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Abstract

The electromagnetic radiation of electronic equipment carries information and can
cause information leakage, which poses a serious threat to the security system;
especially the information leakage caused by encryption or other important
equipment will have more serious consequences. In the past decade or so, the
attack technology and means for the physical layer have developed rapidly. And
system designers have no effective method for this situation to eliminate or defend
against threats with an absolute level of security. In recent years, device identification
has been developed and improved as a physical-level technology to improve the
security of integrated circuit (IC)-based multifactor authentication systems. Device
identification tasks (including device identification and verification) are accomplished
by monitoring and exploiting the characteristics of the IC’s unintentional
electromagnetic radiation, without requiring any modification and process to
hardware devices, thereby providing versatility and adapting existing hardware
devices. Device identification based on deep residual networks and radio frequency
is a technology applicable to the physical layer, which can improve the security of
integrated circuit (IC)-based multifactor authentication systems. Device identification
tasks (identification and verification) are accomplished by passively monitoring and
utilizing the inherent properties of IC unintended RF transmissions without requiring
any modifications to the analysis equipment. After the device performs a series of
operations, the device is classified and identified using a deep residual neural
network. The gradient descent method is used to adjust the network parameters, the
batch training method is used to speed up the parameter tuning speed, the
parameter regularization is used to improve the generalization, and finally, the
Softmax classifier is used for classification. In the end, 28 chips of 4 models can be
accurately identified into 4 categories, then the individual chips in each category can
be identified, and finally 28 chips can be accurately identified, and the verification
accuracy reached 100%. Therefore, the identification of radio frequency equipment
based on deep residual network is very suitable as a countermeasure for
implementing the device cloning technology and is expected to be related to
various security issues.
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1 Introduction
In recent years, the physical attack methods for security systems have developed rap-

idly, making it increasingly difficult for new countermeasures and security measures to

keep up with the development [1]. Compared to the mathematical cryptanalysis attacks,

implementation attacks present a serious and immediate threat because the strength of

the underlying algorithms and protocols is largely irrelevant. The means of attack can

be implemented with complex techniques of expensive and highly specialized equip-

ment (such as laser tomography or focused ion beam operation), and also may be im-

plemented with extremely simple and low-cost equipment( such as unintentional

information leakage method) [2].

Academic and commercial research organizations are dedicated to studying the phys-

ical security of encryption and other security devices. These works focused on the fol-

lowing directions over the past decade: side-channel analysis and failure analysis [3].

Given that many implementation attacks are well within the reach of even modestly

funded and minimally equipped individuals, they should be given serious practical con-

sideration when designing modern systems. Cautiously designed methods are (1) as-

suming that security tokens or other basic system components are affected by forgery,

cloning or sensitive data extraction, and (2) taking appropriate solutions to mitigate the

associated risks and treating them as an integrated, multi-layered part of the system se-

curity architecture.

Machine learning and electromagnetic radiation-based device identification technol-

ogy enhances existing multifactor authentication schemes for cloning and related

threats by authenticating at the physical level of the device. This technique is based on

the slight difference in electromagnetic radiation caused by the slight difference in the

physical properties. Only accidental electromagnetic leakage of integrated circuits is

considered here [4].

Because the technology takes advantage of the inherent properties of the device, it is

suitable for security applications involving commercial ICs without requiring changes

to any physical device. In addition, preliminary results indicate that the technology can

be adapted to existing processes and protocols and is likely to be applicable to a variety

of IC devices, for example, general purpose microcontrollers, programmable logic de-

vices, FPGAs, and custom ASICs.

2 Problem description
This work evaluated the applicability of device identification based on deep residual

networks (deep learning network) and RF for two distinct but closely related device

identification tasks: identification and verification.

(1) Device identification [4]. The identification system uses the SoftMax classifier to

identify the corresponding feature map through the device information.

(2) Device verification. The identification system uses a one-to-one comparison

to check the authenticity of the device’s claimed identity (through the pre-

sented digital certificate). As with biometric authentication, the purpose of

physical layer device authentication is to prevent two devices from using the

same identity [4].
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Previous identification efforts have focused on one-to-many identification tasks in

wireless network security environments, where a device entering a network needs to be

verified as belonging to a pool of authorized devices [4]. However, detecting cloned

security tokens (such as smart card-based ID cards or payment devices) requires one-

to-one verification. Here, the suitability this paper uses the depth residual network to

extract the features assessed for both identification and verification tasks.

3 Physical layer equipment certification system design
This section describes the system design for applying the device identification method

based on deep residual network and radio frequency to the above device identification

and verification problems [5]. The basic design consists of four modules:

(1) Sensor module. The sensor module is used to collect unintended RF emissions and

consists of an oscilloscope and a near-field probe. Used to obtain experimental

data.

(2) Deep residual network classification training module. Classify the experimental

data and adjust the network parameters.

(3) Feature image visualization module. Extracting the original signals through the

residual network and using them to draw a two-dimensional image can help us

understand the classification basis of the network.

(4) Verification module. For the identification task, the signal extracted from the

device is sent to the network model for identification to verify its identity.

The process framework is shown in Fig. 1.

Fig. 1 Certification system process framework
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4 Unintentional RF emissions of ICs
It is well known that electronic devices radiate electromagnetic energy (EM) that can

interfere with nearby devices. It is for this reason that airline passengers are required to

“turn off all portable electronic devices” and consumer electronic products are required

to pass certification tests to meet the requirements of the Federal Communications

Commission (FCC) [6] or other regulatory standards [4]. Digital devices, including

high-frequency clocks and oscillators, are clearly defined as unintentional radiation and

require rigorous testing to ensure emissions do not exceed specified levels [4].

Due to the clock distribution, transistor switches, and other integrated circuit activ-

ities, currents through the device produce electromagnetic fields that are combined by

complex interactions that propagate in the form of time-varying electromagnetic waves

through radiation and conduction. The basic properties of these effects are well under-

stood and described by Maxwell’s equations.

Most modern integrated circuits, including general purpose microprocessors, are

based on complementary metal oxide semiconductor (CMOS) transistor technology.

Dynamic power consumption is caused by the internal switching activity of each

transistor. Since the switching activity depends on the operations performed and data

manipulated, the resulting variations in dynamic power consumption are a source of

side-channel information leakage.

At any time, the sum of the current by all logic cells is the total current. Charging

and discharging phenomena occur when the transistor is turned on and off. Figure 2

illustrates the principle using a simple CMOS inverter. When the input transitions

from 1 to 0, M1 is switched off and M2 is switched on. The cell draws a charging

current from a constant voltage power supply to charge the intrinsic and extrinsic ca-

pacitances. When the input transitions from 0 to 1, M1 is switched on and M2 is

switched off, and the stored energy is discharged through the ground line. Dynamic

power consumption changes include state information inside the device.

Over the past decade, more and more people have realized that radiation is not only

a source of interference, but also contains useful information about the internal state of

the radiation-generating device [7]. This has a profound impact on the physical security

of sensitive electronic systems, because in many cases, the state information of leaking

is sufficient to infer the exact details of the operation being performed by the device

and/or the data it is processing [8, 9]. Recently, in the study, in addition to data- and

Fig. 2 Dynamic power dissipation of the CMOS inverter
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operation-related characteristics, unintentional near-field RF radiation of individual ICs

also showed significant device-related characteristics [10].

The most likely source of different leakage between devices is the random process

variation introduced during mold manufacturing and packaging [11]. Although the in-

tegrated circuit manufacturing process must be accurate, the final device, in a very

small range, will still have structural changes (deep sub-micron of modern integrated

circuit technology) [4]. As a result, no two chips are exactly the same. As long as the

change in the induction process is within acceptable limits, the device will operate cor-

rectly from the perspective of the black box function.

The hypothesis of this study is that changes in the manufacturing process of each

microcontroller can cause different radiation, and the difference is sufficient to identify

the source of radiation [4]. Although this article only studies radiation, the methods

used are considered to be applicable to other aspects of channel radiation, such as

changes in device power consumption. This method identifies devices with small differ-

ences, so it is mainly applied in security.

In order to improve the security of electronic systems, researchers have proposed

various methods to take advantage of the changes caused by the little difference be-

tween devices. Various methods will be mentioned in Section 5. The method proposed

in this paper can identify each individual and improve the security of electronic systems

in certain fields, for example, prevent device clone and Trojan and so on. And this

method does not need to add other parts, it just uses electromagnetic radiation to

complete the accurate memory of each chip.

5 Related research
In order to improve the security of electronic systems, researchers have proposed

various methods to take advantage of the changes caused by the slight gap between de-

vices. The aforementioned physical layer device identification technologies include the

following: physical unclonable functions (PUFs) [12], RF Certificates of Authenticity

(RF-COAs) [13], development of wireless networks with unique radiation information

and wireless-based identified devices (i.e., RF fingerprinting) [14].

(1) Physical unclonable functions (PUFs). PUF technology refers to two different

methods of device authentication. The first is to add an internal measurement

circuit to the integrated circuit that calculates the calculation of the individual

function based on the number of failure statistics, propagation delay, or other

characteristics that vary with the internal process variations of the electronic

device [15]. The second method is to combine a capacitive sensor grid integrated

in the top metal layer of the IC with a coating of randomly distributed dielectric

particles on top of the IC passivation layer. Conformal coatings require active

activation (i.e., application of a specified voltage with a known amplitude and

frequency) and response from an internal measurement circuit [16].

(2) RF Certificates of Authenticity (RF-COA). RF-COA technology attaches a three-

dimensional randomly shaped conductive or dielectric object to an RFID (radio fre-

quency identification) device. This is similar to a PUF coating performed by an ex-

ternal RFID reader in addition to testing and responding to the rest of the

measurements. The RFID reading device includes a dense patch antenna matrix for
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transmitting and receiving high-frequency radio frequency signals. The device ac-

cesses the RFID and extracts fingerprints to calculate its authenticity [4].

(3) RF-DNA identification technology. Radio frequency DNA identification technology

as a physical layer technology enhances the security of various wireless

communication devices [4]. Based on filtering, truncation, feature extraction

method, and traditional neural network are used for classification and identification

in reference [17]. This paper optimizes the recognition algorithm and uses the

deep learning algorithm to replace the traditional machine learning algorithm,

which improves the accuracy of device recognition.

Compared to PUF and RF-COA technologies, RF-DNA and deep residual network

and RF-based device identification technology do not require any modifications to the

internal circuitry or external coating of existing electronic devices and are suitable for

any commodity integrated circuit. In addition, the measurement for the device is done

passively and does not require the device to be equipped with transmitters. Compared

with reference [4], the advantage of this article is that it does not need filtering and fea-

ture extraction operations to simplify the human operation process and replace the rec-

ognition algorithm to increase the accuracy to 100%.

6 Experiment method
All results were obtained by analyzing data from a given number of test devices. The

experimental setup and analysis methods used herein are given below.

6.1 Experimental setup

All the processes in the experiment were carried out in office environment. A total of

28 chips of the same model were evaluated. These chips were from 4 different batches,

and there are several unique chips per batch. The distribution is shown in Table 1. The

conscious choice of models provides varying degrees of similarity, with chips from each

model coming from the same manufacturing batch of “EP4CE10E22C8N.”

For device control and measurement, the chip is mounted on the evaluation board of

the same replaceable chip and the same programming is performed to produce the

same operation. Use custom fixtures to secure the board to the measurement stage to

minimize any movement during collection or replacement of the chip and use standard

laboratory DC power to reduce the effects of uncontrolled voltage fluctuations.

The amplitude response of the unintentional RF signal captured from some of the

chips is shown in Fig. 3 (Take one chip for each batch and the order from top to bot-

tom is A1637A, A1431A, A1631A, and A1719A).

Table 1 Chip batch quantity details

Model Batch Number (chip)

EP4CE10E22C8N G CCAAA1637A 5

G CCAAA1431A 5

G CCAAA1631A 8

G CCAAA1719A 10
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According to Fig. 3, the average amplitude of the four signals is different and there

are peaks at different positions.

6.2 Signal collection

The radiation from each chip is collected by using an approach probe connected to the os-

cilloscope. The probe acts as an antenna for receiving unintended radiation from the device.

The test did not directly contact the chip and the distance is 1 cm. All data is acquired at a

sampling rate of GSa/s, and an amplifier (PA-303N) is inserted between the probe and the

oscilloscope to amplify the signal. The experimental device is shown in Fig. 4 and Fig. 5.

In this study, the device was preheated for 20 min before the signal was collected to

stabilize the operating temperature and a regulated power supply was used to provide a

stable supply voltage to control the environmental impact. After warming up, each chip

repeatedly performs the same operation to collect the same signal. For practical imple-

mentation, studies have shown that working within the expected operating temperature

and supply voltage range is an effective technique for dealing with environmental

fluctuations.

For all operations, the chip is used randomly to prevent any differences related to the

acquisition sequence. All acquisition operations did nothing to isolate the data collec-

tion system from the background environment noise, and all collections took place in

an office environment with a large number of PCs and wireless devices.

6.3 Classification order

In this research scheme, the classification order is first classified for the chip model,

and 28 chips can be accurately classified into their specific batch, and then the chip-

Fig. 3 Signal amplitude response
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chip detailed classification of the subordinate chips is performed for each batch.

Through this classification method, we can understand the chip model, and we can

know which chip is working.

6.4 Datasets and input

In this experiment, each of our chips was individually set to one class. The data re-

quired for training is completely collected by the laboratory. As stated in the paper, we

have 28 chips to collect data; each chip collects 20,000 pieces of data, so there are 560,

000 pieces of data as data sets. Among the 20,000 pieces of data collected by each chip,

Fig. 5 Probe connector and chip

Fig. 4 The amplifier of PA-303N
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we set 90% for the training set and 10% for the verification set. Thus, the training set

has a total of 504,000 pieces of data, and the validation set has a total of 56,000 pieces

of data (Table 2). Because the study protects device clones, we need to accurately and

one-to-one identify all chips. So we will use all the chips in the network training.

The original signal has 9604 points. When we input the network, we convert the

video signal into a two-dimensional signal by method function named numpy.reshape()

in python.

6.5 Devices for training

The equipment used during the training is configured as follows: GPU: NVIDIA

GeForce GTX 1080 Ti. The CPU is Intel(R) Xeon(R) and CPU: E5-2678 v3 @ 2.50

GHz. When using this equipment to train, the accuracy and loss reach a steady state

during training which needs 2 h. If a logistic regression algorithm is used, the training

usage time is 20 min. But the final accuracy is very different. When we judge whether

the model is suitable, we judge based on the combination of final accuracy and time.

6.6 Network

The training process of the neural network includes a forward propagation process and

a back-propagation process [18]. The neural network training algorithm is mainly based

on the gradient descent back-propagation algorithm. The algorithm updates the param-

eters according to the gap between the training samples and the expected output. The

parameters that need to be updated include the convolution kernel parameters and the

down-sampling network weights, full connectivity layer network weights, and layer bias

parameters [19, 20]. The difference between the training sample and the expected out-

put is typically evaluated using a loss function; the loss function is calculated for

each layer, and the parameters are updated in a direction that causes the loss func-

tion to decrease, such that the final output is close to the desired output. In order

to increase the frequency of updating parameters, we generally use the gradient

descent method to train the network. The global squared error loss function of n

samples can be defined as:

J k; α;w; bð Þ ¼ 1=2n
XN
i¼1

tn − ynk k2 ð1Þ

The error signal is then conducted to the front layer according to the chain law of

the derivation.

The layer network parameters are updated by the calculated loss function for the par-

tial derivatives of parameters k, α, w, and b. Layer l parameter update:

Table 2 Data distribution

Number of chips Number of data/chip Training set/chip Validation set/chip

28 20,000 18,000 2000

Total number of data Total training set Total validation set

560,000 504,000 56,000
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klij ¼ klij − η
∂ J

∂klij
ð2Þ

blij ¼ blij − η
∂ J

∂blij
ð3Þ

Layer m full connection parameter update:

wm
ij ¼ wm

ij − η
∂ J
∂wm

ij
ð4Þ

bmij ¼ bmij − η
∂ J
∂bmij

ð5Þ

Among them, η is the learning rate, the speed of controlling the gradient is lowered,

and the learning rate is too large, which easily leads to the inability to converge.

The training process of the network is actually an approximation process for the im-

plicit mapping between input and output, but this process is difficult to optimize in a

very deep network. The deep residual network uses the residual block approach to try

to solve this problem and achieves good results. As shown in Fig. 6, the basic model of

the residual block, H(x) is the learned feature information, F(x) is the general neural

network feature information, and x is the shallower feature information. By adding F(x)

and x, it is possible to eliminate the defect that the deep layer cannot learn the feature

information as the number of network layers deepens, so that the network always has

information to learn.

In this paper, we use the residual network, and the number of network layers is 22

layers. Except for the first layer and the last layer, each of the 2 layers constitutes a re-

sidual block. The structure is presented in Figs. 7 and 8.

The specific parameters are shown in Table 3.

Fig. 6 Residual block model

Zhang et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:206 Page 10 of 23



Fig. 7 Network structure
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In the parameters, the “[1, 3, 16]” is mean: convolution kernel is [3], the step is 1, and

filter number is 16.

According to the same network structure of this article, we designed 12 layers, 18

layers, and 22 layers of networks to compare. The results of the comparison are pre-

sented in Figs. 9 and 10.

According to the above four figures, the 22-layer and 18-layer are significantly better

than the 12-layer network, and the 22-layer is slightly better than the 18-layer network.

In the time comparison, as shown in Fig. 11 below, training time has been automatic-

ally generated based on the training data by Tensorboard.

Fig. 8 Residual block

Table 3 Specific parameters

Layer_name Parameters

Conv [1, 3, 16]

Res_block [1, 3, 16]

Res_block [1, 3, 16]

Res_block [1, 3, 16]

Res_block [1, 3, 16]

Res_block [1, 3, 16]

Res_block [3,3,1,32]

Res_block [3,3,1,32]

Res_block [3,3,1,32]

Res_block [3,3,1,32]

Res_block [3,3,1,32]
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It can be seen from the figure that training to the same steps requires less time for

the 12 layers, but the time required for the 18 layers and the 22 layers is almost the

same. If we continue to deepen the network layers, the final result will not be much im-

proved, and the time will slowly increase. Therefore, the article selects the 22-layer net-

work finally.

The advantage of the residual neural network is that it can automatically extract the

feature map suitable for the classification target through a very deep network depth.

Our method takes into account the time consumption while deepening the depth. The

Fig. 9 Loss under different layers

Fig. 10 Details of loss under different layers
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design of the number of convolution kernels can ensure that the number of parameters

will not explode with deepening the depth.

7 Results
7.1 The result of training using the original signal

In this study, the signal was amplified only when the signal was acquired, and then no

subsequent processing was performed on the signal. In the case of the original SNR,

the 20-layer depth residual neural network was used to classify and identify the chip.

The classifier achieves 100% batch classification and 100% chip-chip specific classifi-

cation under the collected SNR (no enhancement). In this way, the overall average rec-

ognition rate reaches 100%. The feature maps that were generated autonomously by

the last convolutional layer are shown in Fig. 12.

Figure 12 is a final classification feature map of four batches that from top to bottom

are A1431, A1631, A1637, and A1719 batches. As can be seen from the figure, the

overall amplitude of A1431 and A1631 is higher, while the average amplitude of the

second half of A1431 is higher, and the average amplitude of the first half of A1631 is

Fig. 11 Training time under different layers

Fig. 12 Batch map
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higher. A1637 and A1719 had overall low amplitude, of which all A1637 are in a low-

amplitude state, A1719 central amplitude increases, and the rest is in a low-amplitude

state.

Figure 13 is the batch chip feature map of A1431. As can be seen from the figure, the

amplitude of each chip in the batch is not repeated and opposite, so that five chips are

separated.

Figure 14 is the batch chip feature map of A1631. As can be seen from the figure,

most of the chips in the batch are in a low-amplitude state, and the feature points in

the high-amplitude state are in different ranges, thereby separating the batch of 8 chips.

Figure 15 shows the A1719 batch chip. For the batch chip, except for a few chips

which have a lower amplitude, the other chips are generally in a relatively high-

amplitude state. It can be seen from the figure that the amplitude direction and shape

are different in the high-amplitude state. Thereby, different chips are separated.

Figure 16 is the batch chip feature map of A1637. It can be seen from the figure that

the classification algorithm can be classified and identified according to the range and

number of feature points in the high-amplitude state.

In this way, 100% recognition accuracy can be achieved under the original conditions

without signal enhancement, and the results show that the device can achieve great

performance without additional optimization.

In order to test the recognition results of untrained chips, we deliberately use the

chip that has never been trained by the networks. I used 27 chips for training and used

one of the A1719 batches without trained chips for testing. In the training process, 4

batches are classified first, and then 9 chips are classified according to specific chips

(only 9 chips are used in the A1719 batch, the remaining chip test).

The final test result is that the accuracy of the chip classification of A1719 batch is

94.73% and classification into a specific chip is 76.K68% (Figs. 17 and 18).

Fig. 13 batch chip feature map of A1431
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The reason for the high accuracy of classification into specific batches is the similarity

between the chips of each batch. However, when the individual chips of the same batch

are classified individually, the reason for the low accuracy is that the chips have inde-

pendent features, and the difference between these independent features is little, so it is

easy to make mistakes.

The result is that the network usually classifies it as a chip with similar characteris-

tics. Often two chips are similar, so when using 10 pieces of data for classification, after

statistics, the maximum number of chips divided into one chip usually does not exceed

Fig. 14 batch chip feature map of A1631

Fig. 15 batch chip feature map of A1719
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8.5 pieces of data. By statistically calculating the classification results of multiple pieces

of data, the chips that have never been trained can be excluded.

7.2 The results using different a SNR signal

In order to detect the anti-noise performance of the signal, we artificially add noise to

the original signal without any operation. In this way, we get the datasets under differ-

ent noise interferences: SNR = 22, SNR = 18, SNR = 14, SNR = 10, SNR = 6, SNR = 2,

and SNR = − 2 were generated for 6 different signal-to-noise ratio signals, and network

training was performed. Anti-noise performance can be understood by training and

testing different SNR datasets. SNR is calculated using the following formula. The final

result is shown in Fig. 19, and Fig. 20.

SNR ¼ 101g
signal original
noise added

� �
ð6Þ

Fig. 16 batch chip feature map of A1637

Fig. 17 Training accuracy of classification into 4 categories
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Figure 19 shows the variation of the accuracy with SNR in the four categories of clas-

sification tasks.

Figure 20 shows the classification accuracy change image under different SNRs. The

xlabel is the number of trainings and the ylabel is the accuracy.

As can be seen from Fig. 19 and Fig. 20, the network performance is still very good

when SNR = 22, 18, and 14. When the SNR = 10 or less, the accuracy begins to de-

crease rapidly. When the SNR = − 2, the accuracy rate drops to 35.08%. From these

data, the noise immunity of this technology is very good, and it is not necessary to pay

attention to the environmental impact when collecting signals.

In order to observe the error between the chips, a network confusion matrix with

SNR = 22 is made. As shown in Table 4.

It can be known from the confusion matrix that the A1719 batch is similar to the

A1631 batch and is prone to misjudgment. The rest of the chips are more likely to be

Fig. 18 Training accuracy of classification into 9 individual chips

Fig. 19 Accuracy under different SNRs
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randomly misjudged. The reason should be the result of noise masking useful

information.

7.3 The results using different algorithms

The SNR = 22 data set is used, different algorithms for training are used, and the re-

sults are compared.

In order to compare with the logistic regression, we extracted the features of the

signal. When extracted features, we divide the original data set into 9 segments and

extract the above 12 features in each segment to form a feature set. The 12 features are

standard deviation, variance, skewness, and kurtosis of the instantaneous frequency,

instantaneous phase, and instantaneous amplitude. The result is the accuracy is 61.3%

finally. The result is shown in Fig. 21.

When using SVM for training, different kernel functions are used for compari-

son, such as RBF, linear, and sigmoid kernel functions. The data set uses three

methods. The first is the original data set, without feature extraction (Since there

are too many points, only the first 1000 points are used here.). The second is a

data set that extracts only 12 features (12 features are the mean, variance, kurtosis,

and skewness in the three domains of time domain, frequency, and phase). The

third is to divide the original data set into 9 segments and extract the above 12

features in each segment to form a feature set.

The final result is shown in the Table 5, Table 6, and Table 7.

Fig. 20 Classification accuracy change under different SNRs

Table 4 Confusion matrix

Forecast results Actual total Recall (%)

Actual results 14003 34 106 22 14165 98.86

91 7036 9 2 7138 97.95

403 18 11155 1 11577 96.35

40 3 1 7076 7120 99.38

Forecast total 14537 7091 11271 7101 40000

Accuracy (%) 96.33 99.22 98.97 99.65
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From the above results, it can be seen that the optimal result is to use the third data

set and the kernel is RBF and gamma is 0.5. The optimal result is that the verification

accuracy is 63%.

Because the difference between the chips is very small, the machine learning al-

gorithm relies heavily on manual feature extraction and the depth of the general

model is very shallow, so the result of the machine learning algorithm is not

good.

Deep learning can continuously extract different features between categories through

a very deep model, make full use of the computing power of the computer, and solve

the problem of small difference in artificial feature extraction. Therefore, the final result

of deep learning is excellent, far better than SVM.

The results of all methods are compared as shown in Table 8.

Compared with the results in other literatures and traditional machine learning, the

main advantages of this algorithm are as follows:

1. The original signal acquisition does not require any additional processing and even

does not require filtering to achieve very good results.

2. After the original signal is acquired, no artificial extraction feature is needed, which

avoids the unnecessary influence caused by human intervention, and simplifies the op-

eration process and reduces the manual operation time.

3. The algorithm classification can not only classify chips of different batches of the

same model, but also classify and identify the same batch of chips of the same model.

In this way, you can know which model a particular chip belongs to, and which specific

chip in which batch get the most detailed information.

Fig. 21 The result of logistic regression

Table 5 Results using the first dataset

Kernel Gamma

0.1 1

Training accuracy Verification accuracy Training accuracy Verification accuracy

RBF 0.31 0.27 0.39 0.24

Sigmoid 0.25 0.23 0.27 0.22

Linear 0.79 0.1
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During a limited trial, no statistical difference in performance was observed when the

specified response region changed to include sub-regions of very different microcode-

indicating sequences. This indicates that the technique can be implemented in any

manner, where a portion of other authentication processes or protocol communications

can be intercepted. Further improvements in performance can be obtained by more

carefully selecting or defining responses that emphasize device sub-circuits with high

inter-device variability, such that the classification algorithm more determines its classi-

fication results. However, it is believed that for many applications, this approach has

provided sufficient performance without further performance improvements through

response optimization.

The limitation of the algorithm proposed in this paper is as follows: The current

method records the features of each chip, and when a new chip is added, it is necessary

for retraining. This issue needs to be improved.

8 Conclusion and discussion
An unintended EM radiation of IC possesses a feature that is a rich source of distin-

guishing information for device identification. The experimental results demonstrate

the applicability of deep residual neural networks in identifying and verifying device

identification tasks. In experimentally collecting signals, this technique can correctly

identify all devices. Under the condition of the original signal-to-noise ratio analysis,

the correct recognition success rate is maintained at 100%. Comparing the main refer-

ences, the correct rate is higher when the SNR is far less than the reference. This tech-

nology is expected to be used in anti-cloning and related security applications that

require unique IC device identification. In addition, superior performance indicates that

the technology can accommodate less than ideal conditions and provide acceptable

Table 6 Results using the second dataset

Kernel Gamma

0.1 1 10

Training
accuracy

Verification
accuracy

Training
accuracy

Verification
accuracy

Training
accuracy

Verification
accuracy

RBF 0.51 0.49 0.55 0.51 0.89 0.58

Sigmoid 0.39 0.38 0.42 0.39 0.77 0.1

Table 7 Results using the third dataset

Kernel Gamma

0.1 0.5 1

Training
accuracy

Verification
accuracy

Training
accuracy

Verification
accuracy

Training
accuracy

Verification
accuracy

RBF 0.61 0.60 0.68 0.63 0.73 0.63

Kernel Gamma

2 5 10

Training
accuracy

Verification
accuracy

Training
accuracy

Verification
accuracy

Training
accuracy

Verification
accuracy

RBF 0.77 0.59 0.83 0.48 0.88 0.36
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performance. The limitation of this method is that the time consumption during train-

ing is more than that of traditional machine learning methods.

In order to fully understand the applicability of this method in practical security im-

plementation, there is still a lot of work to be done. The ability to distinguish between

devices by inherent characteristics is guessed intuitively, and these characteristics are

very difficult to present. However, further analysis and experimentation are needed to

confirm this. Other areas that require further research include:

(1) Results of the algorithm when different sensor modules or sensor positioning is

changed;

(2) Scalability for very large databases.

9 Supplementary information
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