the experiment.

Nagi et al. (2013) has developed the face alignment algorithm based on the methods of
geometric invariants, local binary pattern (LBP), and k-nearest neighbor (kNN). The face
landmarks model (22 key points) is used to detect the human face, and the LBP method is
used to crop the 3D face areas. The method of kNN calculates the distance between each
input data and the training sample, obtaining the k images closest to the training sample.
Finally, proposed statistical methods are used to classify and recognize the images. The
results show that the model can reach 91.2% in the recognition rate; however, it declined
to 84% as the number of datasets increases.

Soltanpour & Jonathan Wu (2017) uses normal vector to study 3D face recognition. She
proposed that more detailed distinct information can be extracted from the 3D facial image
by using high-order LNDPmethod. By estimating the three components of normal vectors
in x, y and z channels, three normal component images are extracted. The score-level fusion
of three high-order LNDP3x, LNDP3y and LNDP3z are used to improve the recognition
performance. Experiments use SIFT-based strategy for matching the face features. The
results of this study indicate that fusion LNDP3xyz outperforms descriptors, effectively
improving the 3D recognition rate to 98.1%.

The study by Kamencay et al. (2017) offers probably the most comprehensive empirical
analysis of 3D face recognition. In an attempt to build practical and robust face recognition
systems, he proposed three main types of layers for CNN architectures: the convolution
layer, the pooling layer, and the fully connected layer. He also proposed three machine
learning methods for face recognition, such as Principal Component Analysis (75.2%),
Local Binary Patterns Histograms (78.1%), and kNN (71.5%). The proposed customized
CNN for 3D face recognition outperforms the above machine learning methods, which
reaches the average accuracy of approximately 96.35%. The highest accuracy is 98.3%when
80% of the data was used for training model.
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Recent advances in HOG feature extractionmethods have facilitated investigation of face
recognition. In Singh & Chhabra’s (2018) article, she suggests that HOG features can be
used in the recognition system for improving the efficiency and the processing speed. The
function of HOG features can capture the edge features that are invariant to the rotation
and light. Owing to the fact that both texture and edge information is important for
face representation. HOG features and SVM classifier-based face recognition algorithm is
presented in Santosh Dadi & Mohan Pillutla’s (2016) research. His proposedmodel extracts
the HOG features of the face from the image, these features can be given to any classifier.
In the testing stage, the test image is obtained and fed to the SVM classifier, which is a
non-probabilistic binary classifier and looks for optimal hyperplane as a decision function,
for classification. The results show that this method has better classification accuracy for
the test data set, about 92%. In addition, compared to the method using standard eigen
feature and PCA algorithm as a baseline, SVM also possesses an improved face recognition
rate of 3.74%.

To investigate the effect of utilizing HOG features in the CNNmodel, (Ahamed, Alam &
Manirul Islam, 2018) developed CNN learningmodels that using theHOG features as input
data to the training model. His model contains of several layers and each layer is repeatedly
used, finally a deep neural network is constructed. In order to evaluate the proposedmodel,
a set of images with 160 images are generated for testing the model performance. However,
it leads to a low generalization ability since the data set trained by the model is small. The
result shows that the accuracy is approximately 89% by using the constructed model.

In the experiment, we used the latest residual deep neural network (ResNet) and the
fine-tuning method (He et al., 2015). Our preprocessing method uses HOG features of
3D face texture, different layers of ResNet are created during the experiment and whether
decision making in face recognition process can be improved or not is investigated. We
evaluated these approaches in the context of the same 3D face-recognition experiment as
in (Kamencay et al., 2017), a more challenging task than the face identification task used in
(Ahamed, Alam &Manirul Islam, 2018).

MATERIALS & METHODS
The diversity of face poses raises difficulties for 3D face recognition. By detecting key points
on the face, such as the tip of the nose, the corners of the mouth, and the corners of the
eyes, the face image in an arbitrary pose can be converted into a frontal face image by
affine transformation, after which the face features can be extracted, and an identification
is performed. This approach shows that after alignment the features can be extracted
with greater success, and the recognition accuracy is thus greatly improved. A schematic
diagram of face detection and face alignment is shown in Fig. 1. There are three steps
for preprocessing of 3D face recognition: 1. 3D face detection, 2. 3D face alignment. 3.
3D human face feature extraction. The first two phases are implemented by using the
open-source tool provided by the Dlib, which can monitor the key points of the face
real time to obtain the position and posture of the face. Then we developed a module
for extracting the HOG features based on 3D face texture images. Key points of the face
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Figure 1 The pre-processing of 3D face textures.
Full-size DOI: 10.7717/peerjcs.236/fig-1

are detected using the conditional local neural fields algorithm (Baltrusaitis, Robinson &
Morency, 2013; Simonyan & Zisserman, 2015).

Facial detection and landmarks selection
All 3D images need to be processed before the processing of recognition in order to reduce
image noise and redundancy, as shown in Fig. 2. The first step of 3D face recognition is
face detection and alignment. We use pre-trained facial landmark detector from the Dlib
library, which is used to estimate and predict the location of sixty-eight key points on the
human face.

Based on the geometric invariant method, these facial points are marked on the
3D facial images (Baltrusaitis, Robinson & Morency, 2016; Jourabloo & Liu 2015; Song et al.,
2017), the subgraphs of A and C is the original 3D images, and the 68 key point distributions
are indicated as B and D in Fig. 2 on the right side. These points, including the dominant
facial features, such as the tip of the nose, the corners of the mouth, and the corners of
the eyes, which are used for further feature extraction and geometric calculations in the
recognition stage.

The features of histogram of oriented gradient
In the feature extraction process, we usually try to find the invariant properties and
characteristics so that the extraction results do not change significantly due to the
specified conditions, this means that the goal of recognition is to find useful discriminative
information not the position and size. Regardless of the different changes in the shape and
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Figure 2 Facial landmarks (68 key points) of Face Recognition Grand Challenge Version 2(FRGC
v2.0). The subgraphs of A and C show that the camera takes images of the subjects from different angles.
Note that face coordinates are located by using 68 green key points in the subgraphs of B and D.

Full-size DOI: 10.7717/peerjcs.236/fig-2

appearance of the image, we should find reliable and robust discriminative information
for improve the recognition rate.

In the field of image processing and computer vision, texture analysis and extraction
have a rich history. A method called the Histogram of Oriented Gradient (HOG) has
received extensive attention. The core idea of the HOG method is to describe the texture
of the detected object by the gradient or distribution of edge directions. Its function is
to capture the edge or gradient structure from the image, which is characteristic for the
representation of local texture. The benefit of this feature is relatively less affected by
the appearance and shape. Essentially, it forms a template and uses learning models to
effectively promote recognition.

The HOG descriptor can extract important features from 3D images (Santosh Dadi
& Mohan Pillutla, 2016; Kumar, Happy & Routray, 2016). It captures the local texture
information well and has good invariance to geometric and optical changes. Firstly, the
target image is divided into small connected regions, which call the cell units. Then, the
gradient or edge direction of each pixel in the cell unit are acquired. Finally, the histograms
can be combined to form a feature descriptor. In this section, the HOG feature is used as
a means of feature extraction in the process of recognition, the purpose is to combine the
discriminative 3D face feature in the recognition phase, the specific implementation steps
are as follows.
(1) Color and gamma normalization

To reduce the influence of lighting factors, the entire image needs to be normalized
in the first step. A compressing process that can effectively reduce shadows, colors and
illumination variations of the image, because this information did greatly increase code
complexity and demanded the higher performance of processor. At the same time, the
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gray image is normalized by Gamma formula. By smoothing part of noises, the influence
of local strong light on gradient calculation is reduced. The γ is the symbol of Gamma and
its value is 1. The formula of gamma compression Eq. (1) is shown below.

I (x,y)= I (x,y)γ (1)

(2) Gradient computation
The gradient value of each pixel position is calculated in this step. The derivation

operation can capture contours, human shadows, and some texture information, which
further weakens the influence of illumination. In the operation of computing image
gradient, the gradient direction is key to HOG algorithm. The function of H is used for
calculating of Histogram of Oriented Gradient. Each pixel point of the transverse gradient
Gx(x,y) and the longitudinal gradient of the Gy

(
x,y

)
is calculated. It defined as Eqs. (2)

and (3).

Gx(x,y)=H (x+1,y)−H (x−1,y) (2)

Gy(x,y)=H (x,y+1)−H (x,y−1) (3)

(3) Creating the orientation histograms
The algorithm needs to finish some operations that calculating the direction gradient of

the smallest interval. At the beginning, the 3D image is divided into several intervals with
different sizes. Starting from the smallest interval, the gradient direction of all the pixels are
contained in each interval, which are weighted by the magnitude. The gradient direction
with the largest value represents the gradient direction in the current interval. Finally, the
gradient magnitude G

(
x,y

)
of each pixel point is calculated according to Eq. (4).

G(x,y)= [Gx(x,y)2+Gy(x,y)2]1/2 (4)

Furthermore, the specific operation in the equation above is that the G(x,y)ranges from
−90

◦

to 90
◦

. Vectors can be evenly divided into nine intervals because each interval is 20
◦

.
This means that nine intervals consist of a total of nine feature vectors in a cell. Four cells
can form a block, so each block includes 36 feature vectors. In this way, the feature vectors
of all cells in a block are concatenated to form the HOG features.
(4) Computing the directional gradient histogram

In the final step of the merging process, the algorithm uses weighted voting to combine
the order of all blocks from smallest to largest. In some cases, the algorithm eliminates some
detailed features, which are represented by the small amplitude gradient in the intervals.
The rest of the blocks are merged into a maximum gradient pattern, in which contains the
important representative features in the 3D images. Gradient direction a(x,y) of the pixel
point are calculated according to Eq. (5).

α(x,y)= tan(−1)[Gy(x,y)/Gx(x,y)] (5)

(5) Creating the orientation histograms
After completing above works, the algorithm generated an orientation histogram for

the input 3D face image. In this experiment, we make the pixel of 16×16 constitute a
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Figure 3 The processing of HOG feature extraction. (A) Original 3D face image (B) input 3D face im-
age; (C) HOG feature extraction.

Full-size DOI: 10.7717/peerjcs.236/fig-3

block in an image with 224×224 image, the stride of scanning window is 8×8, then there
are 27 scanning windows in the horizontal and vertical directions in a 3D texture image.
Therefore, each 3D texture image (36×27×27) has 26,244 dimensional vectors that can
form a complete edge orientation histogram.

After the preprocessing, the face image with extracted HOG features of 3D textures is
input into our fine-tuned ResNet classification model. The information contained in the
original image is compressed and adjusted, which greatly improves the performance of
the subsequent feature extraction network in ResNet neural network. Finally, the whole
processing of HOG feature extraction for 3D face image is shown in Figs. 3A, 3B and 3C.

We also demonstrate generation ofHOG feature vectors for specific personwith different
expression, scenarios and various illumination changes. The images based onHOG features
extraction are shown from the Figs. 4F to 4J, which are separately correspond to the
reprocessing aligned images from Figs. 4A–4E.

The architecture of ResNet neural networks
Convolutional neural networks with multiple layers have several advantages in the research
of image classification. The deep network uses a form of end-to-end neural network that
automatically integrates the low, medium, and high-level features, and then transmits all
of these features to the classifier, extracting different depth features by stacking layers with
different depths. Another benefit of the CNN network is that the convolutional layer can
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Figure 4 The HOG features of various 3D face images. The subject images (A, B, C, D, and E) were
taken under the different conditions of illuminations, expressions, sexes, and ages. Depending on the pa-
rameters in the HOG calculation process, the experimental results ensure that the acquired images (F, G,
H, I, and J) reveal the discriminative information related to the texture of the original face images.

Full-size DOI: 10.7717/peerjcs.236/fig-4

retain local spatial patterns which may be appropriate for image related tasks (Zeiler &
Fergus, 2014). Recent research has shown that the depth of the CNN network is critical
to model performance (Szegedy et al., 2014; Cheng et al., 2017). The results of their studies
show that the deep convolutional neural network achieves superior performance and
significant improvements.

In general, the deeper the neural network is, the worse the recognition performance
will be. One major issue in early 3D face recognition research is caused by the use of an
error back-propagation algorithm (Lawrence & Lee Giles, 2000), which includes the weight
coefficient, the derivative of the activation function, and the activation value in the partial
derivative. When the number of layers is large, these values are multiplied, easily leading
to the vanishing gradient and exploding gradient problems (Pascanu, Mikolov & Bengio,
2012; Hanin, 2018). Therefore, it is difficult to ensure high-accuracy in the case of growth
of 3D face data. In the paper by He et al. (2015), he proposed a theory of deep residual
learning, which adopted an approach of shortcut connection to avoid the issues mentioned
above. The ResNet architecture for a 152-layer network (a) and a residual block (b) are
shown in Fig. 5 above. A residual block with a connections layer can skip a specific layer
in the network. The advantages of short connections are that it can reduce the problem of
gradient disappearance, thus making the network converge faster and reducing parameters.
ResNet-152 also uses the batch normalization operation between each convolution and
activation. It allows the researcher to build increasingly deep networks, which have high
recognition abilities.

The fine-tuned ResNet neural network model
In deep neural networks, the function of the first layer of training on images is similar to
the Gabor filters and color spots operations. First-layer features are not used for specific
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Figure 5 The architecture of ResNet model.
Full-size DOI: 10.7717/peerjcs.236/fig-5

data sets or specific tasks but for general ones, because they are applicable to common data
sets and tasks. Image features are eventually transmitted from general to specific by the
last layer of the network (Yosinski et al., 2014). In the big data scenario, we introduce the
fine-tuning method in the ResNet neural network, which can greatly shorten the training
time, efficiently improve the training loss, and have a stronger generalization ability for
getting a good result.
(1) Fine-tuning method

The fine-tuning method can be used to flexibly adjust the architecture of the ResNet
model in this 3D face recognition task (Jung et al., 2015). In our experiment, four pooling
layers with the adaptive average pooling method have been reconstructed. By using the new
architecture, it makes the input training data adaptive to the fine-tuned ResNet Model, and
the computational complexity of the model is reduced. A softmax layer is created after the
fully connected layer to implement the target data classification task of this experiment.
(2) Rectifier Linear Unit

The Rectifier Linear Unit (ReLU) is an important activation function in the ResNet
structure, which can overcome the problem of gradient disappearance and speed up the
time of training (Fred & Agarap, 2018). A ReLU function maps the input value x to 0 if
it is negative, and keeps its value unchanged if it is positive, the main ReLU calculation
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Figure 6 The fine-tuned ResNet neural network.
Full-size DOI: 10.7717/peerjcs.236/fig-6

expression (Eq. (6)) is shown below.

frelu(x)=max(0,x) (6)

The convolutional neural network architecture is mainly followed with a combination
of all the methods described above. The architecture starts from the input layer of training
images and is followed by the convolution layer with the optimum weight and bias for the
feature layer. In order to reduce the internal covariate shift (Ioffe & Szegedy, 2015) in the
deep neural network, the batch normalization algorithm is also added to each convolutional
layer to perform the operations of normal normalization and affine transformation on
the input of each layer. Finally, our fine-tuned ResNet model were constructed with the
proposed method, and the parameters of each convolutional layer are represented in Fig. 6.

In this fine-tuned ResNet model, the layer of adaptive average pooling emphasizes the
down-sampling of the overall feature information, its purpose is to reduce the dimension
of the feature and retain the effective information, it can integrate features in the feature
maps from multiple convolutional layers and pooling layers so that the integrity of the
information in this dimension can be more reflected. Through this process, both high-
dimensional features and confidence scores can be obtained from each classification. The
final full connection layer is used to synthesize the features extracted from the adaptive
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average pooling, it can output the probability distribution by using the softmax regression
method, which can be divided into more than 1,000 classifications for any tasks, and the
value of this parameter was set to 466 in our experiment. In the above structure, Adam
function is used as an alternative to the traditional Stochastic Gradient Descent (SGD)
optimization algorithm which can iteratively update the weights based on the training data
mainly to optimize the neural network and make the training faster.

Datasets
This research received the approval from the University of Notre Dame (henceforth,
UND), and the dataset of Face Recognition Grand Challenge version 2 (FRGC-v2) in
January 2019. This experiment was performed on FRGC-v2 (Flynn, 2006), which is a large
number standard face image dataset containing over 50,000 high-resolution 2D and 3D
face images, which divided into training and validation partitions in a laboratory setting.
Training partition is designed for training algorithms, and validation partitions is used
to evaluate the performance of a method in a laboratory environment. All the images
were captured by a Minolta Vivid 900/910 series scanner. The datasets used belong to
Experiment 3 of FRGC-v2. The experimental 3D face dataset includes 4,007 images of 466
people with different lighting and facial expressions The aim of this dataset is to test the
ability to run experiments on large datasets (Phillips et al., 2005).

Graphics processing unit
The efficient parallel computing of the graphics processing unit (GPU) makes up for
the slow training of deep neural networks (Chen et al., 2014). Combined with the CUDA
parallel computing platform, it allows the use of larger training datasets and deeper
complex neural networks to extract deeper image features (Huang et al., 2015; Singh, Paul
& Dr. Arun, 2017). The model of GPU used in this experiment is NVIDIA GeForce GTX
1080Ti. Its multi-core architecture includes thousands of stream processors, which can
perform vector operations in parallel and achieve several times greater throughput in the
application. This significantly shortens the calculation time. GPU has therefore been widely
used by scientists in deep network learning.

The Fig. 7 shows the processing of our proposed framework. The detailed steps of
the proposed framework are as follows: first, the image is detected by the 68 key points
of facial landmarks method, and the main multi-channel 3D face regions are extracted,
this preprocessing module achieved precision rate of 99.85% and effectively reduces image
noise and redundancy from original images, and all images are rescaled to the 224×224×3.
Then, the edges and textures of 3D face images are enhanced by using the HOG method
with custom parameters, the HOG face feature images based on 3D textures are obtained,
which learned higher discriminative features from 3D face images. Next, fine-tuned deep
residual model is proposed by using the HOG textures as the input images. Finally, we
generated custom ResNet neural network model. Its image input size is adjusted to the
pixel of 224×224×3, and the structure and quantity of the middle layer in the model are
reconstructed, all the operations are performed by using fine-tuning method.
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Figure 7 The fine-tuned ResNet feature extraction operation.
Full-size DOI: 10.7717/peerjcs.236/fig-7

EXPERIMENT
Key point detection and alignmentwere carried out on the 3D raw face texture in succession.
In the following steps, the dataset applied to the fine-tuned ResNet model comprises 3D
face texture with HOG features. Finally, the proposed model conducted for 3D face
recognition. In this experiment, an implementation of GPU accelerated training is adopted
based on Python and the CUDA architecture, all the HOG-featured images were resized of
224×224×3 pixel in the dataset, the test model of fine-tuned ResNet with different depth
layers (e.g., 50 layers, 101 layers, 152 layers) were then evaluated.

(1) Firstly, a convolution layer in fine-tuned ResNet architecture multiplies the 2×2
filter with a highlighted area (also 2×2) of the input feature map, and all the values are
summed up to generate one value in the output feature map, as shown in Fig. 7.

(2) After the 3D data are processed through the first convolution layer, the next layer is
max-pooling. The filter window of the max-pooling is moved across the input feature with
a step size defined by the stride (the value of stride is 2 in the case of ResNet-152).

The advantage is that it can reduce errors and preserve more texture information. In
the max-pooling, the maximal value is selected from four values in the filter window. The
size of the detection region is f × f, with a stride of s, so the output features h’ and w’ are
given through the Eq. (7) below.

h′= [
h− f + s

s
],w ′= [

w− f + s
s
]. (7)

(3) The residual block consists of two convolution layers each a 1×1 filter and one
convolution with a 3×3 filter. The 1×1 layer mainly reduces and restores dimensions,
leaving the 3× 3 layer a bottleneck with smaller input/output dimensions. Two 1× 1
convolutions effectively reduce the number of convolution parameters and the amount of
calculation. The residual block is used for ResNet-50/101/152.

(4) The fine-tuned ResNet model uses a global average pool and then categorizes 3D face
images at the end of the network through fully connected layers. The global average pooling
layer provides faster calculations with more accurate classification and fewer parameters.
It serves to sum up all the values from the filter window and then average them, which can
reduce errors and retain 3D background information of the image.
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(5) Finally, the fully connected layer reassembles the previous local 3D features into a
complete graph through the weight matrix. The classification y is defined as follows:

y = f (W Tx+b) (8)

(6) However, having a good neural network model in specified dataset does not
necessarily imply that the model is perfect or that it will be reproduced when tested
on external data. In order to make sure it is robust, reproducible and unbiased for testing
future new datasets under non-ideal conditions, accuracy metrics is adopted to evaluate
the fine-tuned ResNet model’s performance.

The indicator accuracy is a measurement of the correct proportion of image
classifications. This study is accurate in its ability to differentiate the 3D face recognition
cases correctly. To estimate the accuracy of tests, the proportion of true positives (TP) and
true negatives (TN) in all evaluated cases are calculated in this experiment. Mathematically,
this can be stated as following.

Accuracy =
TP+TN

TP+TN +FP+FN
(9)

The sub formula of TP+TN+FP+FN is the total number of observations. Moreover, the
respective tests of Top 1 and Top 2 accuracy are used to evaluate the performance of our
proposed model. The following hypothesis will be tested: the increasing network depth
improves the accuracy of 3D face recognition. This study contributes to this developing
area of research by exploring how different depth of our fine-tuned ResNet networks affect
the outcome of 3D recognition.

RESULTS AND DISCUSSION
Tensor Board is a data visualization tool that can be used to visualize computational graph
structure, provide statistical analysis, and plot the values captured as summaries during the
execution of computational graphs. In this research, different types of pre-trained ResNet
neural network with the same structure but different depths are proposed. As shown in
Fig. 8, the three-subgraph shown below are the Tensor Board graph of linear regression
corresponding to the 50 (A), 101 (B), and 152 (C) layers of structure of the ResNet neural
networks. The 3D face recognition rates of the three different structural models were
recorded objectively in real time use of Tensor Board.

There were 21 times of training and testing in all test cases. According to the results of
the ResNet50 testing model, the maximal accuracy was 97.02% for the validation set in the
21th epoch, which corresponds to the similar accuracy of 97.22% in the 6th epoch of the
ResNet101model. This accuracy rate is close to 97.10% in the same epoch in the ResNet152
model. The highest accuracies were 98.05% for ResNet 101 and 98.26% for ResNet 152.

The most accurate indicator of Top 2 can be used to further evaluate the performance of
the trained ResNet model. In the ResNet 152 model, the recognition rate fluctuates at first
and then becomes regular with the increase of test sets. The accuracy rate was maintained
at an average of 99.30% for ResNet 152 after the 12th epoch. The results show that the
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Figure 8 The accuracy rate of different layer numbers in the fine-tuning ResNet architecture. The per-
formances are shown for the fine-tuned ResNet-50 layer (A), the fine-tuned ResNet-101 model (B), and
the fine-tuned ResNet-152 model (C).

Full-size DOI: 10.7717/peerjcs.236/fig-8

ResNet model has strong generalization ability. The recognition rate reaches its peak of
99.40% in ResNet-152 in the 12th epoch of the 3D face recognition experiment.

This experiment explores the benefits and effect of different numbers of neural network
layer through the fine-tuning method on 3D face texture recognition research with high
accuracy. The Fig. 8 has shown that the increasing of layers of fine-tuned ResNet neural
network model, the proposed framework can improve the accurate through the HOG
method based on 3D face textures.

To eliminate the effects of interference factors, the 3D face dataset was processed
beforehand (3D face detection, alignment, and HOG feature extraction). Studies have
shown the importance of the fine-tuned convolutional neural network model (ResNet)
with depth layers that have more highly discriminative features. The model is advantageous
in that although the depth is significantly increased, the ResNetmodel is less complex with a
higher accuracy rate. The Fig. 8 presents the inter-correlations among the three recognition
rates of the ResNet model with different layers. The 3D face recognition rate is positively
correlated with the number of layers in the ResNet model, which is also a principal factor
determining the computing time.

With qualitative modes of enquiry employed, the experiments show that the proposed
method achieves promising results, demonstrating that the ResNet-152 neural network
model described in this paper can have a recognition accuracy of 98.26% (Top 1); compared
with the most accurate, the accuracy of the second accurate test was improved by 1.14% (at
99.40%) with the FRGC-v2 datasets. Practical results proved the validity of the proposed
method in 3D face recognition.

The classification performance ofmethods applied to the FRGC-v2 dataset seem superior
to the seemingly impressive results of published studies utilizing different methods in
Table 1 (Hu et al., 2017; Sharma & Shaik, 2016; Soltanpour & Jonathan Wu, 2017).

In previous researches, custom CNN is a commonly used deep learning algorithm used
for 3D image recognition tasks. Firstly, in custom CNN network training, it is necessary
to constantly adjust network parameters. The customized parameters such as weights and
biases in CNN network results in a very slow convergence of training, and thus greatly
increasing the training time and the number of epochs (Hu et al., 2017; Sharma & Shaik,
2016). In addition, when the dimension increases with the increase of data volume, it
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Table 1 Performance comparisons between the proposed method and state-of-the-art methods based
on the FRGC-v2 dataset.

Method Features Classifier Accuracy

Huiying Hu et al. Raw image Custom CNN-2 85.15%
S Sharma et al. Constrained

Local model
Custom CNN 98%

Sima Soltanpour et al. LNDP3
xyz

Based Normal
Component Images

SIFT-based matching
Method

98.10%

Proposed
Methodology

HOG features ResNet 152 layers
ResNet 101 layers
ResNet 52 layers
and
Fine-tuning

Top1: 98.26%
Top2: 99.40%
Top1: 97.77%
Top2: 99.40%
Top1: 97.02%
Top2: 99.12%

will lead to a curse of dimensionality problems and cause a drop in the performance of
the classifier (Soltanpour & Jonathan Wu, 2017). The Fine-tuning method speeds up the
convergence and shortens the training period, thus adapting to 3D processing. The purpose
of multi-layer convolution is that the features acquired through one-layer convolution are
often local, and the more layers there are, the more global the features will be acquired.
Then, how to maintain good performance and improve accuracy is a key in larger numbers
of 3D face recognition scene. Therefore, fine-tuning depth residual network is proposed
based on HOG features to effectively solve the problem of large numbers of 3D face
recognition.

To the best of our knowledge, our work is to examine a fine-tuned Deep Residual
Networks model on the recognition task of FRGC-v2 dataset. To increase accuracy during
ResNet training, several methods were considered in this paper: (1) a fine-tuning deep
residual network was adopted, taking advantage of its intrinsic features, such as shortcut
connection, weights sharing and pooling architectures, and these can be improved through
the deepening of the network structure; (2) the number of layers is carefully designed with
smaller filter size to avoid overfitting while there is sufficient capacity for the network
to solve the complex large number classification problems (Hawkins, 2004; Lawrence &
Lee Giles, 2000); (3) data extraction was performed via the HOG method at the image
preprocessing that contains higher discriminative features in the 3D images. As a result, the
proposed methods were well trained and yielded state-of-the-art classification accuracy.

CONCLUSIONS
In this study, in-depth investigations were conducted on end-to-end 3D face textures
recognition. We first review the previous studies on 3D face recognition and then
summarize the critical research questions to be solved. The 3D face detection and
alignment modules are implemented and flexibly applied in 3D face raw data, which
achieves a precision rate of 99.85%. In addition, the detailed steps of the HOG extraction
pattern were presented. 3D face images with HOG features can significantly minimize
the descriptor size for reducing computation load and economizing the memory in the
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recognition process. We trained the fine-tuned ResNet models combined with HOG
features; the discriminative power of the deeply learned features can highly enhance
recognition ability. This study implemented every important subcomponent, which can
effectively reduce 3D image noise and greatly increase the robustness of our proposed
recognition system.

The experiment showed that the degradation problemwas efficiently solved by increasing
the number of layers in our fine-tuned ResNet neural networks, which improves the
recognition rate within a short time, and the accuracy is maintained at a certain level.
However, although the performance of the algorithm is unexceptional in practical
application, we think that several aspects of the model should still be studied and improved.
Firstly, although the HOG algorithm is advantageous for less calculation time and faster
detection speed, when the pose of the 3D face is changed drastically, there is a target loss
in the face image, which leads to low processing efficiency. The 3D face alignment can be
pre-processed with the CNN detection method, and a multi-processing or multithreading
method can be used to speed up face alignment, which ensures that the pre-processing
module can process data quickly. Secondly, the recognition rate may be adversely affected
by certain conditions. For instance, the ResNet-152 model exhibited the phenomenon of
overfitting, in which the accuracy rate dropped and remained at around 97% after the 9th
epoch. This phenomenon is caused by two conditions: too few datasets and the excessive
complexity of the neural networkmodel. This can be solved by increasing the amount of 3D
face data in the future works via a data augmentation method (Perez & Wang, 2017;Wong,
Gatt & Stamatescu, 2016). This also shows that the ResNet network has a more powerful
data processing capability for a large number of data. Overall, the development of large
number 3D face recognition classification system is a challenging work, and there is still a
long way to go to apply these theories andmethods in large-scale scenes. The results suggest
that fine-tuned deep residual networks classification approach based on HOG features will
be a promising direction to improve 3D face recognition rate.
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Abstract

In recent years, mobile Internet has accelerated the proliferation of smart
mobile development. The mobile payment, mobile security and privacy
protection have become the focus of widespread attention. Iris recognition
evolves into a high-security authentication technology in these fields, and
widely used in distinct science fields in biometric authentication researches.
The Convolutional Neural Network (CNN) is one of the conventional deep
learning approach for image recognition, whereas its anti-noise ability is
weak and needs a certain amount of memory to train in image classification
tasks. Under these conditions we improved the architecture of Mask R-
CNN and put forward the fine-tuning neural network architectures based on
mobile Inception V4, which integrate every component in an overall system
that combines the iris detection, extraction, and recognition function as an
iris recognition system. The proposed framework has the characteristics of
scalability and high availability; it not only can learn the scale-variant features
by the zero-padding normalization but also enhancing the robustness of the
whole learning framework. Importantly, our custom architectures can be
trained by using different spectrum of samples, such as Visible Wavelength
(VW) and Near Infrared (NIR) iris biometric image data. The recognition
average accuracy of 99.10% is achieved while executing in the mobile edge
calculation device of the Nvidia Jetson Nano.
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1. Introduction

The essential characters of iris informatization are digitalization and
recessiveness. The iris is one of the most complex organs of the human
body; the hidden password in the eyeball is richer, and contains much more
random texture patterns than using the Personal Identification Number (PIN),
fingerprint, or the human face [1] [2]. Under these favorable conditions, iris
characteristics can provide value for identifying encryption technology. More
and more iris authentication technologies have been applied to mobile devices,
such as smart mobile phones, tablets, and human-machine interactive devices,
due to the graphics processing units (GPU) with high-performance graphics
processing capabilities [3] [4] [5].

Over the last two decades, smart mobile devices have been embedded with
built-in high-resolution imaging sensors. The sensor can be used to perform
iris recognition tasks and allow researchers to explore appropriate solutions
for all the stages of iris recognition in a mobile environment. Some iris
authentication functions are supported in earlier mobile devices. For example,
the first smartphone designed with an iris authentication, Arrowsnxf-04G
[6],is equipped with an infrared camera and a light-emitting diode (LED).
The camera can scan and decode the images of the iris of the user. To
support iris authentication development, Samsung S8 series mobile phones
added Infrared Radiation (IR) and an iris camera in its front lens; using
the front camera to assist the iris camera with infrared LED to determine
the approximate general outline of the user. The iris camera scans the iris
information through the light source and then converts this information into a
specific code. Finally, the system compares the code with a known password
to determine whether to unlock. Huawei introduced GPU Turbo technology
in 2019, which greatly improved the performance of the graphics processing
on several smartphones (P30 Pro series [7], up to 60%. In addition, Nvidia
Shield tablet K1 [8] equipped Kepler architecture with 192 cores streaming
graphics multiprocessors, which supports thousands of threads to implement
high-performance calculations in parallel.

Although the processing power of these mobile devices is growing, system
robustness is still the main concern. Currently, there are two research problems
that need to be addressed in a complex mobile environment [9] [10]. In this
research, the first problem addressed is how to process and verify the high
quality images of the iris with scale-variant features, because most mobile
phones are equipped with a high-definition camera but in an uncooperative
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environment. The second problem relates to how to improve the recognition
accuracy on target iris images under a different spectrum for application in
different practical scenarios. Therefore, our research objective is to investigate
the structure of the multi-learning model to solve the research problems above
in a mobile environment.

The remainder of this paper is organized as follows: We briefly intro-
duce related works about iris authentication in Section II. Section III puts
forward the proposed iris authentication framework with multiple critical
components for iris region extraction and matching. Section IV shows experi-
mental findings in favor of using the proposed method, and the analysis is in
Section V. Finally, we discuss and conclude the research in Section VI and VII.

2. Related Works

Iris authentication is a process of identifying individuals based on their iris
shape and texture distribution[31] [32]. We also have reviewed the strengths
and weaknesses of current iris authentication studies. As a result of the
survey, from which we were able to gain valuable conclusions, we found that
several studies demonstrated that some scholars used similarity computation
methods to measure the similarity between the two iris templates, as posited
in [11] [12] [13] [14] [15].

The most critical work of the iris verification system is to detect the iris
and outer boundary correctly. Deshpande et al. [16] used Daugman’s integral
and differential algorithm [17] in their experiment. Once the iris boundary is
detected, the program converts the iris to a standard size and encodes it in
the iris template to enable matching between the iris templates. The Rubber
Sheet model is used for the normalization of the iris image. In the final
matching phase, an 1D logarithmic Gabor filter is applied for the iris feature
extraction, while the Hamming distance is used as a matching algorithm to
compare two biometric templates for iris verification. One of the challenges in
seeking the boundaries are iris images with low contrast or low lighting during
detection. Deshpande’s algorithms overcome some difficulties in non-uniform
illumination and reflections. While his works enhance the performance of the
segmentation and normalization process in iris authentication systems and,
his proposed process flow contains many different individual sub-components,
which increase the complexity in the system with weaker coupling. When
Daugman’s Rubber Sheet Model and 1D log Gabor filter completed the
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normalization and extraction of the iris, the important detailed texture data
was lost. His proposed system achieves an overall accuracy of 95% with robust
characteristics.

In Mohammed Hamzah Abed’s work [18], he adopted a Circular Hough
transform to detect an iris in the recognition system with a precision rate
of 98.73% on average. The Haar wavelet then transforms the extracted raw
features from iris images for fast computing and low storage. However, he
applied the method of Principal Component Analysis (PCA) to alleviate a
variety of noises for image reduction. The principle of PCA is mainly to
eliminate the correlation between variables. It cannot improve discriminative
information and achieve good results for nonlinear dependence. In the verifi-
cation phase, the method of Cosine distance measured the similarity between
two non-zero vectors of inner product space; the result of the experiment
shows that the method is effective with a classification accuracy of 91.14%.

Subsequent works have continued to use the same experimental data as
a way to explore the performance of the proposed framework. Kaudki [19]
introduced some of the new concepts in iris preprocessing. Rubber-Sheet
Unwrapping Normalization has the ability to deal with different sizes of
iris images extraction due to the changes in pupil size caused by external
lighting. This kind of normalization mainly improves the clarity of acquired
features. Furthermore, the Haar wavelet transform is applied for feature
extraction because of its computational simplicity. The Hamming distance,
as a measure of the characteristic distance, is used to match and validate
the target data. The recognition accuracy does not continue to increase
substantially and remains at around 97%. This is because that recognizing
high-quality iris image is the weakness of the traditional template matching
method. Iris images processed in a series of transformations suffer from
significant degradation [20], making iris recognition between the training set
and testing set less relevant. This might be due to image degradation by some
image fusion techniques [20] [21] [22] [23], and feature extraction operations
like Hough transform [24] [25] [26]. Besides, it is important to point out that
author adopted a non-robust method for iris localization - Circular Hough
Transform(CHT), which cause the poor positioning accuracy of 96% due to
the limited circle candidates produced by “voting” in the Hough parameter
space. These findings reinforce the importance of researching the influence of
image quality.

Currently, some of the attention models have been proposed and applied
in fine-grained representation learning tasks to efficiently extract non-holistic
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subtle features and the key parts from the human body, and different data
types were used to extract multi-pattern features to enhance the performance
of visual features of local and global regions. For instance, Kai Han et al.[27]
proposed Attribute-Aware Attention Model (A3M) combining fine-grained
classification and retrieval to represent semantics for improving the recognition
abiity. The global features and attribute-specific features were utilized to de-
rive the local information of the image for more discriminating representation
in object re-identification. The RA-CNN [28] proposed a recurrent attention
convolutional neural network to discover critical parts for the fine-grained
prediction tasks automatically. The process recursively learned the multiple
scales of attentional regions and region-based feature representation. To
improve robustness of model learning, Guo et al. [29] proposed a novel two-
branch network, the human body and potential part branches were composed
of a modern human body analysis model and a self-focus mechanism, which
aims to solve the problem of misalignment of human and nonhuman body
parts. Similarly, the most relevant iris recognition methods published over
the years are ”phase-based”, such segmentation and normalization of the
iris are to obtain dimensionless representations. Hugo P.[30] think this can
be avoided and propose a non-holistic iris recognition method that does not
require iris segmentation. Their experiments reveal that the proposed method
is particularly valuable in the case of low-quality data.

As mentioned in the previous reviews, there are still many challenges and
requirements in the iris authentication system, such as the high detection per-
formance, low system coupling, robust extraction, high precision recognition
rate. All of these become the main factors restricting the development of iris
authentication system. Taking into the account the research questions and the
background information mentioned above, it is possible to suppose the most
appropriate method of the investigation here as qualitative and quantitative.
Regarding current iris authentication system, there is a need to provide a
practical evaluation of a self-determinative motivational decision making of
the learning model, which also stimulate and motivate us to implement a
deep learning-based ensemble learning framework for the modern biometric
information security field.
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3. Material and methods

A robust iris authentication system includes detection, extraction, normal-
ization, and recognition submodules [33]. Every submodule is sequentially
performed in the Graphics Processing Unit (GPU) in our experiments. Fig1
below shows the flow of pre-processing required for the training model. We
added two types of layers, extraction and normalization, as the robust com-
ponents, which are implemented respectively.

Fig 1. The flow of pre-processing. The flowchart shows the steps
needed to be performed before the iris recognition model (From left to right).
We propose the custom sub-components of extraction and normalization,
which are both within the scope of the research. See the boxes with a dotted
border area.

3.1. The Improved Mask R-CNN Learning Model

The preprocessing of iris automatic detection is a crucial stage in the
iris authentication system. We found that some potential factors may be
susceptible to interference, which could affect recognition performance [34].
For instance, the natural iris texture can be easily obscured by cosmetic
contacts, having a significant impact on the extraction of the iris area. The
experimental dataset consists of thousands of iris images taken from different
angles and under various conditions which are affected by a variety of internal
and external factors.

As can be seen from example A in Fig 2, a slender specular highlight
is shown in the iris area near the nose. Thus, the performance is reduced
owing to the light reflection or uneven illumination in the area of the iris.
Example B shows a permeable contact lens covered in the iris region; this
can generate some large artifacts in the detection region. Example C shows a
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Fig 2. The challenges of UTiris datasets in a different spectrum.
The color iris images (A and B) are acquired in the VW and grey iris images
(C and D) are acquired under the NIR. The images were taken from [40].

small portion of eyelashes that have a considerable influence on structural
iris texture. Example D is exhibiting a non-ideal iris region due to poor
coordination of human-machine interaction. This causes many iris features
to be lost. The challenges we have described in the detection and extraction
phases can be summarized as follows: contact lens; eyelash occlusion, specular
highlights of illumination, uncooperative action. Besides, the shape of the
eyelids varies from one individual to another. All of these factors make the
localization of the eyelids more difficult [35] [36] [37].

To detect the iris area at a fine-grained level, we custom the Mask R-
CNN [38] neural network architecture. The model of Mask R-CNN is an
extended structure of Faster R-CNN [39], including a function of pixel-to-pixel
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alignment. The proposed Mask R-CNN is constructed by stacking the layer
to predict the iris location in each Region of Interest (ROI); a mask branch.
This layer is similar to the existing boundary layer and classification layer.
Our Mask R-CNN architecture mainly performs two different operations:
object detection and semantic segmentation, which are used for the iris region
extraction base on iris datasets, and are aimed at extracting and normalizing
the iris region from the object images.

3.1.1. The RPN Component

In the process of iris detection, there are irises of different sizes in the raw
image, and the detection of iris of different sizes requires different features.
The multi-scale pyramid is a good solution, such as FPN component. First,
the component of ResNet performs the deep convolution operations on the
input iris image with 3x3 convolution kernel, and then generates five different
feature maps with different sizes in each layer. Second, the component of
FPN performs the upsampling operations on the last 4-layer convolutional
feature map, and then the results are merged with the data generated by the
previous convolution layer. Thus, combining these two types of feature maps,
which can further enrich the ability to express features at different scales,
thereby achieving robust iris detection capabilities.

The Region Proposal Networks (RPN) is an essential component of Mask
R-CNN. They are lightweight neural networks that are used to replace the
selective search in the model of Faster-RCNN. Similar to Faster R-CNN, the
purpose of RPN is to seek and generate the region proposals effectively.

In the RPN architecture, a sliding window is used to scan the image and
to find the area where the target of the iris exists; a rectangle distributed
over the image area, as demonstrated. The center of the sliding window is
the anchor, as shown in Fig 3, and every anchor is implicated in the aspect
ratio and the scale [38] [39]. The sliding windows are implemented by RPN
convolution, and they scan the surrounding area based on the anchor points
at high speed. Sliding windows scan all areas in parallel mode by using the
GPU acceleration.

By default, we used three aspect ratios and three scales, resulting in 9
anchors at each sliding position. For example, the 3x3 convolution feature
map networks slide on WxH using the padding operation and the stride is 1;
thus, the sliding window has WxH slides, each slide with 9 anchors in each
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Fig 3. The generated anchor points distributed on the raw iris
image. The figure above gives a visual representation of the effect of anchor
distribution. The number of anchors is obtained through the RPN network,
which is used to select positive and negative samples and finally calculate the
difference between the positive sample and the ground truths [38].

scanning operation. Finally, the number of WxHx9 anchors are generated,
and the role of RPN is to use these anchors to determine the location of the
feature map and the size of its bounding box.

At each sliding window position, multiple scanned regions are considered
as candidates, predicted simultaneously. In our setting, a limited number of
the highest potential candidate regions for each iris image is counted as k
boxes. In the region layer of Mask R-CNN, the outputs of 4k parameters
are needed to encode the coordinates of 4 different points for the k boxes,
and the classification layer requires 2k values to evaluate the probability of
whether each region is the target.

Fig 4. illustrates the processing to seek and pin-point the ROI of the iris.
Using the sliding window and anchors, we obtained W×H×9 proposals from
one original iris image. Each proposal generated six parameters: two parame-
ters (0 and 1 ) which are used to label the foreground and the background
probability, calculating the target by comparing each proposal and ground
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Fig 4.The processing of iris region extraction. The figure
demonstrates iris localization and iris region extraction, which are performed
to provide discrimination information for a detailed neural network. The
scale and aspect ratio of the anchor is controlled by the “SCALES” and
“RATIOS” parameters in configuration.

truth. Meanwhile, each proposal is transformed into ground truth size by
translation and contraction operation. There are four parameters (upper-left,
upper-right, lower left and lower right) for the locating four coordinates due
to the differences in the position and size of each proposal and ground truth.
Once six parameters are appropriately set, all the scale-variant features of
the detected region can be output, including the various coordinates of iris
detection. This enables us to implement further normalization function by
using the extracted iris image with the highest probability.

3.1.2. The Iris Detection on Experimental Data

The experimental iris images not only contain the regions of interest
(ROI) of the iris but also existing redundant identifying information, such
as eyelashes and sclera, etc. Thus, the current raw iris images cannot be
used directly in the training model. We focused on iris preprocessing and
recognition implementation in the robustness and practicability of the system.
The crucial ability of our framework is to extract unique properties from
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the iris images, making it easier to create a specific code for each individual.
In our experiment, the reconstructed Mask R-CNN is used for locating and
extracting the iris with scale-variant features. Before inputting unique scale-
variant iris features and texture into the recognition model, two steps need to
be performed, including iris extraction and normalization.

In the iris region detection, we propose an efficient detection method
specifically for the iris region, and limbic and boundary of the eyelid on our
dataset. To collect some training-testing samples, we create some ground
truth in the dataset of UTiris for building iris ground truth. The experimental
data is a set of color and grey iris images with high-resolution 2048×1360 or
1000×776 pixels. Firstly, we randomly select 158 iris images from the whole
UTiris dataset [40], and each has two images for training the Mask R-CNN
model. Iris data annotation is the important part of iris detection, we mark
the outline of the iris to provide the ground truth for training the proposed
Mask R-CNN. The generated ground truth image is labeled as 1, if there is
evidence of the iris in the sliding window of 299×299 pixel or 0 background,
as presented in Fig 5 below.

Then, to enhance the robustness of the model input, we generated a
multi-channel space that duplicates the same array from grey space to a
representative grey image. The new arrays are formed by stacking the given
arrays in three dimensions. We adopt the pre-trained model to the COCO
dataset [41]. By matching the testing set and ground truths, the proposed
Mask R-CNN calculates their matched probability to output the best one,
which is used as a referencing position to locate the iris region of the raw iris
images, as indicated in Fig 6 (B). Ground truths matched across different iris
examples can be seen in (DOI 10.6084/m9.figshare.10280492). If the raw iris
image is successfully matched by the top probability of iris ground truth, it
can generate four coordinates. They correspond to four corners of a square in
Fig 6 (C). The iris position can be routed through the squares with different
sizes; the results of iris localization are displayed in Fig 6 (D). The results
show good localization performance (DOI 10.6084/m9.figshare.10280501).
After the iris is located, if the iris outer boundary contains some periocular
textures, such as sclera, eyelid and pupil, further analysis correlation may be
adopted [42]. In addition, all of these textures play a significant role expected
to complement the iris as auxiliary features to improve the recognition effect
in non-cooperative environments [43] [44]. The same calculation mode is
applied for the grey iris images arraying from Fig 6 (E) to 6 (H).

11

https://figshare.com/articles/The_iris_matching_based_on_ground_truths/10280492
https://figshare.com/articles/Localization_performance_of_UTiris/10280501


Fig 5. The annotation on the fine-grained iris images.
Corresponding pairs of iris ground truth acquired in the VW and NIR
session. The figure given at the left side is original iris dataset and the right
side is iris ground truth layer with red region.

3.2. The Iris Extraction and Normalization on the Scale-variant Iris Images

During the testing recognition model, the fully connected layer needs to
reshape the pooled results after the convolutional layers, so the input images
must be a set of fixed size images. If the dimension of the input vector is
not fixed, then the number of the weight parameters of the full connection is
variable, which results in slow testing and dynamic changes of the network,
and has almost no effect on parameter training. In the previous step, all of
the extracted iris region images are the same width of 299 pixels, are diverse
in height size (less than 299 pixels). To fill these vacant pixels is an effective
way to enhance and train the recognition model.
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Fig 6. The iris localization and Extraction with iris ground truths.
To achieve iris region localization, three normalized steps corresponding to
the top iris ground truth (2nd column), iris region (3rd column), iris
periocular (4th column), are obtained under the different spectrum images
applied by the proposed Mask R-CNN. The upper row in each sub-diagram
shows successful iris region extraction in the VW session, and the bottom
row shows the segmentation in the NIR session. All of these extracted
images are non-holistic iris.

After the iris extraction, these non-holistic iris images have scale-variant
features, this is because the variables of width and height of each image
are various reply on different size of the extracted iris region. The effective
processing range of each iris image is different and non-holistic. The purpose of
the proposed zero padding layer is to determine whether to fill the additional
edge pixels of the input image matrix when performing convolution or pooling
operations. Given this, we have customized a zero-padding layer in the
architecture of Mask R-CNN for normalizing the iris images with different
width and high. Consequently, the shapes match the output image as needed,
and directly input into the further recognition model, as shown in Fig 8 below.

The proposed zero-padding layer can fill the vacant area with pixels in the
vertical direction, and the width kept the same, the whole process completed
by TensorFlow session, as shown in Fig 7 and 8. The details include four
major steps: 1). first get the width and height information on each extracted

13



Fig 7. The optimized Mask R-CNN architectures in the mobile
environment. The first dotted box illustrates that we implement two input
modes are applied during the preprocessing of the system, VW(Color) and
NIR(Grey) modes. The second dotted box illustrates that the non-holistic
iris features map with discriminative information was obtained by Mask
R-CNN and those scale-variant images are normalized by the custom
zero-padding layers. Each individual component proposed in our Mask
R-CNN architecture does influence iris recognition performance.

iris image, 2). if the width is greater than the height, then fill the pixels
vertically with the center of the image, 3). the height of the area covered
by the filled pixels is to be consistent with the width, 4). repeat the above
process until all the extracted iris images are filled. Through this method,
we can align the images and effectively maintain the scale invariance of the
extracted iris images, thereby increasing the robustness of the current system.
Besides, all the values of filled pixels are zeros with black color [45] [46], the
advantage is that it can reduce GPU computation during the training model,
and the stability of the recognition model for image processing is enhanced[]
[].
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Fig 8. The proposed zero-padding normalization on extracted iris
images with different sizes. The experimental results show that the iris
region is extracted from the raw data (left, original iris image), then the
extracted non-holistic iris images with scale-variant features in different
width and high variables (middle, iris region) are transferred into a standard
training set(right, processed iris image with padding layer).

3.3. The Fine-Tuned Mobile Inception V4 Architecture

The fine-tuned mobile Inception V4 is executed to identify the human
iris. For our experimental dataset, the iris image represents a specific domain,
such as iris periocular and iris characters, which belong to the human central
visual system. For these particular texture images, a strategic priority for us
is that we would fine-tune the Inception V4 neural networks and continue
training them on the iris dataset we have.

Many novel models and efficient learning techniques have been introduced
to make CNN’s model deeper and more powerful [47] [48], achieving revolu-
tionary performance in a wide range of inputted data. Szegedy et al. [49]
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proposed an improved mobile version of Inception v4 based on Inception
v3 [50]. Inception v4 primarily consists of an input stem, three different
inceptions and two reduction modules. Based on the structure of Inception v4,
we have developed a fine-tuned model. The proposed model includes a final
classifier layer, and its dimensions differ from the original model. Fig 9 shows
the complete architecture of the proposed model; the fine-tuning elements
are shown in the dashed boxes. The implementation of iris recognition on a
mobile device is significantly different due to a different environment on a
dedicated device; the former relies on computational power and has limited
space for storage.

Fig 9. The fine-tuned Inception V4 architecture. The final pooling
procedure is described as a series of adaptive pooling combinations, where
the filter is with different output sizes. The final full connection layer is
adjusted according to the number of classifications in this experiment. These
two subcomponents (with two dotted boxes above) are the optimized
structures generated by our fine-tuning method.

Below are the implementation details of our fine-tuned Inception V4 neural
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network model:
Here, we fine-tuned the first layer of our model based on the original

Inception V4 model. The input size is adjusted to 299X299 pixels. Different
networks require different input sizes. For example, the Inception V4 requires
that the image size of the input network is 299x299 pixels. Accordingly, the
image size was adjusted to 299x299 pixels, so the feature mapping dimension
output by the intermediate convolution module can remain the same.

So that the model recognizes the iris more efficiently in a mobile envi-
ronment, we loaded pre-training weights and custom classification layers
to develop our model. Our task is for the network to focus on learning
scale-variant features in the final linear layer. Siyu Huang et al. propose
simple but effective variants of the pooling module - stacked pooling [51].
Stacked pooling is an equivalent form of multi-kernel pooling [52] and works
by stacking smaller kernel pooling. All the pooling operations are calculated
on down-sampled feature maps except for its first kernel pooling, which can
reduce the computing cost for training the learning model. Their empirical
studies reveal that stacked pooling shows a better computing efficiency than
multi-kernel pooling. In our fine-tuned model, we stacked three adaptive
average pooling layers; the first two layers are two-dimensional, and the
output sizes are 3×3 and 2×2, respectively. The last layer’s output size is 1
and applies an 1D adaptive average pooling over an input signal composed of
several input planes.

Our iris recognition is a classification task. The fully connected layer of
the proposed network is set to 79 categories for the current UTiris datasets
instead of the 1000 categories of default classification capability. Given
this, we also make some improvements before the model output. First, the
adjustment is to fine-tune the last linear layer of model with 79 classes
features output. Next, a combination of three pooling functions is proposed
and followed by the previous linear layer, which is implemented by the adaptive
average pooling functions. The output sizes of each are 3, 2, 1, respectively.
Finally, we fine tune the last fully connected layer with the classification
number of 79 for the current classification task, this further improves the
model’s nonlinear expression ability. This kind of architecture is to reduce the
calculation parameters during the training, at the same time, all the high-level
discriminative features learned by the previous layers can be retained, which
can efficiently improve the convergence of the model during the training.

Selecting the correct level of activation function is an important part of the
design in a neural network. In the process of backpropagation, the gradient
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has direction and size. The gradient descent algorithm multiplies a variable
called the learning rate to determine the location of the next point. A paper
[53] by Leslie N. Smith describes some very instructive learning rate settings
to find the initial learning rate. If the learning rate was low, the gradient
would decline slowly, and the training took a long time. By contrast, if the
learning rate setting was high, then it was difficult to converge to the extreme
value. Considering the experiment in practice, we apply the value of 1e-4 as
the learning rate in our proposed model.

Finally, we need to use an optimization algorithm to iterate over the model
parameters to minimize the loss of function value. In many fields, such as
computer vision, the most commonly used is the gradient descent method to
find the optimal loss during the training phase [54]. The Adam algorithm
is currently the mainstream optimization algorithm, some researchers also
pointed out the defect of Adam’s convergence [55] [56]. Combine with the
parameter of AMSGrad gradient descent function, which is more robust to
the parameter changes and make more stable in the training process [57]. In
this research, the AMSGrad is substituted for the original optimizer without
the momentum parameter in our proposed model.

Our proposed model adjusts and adds learning layers to optimize the
Inception V4 and investigate whether they can improve decision making in
the recognition process in the mobile environment. The methodologies above
detail the implementation of multi-tasks deep learning architectures for single
iris object detection on our edge computing device.

3.4. The Iris Datasets

To evaluate the performance of the proposed framework, we selected one
well-known iris dataset of UTiris, which includes the iris image acquisition
scheme, using different devices [40]. The database consists of a total of 1540 iris
images, from Visible-Wavelength (VW) and Near-Infrared (NIR) sessions. The
aim of proposed learning models is to train and validate the different images
from the same individual’s iris under the different wavelength environments.
All the iris images are captured under non-constraint conditions and simulate
mobile device’s environment, such as non-ideal imaging, different imaging
distances and illumination conditions. There are 804 images of 2048×1360
pixels in the VW session, and another 736 images of 1000×776 pixels in
the NIR session, which are taken from 79 individuals demonstrated in 158
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classifications. The dataset was collected by the University of Tehran from
24-27th of June 2007.

3.5. The K-fold Cross Validation

The cross-validation [58] emphasizes the objective evaluation of the match-
ing degree of the model to the data. This data analysis method [59] divides
the original data into k groups, creating a verification for each subset and
takes the rest of the k-1 subset data as the training set; thus, the cross-
validation can train K models. The K models are evaluated in the validation
set, and the final loss is obtained by the weighted mean operation via the loss
of each model. The loss function of our recognition model is implemented
by cross-entropy loss function, combining the log softmax and negative log
likelihood functions to calculate the model loss. This strategy is capable of
measuring subtle differences and is suitable for applying in fine-grained image
classification tasks.

3.6. The Edge Calculation Devices

The integrated framework above is executed on a GPU-based edge cal-
culation device - Jetson Nano. The Jetson Nano is proposed by Nvidia [60],
which is intended for low-power applications requiring high computational
performance in mobile environments. It is equipped with a Maxwell GPU with
Quad ARM Cortex-A57 processor, and 4GB of LPDDR4 memory. Learning
models can run with a Linux kernel 3.10.96 on the Ubuntu 18.04 system.
Design of low-power consumption (5 watts) and integrated GPU makes the
Jetson Nano an ideal candidate for conducting the proposed methods. Due
to its strong computing capabilities [61], researchers can perform multiple
neural networks by parallel mode in certain fields, such as object detection,
extraction and image classification in the complex mobile environment.

4. Results

4.1. Evaluation of Proposed Mask R-CNN Architecture

In our experiment, we randomly use a portion of the iris image as the
training, then use the Callback function to save the best weights and load
them, before predicting the new iris images. There is approximately 20%
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of data for training and 80% for testing the proposed Mask R-CNN. After
finished the preprocessing phase, all iris images were fixed to 299×299 pixel
by the normalization operation in order to meet the model input size; this can
efficiently reduce the capacity of the training set and increase the training
speed for the further training model, as shown in Fig 10.

Fig 10.Different degrees of padding processing effects on the
extracted non-holistic iris images. Comparing the different degrees of
image processing effects with the color (Fig 10A-10D) and gray iris images
(Fig 10E-10H). The left-to-right images represent the padding effect sorted
the non-holistic iris by size, from smallest to largest in padding area.

The results in Fig 10 show that the effect of experimental images, demon-
strating the effectiveness and practicality of the proposed Mask R-CNN
architecture. Different noise factors can also be distinguished such as multiple
scales, color distortion, and insufficient light. Among the most important
is that one eye is open while the other eye is half-open or closed, which
affects the performance and stability in the biometric identification process.
Adding the zero-padding layer in the architecture allows efficient learning
of the scale-variant features from each iris training set and enhances the
robustness of the iris authentication system. The proposed Mask R-CNN also
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uses a multi-tasks loss function to calculate the loss, combining the loss of
classification, localization and extraction mask. The equation is defined as
below.

Loss = Lcls + Lbox + Lmask

The formula consists of Loss functions in each ROI region: classification
loss and position regression loss of the bounding box. They were inherited
from Faster R-CNN and the Loss of the mask is proposed by [38]. During our
experiments, the number of classification classes is set to 1 since this is the
single-class classification task. We change the non-maximum suppression of
RPN to 120 (from a default value of 200). The maximum number of ground
truth instances and final detections are adjusted to 70 and 50, respectively.
We also train the model with the anchor scale (16, 32, 64, 128, 256) and it
performs worse than the original setting of (32, 64, 128, 256, 512). Finally, the
learning rate was set at 0.001 and the momentum rate at 0.9. Given this, the
total Loss drops to 0.0156%. With the improvement of Loss weights(1,2,1,2,3),
Loss is decreased by 0.0143%.While training the model, the Loss evidently
dropped to nearly 0.01% and to the lowest of 0.0066% at the 203rd and 233rd
of total 250 epochs, respectively. Our proposed Mask R-CNN architecture
correctly identified 1539 of 1540 iris images in Utiris datasets; the one failure
is due to the improper capture of partial iris images. Finally, the precision
results obtained with iris detection is more than 99.99%.

This section summarizes our Mask R-CNN architecture, compare to the
[16] [18] and [19] works, we proposed the stronger and more robustness of
detecting the iris location and the extracting the precise region of the iris
region, are presented. A baseline dataset has been completed that serves as a
basis to measure evaluation targets. Next, we comprehensively validate the
performance of the proposed framework by using a pre-processed iris dataset.

4.2. The Evaluation of Fine-tuned Mobile Inception V4 Architecture

In the authentication phase, our framework was conducted on UTiris
datasets and the performance of the fine-tuned mobile Inception V4 is analyzed.
The total size of the training set is 1540 images, which were randomly sorted
in the memory. The learning rate of the whole network was initialized to 1e-4.
The testing iteration was set to 17 epochs on the mini batches of eight images
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during the training, using the AMSGrad optimization algorithm. All of these
super-parameters were set properly so that the network would be able to
generalize well. Simultaneously, these factors could be used to improve the
performance and accuracy of our iris authentication systems.

Fig 11. The 5-fold cross validation

The cross-validation strategy was employed to verify the performance. As
illustrated in Fig 11, we applied Five fold cross validation [62] to evaluate the
performance of our proposed mobile Inception V4 on the Nvidia Jetson Nano.
Every sub dataset of UTiris were evaluated, and the accuracy rate verified
the measurement of the recognition learning model.

The final curves of validation accuracy and loss were used to evaluate
the proposed framework, as displayed in Fig 12. Through the training of
the proposed learning model with 17 epochs, all experimental results are
visualized by the Tensorboard tool. Fig 12 (A) and Fig 12 (C) illustrate that
the accuracy is proportional to the increasing epochs and maintains a steady
accuracy after the 12th epoch. In each cross-validation, we chose the highest
accuracy as the benchmark to represent the best performance. The results
are presented in Fig 12(A) which manifests that while mobile inception V4 is
applied on the VW session, the best result was achieved by the fine-tuned
method with an accuracy of 99.37%, peaking at a 100% recognition rate in
the 5th cross-validation of the 11th epoch on the NIR session. Here, the
difference between the average accuracy of the proposed framework with VW
and NIR was 0.3%. Gradually, with the help of optimization functions, the
Loss function learned to reduce the error in prediction. The results showed
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Fig 12. The curve plot for the experimental result of 5-fold cross
validation. The X-axis displays the number of epochs ranging from 0 to 16,
and the Y-axis displays the validation accuracy from 0 to 110. Curve plot for
the categorical accuracy for 17 epochs. The accuracy was defined as the total
frequency of the correct acceptance and the imitators with correct rejection.

that the average loss rate is decreased by roughly 4%, from 4.05% to 0.14%.
We found that increasing the number of training iterations could significantly
improve the proposed learning framework performance.

23



5. Discussion

In this study, an iris authentication system based on Nvidia Jetson Nano
was introduced. The proposed system consists of two distinct functions: iris
detection, non-holistic iris extraction and iris recognition. We consider the
iris database, which consists of 2 classes. The dataset is split into training
data and testing data sets and organized into 2 folders: train and test. The
5- fold cross-validations are calculated with a batch size of 8 for 17 epochs,
demonstrating that the fine-tuned mobile Inception V4 model was steady in
every validation phase, as explained in Tables 1 and 2.

Table 1: The table presents the intercorrelations among the 5-fold cross- validations

on VW session.
Fine-tuned

Inception V4
Epoch

0
Epoch

1
Epoch

2
Epoch

3
Epoch

4
Epoch

5
Epoch

6
Epoch

7
Epoch

8
Epoch

9
Epoch

10
Epoch

11
Epoch

12
Epoch

13
Epoch

14
Epoch

15
Epoch

16
Cross

Validation
1

3.163 20.89 49.37 68.35 82.28 87.97 91.77 93.04 94.30 95.57 95.57 96.20 98.71 96.84 98.10 97.47 97.47

Validation
Loss

4.347 3.584 2.691 1.865 1.247 0.8529 0.5879 0.4328 0.3355 0.3285 0.2723 0.2568 0.1840 0.2100 0.1538 0.1724 0.1787

Cross
Validation

2
17.72 37.34 58.86 76.58 85.44 91.14 94.30 95.57 94.94 95.57 97.47 97.47 97.47 98.37 98.73 98.10 98.10

Validation
Loss

3.947 3.095 2.354 1.652 1.146 0.7699 0.4740 0.3398 0.3281 0.2530 0.1713 0.1869 0.1559 0.1331 0.1291 0.1373 0.1269

Cross
Validation

3
20.25 34.18 53.80 70.89 84.18 86.71 92.41 95.57 91.77 94.94 98.10 97.47 98.73 97.47 98.10 99.37 98.73

Validation
Loss

3.940 3.164 2.489 1.753 1.217 0.8743 0.5731 0.4074 0.4083 0.2827 0.1922 0.1877 0.1621 0.1836 0.1559 0.1482 0.1365

Cross
Validation

4
14.01 36.93 57.32 78.34 84.71 91.08 91.08 94.90 94.27 98.09 97.45 97.45 98.73 96.82 97.45 98.73 98.73

Validation
Loss

4.073 3.067 2.219 1.596 1.054 0.7190 0.5629 0.3877 0.3307 0.1651 0.1555 0.1583 0.1314 0.1817 0.1509 0.1040 0.1358

Cross
Validation

5
22.67 33.33 62.67 77.33 83.33 87.33 92.00 92.67 95.33 96.00 97.33 96.00 98.67 96.00 97.33 98.00 98.00

Validation
Loss

3.879 3.133 2.200 1.593 1.031 0.7751 0.5743 0.4867 0.2955 0.2077 0.1971 0.2256 0.1518 0.1867 0.1798 0.1435 0.1333

Table notes that all the accuracy rates/% and loss rates/% of 17 epochs measures on the
proposed framework in columns, and the rows show five iterations for each k
cross-validation(k=5).

Considering the results in Tables 1 and 2, we can observe that increasing
the number of training epochs can slightly improve the recognition rate. In the
initial training phase, the recognition accuracy of the model in both sessions
is relatively low. This is because the model needs to learn from the training
data, and the sample of training data has not fitted the proposed model. On
the whole, the average accuracy of VW sessions (15.56%) is higher than the
NIR session (11.43%) in the first epoch since the color images contain a large
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Table 2: The table presents the intercorrelations among the 5-fold cross- validations

on NIR session.
Fine-tuned

Mobile Inception V4
Epoch

0
Epoch

1
Epoch

2
Epoch

3
Epoch

4
Epoch

5
Epoch

6
Epoch

7
Epoch

8
Epoch

9
Epoch

10
Epoch

11
Epoch

12
Epoch

13
Epoch

14
Epoch

15
Epoch

16
Cross

Validation
1

15.29 38.85 61.78 78.34 86.62 90.45 92.99 94.27 94.90 93.63 96.18 96.18 98.73 99.36 98.09 98.09 96.18

Validation
Loss

3.958 3.083 2.254 1.488 1.046 0.6934 0.5036 0.4207 0.3747 0.3080 0.2304 0.2041 0.1837 0.1500 0.1783 0.1879 0.1806

Cross
Validation

2
14.10 27.56 55.13 79.49 83.33 92.95 92.95 93.95 96.79 95.51 96.15 96.79 97.44 98.72 98.08 99.36 98.72

Validation
Loss

4.061 3.282 2.411 1.710 1.236 0.8172 0.5813 0.4011 0.2987 0.2820 0.2378 0.1842 0.1670 0.1650 0.1443 0.1249 0.1407

Cross
Validation

3
8.91 33.12 56.05 74.52 84.08 91.72 92.99 93.63 97.45 98.09 97.45 96.82 98.73 99.36 98.09 96.82 97.45

Validation
Loss

4.061 3.237 2.437 1.695 1.179 0.7826 0.5643 0.4510 0.2988 0.2027 0.2073 0.2127 0.1461 0.1474 0.1594 0.1854 0.1444

Cross
Validation

4
11.25 34.38 68.13 77.50 84.38 90.00 95.00 93.75 97.50 98.13 98.13 95.63 98.75 96.88 96.88 98.75 98.13

Validation
Loss

4.124 3.183 2.256 1.657 1.125 0.7234 0.4915 0.3818 0.2901 0.2054 0.1326 0.2061 0.1663 0.2056 0.1669 0.1421 0.1258

Cross
Validation

5
7.59 37.34 61.39 78.48 81.65 95.51 91.14 92.41 91.77 98.10 98.10 100 98.73 99.37 100 99.37 98.10

Validation
Loss

4.134 3.319 2.374 1.681 1.192 0.7588 0.6120 0.4739 0.3495 0.2026 0.1707 0.1466 0.1456 0.1354 0.1218 0.1355 0.1128

Table notes that all the accuracy rates/% and loss rates/% of 17 epochs measures on the
proposed framework in columns, and the rows show five iterations for each k
cross-validation(k=5).

amount of different discrete information in three channels. In the same eighth
epoch, the curves (in Fig.12) show that the performance of the model on the
NIR session (93.01%) is significantly beyond that of the VW session (92.31%),
this reveals that our proposed learning model is easier and better to fit the
NIR session data set rather than VW session. Based on the comparative
analysis of the two models, this research reveals that the convergence speed
of our fine-tuned Inception V4 processing on the NIR session is better than
the VW session in overall epochs.

Concurrently, we observe that the validation accuracy fluctuates after the
10th epoch. The reason for this is that the amount of data in the experimental
data set is still relatively small, and training on the model with more layers
may bring some problems such as overfitting due to the disparate sizes of
pre-processed iris images and of the effective recognition area within the range.
Under the mobile environment, this seems inevitable. To solve this problem,
we used the early stopping method; calculating the accuracy of validation
data at the end of each epoch, and stopping training when the accuracy was
no longer improved.
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In the fine-tuned mobile Inception V4 architecture, we propose a module
of three adaptive average pooling layers with various properties and sizes.
This module emphasizes the down sampling of the overall feature information,
mainly including two positive roles: 1) reduction of parameters is reflected
more in the extraction of higher-order information. 2) more useful discrim-
inative information is passed to the next layer for feature extraction while
reducing the dimension. These changes effectively speed up the fitting of
depth network and data and decrease considerable computing costs so that our
fine-tuned model can achieve successive and ideal recognition rates in the first
few epochs. Fig 9 illustrates an example of the stacked pooling, with a kernel
set of K ={3, 2, 1} and a stride of 1. In empirical studies, this configuration
shows the best performance in most cases. During our observation, we found
that the combination of average pooling layers can significantly maintain
the recognition rate, and efficiently improve the convergence speed of the
proposed model by stacking pooling layers.

We also investigate how to train a fine-tuned CNN to classify non-holistic
iris images with high accuracy. The hyperparameters of the learning rate are
closely associated with model performance. Weight decay can be effective
at preventing the problem of over-fitting. It controls the size of network
parameters updated after each iteration. Our experiment shows that when
the learning rate is modulated by 1e-4, the proposed framework has a notable
recognition rate of 100% in the 5th verification set of the VW session. Com-
paratively, the accuracy rate of assessment is over 99% in the NIR session.
Likewise, we also try to use the learning rate of 1e-3 and 1e-5; however, the
higher learning rate can accelerate the model learning speed, but it was easily
led to the gradient explosion of loss value and the fluctuation of the accuracy
and loss rate. Conversely, the lower learning rate can cause the slow learn
speed of the model, which easily leads to overfitting, and it was difficult for
the learning model to converge.

Lastly, compared to preprocessing and recognition approaches used by
authors [16] [18] [19] in Table 3, we give the framework more agility and
flexible space to adapt to the change of system, and research demonstrates
the effectiveness of the proposed framework. Starting with good quality
images, we do not adopt any degradation operation in our preprocessing
phase. Our Mask R-CNN architecture is reconstructed to implement robust
detection and scale-variant feature extraction, respectively. The model has
the advantage that image space is unaffected by the image degradation
process. Furthermore, our proposed recognition model always produces
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Table 3: Comparing the original results obtained from experiments with the

state-of-the-art methodologies. The best results in bold.

References Preprocessing
Localization
Precision

Methodology
Recognition
Accuracy /%

Bhagyashree
Deshpande
and Deepak
Jayaswal [16]

Daugman’s
integro-differential

+
Daugman’s

Rubber Sheet
+

1D log Gabor filter

× Hamming
Distance

95.00% (VW)

Mohammed
Hamzah
Abed [18]

Circular Hough
transform

+
Haar wavelet

transform
+
PCA

98.73%
Cosine
Distance

91.14% (NIR)

Onkar Kaudki
and Kishor

Bhurchandi [19]

Circular Hough
Transform

+
Rubber-Sheet
Unwrapping

+
Haar wavelet
transform

96.21%
Hamming
Distance

97.00% (NIR)

Proposed
Frameworks

Optimized
Mask R-CNN

99.99%
Fine-tuned
Inception V4

Accuracy/%

Session VW
∣∣∣ NIR

CV 1 98.71% 98.73%

CV 2 98.73% 99.36%

CV 3 99.37% 99.36%

CV 4 98.73% 98.75%

CV 5 98.67% 100%

Average
accuracy

98.84% 99.24%

Overall
accuracy

99.04%

top performance for all levels of methodologies, demonstrating the robust
adaptation and excellent performance, and the highest performance in iris
detection. Our results demonstrate that our framework provides the best
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average recognition accuracy of 98.84% and 99.24% for the VW and NIR
session, respectively. The overall accuracy of the model in the UTiris dataset
is 99.04%, are summarized as follows.

As a result, we propose an ensemble learning system of two learning models
for the personal iris authorization. Among them, the fined tuned-based
Inception V4 architecture to classify and verify the iris, which is validated
by 5-fold cross validation method. With the improvements, the proposed
Inception V4 can efficiently improve the convergence of the learning model
under the prerequisite of high accuracy guaranteed. When processing the NIR
images, the proposed classification learning model can process the grey-scale
image by stacking the same dimensions. In the aspect of robustness, sections
of the research are implemented by multiple different functional components
[16] [18] [19], and this would increase the system complexity and coupling in
the iris verification process. To address this, the proposed Mask R-CNN can
preform multi-tasks learning, which simultaneously detect, locate and extract
non-holistic iris feature region. Considering the diversity of iris samples, its
architecture can also apply the local iris ground truth to achieve robust iris
localization and extraction. In addition, the proposed zero-padding layer can
flexibly normalize the different scale-variant iris region feature images. Our
experimental results and observations for the proposed framework indicate
that the performance outperforms the current state-of-the-art methodologies
in detection capability, recognition rate, and robustness of the system.

6. Conclusions

A comprehensive overview of mobile environment devices and the imple-
mentation of an non-holistic iris authentication system is presented, and the
merits and drawbacks of the methods used in the state of art approaches
are analyzed. The current investigations showed that the method of deep
learning is moving towards a complex hierarchical structure. We propose a
learning framework with multi-tasks for detection, extraction, normalization
and recognition for the high-resolution iris images in our iris authentication
system. Thus, the whole framework demonstrates dynamic and flexible char-
acteristics. All of these improvements significantly improve the practicability
of the proposed system in the actual scene.

In consequence, qualitative and quantitative research designs were adopted
to provide experimental results which endeavor to explain the scale-variant
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features of models of learning through iris recognition. The proposed solu-
tions are suitable for high performance built-in GPU mobile devices and aid
researchers in the estimation of analysis results for further research in the
mobile environment.
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