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Abstract

Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of
molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between
proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The
rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use
deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural
networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of
GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the
moment, such as protein function prediction, protein–protein interaction prediction and in silico drug discovery and
development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep
learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease
prediction from data.

Key words: deep learning; biological networks; protein function prediction; protein interaction prediction; drug
development; drug-target prediction.

Introduction
Understanding many biological processes requires knowledge
not only about the biological entities themselves but also the
relationships among them. For example, processes such as cell
differentiation depend not only on which proteins are present,
but also on which proteins bind together. A natural way to rep-
resent such processes is as a graph, also called a network, since
a graph can model both entities as well as their interactions.

Recent advances in experimental high-throughput technol-
ogy have vastly increased the data output from interaction
screens at a lower cost and resulted in a large amount of such
biological network data [1]. The availability of this data makes
it possible to use biological network analysis to tackle many
exciting challenges in bioinformatics, such as predicting the
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function of a new protein based on its structure or anticipating
how a new drug will interact with biological pathways. This
wealth of new data, combined with the recent advances in
computing technology that has enabled the fast processing of
such data [2, p. 440], has reignited interest in neural networks
[3–6], which date back to the 1970s and 1980s, and set the stage
for the emergence of deep neural networks, a.k.a deep learning,
as a new way to address these unsolved problems.

Deep learning is a neural network comprised of multiple lay-
ers with (often non-linear) activation functions, whose compo-
sition is able to model non-linear dependencies. This has shown
empirically strong performance in multiple fields, such as image
analysis [7] and speech recognition [8]. One of the strengths of
deep learning is its ability to detect complex patterns in the data,
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making it well suited for application in bioinformatics, where the
data represent complex, interdependent relationships between
biological entities and processes, which are often intrinsically
noisy and occurring at multiple scales [9]. Furthermore, deep
learning methods have been extended to graph-structured data,
making it a promising technology to tackle these biological
network analysis problems. The early examples of applying
deep learning to biological network data, detailed in this paper,
have consistently reported comparable or better results than
the existing classical machine learning methods, highlighting its
potential in the field.

We begin this paper by introducing biological networks and
describing typical learning tasks on networks. Subsequently,
we will explain the core concepts underpinning deep learning
on graphs, namely graph neural networks (GNNs). Finally, we
will discuss the most popular application tasks for GNNs in
bioinformatics.

Biological networks

DNA, RNA, proteins and metabolites have crucial roles in the
molecular mechanisms of the cellular processes underlying
life. Studying their structure and interactions is fundamental
for a variety of reasons, including the development of new
drugs and discovery of disease pathways. Both the structure
and interactions of these entities can be represented using a
graph, which is comprised of a set of nodes and a set of edges
representing the connections between nodes. For example,
molecules can be represented as a graph, where the nodes are
the atoms and the edges are the bonds between the atoms.
Similarly, many biological processes can be modeled with the
entities as nodes and the interactions or relationships among
them as edges. The aforementioned representation as a graph is
convenient for a variety of reasons. Networks provide a simple
and intuitive representation of heterogeneous and complex
biological processes [10]. Moreover, it facilitates modeling and
understanding complicated molecular mechanisms through
the use of graph theory, machine learning and deep learning
techniques.

As seen above, it is possible to define biological networks
at different levels of detail. Besides the graph representation of
biological actors used in investigating molecular properties and
functions, other common biological networks include protein–
protein interaction (PPI) networks, gene regulatory networks
(GRN) and metabolic networks. Additionally, because of their
relevance in contemporary health research, the above defini-
tion of a biological network is extended to include drug–drug
interaction (DDI) networks. In the following, we provide a brief
introduction to each of these networks.

Protein-Protein Interaction Networks PPI networks represent
the interactions among proteins [11]. PPIs are essential for
almost all cellular functions [12], ranging from the assembly of
cell structural components, i.e. the cytoskeleton, to processes
such as transcription, translation and active transport [13].
PPIs also include transient interactions, i.e. protein complexes
that are formed and broken easily [14]. In PPI networks,
nodes correspond to proteins while the edges define the
interaction among connected proteins [15]. An exhaustive
graph representation of PPIs would include also the type of the
interaction, i.e. phosphorylation, or bond. However, in practice
this is rarely captured.

Gene Regulatory Networks A GRN represents the complex
mechanisms that regulate gene expression, the set of processes
which leads to generating proteins from the DNA sequence [16].

Regulation mechanisms occur at different stages of protein pro-
duction from DNA, such as during the transcription, translation
and splicing phases. An intuitive explanation of these complex
and interconnected mechanisms sees proteins both as the prod-
uct and the controller of the gene expression [13]. In GRNs, each
node represents a gene, and a directed link among two genes
implies that one gene directly regulates the expression of the
other without mediation from other genes [17].

Metabolic Networks Metabolic networks use graphs to
represent metabolism, the set of all chemical reactions that
occur within a living organism to maintain life. Metabolic actors
are called metabolites, and they represent the intermediate and
final products of metabolic reactions. Given their complexity,
metabolic networks are usually decomposed into metabolic
pathways, i.e. series of chemical reactions related to perform
a specific metabolic function [18]. The graph representation of
metabolism consists of mapping each metabolite to a node and
each reaction to a directed edge labeled with the enzyme acting
as the catalyst [19].

Drug–Drug Interaction Networks The objective of DDI net-
works is to model the interactions among different drugs [20].
A DDI network provides drugs as nodes and represents their
interactions as edges. Unlike the previous networks, a DDI net-
work does not represent a biological process. However, since it
is a meaningful representation of knowledge about drug inter-
actions, DDI networks are of increasing interest to researchers
nowadays. Indeed, DDI networks are widely investigated for
polypharmacy research [21].

As we have seen, biological networks are a rich way of
representing biological data because they capture information
not only about the entity itself but also the relationship between
those entities. A large amount of information about these
networks is already available, and we report on some of the
most relevant biological network resources used in the reviewed
methods in Table 1. Besides being an effective representation
of a biological process, biological networks also unlock a suite
of methods available for drawing new insights from graph data.
We will introduce the classical types of problems that can be
formulated on such graph-structured data in the following
section.

Learning tasks on graphs

Learning tasks on graphs are at a high level categorized into node
classification, link prediction, graph classification and graph
embedding, though as we will discuss, approaches designed for
one task can often be adapted to address multiple tasks. We will
now explain each task in more detail.

Node Classification A typical task in biological network anal-
ysis is predicting the unknown function of a protein based on
the functions of its neighbors in a PPI network. This problem,
called node classification [77], is important when an input graph
contains some nodes with labels, but many without, and the
goal is to classify the remaining unlabeled nodes in the network.
This is typically solved through some form of semi-supervised
learning, where the algorithm uses the entire network as input
during training with the goal of classifying all nodes. Although
all nodes will be classified, the loss is calculated only on the
nodes with a true label during training, thereby learning from the
nodes with labels in order to classify the remaining unlabeled
ones.

Link Prediction Current knowledge of interactions in biolog-
ical networks is often incomplete, such as which genes regulate
the expression of another in GRNs. Predicting these missing
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Table 1. Resources of the most common biological networks that were used in the reviewed methods. We report the name, a short description,
the website and which of the reviewed methods use them. The description indicates if the resource is a dataset (and therefore easy
downloadable) or if it is a database accessible via web interface. The DrugBank database is included in two sections since it is used to collect
the drug chemical structure and the information about DDIs.

Database Description & website References

Drug Repurposing Hub [22] Curated database of FDA-approved drugs and clinical as well as
pre-clinical chemical compounds

[23]

https://clue.io/repurposing
DrugBank [24] Database of drug structure, drug-target information and DDIs [25–28]

https://www.drugbank.ca
MUTAG [29] Benchmark dataset reporting the molecular structure of 188

nitro compounds labeled as mutagenic & non-mutagenic on a
bacterium

[30]

http://graphlearning.io/
Chemical
compounds

National Cancer Institute
1/109 (NCI1, NCI109) [31]

Benchmark datasets reporting the chemical structure of
compounds showing activity against some cancer cell lines

[30]

http://graphlearning.io/
PubChem’s BioAssay
database (PCBA) [32]

Benchmark dataset of small molecules reporting their
high-throughput-measured biological activities

[33]

http://moleculenet.ai/
Predictive Toxicology
Challenge (PTC) [34]

Benchmark dataset reporting the structure of 344 compounds
classified as carcinogenic and non-carcinogenic on rats

[30]

http://graphlearning.io/
Quantum-Machine
9 (QM9) [35]

Dataset of small organic molecules with the structure &
various properties

[36]

http://quantum-machine.org/datasets
Tox21 [37] Benchmark dataset of compounds & their toxicity on some

biological targets
[33]

http://graphlearning.io/

DrugBank [38], [39] Database of drug structure, drug-target information and DDIs [25], [40], [27], [41], [28]
https://www.drugbank.ca

DDI Networks Twosides [42] Comprehensive database of DDIs with respect to millions of
adverse reactions

[43–46]

http://tatonettilab.org/offsides/

Gene regulatory
networks

DREAM4 [47], [48] Datasets of gene expression time series data & associated
ground truth GRN structure from the DREAM4 100-gene in silico
network inference challenge

[49]

http://gnw.sourceforge.net/dreamchallenge.html

Metabolic networks

BioModels [50] Database of mathematical models of biological & biomedical
systems, such as the Systems Biology Markup Language
models of metabolic pathways

[51]

https://www.ebi.ac.uk/biomodels/
Kyoto Encyclopedia of Genes
and Genomes (KEGG) [53]

Biological pathways database for multiple model organisms [52]

https://www.genome.jp/kegg/

Biological General Repository
for Interaction

Curated database of PPIs for multiple model organisms [54–56], [28]

Datasets (BioGRID) [57] https://thebiogrid.org
Database of Interacting
Proteins (DIP) [58]

Curated database of PPIs for multiple model organisms [59], [60]

http://dip.doe-mbi.ucla.edu
High-quality INTeractomes
(HINT) [61]

Curated database of PPIs for multiple model organisms [62]

http://hint.yulab.org/
PPI networks Human Integrated PPI Web tool to generate context-specific human PPI networks [60]

rEference (Hippie) [63] http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie
Human Protein Reference
Database (HPRD) [66], [67]

Database of human PPIs from high-throughput experiments [59], [64], [40], [28], [65]

www.hprd.org
Molecular INTeraction (MINT)
[68]

Curated database of PPIs for multiple model organisms [28]

https://mint.bio.uniroma2.it/
Protein Interaction Network
Analysis (PINA) [69]

Curated database of PPIs for multiple model organisms [28]

https://omics.bjcancer.org/pina
STRING [70] Database of PPIs and tool for obtaining functional enriched PPI

networks for multiple model organisms
[71], [55], [72], [41], [46]

https://string-db.org

Dobson & Doig (D&D) [73] Benchmark dataset of 1178 protein structures [30]
https://graphlearning.io

Proteins Protein Data Bank (PDB) [74] Database of 3-dimensional structure of proteins for multiple
model organisms

[75], [76], [26]

https://www.rcsb.org/
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edges, i.e. link prediction [78], is a common task when working
with such data, since it can be used to predict additional edges
in a graph, or in the case of a weighted graph, the edge weight
itself. This is also often framed as a semi-supervised learning
problem, where the known links in a graph are used to predict
where additional links may be present, similar to the node clas-
sification setup. Alternatively, link prediction can also be framed
as a supervised learning problem, where after an embedding
is learned for nodes, a secondary model is trained to predict
whether there is a link between a given pair of nodes.

Graph Classification or Regression When the biological net-
work data is comprised of multiple individual networks, such as
a dataset of the 3D structure of molecules, the objective becomes
predicting properties of each network, such as a molecule’s solu-
bility or toxicity. This task, called graph classification [79], takes
a dataset of graphs as its input, and then performs classification
(or regression) for each individual graph. This is most commonly
a supervised learning problem.

Graph Embedding Graph embedding [80–82] has the goal of
finding a lower-dimensional, fixed-size vector representation of
a graph, such as a PPI network, or an element within a network,
such as a protein. This is typically achieved through unsuper-
vised learning. Given the usefulness of representing nodes or
graphs as a fixed-size vector, which enables a graph to use
any off-the-shelf machine learning algorithm, learning a graph
embedding is often used as a pre-processing step before using a
standard machine learning algorithm for a particular task.

As described above, the graph representation of biological
data enables the formulation of many classical learning
tasks. While the high-throughput technology available today
has resulted in a huge amount of such data, it has further
underscored the need for novel computational methods to
process and analyze it. These methods need to be both efficient,
given the quantity of data, as well as high performing, in order to
effectively replace previous methods. Deep learning can address
both needs: it offers scalability for time-consuming tasks and
has the potential for strong classification performance, as
evidenced by strong performance gains in other fields. In the
next section, we will discuss the principles and fundamental
algorithms behind the deep learning approaches used on
biological networks.

Graph neural networks
Deep learning methods operate on vector data, and since graph
data cannot directly be converted to a vector, special methods
are needed to adapt deep learning methods to work with graphs.

GNNs are a class of such methods that adapt neural net-
work methods to work in the graph domain [83]. While the
field of GNNs encompasses many different sub-architectures,
such as recurrent GNNs [84, 85], spatial-temporal GNNs [86,
87] and graph autoencoders [83], we focus here on the ones
that are currently used in biological network analysis, namely
graph embedding techniques [80–82] and graph convolutional
networks (GCNs) [83]. We note that although closely related
to GNNs, graph embedding techniques are not always consid-
ered a subset of GNNs. However, network embedding is closely
related and it is used frequently as one of the building blocks
for the deep learning applications mentioned in this paper, so
we will describe it under the umbrella categorization of GNNs.
In this section, we will first present the critical notation used
when working with graphs and present the fundamental graph
embedding and GCN algorithms used in bioinformatics.

Notation

We will refer to a graph G = (V, E), as the set of vertices V,
with |V| = n, and the set of edges E, where eij ∈ E indicates an
edge between vi and vj. Each graph G can be represented by its
adjacency matrix A ∈ R

n×n. If the graph is unweighted and undi-
rected, any edge eij will be denoted by a 1 at Aij and Aji. Graphs
with node attributes store these values in an additional matrix
X ∈ R

n×d, where d is the dimension of the node attributes. While
this section deals primarily with homogeneous, unweighted and
undirected graphs, it is worth noting the diversity of graph rep-
resentations. Graphs can be heterogeneous, meaning that their
nodes or edges can have multiple types, such as in a knowledge
graph [88]. If G is a weighted graph, the entry for edge eij in A will
be the edge weight wij, and if G is a directed graph, an edge eij does
not imply an edge eji, meaning A is not necessarily symmetric.

Fundamental algorithms for deep learning on graphs

We will now detail two sub-fields that are widely used in bioin-
formatics today: graph embedding and GCNs, which in addition
to being the most widely used architectures in bioinformatics,
are the fundamental building blocks of many other GNN archi-
tectures. The algorithms that we will present can be used to
solve the learning tasks presented in the introduction, namely
node classification, link prediction, graph classification/regres-
sion and graph embedding.

Graph embedding

While graph embedding is often not strictly considered as a
subset of GNNs, it is intertwined with them, and given its
importance for other GNNs and bioinformatics, is considered
in detail here. Graph embedding approaches seek to learn a low-
dimensional vector representation of a graph or elements of
a graph, such as its nodes. This embedding is typically then
re-purposed for use in node or graph classification, or link
prediction tasks.

While there are many approaches addressing the graph
embedding problem, the most iconic are DeepWalk [89],
node2vec [54] and LINE [90]. DeepWalk [89] utilizes the word2vec
[91] framework from natural language processing to learn
embeddings for each node in the graph by generating multiple
random walks from each node and then optimizing a Skipgram
objective function. The Skipgram training objective learns an
embedding for a node such that it maximizes the probability
of predicting the nodes that surround it in the random walk, in
the same way that word2vec learns a word embedding that can
predict the surrounding context words. More concretely, this
can equivalently be formalized as the following minimization
problem in Eq. 2 of [89]:

min
�

− log P(vi−w, . . . , vi−1, vi+1, . . . , vi+w|�(vi)), (1)

where � : v ∈ V �→ R
|V|×d maps each vertex into a d-dimensional

space, resulting in a matrix of size |V|×d, and w is the size of the
context window surrounding a node vi. node2vec [54] expands
upon the framework introduced by DeepWalk by introducing
parameters to control whether the random walks are biased
towards a depth-first search or a breadth-first search. LINE [90]
takes a different approach. It seeks to learn a low-dimensional
embedding such that the first- and second-order proximity of
nodes, representing whether nodes are directly connected and
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Figure 1. This shows the process of learning a simple graph embedding using DeepWalk. From an input graph, a fixed number of random walks are generated from

each node with a predetermined length. The embeddings for each node are then learned using the Skipgram objective, where a node on the random walk is given as

input to a single layer neural network. The input is compressed down to an d-dimensional representation (here, d = 2) with an embedding matrix W ∈ R
|V|×d, and then

used to predict which nodes surround it on the walk. That is, a node vi is used to predict the surrounding nodes on the walk within a given context window (here, size

two): vi−2, vi−1, vi+1 and vi+2. After training, this lower dimensional representation for each node, which can be easily retrieved from W, is then used as the embedding

for each node. Note that DeepWalk chooses the next node in the random walk uniformly at random, and therefore can return to previous nodes in the walk, whereas

node2vec introduces a parameter to control the probability of doing so.

whether they share common neighbors, respectively, are pre-
served. That is to say, nodes which are connected by an edge, or
have similar sets of neighbors, should be close to one another in
the embedded space. LINE is trained by minimizing an objective
function that captures the first- and second-order proximity by
asynchronous stochastic gradient descent. Once an embedding
for the nodes or graph has been learned, pairs of nodes can be
used as input in order to predict whether there is a link between
them, as is done for example in node2vec.

Graph convolutional networks

GCNs are a subset of GNNs that adapt the highly successful
convolutional neural network (CNN) architecture [92] to work
on graph-structured data. Whereas CNNs, which are often used
with images, are able to leverage the spatial information and
relationships captured in an image, due to the fact that a set of
images can be defined on the same regular grid, the ordering
of a graph’s adjacency matrix is arbitrary, and thus cannot not
directly translate to the CNN framework. GCN methods define
and use a spectral- or spatial-based convolution over the graph,
providing a graph domain analog to the image convolution in
CNNs.

Spectral methods, first introduced by Bruna et al. [93] and
later Defferrard et al. [94], build a convolution by creating a
spectral filter defined in the Fourier domain using the graph
Laplacian. However, due to the computational complexity of
the eigendecomposition of the graph Laplacian necessary for
spectral methods, many more methods have been developed
using spatial methods, where the idea is to learn an embedding
for each node by aggregating its neighborhood in each successive
layer in the network. By using a permutation-invariant function
for the aggregation step, such as the sum or the mean, one
can circumvent the problem of the arbitrary ordering of an
adjacency matrix, which was what prevents a graph from using
a standard CNN. Each additional layer incorporates information
from further out neighborhoods; the kth layer in the network

corresponds to incorporating the k-hop neighborhood of a given
node. Duvenaud et al. [95] was an early example of this, provid-
ing a permutation-invariant convolution that operates over all
nodes in the graph, and in doing so, calculated the sum of the
features of a node and its neighbors. While initially designed
to retrieve a fixed size vector representation of a graph, i.e. an
embedding of the graph, the actual method was trained on graph
regression tasks.

Kipf and Welling [96] provide another spatial-based method,
and is perhaps the most seminal example of GCNs, often consid-
ered to be the baseline example of GCNs. Its significance is also
due in part to the fact that they bridge the gap between spatial
and spectral methods by showing a spectral motivation for their
spatial approach. Though this approach was originally proposed
as a way to perform node classification via semi-supervised
learning, it can be easily generalized to classify higher-order
structures in the graph, edge level outcomes, or the graph itself.
They define a propagation layer for the network, where each
layer effectively incorporates information from that node’s k-
hop neighborhood, as well as node features. This forward prop-
agation of a two-layer network then takes the following form,
generalized from Eq. 9 in [96]:

Z = f (X, A) = softmax(Âσ
(
ÂXW(0))W(1)), (2)

where Â ∈ R
n×n is the normalized adjacency matrix with added

self-loops, derived from original adjacency matrix A, X ∈ R
n×d

is the feature matrix containing node attributes of all n nodes,
W(i) are the weights from the ith layer and σ is an element-wise
activation function, such as ReLU = max(·, 0). The output of the
model, Z, in this example represents the class probabilities for
each node, therefore Z ∈ R

n×c, where c is the number of classes. If
h is the number of hidden units, then W(0) ∈ R

d×h and W(1) ∈ R
h×c.

Hamilton et al. [64] posit a similar idea with their GraphSAGE
algorithm, but with the goal of learning a more generalizable
and computationally efficient approach to the problem. While
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Figure 2. A visual depiction of a k-layer GCN. The input is the adjacency matrix A ∈ R
n×n of a graph and node attribute matrix X ∈ R

n×d. Each layer of the GCN

aggregates over the neighborhood of each node, using the node representations from the previous layer in the network. The aggregations in each layer then pass

through an activation function (here, ReLU) before going to the next layer. This network can be used to produce various different outputs: for predicting new edges in

the input network (link prediction), classifying individual nodes in the input graph (node classification), or classifying the entire input graph (graph classification). In

order to perform graph classification, an additional readout step (here, the sum over all nodes) is required to map the output from R
n×c to R

c. The color represents the

predicted classes for the respective entity in the output.

the initial goal is node embedding, this is again done with the
end goal of another task, such as node classification or link
prediction. They achieve this speedup by sampling a node’s
neighbors, rather than taking the entire neighborhood, and by
learning an aggregation function, for which they considered the
mean, max and long-short term memory aggregator functions.

Gilmer et al. [36] provide an interpretation of graph convo-
lutions from a message passing point of view, where each node
sends and receives messages from its neighbors, and in doing
so is able to update the node state. At the end of the network
there is a readout step that aggregates the node states to the
appropriate level of output (e.g. from the node level to the graph
level). Impressively, Gilmer et al. are able to show the direct
translation of many of the papers mentioned here into their
framework, and thus their neural message passing has become
a leading paradigm in GNNs today. Furthermore, they test out
various configurations of such a scheme and show the best
configuration to predict molecular properties.

These approaches to GCNs can also be understood as a neural
network analog to the Weisfeiler–Lehman kernel for measuring
graph similarity [97, 98], which is based on the classic Weisfeiler–
Lehman test of isomorphism [99], a comparison which Kipf and
Welling [96] and Hamilton et al. [64] make explicitly. By aggregat-
ing over all neighbors of a node, using the identity matrix for W,
and setting σ to an appropriate hash function, one effectively
recovers the Weisfeiler–Lehman algorithm. The adaptations in
GCNs can therefore be seen as a differentiable and continuous
extension of the Weisfeiler–Lehman algorithm and kernel.

In an entirely different approach to deep learning on graphs,
Niepert et al. [30] solve the node correspondence problem by
imposing an ordering upon the graph, and in doing so opens
the door to utilize a more traditional CNN structure. Rather than
using the full graph as input, it defines a common fixed-size rep-
resentation for all graphs. The entries in the grid are filled by the
j most important nodes in a graph, according to some predefined
importance measure, as well as the k closest neighbors of each

of the j nodes. Any corresponding node and/or edge attributes
associated with the nodes in question can also be included. In
doing so, graphs of different sizes are all standardized to the
same size grid, which enables learning using a standard CNN
filter.

In all these approaches, training is done by iteratively cal-
culating a task-specific loss function over all relevant samples
(such as the nodes with labels or the graphs). The loss is then
propagated back through the network via backpropagation. The
gradient of the weights W are calculated and W is correspond-
ingly adjusted according to a pre-defined update equation.

Applications in biology
In reviewing the different applications of deep learning on bio-
logical networks, we encountered varying degrees to which net-
work information was included. We therefore had to define what
constituted deep learning on a biological network. From the deep
learning point of view, we defined this as learning approaches
based on a hierarchy of non-linear functions. This review accord-
ingly focuses on deep learning methods and does not summa-
rize methods using classic machine learning algorithms, such
as kernel methods, SVMs, random forests, etc, though we will
discuss how the new deep learning methods perform relative
to the classic counterparts. Secondly, we had to define what
qualified as a biological network, since some methods can use
features of a graph without explicitly leveraging the graph struc-
ture. As an example, one could build a feature vector based on
the node label counts of amino acids in a protein. Whether to
include an example such as this is not always straightforward.
We ultimately decided to include any method that explicitly
discussed or generated features from the graph properties as
valid methods.

We will now discuss some of the main use cases of biological
network analysis and deep learning. We begin with the more
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established practices, namely in protein analysis and drug devel-
opment and discovery. We will then discuss the application areas
in which deep learning is emerging as a competitive alterna-
tive to current methods, such as in disease diagnosis and the
analysis of gene regulatory and metabolic networks. We provide
information about the implementations of the various methods
in Table 2 in the Supplementary Materials. In general, the per-
formance of the reviewed methods have been assessed using a
classic cross validation framework. Some papers go even further
and use an additional external validation dataset to test the
generalizability of the proposed approach. Furthermore, some
works even validate the de novo prediction through literature
research or by performing lab experiments. When either of these
is the case, it is explicitly mentioned.

Proteomics

Proteins play a pivotal role in many biological processes, and
thus better understanding their roles and interactions with one
another is critical to answering a variety of biological questions.
Deep learning has emerged as a promising new way to answer
some of these classic questions. In this section we will focus
on three main categories of deep learning tasks on proteins:
predicting whether a pair of proteins will interact, determining
the function of a given protein and predicting the 3D structure
of proteins.

Protein interaction prediction

As mentioned in the introduction, nodes in a PPI network are
proteins and the edges between nodes represent an interac-
tion. Given a graph of proteins with edges representing known
protein interactions, the goal is to predict what other pairs of
proteins in the graph are also likely to interact. From a graph-
theoretic point of view, this is a link prediction problem. Using
GCNs enables these methods to directly incorporate network
information, which is typically not included in classical machine
learning methods. Traditionally, many methods use the primary
structure of amino acid sequences in order to vectorize a protein
and perform classification. However, the recent methods that
leverage the graph structure have shown stronger performance
compared to merely using the sequence information and is
discussed in more detail below.

As a broader assessment of classic approaches, Yue et al. [41]
evaluate state-of-the-art network-based methods from other
fields on bioinformatics tasks, to provide a baseline performance
from which the field should be improving upon. The approaches
generally combine a network embedding with another deep
learning approach in order to assess its performance on pre-
dicting links in a PPI network and concluded that the more
recent neural network based embedding approaches showed the
most potential on bioinformatics tasks, and outperformed the
traditional methods.

Liu et al. [60] augment protein interaction prediction from a
pure sequence-based vector approach to one that also incorpo-
rates network information using a GCN. They propose learning a
representation of each node by using a generic GCN framework
on a PPI with an encoding of the primary structure sequences
of the protein. The representations of each pair of proteins are
later used as the input to a deep neural network to predict
whether a pair of proteins will interact. This approach extends
the previous work of DeepPPI [59], which used deep learning
on a vector summary of the protein sequences to predict links.
DeepPPI outperformed classical methods such as SVM, random

forest, and naive Bayes, across a variety of metrics including
accuracy, precision and recall. Liu et al.’s model surpassed even
DeepPPI’s performance, showing the value of incorporating the
network information into the model.

Zhang and Kabuka [100] attempt to capture the complexity
of protein data and directly use topological features by incor-
porating multiple modalities of the data, such as the first and
second order similarity, and the homology features extracted
from protein sequences. They pre-process the data by forming
a vector summary for each protein based on features such as
the amino acid composition and then use a combination of
unsupervised and supervised learning approaches to predict the
interaction. Besides having better accuracy and precision com-
pared to classical methods such as nearest neighbor and naive
Bayes, they also showed that their state-of-the-art prediction
performance method was maintained across datasets from eight
different species.

Protein function prediction

Another area of protein analysis lies in predicting the function of
a protein, given that manual assessment of the large amounts of
data resulting from high-throughput experiments is rather slow
and costly. There are two typical ways in which this question
is posed: as a node classification task or a graph classification
task. As we will discuss below, the new deep learning methods
reviewed here are typically compared to the state-of-the-art
methods based on classical machine learning approaches and
report to outperform them.

Node Classification In a node classification approach, the
input is a PPI where only the function of some nodes (i.e. pro-
teins) is known. The task is to classify the unknown nodes’ func-
tion. Some of the previously discussed methods in predicting
PPIs were also used to classify the nodes in the network. For
example, two of the classic GCN algorithms described in in the
Section “Graph neural networks,” GraphSAGE [64] and node2vec
[54], were validated on PPI datasets and used to predict the
function of proteins within the network. Additionally, Zhang and
Kabuka’s approach [100] to predict PPIs was also extended to
classify the function of a given protein. Similarly, Yue et al. [41]
also evaluate the performance of various network algorithms on
the task of node prediction to predict the function of proteins.

In a new approach, Gligorijević et al. [71] consider the idea of
representing PPI networks using multiple representations of the
same network. Each network contains different information, but
uses the same set of nodes. They create a vector representation
of each node using Random Walk with Restarts from Cao et al.
[101] to then construct a positive point-wise mutual information
matrix for each of the adjacency matrices, which is used as
the input to a multimodal deep autoencoder. The setup allows
giving multiple PPIs as input and facilitates the integration of all
this information, ultimately yielding a low-dimensional vector
which is then given to a SVM for protein function classifica-
tion. The authors found that using a deep learning autoencoder
learned a richer and more complex vector embedding of a net-
work, leading to better performance compared to the previous
state-of-the-art methods based on classical machine learning
methods.

Zeng et al. [56] seek to identify essential proteins from a
PPI network. They learn a dense vector representation of each
node using node2vec [54], and combine that with a representa-
tion learned from gene expression profiles using a RNN. This
is then passed through a regular fully connected network, in
order to classify each node as an essential or non-essential
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protein. They again compare their methods with classic machine
learning approaches such as an SVM, decision trees, and random
forests, and find their method outperforms all of them across
metrics such as accuracy, recall and AUC. Furthermore, through
an ablation study the authors revealed the most critical compo-
nent of their method driving the performance was the network
embedding of the PPI, showcasing the valuable information that
is captured in a network.

OhmNet [65] provides yet another approach, which learns
representations of nodes in an unsupervised manner by using
multiple layers of PPI networks generated from different tissues.
This provides a more informative view into cellular function by
incorporating the differences across tissues. The representation
is learned based on the network architecture, in an extension
to node2vec [54] for multi-scale graphs, which is later used
to classify the protein function in the network. They compare
themselves against classic methods such as methods based on
tensor factorization and SVMs, as well as to some of the baseline
network embedding methods like LINE and node2vec, and found
superior performance to all of them in terms of AUROC and
AUPRC. They attribute the benefit from having their multi-scale
view of the proteins across tissues, which previous methods
often modeled as a single network.

Graph Classification The second type of approach takes the
graph of a protein’s secondary structure elements as input and
classifies it into a functional group. While there are many clas-
sical methods that tackle this problem, as in [102], deep learning
offers an alternative way to address the problem. Several of the
classic GCN methods mentioned in the Section “Graph neural
networks” use protein function prediction as an application of
their method, such as Niepert et al. [30]. The formulation of the
question is quite similar to that of drug properties prediction,
discussed further in the subsection “Prediction of drug proper-
ties” except that the task is classification rather than regression.
Given the strong overlap, we leave the discussion of specific
methods to that subsection.

Protein structure prediction

A related problem to protein function prediction is protein
structure prediction. Since the 3D structure of a protein largely
informs its function, these two problems are interlinked. Recent
work has focused on developing methods to predict the 3D struc-
ture of a protein from its genetic sequence, also known as the
protein folding problem. Although there were previous efforts
to use deep learning to predict residue contact to help solve the
protein folding problem [103, 104], AlphaFold [76] represents a
groundbreaking approach that set a new baseline substantially
above both deep learning and traditional approaches and is thus
the only article we discuss in detail here. AlphaFold, like other
approaches, begins with the sequence of amino acids as the
basis upon which it will predict the 3D structure. This input is
combined with other feature information gathered from protein
databases, and uses a CNN to predict the discrete probability
distribution of the distances between all pairs of amino acids,
as well as the probability distribution of the torsion angles.
Predicting the distance and its corresponding distribution
yielded more informative and accurate results compared to
previous approaches which just predict whether two residues
were connected by a link. The authors used the distances and
the torsion angles, in conjunction with a penalty if the prediction
caused atoms to overlap, to assess the quality of their prediction,
called the potential. They were then able to perform stochastic
gradient descent to iteratively improve their model. Using this

approach yielded unprecedented results, and gave insight into
the potential that deep learning can have in addressing some of
the most challenging bioinformatics problems.

Drug development, discovery and polypharmacy

Deep learning has recently been used to improve two steps of
the process of drug discovery and development [105], namely: (i)
screening thousands of chemical compounds to find the ones
that react with a previously identified therapeutic target, and
(ii) studying the properties of the potential drug candidates,
e.g. toxicity, or absorption, distribution, metabolism, and excre-
tion (ADME). There is interest in improving the screening step
since it is quite laborious, expensive and time-consuming. We
begin this section reviewing papers that present deep learning
methods as an alternative to the current manual screening pro-
cess, often called drug-target prediction. Then, we summarize
deep learning approaches whose aim is to predict drug prop-
erties. Subsequently, we discuss the increased interest focused
on the identification of which combination of drugs, known
as polypharmacy, can be effective for treating human diseases
whose mechanisms are too complicated to be treated by using
a single one [106]. However, this therapeutic can have undesired
side effects due to the interaction among combination of drugs
[107]. It is therefore crucial to identify DDIs, which is nearly
impossible to do manually. We present the papers which try to
address this problem by combining deep learning approaches
with DDI networks.

Drug–target prediction

After the identification of a therapeutically relevant target, i.e.
a protein, it is essential to properly determine its interactions
with different chemical compounds to characterize their bind-
ing affinity, or drug-target interactions (DTIs). This testing pro-
cess is usually referred to as a screening, and its output con-
sists of a list of potential drug candidates showing high bind-
ing affinities with the target. As already mentioned, manual
screening is expensive and time-consuming since it must be
performed on thousands of molecules to find a single drug.
Deep learning methods try to overcome this limitation, often
using DDI networks. Drug-target interaction prediction within
the graph deep learning framework is therefore typically formu-
lated as a link prediction problem. Graph-based deep learning
methods have shown that they are capable of effectively tack-
ling the drug-target prediction problem across various meth-
ods, achieving superior performance to previous state-of-the-art
methods.

Some of these methods follow a systemic approach, where
several biological networks (PPIs, DDIs) are taken into account
in order to solve the prediction problem. An interesting paper
belonging to this category is from Manoochehri et al. [40], which
proposes an encoder-decoder GCN to predict the interactions
among potential drugs and a therapeutic target. The method
takes an heterogeneous network composed of drugs, proteins,
diseases, and side effects as input, where nodes can be drugs,
proteins, or diseases. Edges exist when nodes are connected
by a relationship whose interaction type determines the edge
label, such as drug–drug and protein–protein similarities,
drug–protein, drug–drug, protein–protein, drug–disease and
drug–protein side effects interactions. The authors combine
different data resources in order to construct this network.
The encoder takes the described network as input, and returns
an embedding of the nodes, which is used by the decoder to
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capture drug-protein interactions. The output of this procedure
is the estimated likelihood of the existence of an edge between
pairs of proteins and drugs. The stability and flexibility of the
proposed method is evaluated on substantial variations of the
heterogeneous network.

Zeng et al. [28] follow a similar systemic approach to solve
the DTI prediction problem, proposing a method called deep-
DTnet. Both [40] and deepDTnet [28] outperform the state-of-
the-art methods in the field. In addition, deepDTnet is com-
pared to classic machine learning approaches, namely random
forests, SVMs, k-nearest neighbors, and naive Bayes, and out-
perform them on an additional external validation set, demon-
strating the generalizability of their method. Additionally, deep-
DTnet shows higher robustness in comparison to the baselines,
since it performs well on drugs or targets showing high and
low connectivity as well as high or low chemical similarity.
deepDTnet’s predictions were further validated in a in vivo lab
experiment.

Another category of methods characterizes the DTI by con-
sidering and analyzing the molecular structure of drugs and
targets. In [26], the authors propose a GCN approach to the DTI
prediction problem whose input consists of two graphs, a protein
pocket graph and a 2D drug molecular graph. Their method
is composed of two steps, namely (i) a preliminary unsuper-
vised phase consisting of an autoencoder used for learning gen-
eral pocket features, and (ii) a supervised graph convolutional
binding classifier. The latter is composed of two GCN models
working in parallel, i.e. a pocket and a drug GCN, which extract
features from the protein pocket graph and the 2D molecule
graph respectively. There is a layer responsible for the integration
of interactions between proteins, generating a joint drug-target
fingerprint, which are then classified into “binding” and “non-
binding” classes. The authors compare their model with existing
deep learning methods and docking programs popular in the
field and report better performance. Results obtained on an
external validation dataset showed the higher generalizability
of [26] in comparison to the baselines.

Fout et al. [75] introduce another method to predict whether
a given pair of proteins will interact for the purpose of drug-
target prediction. In this approach, two graphs are given as input:
the ligand protein and the receptor protein. The nodes in both
graphs correspond to residues, and each node is connected to
the k closest other nodes determined by the mean distance
between their atoms. Rather than simply predict whether a
pair of proteins interact, this predicts where specifically on
the protein it will interact. Their method is an extension of
the fingerprint method introduced by Duvenaud et al. [95], but
allows for different weighting of the center node vs. its neighbors
by training different weights and enables the inclusion of edge
features. This approach outperformed the other state-of-the-art
method that was based on using an SVM.

Lastly, PotentialNet is a family of GCNs proposed by Feinberg
et al. [108] which differs from the previous ones since it con-
siders the non-covalent interactions among different molecules
as input, in addition to the graph molecular structure. More
specifically, the method includes three stages: (i) a graph con-
volution over covalent bonds only, (ii) a simultaneous covalent
and noncovalent propagation which takes into account the spa-
tial information between atoms and (iii) a graph gather step
performed only on the ligand atoms, whose representation is
derived from both bonded ligand information and spatial prox-
imity to protein atoms. The cross validation strategy in [108] is
particularly interesting, since it tests PotentialNet’s generaliza-
tion capabilities by mimicking real DTIs prediction scenarios,

e.g. predicting affinity properties on unseen molecules. Further-
more, PotentialNet is comparable to the classic machine learn-
ing state-of-the-art methods in molecular affinity prediction
field.

End-to-End Drug Discovery & Development While the
approaches described above solve just the screening step, Stokes
et al. [23] recently introduced an approach to tackle the entire
drug discovery and target validation step. Motivated by both
the marked increase in antibiotic-resistant bacteria and the
difficulty of discovering new antibiotics, the authors propose a
deep learning approach to identify molecules showing growth
inhibition against a target bacterium, namely E. coli. Their
research is directed towards the discovery of candidates whose
molecular structure is different from currently available and
known antibiotics. Unlike the other drug-target prediction meth-
ods, this is a graph classification problem. A directed message
passing neural network named Chemprop [109] is trained with
a feature-enriched graph representation of molecules labeled
according to their action against E. coli. Since the previous step
mainly captures local properties, a global feature molecular
representation [110] is also given to the classifier. After the
learning step, the obtained classifier is deployed on several
chemical libraries, containing more than 107 million molecules,
to obtain a list of potential candidate compounds that could be
antibacterial against E. coli. Then, the identified molecules are
filtered according to the clinical phase of the investigation and to
pre-defined scores penalizing similarity with training molecules
and toxicity. This procedure led to the identification of halicin
from the Drug Repurposing Hub. Halicin properties and action
mechanisms were experimentally investigated and the results
proved its antibacterial activity on E. coli and on other bacteria
in mice, showing that deep learning can effectively improve the
antibiotic discovery screening process in a more time and cost
effective way.

Prediction of drug properties

After the screening step, which provides a list of molecules
showing high affinity with the therapeutic target, the properties
of these candidates have to be investigated. This becomes a
graph classification or regression problem. We will review meth-
ods that seek to predict those properties, such as the absorption,
distribution, metabolism and excretion (ADME), stability, solu-
bility, toxicity and quantum properties of chemical compounds
represented as graphs. The following methods are compared
to the classic machine learning counterparts, with competitive
results and are detailed below. This fact highlights the effec-
tiveness of deep learning to capture meaningful information
from the graph structure, and therefore its potential to provide
an alternative to classic state-of-the-art methods for predicting
drug properties.

ADME prediction is the objective of Chemi-Net [111], a
method which combines a GCN with a multi-task deep neural
network, which can simultaneously solve multiple learning
tasks. Chemi-Net’s input is a molecule represented by two
feature sets, describing atoms and atom pairs respectively. The
first operation consists of the projection of the assembling of
the atoms and atom pair descriptor onto a 3D space, to obtain a
molecule-shaped graph structure. The latter undergoes a series
of graph convolution operations whose output is then reduced
to a single fixed sized molecule embedding during the readout
step. ADME prediction is obtained after this last embedding
representation passes through several fully connected layers.
The authors compare the results obtained by employing
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the GCN’s embeddings, e.g. single-task learning Chemi-Net,
with the ones achieved when using the traditional property
descriptors. Chemi-Net outperforms the baseline on almost all
datasets, except the small noisy ones. The authors overcome
this limitation by means of a multi-task learning framework,
which allows them to leverage the information enclosed in large
datasets to compensate for the small ones.

Stability is another crucial property to be investigated in the
drug discovery and development process. The method proposed
in DeepChemStable [112] aims to predict the stability of chemical
compounds from their graph representation by combining a GCN
and an attention mechanism. The GCN is able to capture the
molecular structure at a local level, while the attention mech-
anism learns the global graph information. DeepChemStable
investigates which features cause the instability of the chemical
compound, which enables it to obtain more interpretable results.
The authors contrast DeepChemStable with a naive Bayes-based
baseline, showing the potential of the proposed deep learning
framework. DeepChemStable and the baseline are comparable in
terms of AUC and precision, while DeepChemStable is superior
in terms of recall. PotentialNet [108], introduced in the sub-
section “Drug-target prediction” for DTI prediction, has further
applications in drug molecular properties prediction, where its
performance is also competitive or superior to existing methods.

Additionally, several of the fundamental GCN algorithms
tried to address the problem of drug property prediction. As
discussed earlier, Duvenaud et al. [95] propose a neural network
based approach for finding a fingerprint for each molecule,
which is then used to predict drug properties of molecules such
as solubility, drug efficacy and organic photovoltaic efficiency
of molecules and showed improved performance relative to the
state-of-the-art circular fingerprint method. Kearnes et al. [33]
expand upon this idea by performing convolutions on edge
information in addition to the node information. The Patchy-
San algorithm by Niepert et al. [30], also previously discussed,
was also used to classify molecules according to their carcino-
genicity [30] and found similar or better classification accuracy
to the classic kernel based methods. Finally, as previously men-
tioned, Gilmer et al. [36] iterate upon existing GNN methods
(reframed as message passing) to find the best configuration to
predict molecular properties among the existing deep learning
approaches.

DDI prediction

As introduced previously, polypharmacy is a promising treat-
ment approach in the case of complex diseases, but with
a cost: the possibility of undesirable interactions among
co-administrated drugs, i.e. polypharmacy side effects. The
appearance of side effects has often been reported by patients
affected by multiple illnesses who have been treated with
multiple drugs simultaneously. Since laboratory screenings
of DDIs are very challenging and expensive, there is growing
interest in studying and predicting drug interactions using
computational methods. Therefore, this section will review some
deep learning approaches that use biological networks to predict
the interaction among drugs, which is usually formulated as a
link prediction problem. As detailed below, the reviewed graph-
based deep learning methods outperform, often in a significant
way, the classic machine learning and deep learning methods
used as baselines, showing that graph-based deep learning
approaches can capture meaningful insights into the DDIs
prediction problem.

Decagon [46] is an innovative GCN method for multi-
relational link prediction which operates on large multimodal
graphs where nodes, i.e. proteins and drugs, are connected
through diverse kinds of edges according to the interaction
type. These multimodal networks are constructed combining
PPIs, DDIs and drug–protein interaction networks. Once the
multimodal network is obtained, Decagon performs two main
steps: an encoding and a decoding process. The first step is
executed by a GCN, which takes in the graph and gives out
a node embedding for it. The second step is carried out by a
tensor factorization decoder, which obtains a polypharmacy
side effects model from the embedding of the nodes given as
input. One of the major strengths of Decagon is its capability
of identifying not only the presence of an interaction between
drugs, but also of which type. Decagon outperforms the state-of-
the-art baselines, e.g. classic machine learning approaches for
link-prediction, methods for representation learning on graphs
and methodologies for multirelational tensor factorization, by
an average of 20% and in some cases was as high as 69%. The
authors, furthermore, note the importance of including the PPI
network in such analysis. In fact, 68% of drug combinations
have no common targets, suggesting that PPI information may
represent a critical link to understanding which specific target
drugs interact with proteins.

Another encoder-decoder method for multi-relational link
prediction is presented in [27]. The proposed method, HLP,
is designed to perform on a multi-graph representation of
DDIs, defined as networks having drugs as nodes and multiple
interactions as edges among node pairs. The characteristic
which makes HLP an interesting method is its ability to
capture the global graph structure in addition to the local
neighborhood information. HLP shows enhanced performance
when contrasted with similar multi-link prediction models
and to Decagon [46]. However, Decagon is tailored to work on
networks composed of relationships between drugs and also
proteins, which according to Decagon’s authors is important to
include, while HLP works and is tested on DDI networks only.

Ma et al. [43] propose yet another approach for DDI prediction
by integrating multiple sources of information and using an
attention mechanism to learn the appropriate weights associ-
ated with each view, resulting in interpretable drug similarity
measures. They use a GCN architecture to build an autoencoder,
with a GCN as the encoder and another GCN as the decoder. Each
drug is a node in their graph, but it contains multiple graphs
with the same nodes, and the edge in each view of the graph
corresponds to the similarity between the node features in that
view. Ultimately, they want to get a node embedding for each
node in the graph and recover a single adjacency matrix that
captures the information across views, which can predict drug
to drug interactions. Ma et al.’s method is compared with several
baselines, such as nearest neighbor, label propagation, multiple
kernel learning and the non-probabilistic GAE model in [96].
Results show that [43] significantly outperforms the baselines
for both the binary and multilabel prediction settings.

As previously mentioned, DDIs represent a promising
research direction to find therapies for complex diseases.
Therefore, besides the prediction of side effects from multiple
drugs, many efforts are currently aimed at the discovery of
polypharmacy treatments. Jiang et al. [55] propose an approach
to predict synergistic drug combinations against different cancer
cell lines. The authors formulate the problem as a link prediction
task. The input is a heterogeneous network, diverse for each
cancer cell line under study, obtained through the combination
of synergistic DDI, DTI and PPI networks. The method, whose
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algorithm is based upon Decagon [46], presents a GCN encoder
followed by a matrix decoder to predict the synergistic score
among pairs of drugs. The method proposed by Jiang et al. [55]
shows improved performance in comparison to an SVM, random
forest, elastic net and feature-based deep learning methods.
Additionally, it is comparable to a state-of-the-art approach
very popular in the field. Finally, the authors apply the method
to predict de novo combinations of drugs and discovered that
some of them have been already reported in the literature as
synergistic against cancer.

Another line of research leverages GCN methods for person-
alized drug combination predictions. An approach sharing this
aim is GAMENet [44]. GAMENet combines the patient representa-
tion obtained by employing an embedding network followed by
a dual recurrent neural network with the network information
derived from a memory module. The latter is based on a GCN
and captures information from two networks, namely the graph
representation of longitudinal patient electronic health records
(EHR) and a DDI network.

CompNet, proposed in [45], is another method for supporting
doctors in the prescription of drug combinations. In particular,
EHR data, prescribed drugs records and adverse DDI networks
are used for learning patient and drug information represen-
tations which are then combined to obtain the prediction. The
module encoding the drug information, referred to as a medicine
knowledge graph representation module, is constructed using
a relational GCN. Both GAMENet [44] and CompNet [45] are
subjected to an ablation study to assess the importance of
including DDIs information. In both cases, including the DDI
network enhances the performance in a significant way. Further-
more, GAMENet and CompNet outperformed several state-of-
the-art and classic machine learning approaches across various
effectiveness measures, including F1, Jaccard coefficient and DDI
rate. In addition, CompNet contrasts its performances to the
ones achieved by GAMENet. CompNet outperforms GAMENet in
terms of the Jaccard coefficient, recall, F1 and DDI rate, whereas
GAMENet is superior only in terms of precision. CompNet’s
authors claim that recall is more important than precision when
the aim consists of recommending combinations of drugs. In
reality, such prediction systems represent a support tool for
doctors, and therefore the objective is to provide them with a
wide and comprehensive screening of drugs co-administration
possibilities, rather than with a precise but limited list.

A different way of handling DDI prediction is presented in
[25]. The authors propose a method to enhance DDI extraction
from texts by using a graph representation of the drugs under
study. This approach concatenates the results of a CNN used on
textual drug pairs with the ones obtained by applying a GCN on
their graph molecular structure. Such an approach is motivated
by the fact that a lot of information about interactions among
different drugs is available in the literature but is not always
reported in DDI databases or easily available when prescribing
drugs, and at the same time the molecular structure encloses
meaningful information for interaction prediction. Results show
that [25] has comparable performance to deep learning state-
of-the-art approaches, including Zeng et al. [113] on which [25]
is based upon, which outperforms the classic machine learning
methods used as baseline. Moreover, in [25] it is shown that
including the information on the molecular structure enhances
the text-based DDI predictions in a considerable way.

Disease diagnosis

In the last few years, investigating disease diagnoses through
deep learning has been of great interest to the research com-

munity. However, methods which use graphs, and in particular
biological networks, are in a minority. The work proposed in [62]
is situated in this small research area. The authors aim to predict
lung cancer from a PPI network integrated with gene expression
data by using a combination of spectral clustering and CNNs.
The authors try different configurations of the proposed method
to identify the one which performs the best and evaluate their
method in terms of accuracy, precision and recall.

Additionally, Rhee et al. [72] propose another example of
deep learning on biological networks to perform breast cancer
sub-type classification. Their method integrates a GCN and a
relational network (RN) and takes in a PPI network enriched
with gene expression data. Exploiting the GCN, their approach
is capable of learning local graph information, while the use
of the RN permits capturing complex patterns among sets of
nodes. The GCN and RN outputs are combined to obtain the
classification results. The method is compared to SVMs, ran-
dom forest, k-nearest neighbor and multinomial and Gaussian
naive Bayes and performance is obtained through a Monte-Carlo
cross validation experiment. The results show that the proposed
method outperforms the baselines across all the used metrics,
showing that learning PPI network feature-representation by
means of a GCN may significantly help in capturing patterns in
gene expression data.

Apart from performing disease diagnosis using the biological
networks described in the introduction, there are also studies
that use different types of networks, such as RNA-disease asso-
ciations or graphs obtained by converting biomedical images,
in combination with deep learning techniques. Deep learning
is gaining traction nowadays in the disease diagnosis research
area and so we report on some of these approaches in the
following paragraphs to demonstrate how broad this field is,
despite using networks that are not conventionally considered
biological networks.

The next two examples are applications which employ RNA-
disease and gene-disease association networks respectively.
Zhang et al. [114] propose a method whose input is a graph
representing the association among diseases and RNAs, named
a RNAs-disease network. The authors use a GCN combined with
a graph attention network to capture both the global and the
local structure information of the input, with the objective
of predicting RNA-disease associations. Instead, the objective
of Han et al. [115] is to predict gene-disease associations. To
this aim, the authors propose a combination of two GCNs and
a matrix factorization. Diseases, gene features and similarity
graphs are given to two parallel GCNs, which combine their
obtained embeddings through an inner product to obtain
the prediction. Both [114] and [115] show their effectiveness
in capturing useful information from the RNAs- or gene-
disease association networks in respect to the methods used
as baselines.

Besides that, research in this field has centered around con-
verting biomedical images to a graph and then performing clas-
sification. For example, Zhang et al. [116] predict Parkinson’s
Disease from a graph representation of multimodal neuroimages
using a classifier based on a GCN. Marzullo et al. [117] present a
GCN working on a graph mapping of MRI images to predict Mul-
tiple Sclerosis. The use of GCNs enhances the performance with
respect to the machine learning and/or deep learning baselines
for both [116] and [117], showing the potential improvements
that GCNs can yield in the image analysis research area.

Another example is [118], whose aim is breast cancer diagno-
sis from mammogram images, with only a few labeled samples.
They are able to create pseudo-labels for the unlabeled images
via graph-based semi-supervised learning, where each node
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is an image and the edge represents the similarity between
images. A CNN is then trained on the individual images using
the true and pseudo-labels. This method introduces a valuable
contribution in the area of medical image analysis with deep
learning, where large datasets are required for the training to be
effective. Specifically, the authors develop a strategy to overcome
a typical limitation in the field: having few labeled data points.
They use instead an algorithm which allows for the inclusion
of unlabeled data in the training procedure of the deep learning
model. Results show the merits of this strategy, which drastically
enhances the performance.

Metabolic networks and GRNs

While less extensively studied, GNNs have also been used
for analyzing metabolic and GRNs. These early studies have
reported promising results, showing that deep learning’s
capability to capture non-linearity in the data can positively
affect the study of these complex and meaningful biological
networks.

Metabolic Networks Studying and reconstructing metabolic
pathways is a key aspect of obtaining a better understanding of
physiological processes, drug metabolism and toxicity mecha-
nisms and others. To the best of our knowledge, the literature
lacks papers investigating this network using graph-based deep
learning methods. It is possible to find plenty of work aiming to
analyze, model and reconstruct metabolic pathways, or whose
objective is to predict drug metabolism, but they use classical
tools [119]. Two recent papers, namely [52] and [51], fit our
review topic. The method in [52] aims to predict the metabolic
pathway to which a given compound belongs by means of a
hybrid approach. It uses a GCN to learn the shape feature repre-
sentation of a given molecular graph, which then is the input to
a random forest to perform classification. The authors compare
their method with several state-of-the-art machine learning
approaches, showing the positive impact of employing GCNs as
a means for capturing insights from the graph representation of
the molecules under study. Furthermore, the authors develop a
methodology to interpret the feature representation provided by
the GCN in terms of chemical structure parameters, such as the
diameter.

The objective of the work presented in [51] is different. The
authors aim at predicting the dynamical properties of metabolic
pathways by leveraging their graph representation’s structure
using a GNN framework. The graph representing the pathway is a
bipartite graph obtained from systems biology markup language
models of biochemical pathways using a Petri net modeling
approach [120]. The authors contrast the proposed method with
a classifier predicting the majority class in the test set and
report that their method always outperforms the baseline. The
method in [51] represents a computationally efficient alternative
to the onerous numerical and stochastic simulations which are
often used for assessing the dynamical properties of biochemical
pathways.

Gene Regulatory Networks Knowledge about GRNs is essen-
tial to gain insights about complex cellular mechanisms and
may be useful for the identification of disease pathways or new
therapeutic targets. Therefore, GRNs are widely investigated,
with particular interest bestowed upon inferring, validating and
reconstructing them. Such investigations are mostly performed
with classic methods, while the amount of developed graph-
based deep learning approaches is rather small, as for metabolic
networks. To date, curated GRN datasets are not yet available
or are difficult to obtain for a large number of organisms [49,

121]. For this reason, GRNs are mostly analyzed with unsu-
pervised methods [121], since supervised techniques, and deep
learning in particular, require a large number of well anno-
tated samples in order to be effective. Additionally, GRN infer-
ence is usually accomplished by employing information from
gene expression data, which are intrinsically noisy [122] and
therefore not ideal for training models. However, some deep
learning models, specifically RNNs, report promising results,
although they do not use any kind of graph information to per-
form the task. One example is the work in [122], which enhances
the training quality by introducing a non-linear Kalman filter,
which deals very effectively with the noise in the data.

Despite the limitations discussed above, Turki et al. [49]
present an example of graph-based deep learning approaches.
The authors use an unsupervised method to obtain a prelimi-
nary version of the GRN from gene expression time series data,
which is denoised through a cleaning algorithm, and then used
to train diverse supervised methods to perform link prediction
among gene pairs. The proposed data cleaning algorithm is of
crucial importance and could positively impact the field of GRN
analyses since it increases the quality of the GRN data. More
in detail, the denoised features are obtained by projecting the
original features onto the eigenvectors of the distance matrix
of the feature vectors calculated using the Laplacian kernel
function. The supervised methods Turki et al. use after cleaning
the GRN includes SVMs and deep learning approaches, such as
a DNN and a deep belief network. The latter two outperform
the unsupervised state-of-the-art baseline, although failed to
outperform the linear SVM-based approach.

Discussion
The promise of deep learning, based on its success in other fields
[7, 8], is now also being seen across many different areas of
biological network analysis. The methods we reviewed reported
to consistently match or beat previous state-of-the-art methods
using classical machine learning algorithms, providing evidence
of one of deep learning’s core advantages: its strong empirical
classification performance.

Another advantage of deep learning is its ability to effectively
deal with large datasets [123], which can be challenging for
classical machine learning methods [123, 124]. Although the
training process of deep learning models with huge amounts of
data is a non-trivial task, the advances in parallel and distributed
computing have made training these large deep learning models
possible [125, 126]. The large number of matrix multiplications,
high memory requirements and easy parallelizability of neu-
ral networks have been particularly well served by the recent
breakthroughs in GPU computing [2, p. 440].

Finally, given that deep learning is a learning approach based
on a hierarchy of non-linear functions, it is capable of detecting
patterns in the raw data without explicit feature engineering.
While it is not the only method that can handle non-linear
relationships, the composition of many simple, non-linear layers
makes it particularly adept at learning patterns at different
layers of abstraction [126], enabling more complex patterns to
be detected.

While deep learning methods are very promising, there are
limitations and many open questions to be solved. One of the
main problems with deep learning is its lack of interpretability.
While there has been some recent progress in this area [127,
128], the black box nature of deep learning algorithms remains
a key challenge, particularly in bioinformatics, where one is
interested in understanding the mechanisms underlying the
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biological processes [129, 130]. Additionally, interpretability is
critical in the context of models that guide medical decisions,
where doctors and patients are often unlikely to trust the output
of a deep learning model without sufficient understanding of the
prediction process [127].

Another issue is the need for large labeled datasets, since
deep neural networks have a large amount of hyperparame-
ters to tune. Although the recent advances in the technology
enable the collection of huge amounts of data, the field of
bioinformatics often suffers from quality issues with the data
and the lack of reliable labels, since much of the data is unla-
beled [127]. In such a scenario, training can be difficult and
can limit the effectiveness of deep learning in bioinformatics,
which can be seen for example in GRN analysis. Furthermore,
not all application areas in bioinformatics have access to large
amounts of data. In disease diagnosis, for example, data points
can represent individual patients and therefore amassing the
large datasets necessary for deep learning to excel can be chal-
lenging. Furthermore, the access to disease-related data is often
limited by privacy restrictions [131], therefore contributing to the
limited size of datasets in the field [132]. In such smaller data
regimes, classical machine learning methods, which are often
available in standard programming libraries, can be a suitable
alternative [133], such as graph kernels [98, 102, 134, 135] and
their implementations [136].

Despite these challenges, deep learning on graphs is an
active area of research and is already achieving exciting results
across various bioinformatics disciplines such as proteomics,
drug development and discovery, disease diagnosis and more,
as we have seen in this review. We can therefore anticipate the
continued development of new algorithms, both within and
outside bioinformatics, that can be used to analyze biological
networks. Moreover, the amount of data generated from recent
advancements in high-throughput technology will continue to
grow, providing even more opportunities for deep learning to
solve existing as well as new problems in biological network
analysis.

Key Points
• Biological networks are a meaningful way of repre-

senting many biological processes, such as PPI net-
works, DDI networks and GRNs, because they can
model both the biological entities as well as the rela-
tionships between those entities.

• The graph representation of biological networks
enables the formulation of classic machine learning
tasks in bioinformatics, such as node classification,
link prediction and graph classification.

• Deep learning methods on graphs, specifically GNNs,
are a new way of solving these tasks by capturing hier-
archical non-linearities in the data and neighborhood
information represented by the network.

• GNNs have been successfully applied in several areas
of bioinformatics such as protein function prediction
in proteomics and polypharmacy prediction in drug
discovery & development.

• GNNs are also being used to tackle questions across
various emerging applications of bioinformatics, such
as metabolic pathway prediction in metabolic network
analysis.
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