
 

 

 

3D RECONSTRUCTION OF UNDERWATER SCENES FROM 

UNCALIBTARED VIDEO SEQUENCES  

 

 

 

 

 

 

MUSTAFA YAVUZ KIRLI 

 

 

AUGUST 2008 



 

3D RECONSTRUCTION OF UNDERWATER SCENES FROM  

UNCALIBRATED VIDEO SEQUENCES 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF  

NATURAL AND APPLIED SCIENCES OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

BY  

MUSTAFA YAVUZ KIRLI 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN ELECTRICAL AND ELECTRONICS ENGINEERING 

 

AUGUST 2008 



Approval of the thesis: 

 

3D RECONSTRUCTION OF UNDERWATER SCENES  

FROM UNCALIBRATED VIDEO SEQUENCES 

 

submitted by MUSTAFA YAVUZ KIRLI in partial fulfillment of the degree of Master of 
Science in Electrical and Electronics Engineering, Middle East Technical University 
by, 

 

Prof. Dr. Canan Özgen                                                                                                  
Dean, Graduate School of Natural and Applied Sciences 

 

Proj. Dr. İsmet ERKMEN                                                                                                
Head of Department, Electrical and Electronics Engineering 

 

Assist. Prof. İlkay ULUSOY                                                                                    
Supervisor, Electrical and Electronics Engineering Dept., METU 

 

 

Examining Committee Members: 

Prof. Dr. Kemal LEBLEBİCİOĞLU                                                                            
Electrical and Electronics Engineering Dept., METU  

Assist. Prof. İlkay ULUSOY                                                                                       
Electrical and Electronics Engineering Dept., METU 

Assoc. Prof. Aydın ALATAN                                                                                         
Electrical and Electronics Engineering Dept., METU 

Assist. Prof. Çağatay CANDAN                                                                                   
Electrical and Electronics Engineering Dept., METU 

Metin AKTAŞ                                                                                                            
Electrical and Electronics Engineer, M.Sc., ASELSAN 

 

                                                                               Date:                    28.08.2008   



 iii

  

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 

 

 

                                                               Name, Last Name: Mustafa Yavuz KIRLI 

  

                                                               Signature           : 



 iv

 
ABSTRACT 

3D RECONSTRUCTION OF UNDERWATER SCENES  

FROM UNCALIBRATED VIDEO SCENES 

 

KIRLI, Mustafa Yavuz 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. İlkay ULUSOY 

 

August 2008, 144 pages 

 

The aim of this thesis is to reconstruct 3D representation of underwater scenes 

from uncalibrated video sequences. Underwater visualization is important for 

underwater Remotely Operated Vehicles and underwater is a complex structured 

environment because of inhomogeneous light absorption and light scattering by 

the environment. These factors make 3D reconstruction in underwater more 

challenging. 

The reconstruction consists of the following stages: Image enhancement, feature 

detection and matching, fundamental matrix estimation, auto-calibration, recovery 

of extrinsic parameters, rectification, stereo matching and triangulation.  

For image enhancement, a pre-processing filter is used to remove the effects of 

water and to enhance the images. Two feature extraction methods are examined: 

1. Difference of Gaussian with SIFT feature descriptor, 2. Harris Corner Detector 

with grey level around the feature point. Matching is performed by finding 

similarities of SIFT features and by finding correlated grey levels respectively for 

each feature extraction method. The results show that SIFT performs better than 
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Harris with grey level information. RANSAC method with normalized 8-point 

algorithm is used to estimate fundamental matrix and to reject outliers. Because 

of the difficulties of calibrating the cameras in underwater, auto-calibration 

process is examined. Rectification is also performed since it provides epipolar 

lines coincide with image scan lines which is helpful to stereo matching 

algorithms. The Graph-Cut stereo matching algorithm is used to compute 

corresponding pixel of each pixel in the stereo image pair. For the last stage 

triangulation is used to compute 3D points from the corresponding pixel pairs. 

 

 

Keywords: Underwater, 3D Reconstruction, SIFT, Rectification, Stereo Mapping, 

Underwater Image Enhancement, Triangulation, Kruppa Equations 
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ÖZ 

 

KALİBRE EDİLMEMİŞ SUALTI VİDEO SERİSİNDEN  

3 BOYUTLU SAHNE GERİ ÇATIMI 

 

 

KIRLI, Mustafa Yavuz 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr İlkay ULUSOY 

 

Ağustos 2008, 144 sayfa 

 

Bu tezin amacı, kalibre edilmemiş sualtı videosu kullanarak 3B sahne geri çatımı 

yapmaktır. Sualtı görüntüleme, uzaktan kumanda edilebilen sualtı araçları için 

çok önemlidir ve sualtı ışık soğrulması açısından homojen olmaması ve 

ortamdaki ışık yansımaları nedeniyle görüntü işleme açısından karmaşık bir 

ortamdır. Bu sınırlayıcı koşullar sualtı sahnesinin 3B geri çatımını daha da 

zorlaştırmaktadır.   

Geri çatım işlemi şu adımlardan oluşmaktadır: Görüntü iyileştirme, köşe nokta 

bulunması ve eşlenmesi, temel matris kestirimi, oto-ölçümleme, dışsal 

parametrelerin bulunması, doğrultma, stereo eşleştirme ve üçgenleme.     

Görüntü iyileştirme için suyun etkisini kaldıran ve görüntüyü iyileştiren bir filtre 

yönetimi kullanılmıştır. Köşe nokta bulunması için SIFT ve Harris Köşe Bulma 

yöntemleri karşılaştırılmıştır ve SIFT yönteminin daha iyi sonuç verdiği 
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görülmüştür. Köşe noktalarını eşleştirmek için korelasyon yöntemi kullanılmıştır. 

Epipolar ilişkiyi gösteren temel matris kestirimi için RANSAC ve normalize edilmiş 

8-nokta algoritması kullanılmıştır. Sualtında kamera ölçümlemesi zor bir işlem 

olduğu için kalibrasyon objesi gerektirmeden sahne görüntülerini kullanarak 

ölçümleme yapabilen oto-ölçümleme yöntemi Kruppa Denklemleri kullanılmıştır. 

Görüntü üzerindeki epipolar doğruları görüntü koordinat sisteminin yatay 

eksenine göre paralelleştiren ve aynı zamanda stereo eşleştirme algoritması için 

gerekli olan doğrultma yöntemi ile görüntüler stereo eşleştirme algoritmaları için 

uygun hale getirilmiştir. Graph-Cut stereo eşleştirme algoritması ile görüntüdeki 

her bir pikselin diğer görüntü de karşılığı bulunmuştur.  Son aşama olarak 

üçgenleme yöntemi kullanılarak eşleniği bulunan her bir pikselin karşılık geldiği 

noktanın 3 boyutlu uzayda koordinatları bulunmuştur. 

 

 

Anahtar Kelimeler: Sualtı, 3 Boyutlu Geri Çatım, SIFT, Görüntü Doğrultma, 

Stereo Eşleştirme, Sualtı Görüntü İyileştirme, Üçgenleme, Kruppa Denklemleri 
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CHAPTER 1  
 

INTRODUCTION 
 
 

1.1 Problem Definition 

3D reconstruction of the scenes has been studied for 20 years in computer vision 

literature. Many methods have been developed such as, structured lighting, 

ultrasonic and laser range finders… etc. Some of the methods mentioned above 

give high accuracy but cost more, some of them give inaccurate results beside 

provides no flexibility. By the development in computer vision, it becomes 

possible to reconstruct a 3D model of the scene from just the video sequence of 

that scene. Camera moves through the scene while making an arbitrary motion, 

from the frames of the video, the 3D model is reconstructed via related computer 

vision algorithms. 

Considering the underwater environment, the methods such as structured lighting 

or laser range finders need more equipment and provide no flexibility and they 

are hard to apply. Ultrasonic or sonar is widely used in underwater researches. 

These methods perform perfectly in long range distances. But in short range, 

they do not provide detailed results like cameras do. For that reason, studies are 

performed to combine the data extracted from these two type sensors, optical 

(e.g. camera) and acoustic sensors (e.g. sonar) [27, 28]. 

Several methods have been developed to reconstruct 3D model from underwater 

images. Most of them uses calibrated stereo cameras, where the positions of the 

cameras are known and fixed. In recent years, the stereo systems leave their 

places to mono cameras. In this situation the motion of the camera becomes 

more important. In [13] a robot arm is used to move the calibrated camera in a 

predefined trajectory. In [33] a calibrated camera is used with a system which 

provides the position, orientation of AUV with magneto-inductive compass, so 
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that the motion of the camera is known. Fusiello proposed a method in [34] which 

uses an uncalibrated camera with an arbitrary motion, achieving to an Euclidean 

reconstruction with a-priori information about the positions of five identifiable 

scene points. 

The aim of this thesis is to reconstruct the 3D model of the underwater scenes 

using pictures captured from an uncalibrated camera moving in an arbitrary path.   

1.2 System Overview 

The process of 3D reconstruction is composed of the following sub-steps: 

1.2.1 Image Enhancement 

Underwater is a complex structured environment for computer vision algorithms. 

Underwater images suffer from many factors: inhomogeneous environment, 

limited range, non-uniform lighting, important blur, back-scattering and little 

particles floating in the water like marine snow. It is necessary to enhance the 

images before using the image processing algorithms [20]. There are two 

approaches to solve this problem; physical approach (mount a polarizer to the 

front part of the camera) [28] and software approach (develop a preprocessing 

filter) [20]. Since software approach brings more flexibility than the physical 

approach, the preprocessing filter proposed by [20] is used in this thesis. 

1.2.2 Feature Detection and Matching 

After preprocessing the images, the first step of the reconstruction process is to 

determine the corresponding points from the images. The points which are 

distinctive according to their neighbors, called features, are detected. Many 

methods have been developed on feature detection. Harris Corner Detector is 

one of the most famous one. Because of the blurred structure of the water, corner 

detection does not perform well. For that reason, it is compared with another 

method called SIFT, provided by [3]. 

1.2.3 Estimation of Fundamental Matrix 

Given the putative correspondences of the feature points, it is possible to 

estimate the epipolar geometry between the two images. Epipolar geometry 
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between two images can be represented with a fundamental matrix. Fundamental 

matrix can be estimated with at least 8 corresponding points. But all of the 

corresponding points may not be matched correctly due to the noise in the 

images. Therefore false matches in the corresponding points, called outliers, 

cause mistakes in fundamental matrix estimation. The outliers can be removed 

during the estimation process of fundamental matrix by combining the normalized 

8-point algorithm and RANSAC method [7, 32].  

1.2.4 Auto-Calibration   

The forth step is to recover the camera parameters. Camera calibration is one of 

the most important steps of reconstruction for a more accurate 3D model. The 

cameras can be calibrated by using known structured calibration objects. Also 

methods which do not need calibration objects are developed. This type of 

methods is called auto-calibration or self-calibration. The cameras can be 

calibrated using the images that are captured by themselves. Because of the 

difficulties in calibrating cameras in underwater and the possibility of change in 

the calibration of the camera during functioning (e.g. zooming), auto-calibration is 

used in this thesis. The only required data in auto-calibration is the captured 

images from different locations and orientations. Many methods are developed 

for the auto-calibration problem. The most famous one is Kruppa equations [30]. 

Fundamental matrices are used to construct Kruppa equations and minimization 

algorithms are used to solve the Kruppa equations to determine the unknown 

calibration parameters. Unknown calibration parameters can also be determined 

by using the relation between the virtual conic and the calibration parameters. 

Since the virtual conic is invariant of Euclidean transformations (rotation and 

translation), its image on the camera only depends on the intrinsic parameters of 

the camera. Two algorithm representing the two approaches, simplified Kruppa 

equations [22] based on Kruppa equations and calibration by absolute quadric 

based on the virtual conic [1] are examined.  

1.2.5 Estimation of Camera Motion 

Once the fundamental matrix is estimated and the intrinsic parameters of the 

camera are determined by auto-calibration, the extrinsic parameters of the 

cameras can be determined. The extrinsic parameters of the cameras include the 
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rotation and translation of the cameras according to each other. Fundamental 

matrix is transformed to essential matrix which is only defined by the rotation and 

the translation of the camera by using the intrinsic parameters. Using the relation 

between the rotation and translation matrices, first the unit translation matrix is 

computed and finally the rotation matrix is estimated. 

1.2.6 Rectification 

Rectification is the process of determining new camera geometry such that the 

epipolar lines of the cameras are parallel to each other and horizontal axis. Since 

rectification reduces the search area and computation time, any stereo matching 

algorithm require rectified images. Two algorithms are examined in rectification: 

one for calibrated images [9] and the other for the uncalibrated images [10].  

1.2.7 Stereo Matching  

Stereo matching is the process of finding the correspondence pixel of each pixel 

in the image. From these correspondences, disparity map is constructed. Using 

the relation between the disparity and depth, the depth of each pixel is 

determined. There are several algorithms for stereo matching. The major problem 

in stereo matching is the homogenous regions (in term of texture) in the image. 

Finding the corresponding pixel in homogenous parts of the image is very difficult 

and error-prone. Because of the presence of homogenous areas in underwater 

images, stereo matching algorithm based on graph cut [14] which perform well in 

homogenous images is used in this thesis.  

1.2.8 Triangulation 

The final step of the reconstruction process is triangulation. Once the calibration 

matrices, rotation and translation matrices of the image pair are known, 3D 

coordinate of the point projected to the two images can be determined by back-

projecting the rays of the corresponding points. Because of the noise on the 

images, the rays do not intersect. For that reason an optimal point must be 

estimated and this estimation process is called triangulation. A linear and a 

robust triangulation algorithm [23] are examined in this chapter.  
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With triangulation of feature points only, a sparse 3D reconstruction can be 

achieved. Sparse means that depth is not known for all of the points in the image, 

but for the corresponding points only. In order to perform dense reconstruction, 

the projection matrix of the camera and the disparity map constructed in stereo 

matching are required. A method for dense reconstruction is examined in this 

chapter and the final 3D model is visualized by VRML (Virtual Reality Modeling 

Language). 

1.3 Scope of the Thesis  

The scope of this thesis, summarized in Figure 1, is to develop the blocks of a 

complete 3D reconstruction system for underwater images. Rather than 

proposing a new algorithm this thesis is devoted to develop the sub-blocks of the 

complete 3D reconstruction process and compare different algorithms proposed 

for each sub-block in order to identify the best performing algorithm for 

underwater applications. 



Prefiltering Prefiltering 

Feature Extraction Feature Extraction 

Fundamental Matrix 

Estimation

Auto-Calibration 

Solve Rotation, Translation Matrices 
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Rectification 

Stereo Matching 

Triangulation 

 

Figure 1 The summary of the 3D reconstruction process. 

 

1.4 Organization 

In the first chapter, problem definition, system overview and scope of the thesis 

are defined. 

 In Chapter 2 background information about the projective geometry and the 

camera model used throughout the thesis is provided. 

 7



 8

In Chapter 3, underwater image enhancement is discussed and a preprocessing 

method is examined. 

Feature detection and matching is discussed in Chapter 4. Two methods, Harris 

Corner Detector and SIFT are examined and compared using underwater 

images. 

In Chapter 5, estimation of the fundamental matrix is given. Normalized 8-point 

algorithm and RANSAC method are examined for fundamental matrix estimation 

and outlier removal process. 

Chapter 6 is devoted to auto-calibration. Camera calibration matrix is one of the 

important parts to be estimated for an accurate 3D reconstruction. The most 

famous algorithm, Kruppa equations, and the auto-calibration with virtual conic 

are examined and compared.  

Chapter 7 gives brief information about how to extract rotation and translation 

matrices of the camera from given fundamental matrix and camera calibration 

matrix. A linear and a robust algorithm are examined and compared for rotation 

and translation matrix estimation. 

In Chapter 8, rectification is discussed. Rectification is the process of determining 

new camera geometry such that the epipolar lines of the cameras are parallel to 

each other and horizontal axis that is necessary for stereo matching algorithms 

since all stereo matching algorithms require rectified images. Two algorithms, 

calibrated rectification and uncalibrated rectification, are examined and 

compared. 

Chapter 9 is devoted to stereo matching. After the rectification of the images, the 

correspondence of each pixel in the image can be determined by stereo 

matching. Once the correspondence of each pixel of the image is determined, the 

dense 3D reconstruction of the scene can be computed. Graph-cut based stereo 

matching algorithms are examined and compared with a traditional stereo 

matching algorithm. 

Chapter 10 gives the last step of the reconstruction which is triangulation. Once 

the projection matrices of the cameras and the corresponding points are found, 
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the coordinates of the 3D points are computed by back-projecting the rays from 

corresponding points. Because of the noise in the images, the rays do not 

intersect. An optimal solution is computed via triangulation. Triangulation gives 

sparse 3D model of the scene. Also a method for dense reconstruction is given in 

this chapter. 

Chapter 11 gives the experimental results of the sub-blocks of the reconstruction 

process on different data sets. 

Chapter 12 concludes the thesis with the remark about the sub-blocks and the 

whole 3D reconstruction process and provides some ideas about future work. 



CHAPTER 2  
 

THEORETICAL BACKGROUND 
 
 

2.1 Introduction 

In this chapter the geometry behind the projective geometry is discussed to better 

understand the uncalibrated scene reconstruction. This chapter gives brief 

information about the Euclidean geometry, the most general geometry without 

any constraint, Projective geometry, and the relation between the two views, 

epipolar geometry and the camera model used throughout this thesis. The 

following topics and definitions mostly follow the text [6, 24]; the details can be 

followed from these references. 

Euclidean geometry is the most familiar geometry to us, since it describes our 

world. The basic properties of Euclidean geometry are intersecting lines 

determine angles between them, and two lines are said to be parallel if they lie in 

the same plane and never meet. Moreover, these properties do not change when 

the Euclidean transformations (translation and rotation) are applied. But these 

properties become insufficient when the imaging process of a camera is 

considered. Lengths and angles are no longer preserved, and parallel lines may 

intersect. 

Euclidean geometry is actually a subset of what is known as projective geometry. 

The following section gives brief information about Projective geometry 

2.2 Projective Geometry 

N-dimensional projective space, nP , is defined by a (n+1) vector with 

coordinates: . One of these coordinates must be non-zero. 

This coordinate representation is known as homogenous coordinates. In this 

T
nxxx ]...[ 11 +=
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representation, two points represented by (n+1) vectors x and are equal if 

there exists a non-zero scale factor

y

λ such that ii yx λ=  

where . This equality is shown as11 +≤≤ ni yx ~ . 

Projective spaces can be transformed to each other, which is called collineation. 

This transformation from mP to nP is done with a  

matrix

)1()1( +×+ nm

H . Points are transformed linearly Hxxx =′→ . 

2.3 Projective Plane      

Projective plane is the projective space, 2P . A point in 2P is defined with 3 

dimensional vector . Also a line is defined with 3 dimensional 

vector. A point is located on a line if . This equation shows that 

there is no formal difference between points and lines in projective plane. This is 

known as the principle of duality [24].     

Twvum ][=

m l 0=ml T

2.4 Projective 3D-Space 

Projective 3D space is the projective space, 3P . A point in 3P is defined with 4 

dimensional vector . The dual of a point in
TWZYXM ][= 3P is a 

plane, . If a point is on a plane, then .  Π 0=Π MT

2.5 Transformations  

Transformations in images, , is performed with homographies 

represented by 3x3 matrix

22 PP →

H . A point and a line are transformed as follows: 

lHll
Hmmm

1−=′→

=′→
                                       (2.1) 

In 3P , points and planes are transformed with a 4x4 matrixT : 

 11



Π=Π ′→Π

=′→
−1T

TMMM
                                    (2.2) 

2.6 Conics and Quadrics 

A conic in 2P is the locus of all points satisfying the equation: m

0)( == CmmmS T
                                 (2.3) 

where is a 3x3 symmetric matrix only defined up to a scale. C

A dual conic in 2P is the locus of all lines satisfying the equation: l

0* =lCl T                                               (2.4) 

where is a 3x3 symmetric matrix only defined up to a scale. *C

When varies along the conic , it satisfies , also at the same 

time the tangent line to the conic at satisfies . This relation 

shows that the tangents of a conic belong to a dual conic  [24]. 

m C 0=Cmm T

l m 01 =− lCl T

C 1* ~ −CC

The transformations of conics and dual conics can be written as: 

HHCCC

CHHCC T

***

1

~

~
′

→

′→ −−

                                 (2.5) 

A quadric in 3P is the locus of all points M satisfying the equation: 

0=QMM T
                                         (2.6) 

where is a 4x4 symmetric matrix only defined up to a scale. Q

A dual quadric in 3P is the locus of all planesΠ satisfying the equation: 
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0* =ΠΠ QT
                                           (2.7) 

When M varies along the quadric , it satisfies , also at the 

same time the tangent plane

Q 0=QMM T

Π to the quadric at M satisfies . 

This relation shows that the tangents of a quadric belong to a dual quadric 

 [24]. 

01 =ΠΠ −QT

Q
1* ~ −QQ

The transformations of quadric and dual quadric can be written as: 

TTQQQ

QTTQQ T

***

1

~

~
′

→

′→ −−

                               (2.8) 

2.7 The stratification of 3D Geometry 

World is described by the Euclidean geometry, but in computer vision it is 

sometimes not desired to use to the full Euclidean structure. Instead of it, a less 

structured and simple projective geometry is used. Affine and metric geometry 

forms the intermediate layers.  

The vision geometry is stratified to the stratums (layers) related to the 

transformation actions on geometric entities and invariants belong to that group. 

Projective stratum is the group of projective transformations; the affine stratum is 

the group of affine transformations; the metric stratum is the group of similarities 

and the Euclidean stratum is the group of Euclidean transformations and these 

groups are subgroups of each other [24].  
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Figure 2 Hierarchy of geometries. [19] 

   As explained above, one of the important properties of these groups are their 

invariants. An invariant is a property of a configuration of geometric entities that is 

not altered by a transformation belonging to a specific group. The structure of a 

geometry can be upgraded to a higher geometry by computing there invariants. 

In the following section, each stratum, its invariants, transformations are 

discussed in detail. 
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Figure 3 Shapes which are equivalent to a cube for the geometric strata projective, 
affine, metric and Euclidean. The reason of the deformation on the shape of the 
cube depends on the ambiguity of the related geometric stratum [24]. 

2.7.1 Projective Stratum 

The first stratum is the projective stratum. It is the less structured one and 

therefore includes the least number of invariants. In contrary projective stratum 

has the largest number of transformations. The projective transformation of a 3D 

space point can be represented with a 4x4 invertible matrix [24]. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

~

pppp
pppp
pppp
pppp

Tp                               (2.9) 

Since this transformation is defined up to non-zero scale factor, it has 15 degrees 

of freedom. The invariants of projective stratum are relations of incidence, 
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collinearity, tangency and cross-ratio. The cross-ratio is defined as follows: 

assume four points, , , ,  are collinear. They can be defined 

as 

1M 2M 3M 4M

MMM ii ′+= λ .  

42

32

41

31
4321 :},;,{

λλ
λλ

λλ
λλ

−
−

−
−

=MMMM                (2.10) 

2.7.2 Affine Stratum 

The affine stratum lies between the projective and metric stratum. It contains 

more structure and invariants according to the projective one, but less than the 

metric one [24]. The specialty of affine stratum is defining the plane at infinity, 

. The affine transformation is defined as, :   
T]1000[=Π ∞ MTM A~′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

~
34333231

24232221

14131211

aaaa
aaaa
aaaa

T A                           (2.11) 

Since the plane at infinity is the invariant of affine stratum, the affine 

transformation can not change the plane at infinity: ∞∞ ΠΠ AT~ . Also 

another invariant is added with affine transformation, parallelism. Lines or planes 

having intersection at infinity are called parallel [24].  

The transformation from projective representation to affine representation is 

achieved by finding the plane at infinity. The position of plane at infinity can be 

computed by using the parallelism constraint.  
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Figure 4 A cube defined in projective (left) and affine (right) stratum. Each figure is 
equal to a cube under their ambiguities. The plane at infinity can be found by using 
the vanishing points which are the points where the parallel sides of the cube 
intersects. This is used to transform from projective to affine stratum [24]. 

Once the location of the plane at infinity is found, the transformation from 

projective to affine is defined as: 

⎥
⎦

⎤
⎢
⎣

⎡

∞ 1
0

~ 333

π
x

PA

I
T                                        (2.12) 

where ∞π is the plane at infinity. 

2.7.3 Metric Stratum  

Metric stratum can be defined as the group of similarities. Metric transformations 

correspond to the Euclidean transformations (orthonormal transformation and 

translation) up to a scale factor. The metric transformation can be defined as: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
′
′

34

24

14

333231

232221

131211

t
t
t

Z
Y
X

rrr
rrr
rrr

Z
Y
X

σ                   (2.13) 

The coefficients define the rotation matrix that has the properties: ijr

IRR T = . The metric transformation can be rewritten as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

~
333231

232221

131211

Z

Y

X

M trrr
trrr
trrr

T
σσσ
σσσ
σσσ

                           (2.14) 

The new invariants with metric stratum are relative lengths and angles, which 

corresponds to a new geometric entity, absolute conic. It can be defined as an 

imaginary circle located in the plane at infinity. The absolute conic can be defined 

as: 

0222 =++=Ω ZYX with 0=W                (2.15) 

and also it can be defined as a 2D conic: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

ω                   (2.16) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

*ω

The dual entity of absolute conic, absolute dual quadric *Ω is defined as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ω

0000
0100
0010
0001

~*
                                     (2.17) 
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Since the absolute quadric is the invariant of metric stratum, metric 

transformations must leave it unchanged. 

       (2.18) ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ccAc

AcAA
db
cAI

dc
bAI

TTT

T

TT
x

TT
x ~

00
0

~
00
0

3

333

3

333

Hence, and33~ x
T IAA 30=c which are constraints for metric transformation. 

The transformation from affine to metric is achieved by finding the absolute conic. 

Every angle and ratio of length gives a constraint about the absolute conic. Once 

an affine reconstruction is done, there must be an affine transformation which 

brings the absolute quadric to its canonical position satisfying the relation: [19, 

24] 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Ω

00
0

1
0

00
0

10
~

3

33

3

333

3

*
T

T

T

T

T
x

T

AA
a
AIaA

            (2.19) 

The 2D representation of absolute conic and its dual can be rewritten as: 

TT AAAA ~~ *1
∞

−−
∞ ωω                          (2.20) 

The transformation from affine to metric is defined as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

−

00
0

3

3
1

TAM
A

T                                      (2.21) 

where can be calculated from A *Ω via Cholesky decomposition or singular 

value decomposition [24]. 

The transformation from projective to metric directly can be written as: 

⎥
⎦

⎤
⎢
⎣

⎡
==

∞

−

0
03

1

TPAAMPM
A

TTT
π                            (2.22) 
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2.7.4 Euclidean Stratum 

The only difference between metric and Euclidean stratum is the scale factor is 

fixed in Euclidean stratum. Hence in Euclidean stratum, absolute lengths are 

measured not the relative ones. The transformation of the Euclidean stratum is 

defined as [24]: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

~
333231

232221

131211

Z

Y

X

E trrr
trrr
trrr

T                                       (2.23) 

In Table 1, all of the properties of the stratums are summarized. It is seen from 

the Table 1, while moving from Projective to Euclidean stratum, the ambiguity in 

the model decreases. 

Table 1 The transformations, invariants and degrees of freedom of projective, 
affine, metric and Euclidean stratum [24]. 

Ambiguity DOF Transformation Invariants 

Projective 15 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

~

pppp
pppp
pppp
pppp

T p  

Cross-ratio 

Affine 12 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

~
34333231

24232221

14131211

aaaa
aaaa
aaaa

TA  

Relative 

Distances along 

direction 

Parallelism  

Plane at infinity 
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Metric 7 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

~
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232221

131211

Z

Y

X

M trrr
trrr
trrr

T
σσσ
σσσ
σσσ

 

Relative 

distances 

Angles 

Absolute Conic 

Euclidean 6 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

~
333231

232221

131211

Z

Y

X

E trrr
trrr
trrr

T
 

Absolute 

Distances 

 

2.8 Camera Model 

In this section, the camera model used in this thesis is discussed. The following 

topics and definitions mostly follow the text [6, 24]; the details can be followed 

from these references. 

The most basic camera model, pinhole camera model, is used in this thesis. In 

pinhole camera model, a 3D point in space is projected onto a 2D image plane by 

drawing a line from 3D point to the center of the camera. Where the line 

intersects with the image plane is the location of the 2D projection of 3D point. 
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Figure 5 Pinhole Camera Geometry 

 

Figure 6 Side-view of the projection of a 3D point M onto the image plane. 

 

The projection is shown in Figure 5, and Figure 6. In the figures C is the camera 

center; p is the principal point; f is the focal length. The ray, which is 

perpendicular to the image plane and passing through the camera center, is the 

principal axis.  The intersection of the principal axis and the image plane is the 

principal point.  

 22



A 3D point is projected to the 2D point . Using the similar 

triangles the projected coordinates are calculated as: 

TZYXM ][= m

T

Z
Yf

Z
Xfm ][=                                   (2.24) 

Using the homogeneous coordinates the transformation can be rewritten as: 

[ ]
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       (2.25) 

2.8.1 Principal Point Offset 

In Equation 2.24 it is assumed that the origin of the coordinates in the image 

plane is the principal point. But in practice, instead of it lower left corner is used 

and the mapping is updated as accordingly: 

T
yx

T p
Z
Yfp

Z
XfZYX ][][ ++→               (2.26) 

In homogenous coordinates 
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  (2.27) 

camMIKm ]0[=
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⎥
⎥

⎦

⎤

⎢
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⎡
=
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x
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K                   (2.28) 
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The matrix K is called the camera calibration matrix. In Equation 2.28 it is 

assumed that the camera is located in the origin of the Euclidean coordinate 

system with the principal axis, and the point is expressed in this system 

[6]. 

camM

2.8.2 Camera Rotation and Translation 

Up to now two coordinate systems are mentioned, camera coordinate system 

and world coordinate system. In general the points in space are represented with 

the world coordinate system. The transformation between these systems is 

based on the rotation and translation as seen in Figure 7.  

 

Figure 7 The Euclidean transformation from world coordinate system to camera 
coordinate system [6]. 

The transformation between the 3D points camM~ and M~ can be written as 

)~~(~ CMRM cam −= where C~  is the camera center in the world 

coordinate system and is the 3x3 rotation matrix.  R
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           (2.29) 

Substituting the Equation 2.29 with Equation 2.28 results as: 

MCRRKMCRRIKMIKm cam ]~[
10

~
]0[]0[ −=⎥

⎦

⎤
⎢
⎣

⎡ −
==    (2.30) 

The above equation can be rewritten as: 

MtRKm
MCRRKm

][
]~[

=
−=

                                 (2.31) 

where the translation t is equal to CR ~
− . The projection matrix of the camera 

which projects the 3D points in space to 2D plane can be defined as: 

][ tRKPPMm =⇒=                                   (2.32) 
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CHAPTER 3  
 

UNDERWATER IMAGE ENHANCEMENT 
 
 

3.1 Introduction 

Underwater is a complex structured environment for image processing 

algorithms. Optical cameras are used for short-range operations in remotely 

operated underwater vehicles. But the underwater visualization suffers from 

limited range, non uniform lighting, low contrast, blurring and marine snow, 

floating small white particles [20]. So a pre-processing step that will remove the 

effects of water and enhance the image is necessary before processing the 

underwater images. Usually methods need parameter tuning or human 

interaction during processing, but in [20] a parameter-free pre-processing method 

is proposed which reduces the water effects and improves image quality and the 

method proposed by [20] is used in this thesis. 

The algorithm is composed of the following successive independent steps: 

3.2 Removing Moire Effect 

Moire effect is a wavy repetitive pattern on the image. The reason of this effect is 

the aliasing in the digital camera. It is removed by detecting the peaks of the 

Fourier transform and deleting them [20]. The importance of removing the moiré 

effect is that the following steps increase the contrast, also the moiré effect, and 

this increases the chance of degraded results. 

3.3 Resizing the Image 

Resizing the image into a square form enables the usage of fast Fourier 

transform, fast wavelet transform algorithms and speeds up the process. In [20] 

the images are resized to a square form. 



3.4 Color Space Conversion 

The color space of the image is converted from RGB to YCbCr. In YCbCr color 

space, only the luminance channel (Y) is processed. This step increases the 

speed of the process by processing only one channel instead of processing the 

three channels in RGB color space [20]. 

3.5 Homomorphic Filtering 

The homomorphic filter is used to correct the non-uniform lighting and enhance 

the contrast [20]. An image can be modeled as a product of illumination and 

reflectance.   

),(),(),( yxryxiyxf =                              (3.1) 

where is the image, is the illumination factor and 

is the reflectance factor. Since the illumination changes slowly 

throughout the image, it is assumed as the low frequency component in the 

Fourier transform and reflectance is the high frequency component. The non-

uniform illumination is suppressed via high pass filtering. 

),( yxf ),( yxi

),( yxr

First the logarithm of the image is taken. So the multiplicative effects turn to 

additive ones. 

)),(ln()),(ln()),(ln(),( yxryxiyxfyxg +==         (3.2) 

The Fourier transform of the image is: 

),(),(),( yxyxyx wwRwwIwwG +=               (3.3) 

The high pass filter is defined as: 
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where is 2.5, is 0.5, (the maximum and minimum coefficients values) and Hr Lr

wσ is 32 (the factor that controls the cut-off frequency). These values are 

selected empirically [20]. 

3.6 Wavelet De-noising 

The Gaussian noise present in the image is amplified by the previous step, 

homomorphic filtering. A further de-noising step is necessary to remove the 

amplified noise. Wavelet based filtering is used to remove noise, because of its 

performace compared to other similar algorithms [20]. 

3.7 Anisotropic filtering 

Anisotropic filter smoothes the image in the homogeneous regions, while 

preserving the edges. The intensities of the pixels are re-calculated considering 

their 4-neighbor pixels [20]. For every pixel, the nearest-neighbor differences and 

the diffusion coefficients in the four directions North, South, East, West are 

computed [20].    
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The updated pixel intensity is: 
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3.8 Image Intensity Adjustment 

Adjusting the image intensity provides increase in contrast. After the anisotropic 

filtering some pixels intensity values can exceed the valid range or a non-uniform 

distribution of pixel values can occur considering the full valid range. The range of 

intensity is stretched so that the intensity of the pixels is spread to a full range. 

The following condition is applied to all pixels: 
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where is the pixel value of image in the coordinates , ,i jI I ( , )i j

m ax I and m in I are the maximum and minimum pixel values in image  

respectively.  

I

3.9 Re-converting the Color Space and Equalizing Color Mean 

The image is converted from YCbCr color space back to RGB. Also the image is 

resized to its original size. The color channels are not balanced because of the 

nature of the underwater images [20]. For each RGB channel, the difference 

between the mean and median of the channel is added to each pixel.  

3.10 Results and Conclusion 

The performance of preprocessing method is examined on real images and the 

results are given in Figure 8, 9 and 10. The red crosses in the images show the 

features detected by SIFT in the images before and after preprocessing. 
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Figure 8 The Boat Sequence. The upper left is the image before preprocessing, 
lower left is the image after preprocessing. 

 

Figure 9 The Pipe Sequence. The upper left is the image before preprocessing, 
lower left is the image after preprocessing. 
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Figure 10 The Coral Sequence. The upper left is the image before preprocessed, 
lower left is the image after preprocessed.  

As it is seen in Figure 8, 9 and 10, the preprocessing method removes the water 

effects and enhances the images. The edges are clearer and there is a significant 

improvement in color histogram. The goal of the preprocessing method is to 

enhance the image and increase the number of detected edges which is crucial 

for the detection of the epipolar geometry. 

In all sequences the number of detected features is significantly increased by the 

preprocessing method. For comparison purposes, the number of detected feature 

before and after preprocessing is listed in Table 2 for 3 image sets. 
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Table 2 The number of detected features with SIFT method, before and after 
applying the preprocessing method to the input sequences. 

# of Features 
Input 

Sequence 
Before After 

Boat 11 127 

Pipe 11 103 

Coral 934 1305 
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CHAPTER 4  
 

FEATURE DETECTION AND MATCHING 
 
 

4.1 Introduction 

The first stage of reconstruction process is feature detection and matching in 

order to recover the relative geometry between the images. Feature points are 

the special points that can be differentiated from their neighboring pixels, so that 

it is possible to match them uniquely with the corresponding pixels in the other 

image [1].  

Since underwater is a complex environment with poor illumination and the 

camera movement is not deterministic, features between two images suffers from 

illumination change, rotation and translation. This makes the feature detection 

and matching process more difficult and decreases its accuracy. For that reason, 

the feature detection and matching method should cope with these difficulties. 

Many methods are developed to find feature points in different ways and one of 

the most famous one is Harris corner detector [2]. Harris corner detector is based 

on image gradient evaluation and this makes the method illumination invariant 

and insensitive to the transformations defined above. Another feature detection 

method, SIFT, is also illumination, transformation and scale invariant [3]. 

Harris corner detector and SIFT method and Keypoint descriptor [3], an improved 

version of correlation-based feature matching method [4] are examined in this 

thesis. 

4.2 Harris Corner Detector 

Harris corner detector is based on image gradient evaluation. The points which 

have high gradient through x and y directions are defined as feature points.  



Image regions are typically compared using sum-of-squared-differences (SSD) 

for matching purposes. Considering a window W in image I and a corresponding 

region T(W) in image J, the dissimilarity between two image regions based on 

SSD is given by [1]: 

[ ]∫∫ −=
W

dxdyyxwyxIyxTJD ),(),()),(( 2
           (4.1) 

The approximation of dissimilarity between an image window W and a slightly 

translated image window is represented as [2] : 
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where and xI ∂∂ / yI ∂∂ / represents the derivative of image I in x and y 

directions respectively and represents the Gaussian smoothing filter: ),( yxw

2

22
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yx

eyxw
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−
=                                        (4.4) 

The typical value of σ is 0.7. The window size is 7x7. 

The desired result is to have large eigenvalues for M matrix. The magnitude of 

eigenvalue represents the intensity change around the pixel. If the two 

eigenvalues of M matrix are small, this means that the windowed image region is 

approximately constant intensity. If one eigenvalue is high and the other one is 

low, this indicates an edge. If both of the eigenvalues are high, this indicates a 

corner [2]. 



The method Harris cornerness measure [2] to find corners without calculating the 

eigenvalues is given below: 
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where Î represents the Gaussian smoothing of grey-level image . 

and represents the derivates in the x and y direction respectively. 

),( yxI

xI yI

k is set to 0.04 according to the suggestion of Harris [2].    

Since the original Harris cornerness measure did not give satisfactory results, the 

Harris cornerness measure defined in [5] is used in the thesis: 
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2 2

ˆdet
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I I e
=

+ + ]                                           (4.7) 

For comparison purposes, feature points are detected by the original Harris 

corner measure and corner measure modified by Nobel in [5] are shown in Figure 

11. The false feature points detected by the original Harris corner detector are 

eliminated by the modified Harris corner detector. 
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Figure 11 The left image shows the feature points detected by original Harris 
corner measure with false feature points. The right image shows the feature points 
detected by modified Harris corner measure by Nobel [5]. 

4.3 Normalized Cross Correlation 

Normalized cross correlation is widely used in matching feature points. The 

correspondence of given feature point is searched in a determined area, where 

the pixel can traverse, with a pre-defined NxN square window. The center of the 

search area is the coordinates of the given feature point. Normalized Cross 

Correlation is defined as [1]: 
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where 

∫∫=
W

dxdyyxTJJ )),((   ∫∫=
W

dxdyyxTII )),((                  (4.9) 

are the mean image intensity for and I J  in the search window. 

defines the similarity matrix of the feature point searched in the 

defined search area of the other image. 

),( yxS

The performance of the Normalized Cross Correlation (NCC) is good at the 

images which are slightly transformed. If we consider adjacent frames in a video, 

small translation constraint is met. But the complex structure of underwater 

increases the false matches of NCC. 
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Figure 12 represents the feature points and the feature matches computed with 

Normalized Cross Correlation. Although the features make a horizontal 

translation between the two frames, NCC found a few vertical translated feature 

matches which are false matches and are called as outliers.  

 

Figure 12 The upper left and upper right images are the two frames from coral 
sequence. The red crosses show the feature points with Harris Corner Detector in 
the middle left and middle right images. The last image shows the matches with 
normalized cross correlation between the feature points of the image above. The 
blue line represents the translation between the matched features. All of the 
features in the images make a horizontal translation. The vertical blue lines are the 
false matches (outliers). 

 37



4.4 Scale Invariant Feature Transform (SIFT)  

SIFT is a method of extracting distinctive invariant features from images. These 

features are invariant to illumination, scale, rotation and change in 3D viewpoint, 

which provide robust matching [3]. 

SIFT method is performed under 4 stages: 

4.4.1 Scale-space extrema detection 

The first stage is the interest point detection. Interest points are called keypoints 

in SIFT framework. Keypoints invariant to scale and orientation are detected by 

extremum points of Difference of Gaussian. It is shown that under reasonable 

assumptions the only possible scale-space kernel is the Gaussian function. [3] 

Therefore, the scale-space of an image is defined as: 

),(*),,(),,( yxIyxGyxL σσ =                            (4.10) 

where ),,( σyxL is the scale-space of the image  and ),( yxI

),,( σyxG is the Gaussian function with scale σ : 
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The difference of Gaussian function is defined as: 
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              (4.12) 

The computation of ),,( σyxD is shown in Figure 13. The input image is 

incrementally convolved with Gaussian to produce images separated by a 

constant scale factor in scale space shown as stacked layers in the left 

column. Each octave of scale space is divided into an integer number, s, of 

intervals, so . S + 3 images must be produced in the stack of blurred 

images for each octave, so the final extrema detection covers a complete octave. 

k

sk /12=
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Adjacent image scales are subtracted to produce the difference of Gaussian 

images shown on the right. Once a complete octave has been processed, the 

Gaussian image that has twice the initial value of σ is resampled by taking 

every second pixel in each row and column.  

 

 

 

Figure 13 The input image is incrementally convolved for each octave as shown in 
the left.  Adjacent image scales are subtracted to produce the difference of 
Gaussian images (shown on the right) [3]. 

The keypoints are identified as the local maxima and minima of ),,( σyxD  

and the keypoint detection is done by comparing each pixel in the DoG images to 

its eight neighbor pixels in the same scale and the nine neighbors in the scale 

above and below. If the pixel is the maximum or minimum of its 26 neighbor 

pixels, then it is selected as keypoint candidate. 
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Figure 14 Adjacent image scales are subtracted to produce the difference of 
Gaussian images [3]. 

 

4.4.2 Keypoint localization: 

After the detection of the keypoint candidates, the next step is the accurate 

localization of each keypoint candidate while removing the low contrasted and 

poorly localized ones. 

A method is developed by Brown and Lowe et al [6] to fit a 3D quadratic function 

to the keypoint candidate to determine the interpolated location of the maximum. 

This method uses the Taylor expansion of scale-space function, ),,( σyxD : 
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where D  and its derivatives are evaluated at the same point and 

is the offset from this point. The location of maximum/minimum 

point, , is computed by taking the derivative of this function with respect to 

Tyxx ),,( σ=

x̂
x and setting the result to zero. Solving this equation, is estimated as follows 

[3]: 

x̂
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If is smaller than 0.5 in any dimension, the offset is added to its keypoint 

candidate to compute the interpolated estimate for the location of extremum. 

x̂

To reject the keypoint candidates with low contrast  is calculated: )ˆ( xD
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If the value of )ˆ( xD is less than 0.03, the corresponding keypoint candidate is 

rejected. 

Besides rejecting the low contrasted keypoint candidates, Difference of Gaussian 

(DoG) function has strong responses along the edges, which creates unstable 

keypoints.  

Edges create poor peaks in DoG function which have a large principal curvature 

across the edge but a small one in the perpendicular direction [3]. To find these 

principal curvatures Hessian matrix is used: 
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where xxD and yyD represents the secondary derivates in the x and y 

direction respectively. 

Consider α  as the eigenvalue with the largest magnitude and β be the 

smaller one of this Hessian matrix [3], then  
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Let βα r= and 
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It is suggested in [3] that the keypoints that have the ratio  greater than R

r
r 2)1( +

 with should be eliminated.  10=r

4.4.3 Orientation assignment 

After the keypoints are detected and localized, the next step is to assign 

orientation to each keypoint based on local image gradient directions. In the 

keypoint descriptor identification step, the keypoint descriptors are related with 

this orientation values and therefore achieve rotation invariant property [3]. 

The scale of the keypoint is used to select the Gaussian smoothed image, , so 

that scale-invariant property is achieved. The gradient magnitude, and 

the orientation,

L
),( yxm

),( yxθ , for image ),,( σyxL  are computed as: 
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An orientation histogram with 36 bins where each bin represents 10 degrees, 

covering 360 degree is computed. Each sample in the neighboring window added 

to a histogram bin is weighted by its gradient magnitude and by a Gaussian-

weighted circular window with a varianceσ that is 1.5 times of the scale of the 

keypoint [3]. 

Peaks in the orientation histogram represent the dominant direction of local 

gradients. The highest peak and any other peak that is 80% of the highest peak 

is used to create another keypoint with that orientation. This approach creates 

multiple keypoints with same location and scale but different orientations. [3] 
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Multiple keypoints with different orientations provide a signification contribution to 

the matching stability.  

4.4.4 Keypoint descriptor: 

Once the location, scale and orientation of the keypoints are detected, the next 

step is to compute the descriptors of these keypoints that are highly distinctive 

and invariant to illumination and 3D viewpoint.  

This step is pretty similar to the Orientation Assignment step. The feature 

descriptor is computed as a set of orientation histograms on (4 x 4) pixel 

neighborhoods. The orientation histograms are relative to the keypoint orientation 

and the orientation data comes from the Gaussian image closest in scale to the 

keypoint's scale. Just like before, the contribution of each pixel is weighted by the 

gradient magnitude, and by a Gaussian with σ 1.5 times the scale of the 

keypoint. Histograms contain 8 bins each, and each descriptor contains a 4x4 

array of 16 histograms around the keypoint. This leads to a SIFT feature vector 

with (4 x 4 x 8 = 128 elements). This vector is normalized to enhance invariance 

to changes in illumination. 

 

Figure 15 The computation of 2x2 descriptor. The computed gradient magnitude 
and orientation is weighted by a Gaussian window indicated by the circle as shown 
on the left. On the right side, keypoint descriptor is shown. It allows for significant 
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shift in gradient positions by creating orientation histograms over 4x4 sample 
regions [3]. 

A keypoint descriptor is created by first computing the gradient magnitude and 

orientation at each image sample point in a region around the keypoint location, 

as shown on the left part of figure 3.5. These are weighted by a Gaussian window 

with a σ that is 1.5 times of the scale of the keypoint, indicated by the circle. 

Gaussian windowing is performed in orientation assignment step. These samples 

are then accumulated into orientation histograms summarizing the contents over 

4x4 sub-regions, as shown on the right of figure 3.5 with the length of each arrow 

corresponding to the sum of the gradient magnitudes near that direction within 

the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of 

samples, 4x4 descriptors computed from a 16x16 sample array is generally used 

[3]. A histogram with 8 bins where each bin represents an orientation is formed, 

and each descriptor contains a 4x4 array of 16 histograms around the keypoint. 

This leads to a SIFT feature vector with (4 x 4 x 8 = 128 elements). Then this 

vector is normalized to remove illumination effect.  

4.5 Feature Matching with SIFT Keypoint Descriptors 

Feature matching with keypoint descriptors is performed by comparing the 

descriptor of the keypoint with the descriptors of match candidates on the other 

image and this is done by Euclidean-distance based nearest neighbor approach. 

Euclidean distance between the descriptor of selected keypoint and the 

descriptors of match candidates are computed. If the ratio of the nearest neighbor 

distance to the second nearest neighbor distance is greater than  then the 

corresponding match is rejected. The value of is implementation dependent. 

Its valid range is between 0.0 and 1.0. The smaller the value of , the more 

matches are found, also with more outliers. The larger the value of , the lesser 

matches are found, but with more robust matches. The value of is 0.8 in [3]. In 

this thesis is taken as 0.97.  

d
d

d
d

d
d
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Figure 16 shows the 2 frames from Coral sequence with detected features via 

SIFT method and the last image in figure 16 shows the translation of matched 

features with a blue line. 

 

Figure 16 The upper left and upper right images are the two frames from coral 
sequence. The red crosses show the feature points with SIFT method in the middle 
left and middle right images. The last image shows the matches between the 
feature points of the image above using the Key Descriptor method.  

4.6 Results and Conclusion 

In Figure 11, two frames from coral sequence are shown with the features 

detected by Harris Corner Detector and the matching result of normalized cross 

correlation is also shown. In Figure 15 the features detected by SIFT and the 

matching result of keypoint descriptor is seen. For comparison purposes, the 
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number of detected features and matched pairs are listed in Table 3 for Harris 

corner detector and SIFT method. 

 

Table 3 The Comparison of SIFT and Harris Corner Detector. 

 Feature Detection & Matching Method 

 
SIFT & Keypoint 

Descriptor 

Harris Corner Detector & 
Normalized Cross 

Correlation 

Features Detected in left 

image 
926 359 

Features Detected in 

right image 
866 323 

Corresponding Pairs 241 178 

In Coral sequence, SIFT method gives a better performance than Harris Corner 

Detector and Normalized Cross Correlation. Nearly 3 times more features are 

detected with SIFT compared to Harris. Keypoint Descriptor used in SIFT gives a 

better performance than normalized cross correlation method. When the last 

images of Figure 12 and Figure 16 are compared, normalized cross correlation 

gives more false matches than Keypoint Descriptor. 

In order to compare the computation time of these algorithms, processing times 

are presented in Table 4. 

Table 4 The execution times of feature detection and matching algorithms 

Algorithm Process Time (in seconds) 
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SIFT 1.062 

Keypoint Detector 0.437 

Harris Corner Detector 0.172 

Normalized Cross Correlation 0.281 

From these results, it is seen that SIFT is more suitable for underwater 

applications. Although Harris Corner Detector and Normalized Cross Correlation 

performs faster than SIFT and Keypoint Descriptor, these algorithms suffers from 

the effects of water, blurring and scattering, which decreases the edge detection 

performance and accuracy. 
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CHAPTER 5  
 

FUNDAMENTAL MATRIX ESTIMATION 
 
 

5.1 Introduction 

Two images of a scene are represented by epipolar geometry which is 

independent of scene structure and depends on camera’s intrinsic and extrinsic 

parameters.  The geometric relation of a stereo image pair can be related with a 

3x3 singular matrix. If internal parameters of the camera are known, the epipolar 

geometry is defined with an essential matrix [6]. Essential matrix consists of the 

extrinsic parameters of the stereo system. If the internal parameters of the 

camera are not known, the epipolar geometry is defined with a fundamental 

matrix [7]. Fundamental matrix contains both internal parameters and relative 

poses of the cameras. Since a video sequence is used in this thesis, two 

consecutive frames of the video are considered as two images, taken from the 

same camera, which means that they have the same internal parameters, with an 

undetermined rotation and translation.  

By the estimation of the fundamental matrix, the epipolar geometry of the stereo 

image pair is found. It is known that corresponding points between the two 

images are enough to estimate the fundamental matrix. Many algorithms are 

developed to estimate fundamental matrix using its properties. One of the most 

popular algorithms is 8-Point Algorithm that Longuet-Higgins introduced to 

estimate the essential matrix for calibrated cameras [8]. It is linear, fast and easy 

to implement but very sensitive to noise. Hartley introduced a method based on 

8-Point Algorithm with a slight modification by normalizing the input data before 

constructing the equations which increased the performance significantly [7]. 

Hartley’s method is called normalized 8-point algorithm. In this thesis, normalized 



8-point algorithm is used for estimating fundamental matrix because of its 

performance and implementation ease.  

5.2 8-Point Algorithm 

Once at least 8 corresponding matches are known, fundamental matrix can be 

estimated up to a scale factor. The epipolar relation between the two matching 

points and the fundamental matrix is: 

0T
i im F m′ =                                         (5.1) 

where [ ], ,1 T
i i im u v= , [ ], ,1 T

i i im u v′ ′ ′= and is the fundamental 

matrix. If this matrix multiplication is extended for two points, the following linear 

equation is formed: 
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         (5.3) 

The eigenvector corresponding to the smallest eigenvalue of matrix A is the 

estimated fundamental matrix. The fundamental matrix is a rank-2 matrix. 

Because of the errors while determining the corresponding points and the noise 

on point coordinates, estimated fundamental matrix can not meet rank-2 

constraint and epipolar lines do not meet in a single point and the algorithms 
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which depend on the fundamental matrix fails. For these reasons, the estimated 

fundamental matrix  is corrected by a singular matrix  which minimizes 

the Frobenius norm

F F ′

FF ′− . By Singular Value Decomposition method, the 

eigenvalues of estimated fundamental matrix is computed and the smallest one is 

set to 0. By this method rank-2 constraint for fundamental matrix is provided. 

TUDVF =                                         (5.4) 

where and ),,( tsrdiagD= tsr ≥≥ . Then 0=t  and  

TVsrUdiagF )0,,(=′                          (5.5) 

where is the corrected rank-2 fundamental matrix. F ′

5.3 Normalized 8-Point Algorithm 

Normalized 8-Point Algorithm is the modified version of 8-Point Algorithm with 

normalized corresponding points. The biggest advantage of 8-Point Algorithm is 

being linear and easy to implement, but it is very sensitive to noise. It is shown 

that using 8-Point Algorithm with normalized corresponding points significantly 

increases the performance of the algorithm [7]. 

The normalized 8-point algorithm is summarized as follows: 

• First, the center of corresponding points are calculated as follows: 
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where  and are the i-th corresponding pair in left and right image 

respectively. ,  are the X and Y coordinates of the point ; and 

im im′

iu iv im iu′ iv′  

are the X and Y coordinates of the point im′ . 

• The center of the corresponding point is transformed to the center of the 

reference and the corresponding points are scaled so that the root-mean-

square (RMS) distance of the points to the origin is 2 . 

1
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• The resultant transformation matrices are: 

⎥
⎥
⎥
⎥
⎥
⎥
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• Normalized corresponding points are: 
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1ˆ i im T m= and 2ˆ i im T m′ ′=  

• The corrected fundamental matrix is computed with the normalized 

corresponding point set  and 

F̂
ˆ im ˆ im ′  by 8-point algorithm and inverse 

translation is applied to get the fundamental matrix : F

12
ˆTFTF T=  

5.4 RANSAC 

The input of the fundamental matrix estimation algorithm is the corresponding 

points and the noise in the image causes false matches, called outliers, which is 

mentioned in Chapter 5.2 and Chapter 5.5. Since an input set with outliers does 

not provide correct results for the fundamental matrix estimation and is the 

source of error in the estimation process, the outliers, which does not fit the 

fundamental matrix model, should be rejected. RANSAC method is used for this 

outlier rejection process. 

The fundamental matrix estimation with RANSAC is summarized as follows: 

Repeat for N times 

• Select a random sample of 8 corresponding points and compute the 

fundamental matrix with the normalized 8-point algorithm  F

• Calculate the Sampson error for each putative match for the 

estimated fundamental matrix. 

sampe

( ) ( ) ( ) ( )
2

, 2 22 2

1 2 1 2

( )T
i i

samp i T T
i i i i

m Fme
Fm Fm F m F m

′
=

′ ′+ + +
     

• If is below the threshold, then that match is considered as inlier, 

otherwise it is considered as outlier. The threshold value is the distance of 

isampe ,
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the point to the epipolar line, which is 0.02 for normalized corresponding 

points. 

• Choose F with the largest number of inliers, and reject the outliers. 

• Refresh the number of iterations N 

))1(1log(
)1log(

se
pN
−−

−
=  

where p is the probability that at least one of the random samples of 

points is free from outliers, usually it is as 0.99, is the probability that 

any selected point is an outlier. 

e
s is the size of the sample, 8 for 

normalized 8-point algorithm.  

 

5.5 Results and Conclusion 

The accuracy and constraint satisfaction in fundamental matrix estimation is 

crucial. The performance of fundamental matrix estimation determines the 

performance of the rest of the reconstruction process.  

Figure 17 shows the epipolar lines in the two images of coral sequence via the 

fundamental matrix computed by normalized 8-point algorithm and RANSAC 

method. 

 

Figure 17 The corresponding pairs and the epipolar lines in coral sequence. 
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Figure 18 The inliers computed by RANSAC method. The red cross show the 
position of the corresponding point in the left image. The green cross show the 
position of the corresponding point in the right image. The blue line represents the 
route of the point between the two frames. 

In coral sequence, 231 inliers are found among 241 corresponding pairs with a 

Sampson error of 0.0217. 

 

Figure 19 The corresponding pairs and the epipolar lines in pipe sequence. 
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Figure 20 The inliers in the pipe sequences. Unlike in coral sequence, camera 
makes a translational motion in this sequence. 

In pipe sequence, 14 inliers are found among 14 corresponding pairs with a 

Sampson error of 0.9788. 

 

Figure 21 The corresponding pairs and the epipolar lines in boat sequence. 
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Figure 22 The inliers in the boat sequence. 

In pipe sequence, 19 inliers are found among 21 corresponding pairs with a 

Sampson error of 0.6374. 

Table 5 The percentage of inliers on corresponding points and the computed 
Sampson errors for different video sequences. 

Sequences 
# of 

Inliers 
Inliers / Corresponding 

Points 
Sampson Error 

Coral 231 231/241 ~ %96 0.0217 

Pipe 14 14/14 ~ %100 0.9788 

Boat 19 19/21 ~ %90 0.6374 
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CHAPTER 6   
 

AUTO CALIBRATION 
 
 

6.1 Introduction 

Auto-calibration or Self-calibration is the process of determining the intrinsic 

parameters directly from multiple uncalibrated images. Once auto-calibration is 

done, the extrinsic parameters, rotation and translation matrices, can be 

computed and it is possible to compute the metric reconstruction of the scene. 

Auto-calibration provides the calibration of the camera directly from an image 

sequence despite the unknown motion, instead of calibrating the camera with a 

special calibration object [6]. 

6.2 Algebraic Framework 

Consider that a projective reconstruction is performed with a camera projection 

matrix and 3D point coordinate is computed. This 3D point is projected 

to the 2D point via , where represents the number of views and 

represents the number of corresponding points. A 4x4 homography matrix 

iP jM

ji
i
j MPm = i

j H  

is used to upgrade the projection reconstruction to a metric one. The projection 

matrix of the camera and the 3D point coordinate is transformed as following, but 

the coordinates of the 2D projected point does not change: 

))(( 1
ji

i
j MHHPm −=                                    (6.1) 

jMjiMi MHMHPP 1−==                             (6.2) 
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The goal is to determine the homography matrix H , where . 

Since the left camera coordinate system is assumed as the world coordinate 

system, the projection matrix of the first camera in the projection reconstruction 

is . In metric reconstruction once the calibration matrix is estimated, 

the projection matrix is transformed to

⎥
⎦

⎤
⎢
⎣

⎡
=

kv
tA

H T

]0[1 IP =

]0[11 IKPM = . The transformation 

from projective to metric reconstruction is 

HIIKHPPM ]0[]0[111 =⇒= . This relation shows that 

and . Since1KA = 0=t H is non-singular, must be non-zero and it is 

set to 1 to fix the scale of the reconstruction. The vector with determines 

the plane at infinity in projective reconstruction satisfying the following relation: 

k

v 1K
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⎤
⎢
⎣

⎡−
=

⎥
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⎥
⎥

⎦

⎤
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⎢
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⎦
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⎢
⎣

⎡ −
=
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⎥
⎥
⎥
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⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
−−−

−
∞ 1

1
0
0
0

10
1
0
0
0

1111 vKvKK
H

TTT

π      (6.3) 

The plane at infinity can be represented as where 

. The homography matrix can be also be represented as: 

Tp ]1[=∞π

vKp T−−= 1

⎥
⎦

⎤
⎢
⎣

⎡
−

=
kKp
tK

H T
1

1
                                     (6.4) 

If the plane at infinity in the projective frame and the calibration matrix of the first 

camera are known, the homography H that upgrades the projective 

reconstruction to the metric one can be computed. To do this, it is sufficient to 

specify the 8 parameters, 3 for p and 5 for . 1K

Let the projective matrices of the other cameras be . From 

Equation 6.2,  

][ iii aAP =
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1)( KpaARK T
iiii −=   for i=2…m (number of cameras)      (6.5) 

which may be rearranged as 

1
1 )( KpaAKR T

iiii −= −
                             (6.6) 

Remembering the rotation matrix is an orthogonal matrix , the 

rotation matrix can be eliminated by multiplying both sides with and the result 

is: 

IRR T
ii =

T
iR

TT
ii

TT
ii

T
ii paAKKpaAKK )()( 11 −−=              (6.7) 

The dual image of the absolute conic is and by making this 

substitution the basic auto-calibration equations are derived [6]: 

T
iii KK=*ω

TT
ii

T
iii paApaA )()( *

1
* −−= ωω                      (6.8) 

1
1 )()( −− −−= T

ii
TT

iii paApaA ωω                     (6.9) 

All self-calibration methods are the variations of solution to Equation (6.8) and 

(6.9). The first step is to compute or , then the calibration matrix is 

calculated by Cholesky Decomposition of . 

*
iω iω

T
iii KK=*ω

A counting argument can be developed to determine the number of view required 

to solve the 8 unknown parameters. Each image except the first one imposes 5 

constraints. Since these constraints are independent for each view, a solution is 

determined providing 8)1(5 ≥−m , where is the number of views. At 

least 3 views are required to solve the auto-calibration problem. 

m
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6.3 Auto-calibration by Dual Absolute Quadric 

The absolute dual quadric, , is a dual quadric represented by a 4x4 

homogenous matrix of rank 3 [6]. In Euclidean coordinate system, the absolute 

dual quadric is defined as . The importance of the 

absolute dual quadric is that it is invariant to transformations. According to this 

property a transformation that transforms the dual absolute conic to its form in 

Euclidean frame, , will transform the projective 

reconstruction to the metric one. 

*
∞Ω

)0,1,1,1(* diag=Ω ∞

)0,1,1,1(* diag→Ω ∞

The projection of the dual absolute quadric in the image is defined as: 

T
iii PPw **

∞Ω≈                                      (6.10) 

Once the dual absolute quadric is computed, using Equation (6.10) the dual 

image of the absolute conic can be calculated and with Cholesky Decomposition 

the calibration matrix can be computed via .The algorithm 

examined below is known as linear auto-calibration.  

T
iii KK=*ω

The first step is to normalize the projection matrix.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

+
== −

1
2/
2/0

1 hhw
whw

KPKP NNN            (6.11) 

where and are the width and height of the image, respectively. After the 

normalization the focal length is in the order of 1, the principal point is close to 

origin. For practical purposes, the skew is assumed as 0 and the aspect ratio as 

1. Considering the standard deviation on the intrinsic parameters, 

w h

1.0,31 00 ±≈≈±≈ vuf , the following relation can be composed: [1] 
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          (6.12) 
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and . Using the Equation (6.9) the uncertainty can be 

handled by weighting the equations as [1]:  
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where is the i-th row of iP P and is a scale factor, initially set to 1 but 

updated with 

v

TPP 3
*

3
~

∞Ω where is the result of previous iteration [1]. Since 

is a symmetric 4x4 matrix, it is defined with 10 coefficients. Once the 

absolute dual quadric is computed, the dual image of absolute quadric can be 

calculated via Equation (6.10) and the calibration matrix can be calculated by the 

Cholesky Decomposition of the dual image of absolute quadric. 

*~
∞Ω

*
∞Ω

 

6.4 Auto-calibration by Kruppa Equations 

The absolute conic is a special conic lying at the plane at infinity and having the 

property that its projection depends on the intrinsic parameters of the camera 
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[21]. This property is expressed mathematically by Kruppa equations. If the 

intrinsic parameters of the camera do not change between the frames, the image 

of the absolute conicω will be same. 

 

Figure 23 The Absolute Conic 

The derivation of classical Kruppa equation is as follows: 

Given that , the epipole of the right camera must satisfy the 

following equation: 

0=′eF T e ′

0][ 1 =′′−− eKtRK T
x

TT
                            (6.14) 

Remembering that , the following solution for0][ =tt T
x e ′ is obtained: 
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tKe ′=′ λ                                             (6.15) 

where λ is a non-zero scalar. The translation can be obtained as: 

eKt ′′= −11
λ                                           (6.16) 

Equation (6.16) leads to the following equation for : xt ][

KeKKt x
T

x ′′′′= − ][)det(1][ 1

λ                       (6.17) 

Substitution of Equation (6.17) into Equation (6.18) yields the Kruppa equations 

in the matrix form as shown in Equation (6.19) [21]. 

TT
xx

TTT KttKFFKK ′= − )]([][                   (6.18) 

T
x

T
x

TT eKKeFFKK )]([][ ′′′′= γ                    (6.19) 

where γ is non-zero scalar. Since TT FFKK is a symmetric matrix, by 

eliminating the γ , the Kruppa equations are formed: 
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          (6.21) 

The Equations (6.20) are linearly dependent since 

0))]([][( =′′′′′− eeKKeFFKK T
x

T
x

TT γ          (6.22) 
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There are two independent equations among the set of six equations. A special 

parameterization of epipolar geometry is used in order to choose which two 

equations are selected or by randomly selecting one equation for estimating the 

scale factor and then substituting the result into two others that are arbitrarily 

chosen among the remaining five ones [21].  

Simplified Kruppa equations derive fewer equations than the classical Kruppa 

equations and there is no need to compute e ′ which suffers from the presence of 

noise and degenerate motion. Because of these reasons, Simplified Kruppa 

equations are used in this thesis. 

6.5 Simplified Kruppa Equations 

In [22] Hartley derived simplified Kruppa equations using Singular Value 

Decomposition of fundamental matrix. The SVD of is: F

TUDVF =                                        (6.23) 

Remembering that is rank 2 matrix that the diagonal matrix F D has the form: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
00
00

s
r

D                                       (6.24) 

where r and s are the eigenvalues of the matrix , andV are the 

orthogonal matrices. The relation between the fundamental matrix and the 

epipole can be rewritten as: 

TFF U
F

e ′

0=′=′ eUVDeF TTT                               (6.25) 

Since D is a diagonal matrix with a last element zero, the direct solution of e ′ is: 

Uoe =′                                                (6.26) 

where . Hence the skew-symmetric matrix of is: 
To ]100[= e ′

 64



T
x UOUe =′][                                       (6.27) 

where . xoO ][=

Substituting Equation (6.26) with Equation (6.19) new expression of Kruppa 

equation is obtained: 

TTTTTT UUOKKUoUFFKK ′′= γ                    (6.28) 

It is assumed that the calibration matrix of the cameras are the same, KK ′= . 

Since is an orthogonal matrix, left and right multiplication of the Equation 

(6.28) by and respectively, gives the following simple expression of 

Kruppa equation: 

U
TU U

TTTT AUOOUAVDDV γ=                     (6.29) 

where TKKA = .Because of the simple forms of D and Equation (6.29) 

can be written as: 
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where , ,  are the column vectors of U and , ,  are the column 

vectors of V .The above expressions finally yield the following three linearly 

dependent equations [31]: 

1u 2u 3u 1v 2v 3v
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2 2
1 1 1 2 2 2

2 2 2 1 1 1

T T T

T T T

r u Au rsu Au s u Au
v Av v Av v Av

= =
−                     (6.31) 

Since two of these three equations are independent, by cross multiplication the 

following independent equations can be obtained: 

2
1 1 1 2 1 2 2 1

2
2 1 2 1 1 2 1 2
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= + −
       (6.32) 

First by solving the above equations for matrix and then by Cholesky 

Decomposition the calibration matrix can be computed. 

A
K

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

153

542

321

aa
aaa
aaa

A and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
−

−
−−

=
100

0

))((

5
2
54

32
54

532
2
54

2
5322

31

aaa

a
aa
aaa

aa
aaaaa

K
     (6.33) 

The derived simplified Kruppa equations can be rewritten as in the form: 

∑
=

+=
3

1

2
2

2
1 ),(),()(

i
ii AFPAFPAC                    (6.34) 

The non-linear least square equation, Equation (6.32), can be solved by 

Levenberg-Marquardt minimization algorithm. 
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6.6 Results and Conclusion 

Two methods of auto-calibration are examined, auto-calibration by absolute dual 

conic and auto-calibration by simplified Kruppa equations.  

First the auto-calibration algorithms are examined with “Ballet Sequence” images 

which provide ground truth data for the intrinsic and the extrinsic parameters of 

the cameras. 

The examined auto-calibration algorithms are performed using Figure 24 and the 

output calibration matrix is compared with the ground truth calibration matrix. 

 

Figure 24 Three chosen frames from Ballet Sequence, a scene captured by 8 
cameras from predetermined positions and known intrinsic and extrinsic 
parameters. 

Each camera has its own intrinsic parameters. Since they are very close to each 

other, the intrinsic parameters of the left most camera is assumed to be the 

system’s calibration matrix which is: 

1908.25 0 .335 560.336
0 1914.16 409.596
0 0 1

gtK
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                   (6.35) 

Solving Kruppa equations with Levenberg-Marquardt requires the initial 

estimation of the calibration matrix. The focal length in X and Y-axis is assumed 

to be same and equal to the summation of width and height of the image. The 

principal point is assumed to be in the middle of the image. Based on these 

assumptions the initial calibration matrix is: 
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1792 0 512
0 1792 384
0 0 1

in itK
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                              (6.36) 

The changes of the calibration parameters and the error to be minimized are 

shown in the following figure: 

 

Figure 25 The estimated calibration parameters. The upper left graphic shows the 
focal length in x-axis, fx, the upper right shows the focal length in y-axis, fy. In the 
second row, the graph in the left shows the principal point in x-axis, u0, the right 
graph shows the principal point in the y-axis, v0. The lower right graph shows the 
skew s, and the right graph show the energy minimized by Levenberg-Marquardt.  
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As it is seen from the graphs above, the unknown parameters converge after 20-

30 iterations and the final estimated calibration matrix is: 

1882 0.0083 431.4
0 1790.6 390.3
0 0 1

estK
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                         (6.37) 

Despite using the ground truth data, the estimated calibration matrix parameters 

are different from the ground truth ones. The difference in focal length in x-axis 

and the principal point in y-axis is in degrees of 10-20 pixels, which can be 

ignored. But the difference in focal length in y-axis and the principal point in x-

axis is more than 100 pixels. 

Another factor that affects the performance of solving the Kruppa equations with 

Levenberg-Marquart is the initial estimation. The more accurate initial estimation, 

the more successful results is computed. The simplified Kruppa algorithm is 

tested with different initial data sets.  

Table 6 List of different data sets for the initial value of calibration parameters. 

Initial Data 
Set No. 

fx

True = 
1908 

fy

True = 
1914 

u0

True=560

v0

True=409 

s 

True=0.335

1 1900 1900 500 400 0 

2 1900 1900 0 0 0 

3 1200 1200 500 400 0 

4 2500 2500 500 400 0 

5 500 800 50 50 0 
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Figure 26 The effect of different initial data sets to the estimation of focal length in 
x-axis, fx. 

The graph above shows the effect of the data sets listed above on the estimation 

of focal length in x-axis, fx. As it is seen from the graph, the accuracy of initial 

value determines the success of the estimation process. The estimations are 

given in Table 6. The most successful data set is Dataset2, 

with , DataSet2 give the second best results with . 

Although DataSet1 is closer to the true values than DataSet2, DataSet2 gives the 

best estimation in focal length. But when the other unknown calibration 

parameters are considered, DataSet1 gives the best estimation for all. 

1907.5xf = 1925xf =

Table 7 The estimated calibration parameters with different initial data sets. Since 
DataSet1 is the closest data set to the true value, it gives the best estimations. 

Initial Data 
Set No. 

Est. fx

True = 
1908 

Est. fy

True = 
1914 

Est. u0

True=560

Est. v0

True=409 

Est. s 

True=0.335

1 1925 1899 386 404 0.011 
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2 1908 1900 -35 32 0.00003 

3 1094 1202 677 390 -0.04 

4 2484.4 2500.5 572 396 -0.04 

5 350 800 291 38 -0.0074 

 

The auto-calibration with absolute dual conic is also tested with the ballet 

sequence. The required input data for the algorithm is the projection matrix of the 

camera and the width and height of the image. These data are provided by the 

ballet sequence. Equation (6.12) is computed iteratively until the 

parameter converges and the absolute dual conic is computed with the 

projection matrix and parameter . Finally the image of absolute dual conic is 

computed via Equation (6.9) and via Cholesky decomposition the calibration 

matrix is computed.  

v
v

 

Figure 27 The parameter v. 

It is expected that to converge after a few iterations, but it does not converge 

after 100 iterations. Although the iteration number is increased, it continues to 

oscillate. The parameter is set to the mean value of the last 20 iterations where 

v

v
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the oscillation decreases with respect to the beginning. After the parameter is 

determined, the process described above is applied and the computed calibration 

matrix is: 

v

1792 0 512
0 1792 384
0 0 1

estK
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                 (6.38) 

The estimated calibration is exactly equal to the initial value of the calibration 

matrix in Kruppa equations, where the focal length is equal to the sum of width 

and height of the image and the principal point is in the middle of the image. Also 

it is equal to the calibration matrix which is used to normalize the projection 

matrix in Equation (6.10). Although the estimated parameters satisfy the Equation 

(6.12), the algorithm fails to estimate the calibration matrix. For that reason the 

simplified Kruppa equations are used in this thesis. 

NK

The intrinsic parameters of the coral sequence are computed with the simplified 

Kruppa equations. Using the following initial estimation is: 

520 0 160
0 520 100
0 0 1

in itK
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                 (6.39) 

the estimated calibration matrix is: 

495.75 0.0217 223.98
0 520.22 98.87
0 0 1

estK
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                     (6.40) 
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CHAPTER 7  
 

ESTIMATION OF CAMERA MOTION 
 
 

7.1 Introduction 

In the previous chapter, the intrinsic parameters of the camera are computed. 

However in order to compute 3D metric reconstruction of the scene, it is 

mandatory to compute the extrinsic parameters of the cameras, rotation and 

translation matrices.  

Once the intrinsic parameters and the fundamental matrix are computed, rotation 

and translation matrix of the camera is estimated via essential matrix. Essential 

matrix is the special case of fundamental matrix for the case of normalized image 

coordinates [6]. Essential matrix is introduced before fundamental matrix. 

Essential matrix can be assumed as the special form of fundamental matrix, 

considering the case that the intrinsic parameters are known.  The relation 

between the essential matrix and the fundamental matrix is: 

FKKE T′=                                          (7.1) 

where is the calibration matrix of the left camera and is the calibration 

matrix of the right camera. Since a video sequence is used in this thesis, the 

former frame is assumed as taken by the left camera and the latter frame taken 

by the right camera. It is assumed that the intrinsic parameters of the camera do 

not change between the two frames. Based on this assumption the intrinsic 

parameters of the left and the right camera are considered as equal. 

K K ′

KK ′=                                                 (7.2) 
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The normalized image coordinates is determined as and the 

relation between the essential matrix and the normalized corresponding pairs is: 

mKm 1ˆ −=

0ˆˆ =′ i
T

i mEm                                           (7.3) 
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]
If the left camera coordinate system is chosen as the world coordinate system, 

then the projection matrix of the left camera will be [ 0IKP = with zero 

translation and identity rotation matrix. The projection matrix of the right camera 

will be [ tRKP ]=′ with rotation and translationR t . Considering the left 

camera coordinate system as the world coordinate system, the rotation matrix 

and the translation matrix R t defines the transformation of the right camera 

coordinate system with respect to the left camera coordinate system and this is 

the case in this thesis.  

With the rotation and the translation matrix the point 

defined in the left camera coordinate system and the 

point defined in the right camera coordinate system 

is related as: 

[ T
zyx MMMM = ]

][ T
zyx MMMM ′′′=′

tRMM +=′                                          (7.4) 

The coordinates of the points on image plane is determined by normalizing the 

3D coordinates of the points with the value of Z-axis, depth value.  
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Equation 7.4 is revised: 



tmRMmM zz +=′′ ˆˆ                                    (7.6) 

If there is a translation in the system, one can obtain: 

0ˆˆ tmR
t

Mm
t

M zz +=′
′

                              (7.7) 

where t
tt =0 . 

From the Equation 7.7, it is easily seen that with a given corresponding pairs, 

and im̂ im ′ˆ , the rotation matrix and the translation vector represented by 

unit vector can be computed. With the computation of unit vector , only the 

direction of the translation is computed, but the magnitude is still missing. 

Because of the missing magnitude of translation vector, only the 3D coordinates 

of the points is computed up to a scale, which is the definition of metric 

reconstruction and this scale factor is the difference between the metric and 

Euclidean reconstruction. 

R

0t 0t

Since the fundamental matrix can be computed from the projection matrix, the 

following equation can be obtained [6]: 

           [ ] 1−−′= RKtKF x
T

                                     (7.8) 

By substituting the fundamental matrix value with the one in Equation 7.1, the 

relation between the essential matrix and the rotation and the translation matrix 

can be obtained as: 

[ ] RtE x=                                               (7.9) 

7.2 Linear Algorithm for Determining R and t  

Since the essential matrix is a rank-2 matrix like the fundamental matrix, SVD of 

the essential matrix is: 
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TUDVE = where                       (7.10) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
00
00

s
s

D

Camera matrices can be retrieved from the essential matrix up to a scale and 

four-fold ambiguity [6]. Define the matrix: 

⎥
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⎢
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⎢

⎣

⎡ −
=

100
001
010

W                                     (7.11) 

0t is defined as , the last column of . The rotation 

matrix is defined as or . Since the sign of 

30 )1,0,0( uUt T == U
TUWVR = TTVUWR =

E and  can not be determined, two possible choices for and two possible 

choices for  and four possible choices of projection matrix rises. If the 

projection matrix of the left camera is 

0t R

0t

[ ]0IP = , the projection matrix of the 

right camera is one of the four possible choices: 

3 3

3 3

T T

T T T T

P U W V u or P U W V u

P U W V u or P U W V u

′ ′⎡ ⎤ ⎡= =⎣ ⎦ ⎣
′ ′⎡ ⎤ ⎡= =⎣ ⎦ ⎣

⎤− ⎦
⎤− ⎦

          (7.12) 

It is known that the 3D points projected by the cameras are in front of the 

cameras with positive depth values. The sign ambiguity of rotation and translation 

can be solved with a triangulation of a single point: Triangulate one of the 

corresponding points with the four possible projection matrices; the computed 3D 

point must be in front of the cameras, Z-axis value must be positive. Choose the 

projection matrix which satisfies this condition. 

This method is easy to implement but it is not robust to noise which makes it 

impossible to be used in practical applications.  
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7.3 Robust Algorithm for Determining R and t 

From the Equation 7.10, essential matrix and the translation matrix must satisfy 

the following constraint: 

00 =tE T
                                             (7.13) 

Since is a unit vector, the solution is the unit eigenvector of 0t 0t TEE with the 

smallest eigenvalue. Once is found, the next step is to find its sign. The depth 

values of the points viewed by the cameras have to be positive because of being 

in front of the camera. The vectors 

0t

imt ′× ˆ0 and must have the same sign 

[19]. If the following condition hold the sign of is changed: 

imE ˆ

0t

0)ˆ()ˆ(
1

0 <′×∑
=

i

n

i
i mEmt                                (7.14) 

The rotation matrix is determined by minimizing: 

[ ] T
x

T

R
EtR −− 0min                                    (7.15) 

Let [ ]xtC 0−= , TED = and define a 4x4 matrix .  B

∑
=

=
3

1i
i

T
i BBB and   (7.16) [ ] ⎥
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where and are the column vectors of andiC iD C D . 

Tqqqqq ],,,[ 3210= is the unit eigenvector of with the smallest 

eigenvalue. The rotation matrix is related with as: 

B

R q
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7.4 Results and Conclusion 

The linear and robust algorithm are tested with the ballet sequence which 

provides ground truth rotation and translation matrices. The rotation and 

translation matrices are computed via robust and linear algorithm with ground 

truth fundamental matrix and calibration matrix values and the results are 

compared with the ground truth rotation and translation matrices. 

Table 8 The calculated translation matrices and euler angles of the calculated 
rotation matrix via linear and robust algorithm and the ground truth values. 

Method tx ty tz Θx 
(degree) 

Θy 
(degree) 

Θy 
(degree) 

Ground 

Truth 

-3.9037 -0.0404 0.1687 -0.68 -4.6 1.49 

Linear 0.999 0.0107 -0.0431 24.9 42.07 59.16 

Robust -72.5 -0.77 3.5e-7 0.331 -2.46 -0.018 

Both linear and robust algorithms give good result on translation matrix 

estimation. The ratio of translation among the axis is correct for both algorithms, 

but the direction of the translation estimated by linear algorithm is the inverse of 

the ground truth. It has to be corrected before triangulation. If not, the points are 

triangulated with negative depth values, which mean they are behind the 

cameras, but in real they are not.  
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The problem with the linear algorithm is the estimated rotation matrix and Euler 

angles. They are far from the ground truth. 

Robust algorithm estimates the translation matrix in the same direction with the 

ground truth but up to a scale. As it is mentioned before, only the direction of the 

translation matrix can be estimated, the magnitude can be estimated up to a 

scale factor which leads to a scale-ambiguity. The estimated rotation matrix and 

Euler angles are nearly equal to the ground truth. The results show that robust 

algorithm performs better than the linear one. 
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CHAPTER 8  
 

RECTIFICATION  
 
 

8.1 Introduction 

Rectification is the process of determining the transformation of a given stereo 

pair, which makes the epipolar lines of the images parallel to the horizontal axis. 

Rectification is the pre-step for stereo matching. Almost all stereo matching 

algorithms require rectified images as input.  

Rectification decreases the 2D search area to 1D for stereo matching. By the 

transformation applied to the stereo image pair, the corresponding points have 

the same vertical coordinates. After the rectification, it is known that the 

corresponding point of each feature point is located at the same vertical 

coordinate, but shifted horizontally. So the search is performed on the same 

vertical axis in stereo matching algorithms. 

Several algorithms are proposed for rectification, but a common criterion or a 

measure of the performance have not been proposed. The average distance 

between the vertical coordinates of the corresponding points is considered as a 

measure for the rectification algorithms examined in this thesis. 

Two rectification algorithms are examined: 1. Rectification for calibrated stereo 

pairs [9], 2. Quasi-Euclidean Uncalibrated Epipolar Rectification [10].  

 



8.2 Rectification for Calibrated Stereo Pairs 

The rectification process in calibrated images is performed by rotating the retinal 

planes of the cameras until the epipolar lines coincide and the epipoles translates 

to infinity. The cameras are rotated while keeping the optical centers constant.  

 

 

Figure 28 Epipolar Geometry 

Figure 28 shows the epipolar geometry of a stereo pair. The 3D point M with 

the coordinates is projected by a stereo camera pair with camera 

centers and , and projection matrices and 

, to the 2D points and with the coordinates 

[ Tzyx 1,,, ]
]

]
1c 2c [ tRKPl =

[ tRKPr = 1m 2m

[ ]1 1, ,1 Tu v and [ ]2 2, ,1 Tu v . 
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Figure 29 Rectified cameras. Epipolar lines are parallel to each other and baseline. 

When the focal plane of the right camera coincides with the optical center of 

left camera, the right epipole is at infinity. The same concept holds for the left 

camera. When both epipoles are at infinity, the baseline is in both focal 

planes which means that the retinal planes are parallel to the baseline and the 

epipolar lines are parallel to the horizontal axis [9]. 

1c

21cc

Rectification is the process of defining new projection matrices and by 

rotating the old ones and around their optical centers until focal planes 

coincide [9]. In order to get epipolar lines parallel to the horizontal axis, the new X 

axis of the cameras must be parallel to the baseline. The camera matrices of the 

cameras must be same in order to have corresponding points with same vertical 

coordinates [9]. The new projection matrices are defined as: 

nlP nrP

olP orP

[ ]1cRRKP nnnl −= and [ ]2cRRKP nnnr −=             (8.1) 

The algorithm is summarized as follows: 

• The old projection matrices and  are factorized to calibration, 

rotation and translation matrices: 

olP orP

[ ]olololol tRKP =  and [ ]orororor tRKP =                (8.2) 
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]
• The projection matrices can be represented as and [ ]ololol qQP =

[ ororor qQP = . The optical centers of the cameras are: 

ll qQc 1
1

−−=  and                         (8.3) rr qQc 1
2

−−=

• The new rotation matrix is defined as: 
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                                                 (8.4) 

• The new X axis is parallel to the baseline: 

21

21
1

)(
cc
ccr

−
−

=                                            (8.5) 

• The new Y axis is orthogonal to X and : k

12 rkr Λ=                                               (8.6) 

• The new Z axis is orthogonal to X and Y axis: 

213 rrr Λ=                                             (8.7) 

k is an arbitrary vector to define the position of new Y axis and it is chosen 

as the Z unit vector of the old left rotation matrix.  

• The choice of calibration matrices is arbitrary. The calibration matrix of the 

right camera is chosen as the calibration matrix of the new camera 

matrices [9].  

ornrnl KKK ==                                        (8.8) 

• The new projection matrices are: 



[ ]lnnnlnl cRRKP −=  and [ ]rnnnrnr cRRKP −=        (8.9) 

If and [ ]nlnlnl qQP = [ ]ororor qQP = , the transformation applied to 

the first camera projection matrix is . It is also same for the 

second camera. 

1−= olnll QQT

8.3 Quasi-Euclidean Uncalibrated Epipolar Rectification 

Euclidean rectification is provided by a rotation of image planes providing that 

epipolar lines are parallel and horizontal. The image transformation is computed 

by a reference frame, plane at infinity in the calibrated case. Quasi-Euclidean 

rectification is an approximation to the plane at infinity as a reference plane [10]. 

As explained in the previous part, the transformation applied to the cameras in 

order to rectify them can be represented as . Indeed is the 

collineation referenced by plane at infinity between the old and the new cameras 

[10].  

1−= olnll QQT lT

The transformation can be represented as: 

1−= ollnll KRKT                                     (8.10) 

where and are the intrinsic parameters of the new and old cameras 

and is the rotation applied to the old left camera to rectify it [10]. In the 

uncalibrated case, only the corresponding pairs are given. The aim is to compute 

the proper transformation in order to transform the corresponding points to satisfy 

the epipolar geometry of a rectified image pair. 

nlK olK

lR

The fundamental matrix of the rectified image pair can be represented as: 

[ ]xr uF 1

010
100

000
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=                           (8.11) 
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where )0,0,1(1 =u and is the fundamental matrix of the rectified image 

pair. 

rF

The relation between the corresponding pairs and the fundamental 

matrix, , is refined as: 0=′ i
T

i xFx

( ) ( ) 0=′ ilr
T

ir xTFxT                                 (8.12) 

lT and are the unknown transformations for the rectification and they must 

satisfy the epipolar constraint with the transformed corresponding point [10]. The 

transformation matrices are defined as: 

rT

1−= ollnll KRKT and                       (8.13) 
1−= orrnrr KRKT

The unknown parameters are the old intrinsic parameters, , and the 

rotation matrices , . For the new intrinsic parameters, it is assumed that 

the vertical and horizontal focal lengths are the same and the principal point is 

the mid point of the image.  

olK orK

lR rR

Consider the following equation that: 

11 −−= ollr
T
ror KRFRKF                                      (8.14) 

The multiplication of , with will eliminate the X components of the 

rotation matrices so that they can be set to zero. Using the above relations the 

uncalibrated rectification problem can be approximated as a least-squares 

problem with six unknown parameters, the rotation angles Y, Z for the left image, 

X, Y, Z for the right image and the focal length. Sampson error is used for the 

error measurement which is a first order approximation of the geometric re-

projection error. 

lR rR rF
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uFxFxu

xFxE
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′
=                      (8.15) 

where )1,0,0(3 =u  

The algorithm is summarized as: 

• The corresponding pairs and the fundamental matrix is given. The 

unknown parameters are: 

Y-left: the rotation angle around Y-axis for the left image. 

Z-left: the rotation angle around Z-axis for the left image. 

X- right: the rotation angle around X-axis for the right image. 

Y- right: the rotation angle around Y-axis for the right image. 

Z- right: the rotation angle around Z-axis for the right image. 

Focal length: the focal length of the camera pair. 

The rotation angle around X-axis for the left camera is set to zero. 

• Set the initial values of the unknown parameters to zero. 

• The cost function is defined as in Equation (8.15). The fundamental matrix 

is computed with the parameters defined in Equation (8.14). 

⎥
⎥
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hf
wf

KK orol  

where and are the width and height of the image respectively. The 

rotation matrix with Euler angles (0, Y-left, Z-left) and the rotation 

matrix with Euler angles (X-right, Y-right, Z-right). 

w h

lR

rR

 86



• Compute the average Sampson error for all of the corresponding pair.  N

∑
=

=
N

i

i
sampsamp E

N
E

1

1
 

• Minimize the Sampson error with least-squares method. 

• The translation and is computed with the rotation angles Y-left, Z-

left, X-right, Y-right, Z-right and focal length which provide minimum 

Sampson error using Equation 8.13. 

lT rT

8.4 Results and Conclusion 

Calibrated rectification and uncalibrated rectification algorithms are examined and 

compared. For the calibrated rectification algorithm only the projection matrices of 

the cameras are required. For the uncalibrated rectification fundamental matrix is 

required which is enough to provide the epipolar relation between the two 

cameras.  

 

Figure 30 Coral sequence rectified with uncalibrated rectification algorithm. The 
upper left image is the image from left camera. The upper right is the image from 
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right camera with the epipolar lines and corresponding pairs. The lower left shows 
the rectified left image. The lower right is the rectified right image with the epipolar 
lines horizontal and parallel to the X-axis. 

 

 

Figure 31 The coral sequence rectified with calibrated rectification algorithm. 

In Figure 30 and Figure 31 the rectified images are seen with the two rectification 

algorithms. The biggest challenge in rectification is to rectify the images without 

much degeneration. Warping the images according to the computed new 

projection matrices is crucial because these images are the inputs of stereo 

matching algorithms and the performance of rectification algorithm directly affects 

the result of the stereo matching algorithm. The calibrated rectification gave a 

more distorted image according to the uncalibrated rectification. The reason is 

that in calibrated rectification collineations are derived directly from the camera 

matrices and the camera matrices are computed by auto-calibration, which is 

error-prone. But in uncalibrated rectification, rectification collineations are derived 

by minimizing the error function defined in Equation 8.15. 
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There is no a common criterion or performance measure of the rectification 

algorithms except visual comparison. But the rectified corresponding points can 

be compared using the properties of having the same horizontal coordinates. The 

mean absolute difference between the y- coordinates of the rectified 

corresponding points can be a measure of performance. The mean absolute 

difference of corresponding points after calibrated rectification is 12.8804 and the 

difference after uncalibrated rectification is 0.303865. The reason of the 

difference between the two algorithms is that the latter one naturally minimizes 

this error during its optimization step. 

As an example for their performances, x and y coordinates of points before and 

after rectification are given in Table 8. In the uncalibrated rectification the y 

coordinates of the points (bold ones) are same which means they are parallel. 

But in calibrated rectification, the difference in the y coordinates of the points 

shows the distortion in the image. 

Table 9 The corresponding points before and after the rectification. 

Corresponding Pairs 
before Rectification 

Uncalibrated 
Rectification 

Calibrated Rectification 

m  m ′  m̂  m̂ ′  m̂  m̂ ′  

108.68 

74.49 

86.61 

69.46 

101.96 

72.96 

77.98 

72.49 

-70.50 

197.417 

17.11 

205.63 

77.21 

73.22 

52.32 

68.44 

155.86 

67.40 

131.82 

67.11 

69.085 

367.48 

180.58 

396.87 

… …. …. …. … …. 
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CHAPTER 9  
 

STEREO MATCHING 
 
 

9.1 Introduction 

Stereo matching is the process of computing the correspondence pixel for each 

pixel in a rectified image pair and produce a dense disparity map by which the 

depth map of the scene can be extracted easily. Each pixel in 

the left image must have a corresponding pixel 

),( yx ppp =

),( yx qqq = in the right 

image. As a result of rectification the vertical coordinates of the corresponding 

pixels are same . The distance between the horizontal components 

is called disparity and it is inversely proportional to the distance of 

the object to the camera [16]. So the distance of the object to the camera, depth 

of the scene, can be found by computing the disparity of the corresponding pixels 

which is possible by stereo matching.  

yy qp =

( xx qp − )

Traditional dense stereo matching algorithms computes a dense disparity map 

and a depth map from the known camera motion, which is provided by 

rectification. The scene in stereo matching is assumed as Lambertian, without 

specularities, reflection or any transparency [15]. The factors that make stereo 

matching challenging are: 

• Noise: Unavoidable light variations between the two frames, image 

blurring. 

• Textureless areas: computing corresponding pixel pairs in textureless 

areas where there is no significant difference between the neighbor 

pixels. 
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• Depth Discontinuities: computing disparities and depth values near object 

borders. 

• Occlusions: the pixels seen by only one of the cameras that causes 

correspondence problems. 

Stereo matching is one of the most popular research topics in computer vision. A 

large number of stereo matching algorithms have been developed. In [11] 

Scharstein and Szeliski provided a good taxonomy of stereo matching algorithms. 

20 stereo algorithms have been compared. Considering the overall performance 

of the algorithms, Graph Cut and Belief Propagation algorithms give the best 

performance in all regions of the sample images [11]. These two algorithms 

become the basis for new powerful vision algorithms. Tappens provided a 

comparison between these two algorithms and in his study he showed that Graph 

Cut performs better than Belief Propagation proving more smooth disparity map 

and better energy minimization [12]. It is proven that Graph Cut gives better 

results in underwater especially in textureless areas and near discontinuities [13]. 

Considering the reasons above, Graph Cut algorithm [14] is chosen as the stereo 

matching algorithm in this thesis. 

 

9.2 Stereo Matching with Graph Cuts 

The stereo problem is summarized as follows: compute the corresponding pixel 

in the right image for every pixel in the left image [14]. This problem fits a class of 

problems called pixel labelling problem. The aim is to assign each pixel a label 

from a set. The procedure is similar to image segmentation but it is more 

complex. In stereo matching problem this label set is the disparity.  

Every pixel Pppp yx ∈= ),( must have a corresponding pixel 

in the other image and must be assigned a label . 

In a labeling 

Pqqq yx ∈= ),( Lf p ∈

},{ Ppff p ∈= the pixel p in the left image corresponds to 
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the pixel in the right image. During the labeling process the following 

factors have to be considered [16]: 

pfp +

• The pixel p in the left image and the pixel pfp + in the right image 

must have similar intensities. 

• With this labeling p and pfp + must have similar labels and 

with their neighbor pixels. 

pf

qf

The pixel labelling problem is formularized as an energy minimization problem. 

The goal is to find the labelling which minimizes the energy defined as: f

)()()()( fEfEfEfE visibilitysmoothdata ++=                         (9.1) 

The energy of labeling consists of two sub-energy forms. is the 

cost of assigning labels.  is the smoothness term that measures 

the extent to which is not piecewise smooth. Energy function must be 

minimized considering the criteria of finding the appropriate labeling for pixel 

f )( fE data

)( fE smooth

f

p while pixel p must have a label which is also smooth with its neighbor pixels. 

will encode the visibility constraint. )( fEvisibility

The data term is  

∑
∈

=
Pp

ppdata fDfE )()(                                   (9.2) 

The match penalty provides the photoconsistency, the constraint of 

corresponding pixels to having similar intensities.  

pD

2
)()()( ppp fpIpIfD +′−=                         (9.3) 
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The smoothness term is  

∑
∈

=
Nqp

qpqpdata ffVfE
},{

},{ ),()(                               (9.4) 

Neighborhood constraint is introduced in the smoothness term. The 

neighborhood is defined as: 

},};,{{ PqpqpN ∈⊂                                  (9.5) 

The pixels and ),( yx ppp = ),( yx qqq = are neighbors if they are in the 

same image and 1=−+− yyxx qpqp . 

The smoothness penalty V provides the smoothness constraint through the 

neighbor pixels. 

[ ]qpqp ffTffV ≠= λ),(                               (9.6) 

where  is 1 if its argument is true and 0 otherwise [14]. [ ].T

Figure 32 summarized the occlusion and visibility terms. The pixel p from Camera 

1 (C1) and pixel q from Camera2 (C2) are shown. They are at the same disparity 

level, level 2 and will have the same label. The green square represents the pixel 

q in a different (more deep) level, behind the red dot with a different label. The 

pair (p,2) and (q,2) have visibility constraint, but the pair (p,2) and (q,3) do not 

have and they belong to  [14]. visI
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Figure 32 Occlusion and Visibility Constraint in stereo matching. 

The visibility term is zero if visibility constraint is satisfied; otherwise it is infinity 

[14]. According to the visibility constraint, a 3D point pfp, is present in a 

labeling , it blocks the views of other cameras. The new set contains the 

3D points 

f visI

pfp,  and qfq, where . pq ff 〉

∑
∈

∞=
visqp Ifqfp

visibility fE
,,,

)(                               (9.7) 

 Minimizing the energy function defined in Equation 9.1 is NP-hard problem [14]. 

For that reason, the goal is to find an approximation to the optimization algorithm 

based on graph cut to find a local minimum.  

9.2.1 α Expansion Move Algorithm 

If the smooth penalty function V is a metric on labels, the energy function 

defined in Equation 9.1 can be minimized by α expansion move algorithm [14]. 
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Given a label α , a labeling  and another labeling f f ′ is an α expansion 

move from to for every pixel f f ′ p . 

α=′⇒≠′ )()()( pfpfpf                         (9.8) 

A label,α , is chosen from the label set and the expansion move algorithm finds 

a unique labeling within a single α expansion move from the current labeling 

and updates the labeling if its energy is lower. Termination criteria is to reach 

such a labeling that there is no f̂ α expansion move from  whose energy is 

lower than . 

f̂

)ˆ( fE

Finding the lowest energy α expansion move from is the key problem. In 

expansion move algorithm each pixel has two options [14]: 

f

• keep its old label or, pf

• switch to the new label α . 

 

Figure 33 α Expansion Move Algorithm. Three different labeling is shown on the 
left part. After the expansion move algorithm, the pixels whose label is not α, is 
switched to label α. 
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Considering the options of the pixels, expansion move can be defined as a binary 

image that a single bit is defined for each pixel representing which option that 

pixel selects in the expansion move [14]. 

A binary image },{ Ppxx p ∈= is defined. Given an initial labeling and 

a label

f

α , if 1=px , α=′ )( pf and if  then 

. This labeling is defined as

0=px

)()( pfpf =′ [ ]xf α
 [14]. The energy 

function E is rewritten as . The energy function on the 

binary image is defined as [14]: 

])[()( xfEx αε =

∑ ∑+=
p qp

qpqppp xxxx
,

, ),()()( εεε                     (9.9) 

The data term is defined as: 

)()(,0

)()(1

ppppp

pppp

fDxxif

Dxxif

==

==

ε

αε
              (9.10) 

The smoothness term is defined as: 

),(),(,0,0

),(),(,1,0

),(),(,0,1
),(),(,1,1

,

,

,

,

qpqpqpqp

pqpqpqp

qqpqpqp

qpqpqp

ffVxxxxif

fVxxxxif

fVxxxxif
Vxxxxif

===

===

===

===

ε

αε

αε

ααε

           (9.11) 

The energy function )( xε can be minimized if qp ,ε has regularity property 

[14]. The regularity property proposes that: 

),(),(),(),( lVlVllVV ′+≤′+ αααα               (9.12) 

for any labels α,, ll ′  [14]. Since 0),( =ααV then the regularity property is 

just triangle inequality [14]. 
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9.2.2 Graph Cuts 

G is a weighted graph with vertices V and edges E. Vertices represent the pixels 

and edges connect the vertices to each other with a weight defined as the data 

penalty or smooth penalty. There exist two terminal vertices {s, t}, source and 

sink terminals. A cut C separates the graph from the edges into two parts; some 

vertices are in the source part and the others are left in the sink part 

. The cost of the cut C equals to the sum of the edges between the 

vertex and vertex . The goal is to find the cut with the smallest cost. The 

minimum cut on graph G provides the labeling that minimizes the energy function 

within one 

sVs ∈
tVt ∈

sV tV

α expansion move [17]. 

 

9.2.3 Graph Construction 

The structure of the graph is determined by the current labeling and the labelα .  

 

Figure 34 The configuration of the current labeling and the new labelf α . 
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Figure 34 shows the configuration of the current labeling and the new 

label

f

α . The current labeling, the partition P , consists of the 

labels . The pixel p is set to label , the pixels q and r and 

the pixel s, . Two nodes are added to the graph between the neighbor pixels 

with different labels,  and 

},,{ 21 αPPP 1P 2P

αP

},{ qpaa = },{ srab = .The vertices also includes 

the terminalsα andα . Each pixel is connected to the terminals α andα by 

t-links, and
α
pt α

pt . Neighbor pixels which have the same labels are connected 

by n-links  [17]. The weights of the edges are: },{ qpe

Table 10 The weights of the edges in the graph. 

Edge Weight Reason 

α
pt  ∞  αPp ∈  

α
pt  )( pp fD  αPp ∉  

α
pt  )(αpD  Pp ∈  

},{ ape  ),(, αpqp fV  

},{ qae  ),(, qqp fV α  

α
at  ),(, qpqp ffV  

qp ffNqp ≠∈ ,},{
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},{ qpe  ),(, αpqp fV  qp ffNqp =∈ ,},{
 

 

Any cut C on graph G must contain one t-link for each pixel. This defines the new 

labeling and for each pixel 
cf p : 

Ctifff

Ctiff

pp
c
p

p
c
p

∈=

∈=
α

αα
                                      (9.13) 

If the cut C separates the pixel p form the terminal α , the pixel p is set to 

label α , otherwise it is set to its old label , if the cut separates pf p from the 

terminal α  [17]. 

9.3 Results and Conclusion 

The graph cut stereo matching algorithm is briefly discussed above. Three stereo 

matching algorithms are compared in this section. First two algorithms are sub-

types of graph cut algorithms and the last one is a traditional stereo matching 

algorithm. The first graph cut algorithm is called voxel labeling (KZ1) [17]. The 

second graph cut algorithm is called pixel labeling (KZ2) [25], and the last 

algorithm is a traditional stereo algorithm (BVZ) [26]. [26] focuses on solving the 

stereo matching problem by maximum a posteriori (MAP) estimate of a class of a 

Markov Random Fields which generalizes the Potts model and ignore the 

occlusions. The difference between KZ1 and KZ2 is the handling method of 

smoothing terms in the energy function. For more detail about the algorithms, 

reader may refer to the following references. [17] for KZ1, [25] for KZ2 and [26] 

for BVZ. 

These algorithms are first applied to a very well known stereo pair, Tsukuba pair. 

Tsukuba pair, the ground truth disparity map and occlusions are shown in Figure 

35.  
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Figure 35 Tsukuba sequence. The lower left image is the ground truth for the 
disparity maps. The lower right image (red marked points) shows the occlusions 
between the two images. 

Figure 36 shows the result of the stereo algorithms on Tsukuba pair. Here, the 

estimated disparity map and occluded regions are given for each algorithm. 
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Figure 36 The performance of stereo matching algorithms on Tsukuba sequence. 
The red marks on images in the right part shows the occlusions. The first pair is 
KZ1, the second pair KZ2 and the last pair is BVZ. 

 In the disparity maps, the objects close to the camera are brighter than the 

objects far from the camera. With this scaling the disparity maps behave as a 

depth map of the scene.  
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Figure 37 The performance of stereo matching algorithms on coral sequence. The 
red marks on images in the right part shows the occlusions. The first pair is KZ1, 
the second pair KZ2 and the last pair is BVZ. 

These algorithms are also applied to underwater stereo pair. The resultant 

disparity maps and occluded regions are shown in Figure 37 and the same type 

of performance are observed.  
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From Figure 37 it is seen that graph cut algorithms performs better than 

traditional stereo algorithm and among the graph cut algorithms KZ1 performs 

better than KZ2. The smoothness in the object borders is the advantage of KZ1 

and there are also more less spikes in the sloping sides in KZ1 when compared 

to KZ2.   
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CHAPTER 10  
 

TRIANGULATION 
 
 

10.1 Introduction 

The final step of the 3D reconstruction process is the triangulation step where the 

coordinates of 3D points are computed from the corresponding pairs and the 

projection matrix of the cameras. In theory, since the 3D point is visualized by 

both of the cameras, left and right, the back-projected rays from the cameras 

should meet at the location of 3D point. Due to the noise in determining the 

corresponding pairs and estimating the fundamental matrix, the back-projected 

rays do not meet. In this case, it is necessary to find the best 3D point of 

intersection [23].  

Assume a 3D point M in 3D space viewed by two cameras whose projection 

matrices are P and P ′ respectively and also andm m ′ are the projected points 

in the two images satisfying the epipolar constraint . The two rays 

back-projected from the points and

0=′ Fmm T

m m ′ lie on an epipolar plane that passes 

from the camera centers. Since the rays lie on plane they must intersect in a 

point, which is the 3D point projects via the left and right cameras to the 

points and . But these rays do not intersect because of the presence of 

noise. The goal of triangulation is to back-project these rays and to intersect them 

in 3D space.  

m m ′

Several algorithms have been developed for triangulation. Two of most common 

methods, linear triangulation and polynomial triangulation are examined in this 

thesis. 
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Assume a triangulation method τ to compute the 3D point M from 

corresponding points andm m ′ with the cameras with projection 

matrices P and P ′ .  

),,,( PPmmM ′′= τ                                 (10.1) 

10.2 Linear Triangulation 

Linear triangulation method is the most common and simple triangulation method 

to overcome the problem defined above. The 3D point M is projected via the 

two cameras to the points PMm ≈λ and MPm ′≈′′λ , where 

λ and λ ′ are scalar factors. Cross multiplication method is applied in order to 

eliminate the scale factors 0=× PMm . If the relation is written in the open 

form, it gives three equations two of which are independent and linearly 

dependent to M . 

0)()(

0)()(

0)()(

12

23

13
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MpvMpu

MpMpv

MpMpu

TT
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                           (10.2) 

where is the i-th row of
T
ip P . Equation 10.2 can also be written for the right 

image and an equation of the form 0=AM can be composed: 
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                                       (10.3) 

The solution of is the unit eigenvector corresponding to the smallest 

eigenvalue of . 

0=AM
A
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10.3 Polynomial Triangulation 

The noisy point correspondences do not meet the epipolar constraint. 

If andm̂ m̂ ′  are the point correspondences close to and but satisfying 

the epipolar constraint, a geometric error cost function is defined:   

m m ′

 

Figure 38 Polynomial triangulation computes the closest corresponding point 
which minimized the error function defined in Equation 10.4. 

22 )ˆ,()ˆ,(),( mmdmmdmmC ′′+=′                     (10.4) 

where is the Euclidean distance between the points. Once the point 

correspondences and

(*,*)d

m̂ m̂ ′ are found which minimizes the cost function, the 3D 

point M̂ can be computed by linear triangulation and the back-projected rays 

will precisely intersect [6]. This cost function can be minimized using optimization 

algorithm like Levenberg-Marquardt, but polynomial triangulation provides a non-

iterative method, the solution of six-degree polynomial. 

Any corresponding pair that satisfies the epipolar constraint must lie on the 

corresponding epipolar lines in the two images. is the optimum point lies on 

the epipolar line and is the optimum point lies on the epipolar line . Since 

the cost function is the Euclidean distance between the measured points and the 

m̂
l m̂ ′ l ′
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optimal points, the closest distance between these points are the perpendicular 

distance between the measured point and the corresponding epipolar line. So 

that the cost function can be rewritten as: 

22 ),(),(),( lmdlmdmmC ′′+=′                    (10.5) 

Therefore and are the closest points on lines and to the 

points and . The strategy of minimization is as follows: 

m̂ m̂ ′ l l ′

m m ′

1. Parameterize the epipolar lines in the left image with t . An epipolar line in 

the left image is written as . )(tl

2. By using the fundamental matrix , define the epipolar lines in the right 

image as . 

F
)(tl ′

3. The cost function is defined as  

                 (10.6) 
22 ))(,())(,(),( tlmdtlmdmmC ′′+=′

4. Find the value of t which minimizes the cost function. 

By a suitable parameterization of the epipolar lines, the cost function turns to a 

polynomial function of t  [6]. 

First step of the minimization algorithm is to apply a transformation to the 

corresponding points to place them at the origin, . With this 

transformation the epipoles is on the X-axis with coordinates, and 

and the fundamental matrix has a special form: 

T]100[
Tf ]01[

Tf ]01[ ′

⎥
⎥
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⎦

⎤

⎢
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⎡
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−

′−′−′

=
dcfd
bafb

dfcfdff
F                                     (10.7) 
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Suppose a point with the coordinate . Since the epipole is , 

the equation of the epipolar line of this point is 

Tft ]1[ Tf ]01[

]1[]01[]1[ ttffft −=×  which is of the form . The squared 

distance between the epipolar line and the origin is: 

)(tl

2

2
2

)(1
))(,(

tf
ttlmd

+
=                         (10.8) 

The corresponding epipolar line in the right image is: 

TT dctbatdctftFtl ])([]10[)( +++′−==′  

(10.9) 

The squared distance of this line to the origin is: 

222

2
2

)()(
)())(,(

dctfbat
dcttlmd

+′++
+

=′′                            (10.10) 

The total squared distance is: 

222
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2
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)()(
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ttlmdtlmdts
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The derivative of the function is: 

2222222 ))()((
))()((2

)1(
2)(

dctfbat
dctbatbcad

tf
tts

+′++
++−

−
+

=′            (10.12) 

The maxima and minima of will occur when)(ts 0)( =′ ts . Equating the 

Equation 10.12 to zero will give: 
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               (10.13) 

The maxima and minima of occur at the roots of the polynomial defined in 

Equation 10.13. The polynomial is a six-degree polynomial having six 

roots. The real root giving the minimum value of is the value of

)(ts

)(tg

)(ts t that is 

looked for. The compete polynomial triangulation is summarized as [6]: 

1. Define the transformation matrices that 

take and  to the origin: 
Tvum ]1[= Tvum ]1[ ′′=′
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2. Replace withF 1−−′ FTT T . The new corresponds to translated 

coordinates. 

F

3. Compute the left and right epipole and 

via

Teeee ][ 321=

Teeee ][ 321 ′′′=′ 0=Fe and . Normalize the 

epipoles such that  . 

0=′eF T
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2
1 =+ ee
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5. Replace withF TFRR ′ . The resultant has the form in Equation 

10.7 

F
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6. Set ,3ef = 3ef ′=′ , 22Fa = , 23Fb = , 32Fc = , . 33Fd =

7. Form the polynomial and solve for)(tg t to get the six roots. 

8. Evaluate the cost function defined in Equation 10.10 for the real-part of 

the roots of . Select the value of)(tg t as that gives the minimum 

value of the cost function. 

mint

9. Evaluate the two lines  and
Tttfl ]1[ −= l ′ defined in Equation 10.9 

with and find andmint m̂ m ′ˆ  that are the closest points on the epipolar 

lines to the origin. For a general line the closest point to the 

origin is . 

T][ νµλ
T)]([ 22 µλµνλν +−−

10. Transfer back to the original coordinate system by 

replacing with andm̂ mRT T ˆ1− m ′ˆ with . mRT T ′′′− ˆ1

11. Compute the 3D point M̂ via linear triangulation. 

10.4 Results and Conclusion 

Triangulation can be defined as a sparse 3D reconstruction. Only the 

corresponding points are reconstructed. For that reason, in this section only the 

images that have over 500 corresponding points are triangulated. For an 

underwater image, it is hard to find over 500 corresponding points, because the 

underwater scene structure has not been textured very much.  
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Figure 39 Castle sequence. The top pair are the images from the left and the right 
camera. The middle left shows the 3D reconstructed model from top view, the 
middle right from front view. The last image shows the 3D model from side view. 
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10.5 Dense 3D Reconstruction 

Since in the triangulation method, only the corresponding points are triangulated, 

only %2~3 of the points are triangulated, which is called sparse 3D 

reconstruction. The size of the images in castle sequence is 768x576 which 

means 442368 points. When only the 3D coordinates of the corresponding point 

are calculated, this makes 1305 points which provides a poor visualization.  

Since each pixel’s correspondence is computed in stereo matching, it is possible 

to find the 3D points projected to each pixel in the image. By this way, 3D model 

of the whole scene can be reconstructed, which is called dense 3D 

reconstruction. 

The first step of dense reconstruction is to compute the disparity map, which is 

discussed in the stereo matching. Occlusions cause holes in the disparity map. 

These are filled according to the disparity values of neighbor pixels.  

The second step is the spike removal. The pixels which have a large disparity 

difference according to the neighbor pixels are called spikes. If there is a large 

difference in disparity value between a pixel and its neighbors, the disparity of 

that pixel is replaced by the average disparity value of its neighbors. The spikes 

are removed with this process. 

The last step is smoothing. The disparity map is filtered by a Gaussian filter in 

order to smooth the disparity map and to provide a continuous surface.  

These post-processing steps are applied to the disparity of coral pair and the 

result is shown in Figure 40. 

 112



 

Figure 40 The disparity map of the coral sequence. The left part is the disparity 
map before spike removal and smoothing and the right part is the smoothed 
disparity map with removed spikes. 

The disparity values of the pixels are not their actual z-coordinate. Disparity 

represents a relative depth value. The disparity value is be transformed to the 

actual depth value as follows: 
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where is the disparity value, and are the minimum and 

maximum depth values in the images. These values are estimated empirically 

and set to (80,200) for the coral sequence. 

d ZMin ZMax

 Once the depth value of the 3d point is computed, the computation 

of X andY are left. The 2D projection of the 3D point and the camera projection 

matrix is known. The X and Y coordinates of 3D point can be calculated by 

solving the equation: 

     PMm =                                            (10.17) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1

Z
Y
X

Pv
u

                                      (10.18) 

 113



The steps of the solution are: 

• Compute the values ,  and :  0c 1c 2c

23222

13121

03020

PZPc
PZPc
PZPc

+=
+=
+=

                                     (10.19) 

where is the i-th row and j-column of the projection matrixijP P . 

• Define the equations: 
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                             (10.20) 

By solving the three equations defined in Equation (10.19), the X and Y-

coordinates is calculated as: 
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For each pixel, the 3D projected point is computed. By this way the 3d model 

of the whole image is reconstructed.  
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Figure 41 The 3D point cloud of coral sequence. The reconstructed point number is 
76800. 

The 3D point cloud is triangulated in order to form a mesh and the result mesh is 

covered with a default surface. 
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Figure 42 The dense 3D reconstruction of coral sequence. 

The 3D representation will be more realistic by texture mapping the mesh model. 

The image taken from the left camera is chosen as the texture. A polygon is 

formed by using the reference pixel and its right and down neighbors. Since 

mesh is formed by polygons, each texture polygon is mapped to the surface 

polygon. 
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CHAPTER 11  
 

EXPERIMENTS 
 
 

11.1 Introduction 

This chapter is devoted to the 3D reconstruction of different types of underwater 

scenes. Three sequences are examined. First one is the coral sequence, which is 

used throughout the thesis to demonstrate the sub-blocks of the reconstruction 

process and to compare the algorithms. The second one is boat sequence and 

the last is another coral sequence but this sequence is different from the first two 

by the motion of the camera. In the first two sequence the camera makes a 

translational motion with a relatively small rotation around the object, but in the 

last sequence the camera makes translational motion along the principal axis 

with again a relatively small rotation and the effect of this different motion is 

examined. 

11.2 Coral 1 Sequence 

Figure 43 shows two frames from a video sequence captured from a camera 

following a quasi-circular translational path around a coral reef in clear water.   

 

Figure 43 Chosen two frames from the coral sequence. The left image represents 
the left camera and the right image represents the right camera in the stereo pair. 
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The two frames are preprocessed with the method examined in Chapter 3. The 

resultant images are shown in Figure 44. It seems to decrease the visibility 

quality but it increases the number of detected features. 

 

Figure 44 The result of preprocessing of coral sequence. 

Once the images are preprocessed, the next step is to detect features, find 

corresponding pairs and compute the fundamental matrix which represents the 

epipolar geometry between the two cameras. The feature points are detected 

with SIFT method and matched with SIFT descriptors. The fundamental matrix is 

estimated via normalized 8-point algorithm and RANSAC. In Figure 45, the left 

image shows the matched corresponding points and their motion between the 

two images on the left image. The red cross shows their position in the left image 

and the green cross shows their position in the right image. The blue line 

represents their path between the two frames. In Figure 45, the right image 

shows the epipolar lines wit green lines and the feature points with red cross. 

 

Figure 45 The path of corresponding points between the two frames is shown in 
the left and the epipolar lines and feature points is shown in the right image. 
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With the estimated fundamental matrix, the intrinsic parameters are computed via 

simplified Kruppa equations and the extrinsic parameters are computed via 

robust method of rotation and translation matrices. Once the intrinsic and 

extrinsic parameters are computed, the next step is rectification. The two frames 

are rectified via uncalibrated rectification algorithm, since it performs better than 

the calibrated rectification and give less distorted images. Figure 46 shows the 

rectified image pair. 

 

Figure 46 The coral sequence rectified via uncalibrated rectification algorithm. 

To perform dense reconstruction, the correspondence pixel of each pixel in the 

image should be computed. The correspondence of each pixel and disparity map 

is computed with graph cut based stereo matching. In Figure 47, the left part 

shows the disparity map of the coral sequence and the right part shows the 

occluded parts in the disparity map. The occluded regions are filled according to 

their neighbor disparity values. 

 

Figure 47 The disparity map of the coral sequence. The occluded regions are 
shown with red in the right image. 
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Figure 48 shows the 3D point cloud computed via dense reconstruction from 

different viewpoints.  

 

Figure 48 The two frames of coral sequence and reconstructed 3D point cloud. 
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Figure 49 The generated mesh model of coral sequence. 

A mesh surface is generated by 3D point cloud for a better visualization. Figure 

49 shows the generated mesh and its view from different locations. 

Coral 1 Sequence is the data set with the properties of underwater images 

captured in clear water with enough texture for the reconstruction. Figure 49 

shows that the 3D reconstruction algorithm performs well in textured objects in 

clear water where the effect of water is little to distort the image. 

11.3 Boat Sequence 

Figure 50 shows the two chosen frames from a camera following a quasi-circular 

translational path around a submarine in blurred water. 
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Figure 50 Chosen two frames from the boat sequence. The left image represents 
the left camera and the right image represents the right camera in the stereo pair. 

Figure 51 shows the resultant images of preprocessing step. The blurring effect 

of the water is removed and it is easier to detect features. 

 

Figure 51 The two frames of boat sequence after preprocessing. 

Detected and matched feature points and the epipolar lines are shown in Figure 

52. 

 

Figure 52 The corresponding points is shown in the left and the epipolar lines and 
feature points is shown in the right image. 

 122



The images rectified via uncalibrated rectification are shown in Figure 53. 

 

Figure 53 The boat sequence rectified via uncalibrated rectification algorithm. 

Graph Cut based stereo matching algorithm is applied to the rectified images. the 

resultant disparity map and the occluded regions are shown in Figure 54. As it is 

seen from the Figure 54, the blurred water decreases the performance of stereo 

matching algorithm. The disparity map in textureless regions shows different 

depth levels, although the textureless region which represents the water at the 

back ground does not have any depth variation. But the blurred water makes it 

difficult to find the corresponding of each pixel in the image and causes false 

matches. Despite the disparity errors on the background, the shape of the 

submarine is preserved. But the little disparities differences are not detected. 

Since the submarine has a curved surface, but at the disparity map the surface of 

the submarine is presented as flat. The reason is that the errors in detecting the 

feature points, estimating the fundamental matrix and auto-calibration process, 

(lack of calibration matrix), cause a decrease in the accuracy of the dense 

reconstructed model. 

 123



 

Figure 54 The disparity map of the boat sequence. The occluded regions are shown 
with red in the right image. 

With the computed disparity map, the reconstructed 3D point cloud of the boat 

sequence is shown in Figure 55. 

 

Figure 55 The two frames of coral sequence and the resultant reconstructed 3D 
point cloud. 

The reconstructed point cloud is used to generate a mesh and covered with a 

surface for a better visualization. 
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Figure 56 The generated mesh model of the boat sequence. 

11.4 Coral 2 Sequence 

Coral 2 Sequence is different from the previous two data sets in the way of 

camera motion. In the first two data sets the camera makes a translational motion 

with a little rotation around the observed object; but in Coral 2 sequence the 

camera makes a translational motion along the principal axis.  

In the motion along principal axis, the features do not move along the horizontal 

axis, but along the vertical axis. The camera gets closer to the object between the 

successive frames. Since the object comes closer, the features’ scale changes 

between frames which make them difficult to match. Since SIFT is a rotation and 

scale invariant feature detector, the scale difference between the features do not 

affect the performance of SIFT descriptor. 
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Figure 57 shows the two frames from Coral 2 sequence. The translational motion 

along the principal axis can be extracted from the positions of the coral reefs in 

the images. During the motion, the coral reef comes closer to the camera. 

 

Figure 57 The two frames of Coral 2 sequence. The camera makes a translational 
motion along the principal axis. 

The preprocessed images are shown in Figure 58. 

 

Figure 58 The two frames of Coral 2 sequence after preprocessing. 

The motion along the principal axis causes the epipoles located in the images. 

the path of the feature points and the epipolar lines and the epipole of the right 

camera in the left image is shown in Figure 59. 
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Figure 59 The corresponding points is shown in the left and the epipolar lines and 
feature points is shown in the right image. 

The rectified images are shown in Figure 60. As it is seen, the uncalibrated 

rectification algorithm gives a more distorted image than the motion type in the 

previous data sets.  

 

Figure 60 The rectified images via uncalibrated rectification algorithm. 

The distorted rectified images also affect the performance of the stereo matching 

algorithm. The resultant disparity map is shown in Figure 61. The white spots in 

the disparity map show the false matches during the stereo matching. Although 

the region around the white spots is smooth and does not have any depth 

discontinuity, the stereo matching algorithm fails to find the correct 

correspondences and disparity values. 
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Figure 61 The disparity map of Coral 2 sequence. 

Figure 62 shows the 3D point cloud reconstructed from the Coral 2 sequence. 

 

Figure 62 The two frames of Coral 2 sequence and the resultant reconstructed 3D 
point cloud. 

Figure 63 shows the mesh model generated from 3D point cloud.  
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Figure 63 The mesh model of Coral 2 sequence. 

Figure 63 shows that the 3D model suffers from accuracy. The positions of the 

corals are relatively true, but the shape of the corals is not preserved as well as in 

the previous data sets and the depth difference between the foreground and 

background is relatively small. The reason is that rectification algorithms fail when 

the camera moves along the principal axis. In the previous two data sets, the 

camera moves not along the principal axis but perpendicular to it and 3D 

reconstruction process give good results.  

It is understood from the examined three data sets that 3D reconstruction 

process performs well when the camera makes a motion perpendicular to the 

principal axis and its performance falls when the camera moves along the 

principal axis. 
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11.5 METU Pool 

The 3D reconstruction algorithm is also tested on PC-104 real time MPEG-4 

video compressor, encoder and frame grabber module shown in Figure 64 with 

Helmet mountable underwater black & white video camera. The experiment is 

conducted in METU swimming pool. 

 

Figure 64 PC-104 is shown in the left part. The right image shows the PC-104 card 
used in this thesis. 

Figure 65 shows the Helmet mountable underwater black & white video camera 

used in this thesis. 

 

Figure 65 The underwater black & white video camera. 
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The underwater camera makes a translational motion around the submerged 

object, a statuette on a box. Figure 66 shows the two frames from the pool 

sequence captured in the METU Pool. 

 

Figure 66 Two frames from pool sequence. 

Since the water in the pool is clearer than the water in the sea, the images are 

not blurred and there is no need to preprocess the images. But once the images 

are preprocessed, a characteristic of the underwater camera used in this thesis is 

observed, moiré effect. Moire effect is a wavy repetitive pattern on the image and 

the importance of removing the moiré effect is that the following steps of 

preprocessing increase the contrast, also the moiré effect, and this increases the 

chance of degraded results. Figure 67 shows the images after preprocessing.  

 

Figure 67 The two frames of pool sequence after preprocessing. 
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As it is seen from Figure 67, the preprocessing steps increase the moiré effect, 

although the moiré effect is removed from the raw images in the first step. The 

increased moiré effect decreases the image quality for feature detection 

algorithms. For that reason the preprocessing is not used in this sequence. 

Figure 68 shows the detected feature and epipolar lines. 

 

Figure 68 The detected feature and the epipolar lines. 

The rectified images are shown in Figure 69. 

 

Figure 69 The rectified images by uncalibrated rectification algorithm. 

The next step is to compute the disparity map from rectified image pair. The 

disparity map is shown in Figure 70. The left part is the disparity map and the 

right part is the disparity map after the smoothing process. 
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Figure 70 The left part shows the resultant disparity map from stereo matching 
algorithm and the right part is the result of smoothing process. 

Figure 71 shows the computed 3D point cloud. The computed 3D point clod is 

covered with a surface for a better visualization. Figure 72 shows the 3D model 

covered with a surface from different view points. 

 

Figure 71 The two frames of pool sequence and the computed 3D point cloud. 
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Figure 72 The 3D model of pool sequence form different viewpoints. 
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CHAPTER 12  
 

CONCLUSION 
 
 

12.1 Summary of the Thesis 

The 3D reconstruction of underwater scenes is composed of successive sub-

blocks. 

The first step is the image enhancement process. Since the underwater is a 

complex structured environment and suffers from low contrast, non-uniform 

lighting, back-scattering, blurring etc…, the images from underwater has to be 

preprocessed before applying the image processing algorithms. A preprocessing 

filter is applied to the images which removes the effect of the water and enhance 

the images. 

The second step is the feature detection and matching process. In order to find 

the corresponding points between the images, the feature points have to be 

found in each image. The most famous feature detection algorithm is Harris 

corner detector. A modified version of Harris corner detector and another feature 

detection algorithm, SIFT, are examined and compared.  

After the corresponding points are determined, the next step is the computation 

of fundamental matrix which defines the epipolar geometry between the two 

images. The combination of normalized 8-point algorithm and RANSAC is used in 

estimating the fundamental matrix which is robust to noise and also provides 

outlier removal during the estimation process. 

The forth step is the auto-calibration. Calibration matrix is one of the most 

important parameters in 3D reconstruction process. Since the underwater camera 

is uncalibrated, the calibration matrix is not known. Camera can be calibrated 
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with a known structured calibration object and also it can be calibrated without 

using any calibration object, using calibration patterns are impractical for 

underwater applications. Two different approaches to the auto-calibration 

problem are examined, auto-calibration using the virtual conic and simplified 

Kruppa equations.  

The estimation of the rotation and translation matrix is performed with two 

different algorithms, linear and robust one. These two algorithms are examined 

and compared with ground truth data. 

Rectification is the pre-process of stereo matching which is crucial for dense 3D 

reconstruction. Rectification provides new camera matrices with parallel and 

horizontal epipolar lines. This decreases the search area and improves the 

computation time in stereo matching. Two algorithms are examined, calibrated 

rectification and uncalibrated rectification.  

Stereo matching is the process of finding the corresponding pixel of each pixel in 

the image. Graph based stereo matching algorithm is examined and compared 

with traditional stereo matching algorithm. 

The last step is the triangulation. Because of the noise in the image, the back-

projected rays from corresponding points do not intersect in 3D space. An optimal 

intersection point is computed by triangulation. Triangulation provides sparse 3D 

reconstruction. Two algorithms are examined, linear and polynomial triangulation. 

Finally a method for the dense reconstruction and the processes for a better 3D 

model are examined. 

12.2 Discussion 

In image enhancement step, the preprocessing filter removed the effects of the 

water and enhanced the images. The performance of the filter is tested with the 

detected features before and after the filtering and it is seen that the 

preprocessing filter significantly increases the number of detected feature. The 

more detected features, the more robust reconstruction are performed. 

In feature detection and matching step, Harris corner detector and SIFT method 

are compared. SIFT method gives a better performance than Harris corner 
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detector. Despite the preprocessing filter, the blur in the image decreases the 

accuracy in corner detector. The invariance of SIFT to the rotation and scaling is 

the major reason why SIFT performs better in underwater. In feature matching 

the results show that SIFT descriptor performs better than normalized cross 

correlation (NCC). 

The normalized 8-point algorithm and RANSAC are used in the estimation of 

fundamental matrix and outlier detection. This combination gives satisfactory 

results with relatively low Sampson errors. 

Auto-calibration is one of the key steps in the reconstruction process. Its 

performance determines the performance of the reconstruction significantly. 

Simplified Kruppa equations and auto-calibration by virtual conic algorithms are 

compared. At least three images are required for the simplified Kruppa equations 

to determine three fundamental matrixes for the estimation of calibration matrix 

with five unknown parameters. Kruppa equations can not be solved in a 

straightforward manner. Instead, minimization algorithms are used to solve. 

Levenberg-Marquardt minimization algorithm, which is the most famous 

minimization algorithm in computer vision, is used in this thesis. An initial 

estimate is required to solve the minimization problem. The initial estimate 

directly affects the performance of the algorithm, as it can be observed form the 

results in Table 6. The more accurate initial estimate, the more good results the 

algorithm gives. The focal length in x-axis and y-axis are assumed to be equal 

and the principal point is assumed to be in the middle of the image with zero 

skew. The results in Table 6 show that this is a reasonable assumption. The latter 

algorithm, auto-calibration with virtual conic, fails to estimate the calibration 

matrix. The result of the algorithm is exactly equal to the calibration matrix used 

to normalize the projection matrix at the beginning of the algorithm. The reason is 

that the parameter which must converge during iteration, do not converge, so a 

reasonable dual absolute quadric can not be computed. The results show that 

simplified Kruppa equations performs better and gives reasonable calibration 

matrices. 

v

 Since rectification is the pre-step of stereo matching, its performance affects the 

performance of stereo matching. The goal of rectification is to form new extrinsic 
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parameters which provide parallel and horizontal epipolar lines with minimal 

distortion in the images. Two rectification algorithms are examined, calibrated 

rectification and uncalibrated rectification. The first mentioned algorithm requires 

calibration matrices with projection matrices. It computes a transformation which 

transfers the epipoles to the infinity. The latter algorithm approaches the 

rectification problem as a nonlinear least square problem with six unknowns and 

solves by minimizing the energy function given in Equation 8.15. The two 

algorithms are tested with coral sequence. It is seen that for a good result in 

calibrated rectification an accurate calibration matrix is required. The calibration 

matrix in the coral sequence is estimated by simplified Kruppa equations. As it is 

seen from Figure 29, the rectified images satisfy the rectification constraints with 

parallel and horizontal epipolar lines. But there is too much distortion in the 

images during the warping process. The uncalibrated rectification performs better 

than calibrated one and results with less distorted images. Since there is no 

common measurement to compare the performances of the rectification 

algorithm, the examined algorithms are compared with the mean differences 

between the y-axis coordinates of the corresponding points. Table 8 shows the 

results for calibrated and uncalibrated rectification algorithms. The results show 

that uncalibrated rectification gives a better performance than the calibrated one, 

which is expected, since the uncalibrated rectification minimizes this difference 

while computing the new camera matrices. 

After the images are calibrated, the next step is stereo matching. Stereo 

matching is the process of finding the correspondence pixel of each pixel in the 

image and compute the disparity map of the scene, which can be assumed as 

the depth map of the scene. Several methods have been developed for stereo 

matching. Graph-cut algorithm creates more smooth disparity maps and performs 

better in textureless areas. For that reason graph cut is chosen in this thesis. It is 

compared with a traditional stereo matching algorithm using the Tsukuba 

sequence, which provides ground truth data for stereo matching algorithms, and 

coral sequence. Beside this comparison, the versions of graph cut algorithm, 

voxel labeling and pixel labeling, are compared. As it is seen from Figure 35, 

voxel labeling gives the best performance among pixel labeling and traditional 

stereo matching algorithm. The performance of stereo matching depends on the 

performance of the rectification and the texture characteristic of the scene. Stereo 
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matching algorithms do not perform well in homogeneous areas because of the 

difficulty of finding correspondence in this type of areas. 

The final step is the computation of the 3D coordinates of the points whose 

projections are the corresponding points by triangulating the corresponding 

points. Two triangulation algorithms, linear and polynomial triangulation, are 

examined and compared. In Euclidean geometry, two algorithms perform similar. 

But in projective geometry polynomial triangulation gives better performance. 

When the 3D points computed with triangulation are projected on the images with 

the projection matrices of the camera for verification, it is seen that the re-

projected points differs from the original ones with a difference of 3-7 pixels in y-

axis. The reason of this difference is the error in the estimation of fundamental 

matrix.  

Finding the 3D coordinates of the points with triangulation can be called sparse 

3D reconstruction. Sparse means that not all of the points but only the 

corresponding points are triangulated. This means that only 20% of the points are 

triangulated. This provides a good 3D model, since the corresponding points are 

the most recognizable features in the image. But for a better and more detailed 

model, dense reconstruction must be performed. For dense reconstruction only 

the disparity map and the projection matrix of the camera is enough. The model 

is reconstructed form the view of the camera whose projection matrix is used. If 

the projection matrix of the left camera is used in the reconstruction process, the 

model is reconstructed according to the view of the left camera. It is same for the 

right camera. The reconstruction is performed via Equation 10.16. The computed 

3D model represents the scene viewed by the two cameras. The model contains 

some errors, especially in the textureless regions, where stereo matching 

algorithm fails to find correspondence and also the errors during the estimation of 

projection matrix of the cameras. 

12.3 Future Work 

The 3D model is reconstructed from only 2 frames and the baseline distance 

between the frames are relatively small. All the frames in the video sequence 

may be used for the reconstruction and the 3d model of the scene from all 

viewpoints is achieved. Since underwater provides a limited visibility range, 25 
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meters in clear water and 3-5 meters in blurred water. It is impossible to cover the 

research site, for example an archeological site, with this visibility range. For that 

reason mosaicing algorithms are developed to combine the captured images in 

an appropriate order to get the image of the whole site. The 3D reconstruction 

process can be combined with mosaicing algorithm to reconstruct the 3D model 

of the whole site. 

 

 140



 
REFERENCES 

 

[1] M.Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. 

Tops, R. Koch, “Visual modeling with a hand-held camera”, International Journal 

of Computer Vision 59(3), 207-232, 2004. 

[2] C. Harris, M. Stephens, “A Combined Corner and Edge Detector”, In 4th 

Alvey Vision Conference, S. 147-151, 1988. 

[3] D. G. Lowe, “Distinctive Image Feature from Scale-Invariant Keypoints”, 

International Journal of Computer Vision, 2004.  

[4] Z. Zhang, R. Deriche, O. Faugeras, Q. T. Luong, “A Robust Technique for 

Matching Two Uncalibrated Images Through the Recovery of the Unknown 

Epipolar Geometry”, INRIA, Report No. 2273, 1994. 

[5] A. Noble, "Descriptions of Image Surfaces", PhD thesis, Department of 

Engineering Science, Oxford University 1989, p45. 

[6] R. Hartley, A. Zisserman, “Multiple View Geometry in Computer Vision”, 

Cambridge University, 2004 

[7] R. Hartley, “In Defense of the 8-Point Algorithm”, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 19(2), 133-1337, 1997 

[8] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene 

from two projections”, Nature. 293:133-135, September 1981 

[9] A. Fusiello, E. Trucco, A. Verri, “A compact algorithm for rectification of 

stereo pairs”, Machine Vision and Applications, 2000 

[10] L. Irsana, A. Fusiello, “Quasi-Euclidean Uncalibrated Epipolar 

Rectification”, Research Report RR 43/2006, Dipartimento di Informatica – 

Universita di Verona, 2006 

 141



[11] D. Scharstein, R. Szeliski, “A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms”, International Journal of Computer 

Vision, 47(1/2/3):7-42, 2002 

[12] M. F. Tappen and W. T. Freeman, “Comparison of Graph Cuts with Belief 

Propagation for Stereo, using Identical MRF Parameters”, In Proceedings of the 

Ninth IEEE International Conference on Computer Vision (ICCV), Pages 900 - 

907, 2003 

[13] V. Brandou, A. G. Allais, M. Perrier, E. Malis, P. Rives, J. Sarrazin, P. M. 

Sarradin, “3D Reconstruction of Natural Underwater Scenes Using the 

Stereovision System IRIS”. Oceans 2007 Europe, 2007 

[14] V. Kolmogorov and R. Zabih, “Graph Cut Algorithms for Binocular Stereo 

with Occlusions”, In Mathematical Models in Computer Vision: The Handbook, 

Springer-Verlag, 2005 

[15] J. Sun, H. Y. Shum, N.-N. Yeng, “Stereo matching using belief 

propagation”, IEEE Trans. Pattern Anal. Mach. Intell. 25 (7) (July 2003). 

[16] V. Kolmogorov, “Graph Based Algorithms for Scene Reconstruction from 

Two or More Views”, Ph.D. Thesis, Cornell University, 2003 

[17] V. Kolmogorov and R. Zabih, “Multi-camera Scene Reconstruction via 

Graph Cuts”, In European Conference of Computer Vision (ECCV), 2002 

[18] Y. Boykov, O. Veksler, R. Zabih, “Fast Approximate Energy Minimization 

via Graph Cuts”, In Internation Conference of Computer Vision, pages 377-384, 

1999 

[19] U. Topay, “3D Scene Reconstruction from Uncalibrated Images”, Ms. 

Thesis, METU, 2002 

[20] S. Bazielle, I. Quidu, L. Jaulin, J. P. Malkasse, “Automatic Underwater 

Image Pre-Processing”, CMM, 2006 

 142



[21] M. I. A. Lourakis and R. Deriche, “Camera self-calibration using the 

Kruppa equations and the SVD of the fundamental matrix: The case of varying 

intrinsic parameters”, Research Report, INRIA, 2000 

[22]  Hartley Richard, “Kruppa’s Equations Derived from the Fundamental 

Matrix”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 2, 

1997 

[23] R. Hartley, P. Strum, “Triangulation”, Computer Vision and Image 

Understanding, Vol. 68, No. 2, pp. 146-157, 1994 

[24] M. Pollefeys, “Visual 3D Modeling from Images”, Tutorial Notes, University 

of North Caroline, 2004 

[25] V. Kolmogorov and R. Zabih, "Computing Visual Correspondence with 

Occlusions using Graph Cuts",  International Conference on Computer 

Vision,  2001. 

[26] Y. Boykov, O. Veksler, R. Zabih, "Markov Random Fields with Efficient 

Approximations", IEEE Computer Vision and Pattern Recognition 

Conference,  1998.  

[27] A. Fusiello, V. Murino, “Augmented Scene Modeling and Visualization by 

Optical and Acoustic Sensor Integration”, IEEE Transactions on 

Visualization and Computer Graphics, 2004 

[28] H. Singh, C. Roman, L. Whitcomb, D. Yoerger, “Advances in Fusion of 

High Resolution Underwater Optical and Acoustic Data”, IEEE, 2000 

[29] Y. Y. Schechner, N. Karpel,  “Recovery of Underwater Visibility and 

Structure by Polarization Analysis”, IEEE Journal of Oceanic Engineering, 

2005 

[30] O. Faugeras, Q. T. Luong, S. J. Maybank, “Camera Self-Calibration: 

Theory and Experiments”, Proceedings of the 2nd European Conference 

on Computer Vision, 321-334, 1992 

 143



[31] R. Hartley, “Kruppa’s Equations Derived from the Fundamental Matrix”, 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997 

[32] M. A. Fischler, R.C. Bolles, “Random Sample Consensus: A Paradigm for 

Model Fitting with Applications to Image Analysis and Automated 

Cartography”, Communications of th ACM, Volume 24 Number 6, 1981 

[33] O. Pizarro, R. Eustice, H. Singh, “Large area 3D reconstruction from 

underwater surveys”, Oceans’04 Vol. 2, pages 678-687, 2004 

[34] K. Plakas, E. Trucco, A. Fusiello, “Uncalibrated Vision for 3D Underwater 

Application”, Oceans'98 IEEE/OES Conference, 1998 

 144


