
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

VOLUME XX, 2020 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Optimization of Task Offloading Strategy for
Mobile Edge Computing Based on Multi-Agent
Deep Reinforcement Learning

HAIFENG LU, CHUNHUA GU, FEI LUO, WEICHAO DING, SHUAI ZHENG, YIFAN SHEN
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Corresponding author: Chunhua Gu (e-mail: chgu@ecust.edu.cn).

This work was supported in part by the National Natural Science Foundation of China (Grant NO.61472139), Shanghai Automobile Industry Science And
Technology Development Foundation(H100-2-19160), and Shanghai Sailing Program(20YF1410900).

ABSTRACT Combined with wireless power transfer (WPT) technology, mobile edge computing can

provide continuous energy supply and computing resources for mobile devices, and improve their battery life

and business application scenarios. This paper first designs the mobile edge computing (MEC) model of

mobile devices with random mobility and hybrid access point (HAP) with data transmission and energy

transmission. On this basis, the selection of target server and the amount of data offloading are taken as the

learning objectives, and the task offloading strategy based on multi-agent deep reinforcement learning is

constructed. Then combined with MADDPG algorithm and SAC algorithm, the problems of multi-agent

environment instability and the difficulty of convergence are solved. The final experimental results show that

the improved algorithm based on MADDPG and SAC has good stability and convergence. Compared with

other algorithms, it has achieved good results in energy consumption, delay and task failure rate.

INDEX TERMS Mobile edge computing, task offloading, wireless power transfer, multi-agent, deep

reinforcement learning.

I. INTRODUCTION

With the rapid development and widespread popularity of the

Internet of Things (IoT) technology, cloud computing has

been unable to meet the demand in business scenarios where

the amount of data collection is too large, immediate and

continuity interaction is required, such as online games, real-

time streaming media, and augmented reality [1]. To solve

above problems, the MEC builds an open platform for data

collection, data processing and data analyzing at the edge of

the network, so that mobile devices can actively offload

computing tasks to edge servers, thereby reducing service

response time, improving device battery life, ensuring data

security and user privacy [2]. In addition, with the large-scale

deployment of 5G and the continuous development of mobile

communication system, most energy-consuming applications,

including video streaming services, AR/VR transmissions,

etc., are now running on battery-powered mobile devices,

which leads to huge energy consumption and interruption of

user services. Therefore, in order to meet the continuous

service needs of mobile devices, the WPT technology realizes

wireless charging of mobile devices and IoT devices by using

the principle that radio frequency (RF) signals can transmit

energy in the far field. It is a flexible, controllable, on-demand

and low-cost solution, which has the characteristics of stable

power supply, short response time, simple installation and

environment-friendly [3]. In order to satisfy the information

download request and wireless charging request of mobile

devices, HAP can realize wireless information transmission

(WIT) and WPT in the same frequency spectrum based on the

broadcast characteristics of RF signal and wireless channel.

The key difference between HAP and traditional access point

(AP) is that the former enables WPT and WIT services at the

same time, which fundamentally solves the problem of low

computing ability and short battery life of mobile devices,

makes the business scenarios more diversified [4].

Although edge servers can relieve computing pressure and

battery life pressure for mobile devices through HAP, since

WIT and WPT are performed in the same frequency spectrum,

only one operation can be completed at the same time. If all

the mobile tasks are offloaded to the edge server for processing,

the amount of data transmission will be too large, the service

time of WIT is too long and the service time of WPT is too

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

2 VOLUME XX, 2017

short, which will eventually cause the mobile device to run out

of power and interrupt user services. At the same time, if a

large number of mobile tasks are collectively offloaded to a

small number of edge servers for processing, considering the

limited computing performance and network bandwidth of the

edge servers, it will cause serious congestion of computing

tasks and significant delays in user services [5]. Therefore, in

order to make full use of MEC's computing resources and

ensure that mobile devices can provide continuous services, it

needs to design a strategy which can determine the amount of

offloaded data and the target server for mobile tasks, so that

the edge server and mobile devices can perform collaborative

processing to effectively improve the user's service quality. In

this paper, we propose a strategy that uses multi-agent deep

reinforcement learning to solve the problem of how much and

where to offload the tasks in the MEC by comprehensively

considering the computing performance, the signal range, the

geographic location of the edge server, and the computing

performance, remaining capacity of battery, energy

transmission, location information, application data amount of

the mobile device. And it effectively reduces the energy

consumption, delay and task failure rate of mobile devices and

edge servers, and improves the service quality of the entire

MEC platform. The main contributions of this paper include

three aspects:

1) The MEC model of mobile devices with random

mobility and HAP nodes with data transmission and

energy transmission is constructed. Since the HAP node

can only perform WIP or WPT at the same time, it is

necessary to reasonably design the running time of both

in unit time to ensure the quality of user service. In this

paper, the time required for data transmission is

calculated by considering the amount of data offloading

and the transmission rate based on the location of mobile

devices. At the same time, the remaining time is used as

the energy transmission time to charge the device, so as

to ensure that the total power of the device can complete

the computing task and transmission task in unit time.

2) Combined with the actual application scenario of MEC,

the target server selection and data amount to be

offloaded are taken as the learning objectives, and the

task offloading strategy based on multi-agent deep

reinforcement learning is constructed. This paper

combines the MADDPG algorithm and the SAC

algorithm to solve the problem of instability and

convergence difficulty in the multi-agent environment.

Among them, the MADDPG algorithm optimizes the

strategy of each agent through the idea of centralized

training and distributed execution to reduce the variance

of the algorithm; the SAC algorithm introduces

maximum entropy into the reward function to ensure

that it can explore more action possibilities, and enhance

its exploration ability and robustness. At the same time,

the MADDPG algorithm and the SAC algorithm are

used to solve the continuous action space problem.

Considering that the target server selection is a discrete

problem, this paper uses the reparameterization trick of

Gumbel Softmax to solve discrete problems without

losing gradient information.

3) The energy consumption, cost, delay and task failure

rate of task offloading strategies are comprehensively

compared to analyze their advantages and disadvantages.

Experiments show that the improved algorithm based on

MADDPG and SAC has good stability and convergence.

Compared with other algorithms, it achieves good

results in energy consumption, delay and task failure

rate when the number of mobile devices is large.

The remainder of this paper is organized as follows. In

Section 2, the scope of related works is discussed. The MEC

model and evaluation metrics such as energy consumption,

delay, cost and task failure rate are described in Section 3. The

proposed task offloading algorithm is presented in Section 4.

The experimental setup and performance evaluation are

described in Section 5. Finally, Section 6 concludes the paper

and gives directions for future work.

II. RELATED WORK

With the popularization of 5G technology, the task offloading

problem of MEC has received extensive attention, and there

are a lot of researches in recent years. For instance, the

reference [6] proposed an Orthogonal Frequency-Division

Multiplexing Access (OFDMA) based multi-user and multi-

MEC-server system, which is used to investigate the task

offloading strategies and wireless resources allocation for

latency-critical applications. The reference [7] mathematically

modeled the MEC architecture, it optimized the MEC

calculation offload strategy to decide when to offload the

user ’s computing tasks to the MEC server for processing, and

verified the effectiveness of the strategy through the face

recognition application by measuring the round-trip time.

Compared with the local execution of mobile devices, the

strategy greatly reducing the service delay and saving the

energy consumption of the device. The reference [8] studied

the multi-user service delay problem in the MEC offloading

scenario and proposed a new type of partial computing

offloading model, which optimizes the allocation of

communication and computing resources through strategies

such as optimal data segmentation. Compared with local

execution of devices and edge cloud execution, the proposed

partial offloading strategy can minimize the delay of all

devices, thereby improving the user's service experience

quality. In the above research, when heuristic algorithms are

used to deal with large-scale task offloading problems,

algorithms take too long to generate decision-making due to

the high dimension of the problem. At the same time, such

algorithms can only find approximately optimal solutions.

Therefore, it cannot meet the expected requirements in actual

use. In addition, reinforcement learning is also widely used in

the problem of offloading MEC tasks. The reference [9]

proposed that mobile tasks can select multiple base stations in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

2 VOLUME XX, 2017

the MEC for offloading according to demand. And on this

basis, it studied the task offloading strategy based on a deep

reinforcement learning algorithm to maximize the long-term

performance. The reference [10] used RL-based resource

management algorithms to optimize the data processing

volume of cloud servers and edge servers. And the strategy

can reduce service delay and operating costs. The reference

[11] chose whether to offload tasks to the edge server which

serves for multiple users by deep reinforcement learning

algorithm, so as to reduce energy consumption and average

computing delay. At the same time, it further optimized the

selection strategy of the edge server by adding wireless

transmission rate, charging power and battery power to the

learning process, so that the entire computing cluster provides

better service performance.

Based on the above researches, compared with heuristic

algorithms, deep reinforcement learning has the characteristics

of self-learning and self-adaption by combining the

advantages of deep learning and reinforcement learning. It

needs fewer parameters and has better global search

capabilities, which can solve the more complex, high-

dimensional and more realistic task [12]. However, the

researchers of current MEC task offloading, which based on

deep reinforcement learning, are all about single agents. They

mainly focus on one learning target such as the amount of data

offloading or the selection of edge servers. The amount of data

offloading only pays attention to the amount of data to be

processed by the local device and the remote server cluster

respectively, but the impacts of performance and location

between different devices are ignored. The selection problem

of the target server only focuses on whether the data is

offloaded and where it is offloaded, which ignores the fact that

the application data can be split for collaborative computing,

to save computing time and transmission time. Therefore, this

paper takes the target server selection and the data amount to

be offloaded as comprehensive learning goals with the multi-

agent deep reinforcement learning algorithm, so as to improve

the resource utilization rate of the entire MEC platform [13].

In addition, in order to ensure that the multi-agent algorithm

has better convergence and generalization performance in the

MEC partial offloading problem, this paper combines the

advantages of the SAC algorithm and the MADDPG

algorithm to form a partial offloading strategy:

1) In order to solve the problem that deep reinforcement

learning algorithm is influenced by super parameters

and easy to fall into local optimal solution, the SAC

algorithm adds the maximum entropy to the reward

function, so that the actor can explore as many actions

as possible on the premise of completing the task, to

achieve approximate optimal multiple trajectory

selection. Therefore, the SAC algorithm is conducive to

learning new tasks and as the initialization of more

complex tasks. At the same time, the algorithm has

stronger exploration ability and robustness, and can

solve the problem of unstable convergence.

2) In multi-agent environment, since the strategy of each

agent is constantly learning and changing, which causes

an unstable environment for a single agent, so the

variance value of traditional deep reinforcement

learning algorithm will become larger with the increase

of the number of agents. Therefore, the MADDPG

algorithm solves the problem of instability in the multi-

agent environment by centralized training and

distributed execution. When the MADDPG algorithm is

updated, the overall optimization can be performed

according to the training strategy of each agent, so as to

improve the stability and robustness of the algorithm. In

addition, the MADDPG algorithm allows each agent to

design its own reward function, which can be used to

solve the problem of cooperation or confrontation.

III. SYSTEM MODEL

A. MEC MODEL

In order to marginalize and localize computing resources and

cache resources, edge servers are usually deployed at HAPs to

ensure that mobile devices can obtain WIT and WPT services

[14]. As shown in Figure 1, the entire MEC system is

composed of HAP nodes, edge servers and mobile devices.

Each HAP has a certain signal coverage area, and mobile

devices in this range can offload tasks to an edge server for

calculation and get a certain amount of power supplement.

However, as the location of mobile devices changes, the

connection between the mobile devices and the edge server

will become extremely unstable due to the long relative

distance, which will further exceed the signal range and cause

service interruption.

FIGURE 1. MEC structure based on HAP.

In the entire MEC system, the HAP node has the functions

of energy transmission and data transmission. It gives priority

HAP
Edge

Server

Phone

Phone

HAP
Edge

Server

Phone

HAP
Edge

Server
Phone

Data Transmission

Energy Transmission

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

2 VOLUME XX, 2017

to energy transmission per unit time to ensure that the mobile

device has a certain processing capability, and then provides

data upload and download services to realize task offloading

of the mobile device. As shown in Figure 2, the mobile device

can decide whether to perform the task offloading operation

according to the strategy. If this operation is performed, the

mobile device first converts the HAP radio frequency signal

into electrical energy and stores it in the battery at each time

step. Then the battery provides energy for data transmission

and task calculation. In this operation, one part of data is

transmitted from the mobile device to the edge server for

remote calculation and the edge server returns the result,

another part is calculated directly on the mobile device, which

make full use of the computing resources of edge servers and

mobile devices. But it mainly needs to consider the delay

caused by data transmission and the energy consumption

generated by computing and communication of mobile

devices. If task offloading is not performed, the mobile device

will store the converted electrical energy in the battery and

directly provide energy for local computing. Local computing

only uses the computing resources of the mobile device, while

the delay and energy consumption of its computing must be

considered [15].

FIGURE 2. Resource transfer of task offloading and local computing.

B. PROBLEM MODEL

In this paper, all computing devices in MEC are represented

by (ES,MD), where ES represents a set of m edge servers

{es1,es2,...,es𝑖,...,es𝑚} , and the signal range SR𝑖 and

processing performance EC𝑖 of each edge server are set

separately; MD represents a set of n mobile devices

{md1,md2,...,md𝑗,...,md𝑛} , the processing performance of

each mobile device is set to MC𝑗 , the corresponding

application is denoted by {data𝑗,L𝑗
max}, data𝑗 and 𝐿𝑗

max refer to

the total amount of data to be processed by the application and

the maximum allowable completion time, where data𝑗 is

directly proportional to the complexity of the application.

Suppose that the data partition of each application is full

granularity, that is to say, the application can be divided into

subprograms of any size. It is assumed that the operation

process of all computing devices will be in accordance with

the set of time steps T = {1,2,...,t,...}, and the amount of data

to be processed by the application in each time step is 𝐶. The

MEC needs to determine the target server TS𝑡 and the amount

of offloading data 𝜆𝑡𝐶 based on the location of each mobile

device, energy supply power, remaining power, remaining

amount of application data, and connectable edge servers in

the current time step t [16]. At the same time, the remaining

data (1-λ𝑡)𝐶 needs to consume power while processing on the

mobile device, which cannot exceed the remaining power of

the device, otherwise the application processing fails. The

delay, energy consumption, cost, and charging capacity of

mobile devices and edge servers in the current time step t are

modeled as:

1) DELAY MODEL

Assuming that the CPU frequencies of the mobile device and

the target server are η
t
local and η

t
offload , respectively, and the

data amount of local processing and remote processing are (1-

λt)C and λtC in the unit time, respectively, the time required

for mobile device j to process data is:

,

(1-)
.local t

j t local

t

C
H

 (1)

The delay caused by data offloading mainly includes data

uploading delay and data processing delay. The data uploading

HAP
Edge

Server

Energy transfering

Communication

Energy harvesting

Communication

B
attery

Task executing

Energy harvesting

Task executing

Task executing

Task offloading

Local computing

Energy transfer

Task transfer

B
attery

Phone

Phone

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 3

delay is determined by the transmission rate TR between the

edge server and the mobile device. Its calculation formula at

time step t is:
- 2

2

| |
log (1).tran t t

t

p d h
TR w

N

 (2)

where w is the upload bandwidth, ptran is the transmission

power of the mobile device, dt is the distance between the

edge server and the mobile device, θ ≥ 2 is the path loss, ht is

the channel attenuation coefficient, and N is the Gaussian

distribution of noise. Therefore, the calculation formula for

uploading delay is:

.up t

t

t

C

TR

 (3)

The data processing delay formula of the edge server is:

.exec t

t offload

t

C

 (4)

The time required for mobile device j to offload data is:

, .offload up exec

j t t tH (5)

Since data processing and offloading are performed

simultaneously, the time required by mobile device j to

process unit data in time step t is:

, , ,max{ , }.local offload

j t j t j tH H H (6)

2) ENERGY CONSUMPTION MODEL

Because the mobility of mobile devices is not convenient for

replenishing power in time, and the edge server is deployed

near the base station to facilitate power supply management,

this paper takes the energy consumption of mobile devices as

the main research object, which is composed of computing

energy consumption and transmission energy consumption.

The calculated energy consumption of mobile device j at time

step t is:
3

, () .exec offload

j t tE k (7)

where k is the energy consumption coefficient based on the

type of CPU. The data transmission energy consumption of

mobile device j at time step t is:

, 0() .tran up

j t tran tE p p (8)

where p0 is the fixed energy consumption of the mobile

device for communication, α is the signal power amplifier

coefficient, ptran is the transmission power consumption of the

mobile device, and τt
up

 is the data transmission time. Therefore,

the total offload energy consumption of mobile device j at time

step t is:

, , , .offload exec tran

j t j t j tE E E (9)

3) COST MODEL

Users need to pay the corresponding fees to obtain the

computing resources that provided by the edge server. In this

paper, a dynamic price model based on the remaining amount

of computing resources is used. When the remaining amount

of resources is less, the resource price is higher. At this time,

users tend to choose service nodes with lower prices as an

offloading server, thereby reducing user expenses while

increasing resource utilization. At the same time, because

computing resources of the mobile device belong to the user,

which does not need to pay the operator for computing, the

cost model only needs to calculate the used resource by the

edge server, and the dynamic price model of the i-th edge

server based on the remaining amount of computing resources

is:

, ,Cos .exec

i t i t it pc (10)

where τi,t
exec is the computing time of the edge server, pci is

the unit price of the computing resources, and γ is the ratio of

computing resources currently occupied by the edge server.

4) ENERGY SUPPLY MODEL

Mobile devices in MEC can use RF-DC converter to convert

RF signal into electric energy and store it in battery. The

electrical energy collected per unit time is inversely

proportional to the relative distance between the mobile device

and the edge server. The energy conversion calculation

formula of mobile device j is as follows:
-

, .harvest

j t tran tE p d G (11)

Where υ ∈ (0,1) is the energy conversion efficiency, ptran

is the transmission power consumption of the mobile device,

dt is the distance between the edge server and the mobile

device, θ ≥ 2 is the path loss, and G is the integrated channel

gain between the edge server and the mobile device.

IV. ALGORITHM DESIGN

Reinforcement learning is a sequential decision-making

method that continuously conducts trial-and-error learning in

the target environment and modifies strategies through

feedback results to maximize rewards. Although it has many

advantages, it also lacks scalability and is essentially limited

to fairly low-dimensional problems. This is mainly because

reinforcement learning algorithms have the same memory

complexity, computational complexity, and sample

complexity as other algorithms. Therefore, in order to solve

the high-dimensional decision-making problem that

reinforcement learning is difficult to deal with, deep

reinforcement learning combines the perceptual ability of deep

learning with the decision-making ability of reinforcement

learning, and solves the problem with high-dimensional state

space and action space by strong function approximation and

deep neural network. In this paper, the MDP model based on

the MEC environment is built, which combines with the multi-

agent deep reinforcement learning algorithm, to solve the

problem of edge server decision-making and data offloading

decision-making [17].

A. MDP MODEL

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 3

1) STATE SPACE

In order to comprehensively consider the characteristics of

mobile tasks and edge server resources in MEC, this paper

defines the state space of the j-th mobile device at time step t

as St
j

= (TR1,t,…,TRI,t,…,TRm,t,U1,t,…, UI,t,…,Um,t,RDj,t,

RBj,t,HBj,t) , where TRi,t represents the transmission rate

between the mobile device and the i-th edge server , Ui,t

represents the CPU utilization of the i-th edge server, RDj,t

represents the amount of remaining data that the mobile device

needs to process, RBj,t represents the remaining power of the

mobile device, and HBj,t represents the power generated by

the mobile device using RF-DC conversion.

2) ACTION SPACE

In order to offload part of the mobile task to the target edge

server for collaborative computing, this paper designs two

agents with the same state space but different action spaces to

determine the target server and the data amount to be offloaded.

In the decision-making problem of target server, the action

space is defined to be corresponding to the set of edge servers,

so the discrete action space is Aedge = (es1,es2,...,esm), using

(0/1)i
j
 to indicate whether the task of the j-th mobile device is

offloaded to the i-th edge server. For example, action space

Aj
edge

= (0,0,1,...,0) indicates that the target server of the j-th

mobile device is the 3rd edge server; For the problem of

offloading data amount, the continuous action space

Apercent=λt is the offloading percentage of the data amount C

in the time step t, and the precision is kept to two decimal

places.

3) REWARD FUNCTION

The multi-agent deep reinforcement learning based on the

target server and the offloading amount of data is a completely

cooperative game problem. The objective of both agents is to

reduce the delay, energy consumption, cost, and task failure

rate as much as possible. Therefore, the reward function of the

agent is consistent, and its calculation formula is:

, ,

1 1 1

, ,

1

- - - Cos

1.

- (0),
n n m

offload

j t i t

j j i

n

j t j t

j

F H E t I RB

 (12)

where ∑ Hj,t
n
j=1 and ∑ Ej,t

offloadn
j=1 represent the total delay

and total energy consumption of all mobile devices;

∑ Cos ti,t
m
i=1 represents the total cost of all edge servers; The

σ, ξ, δ represent the weights of the above three indicators;

I(RBj,t = 0) represents that the remaining power of mobile

device j is empty when the value is 1, otherwise it is 0. This

value is used to measure whether the task is processed

successfully; ω represents the penalty value for the task

processing failure.

B. METHODOLOGY

1) SAC

The SAC is an improved actor-critic algorithm based on

maximized entropy reinforcement learning, which maximizes

the entropy to enable the actor to explore action possibilities

as many as possible under the premise of completing the task,

so as to achieve several approximately optimal trajectory

choices [18]. Therefore, the SAC algorithm has stronger

exploration ability and robustness, and is not easy to fall into

the local optimal solution. Its optimal strategy calculation

formula is:

*

(,)

0

arg max [((,) ((|)))],

((|)) log (|).

t t

T
t

s a t t t

t

t t

E r s a s

s s

 (13)

Where π∗ represents the optimal decision, T represents the

time series, ρ
π

 represents the trajectory distribution

probability under the decision π , γ ∈ [0,1] represents the

discount coefficient, r: S × A → R represents the reward

function, st ∈ S represents the environmental state at time step

t, at ∈ A represents the action taken at time step t, α > 0 is a

weighting coefficient used to control the entropy, it is more

inclined to explore when the value is larger, and Η(π(⋅ |st))

represents the entropy of the strategy in the state st.

In order to solve the high-dimensional continuous control

problem, the SAC algorithm approximately calculates the

state value function Vφ(st) , soft Q function Qθ(st, at) and

strategy function πϕ(at|st) by a neural network. Besides, it

updates each parameter alternately by stochastic gradient

descent (SGD), where the strategy function follows the

Gaussian distribution, and its mean vector and covariance

matrix are all obtained by neural network fitting. The objective

function of the state value function Vφ(st) is:

2

: :

1
() [(() - [(,) - log (|)])].

2t t fV s D t a t t f t tJ E V s E Q s a a s

 (14)

Where D represents the replay buffer of past experience,

φ, θ, ϕ represent the parameters of each neural network.

The update method of soft Q function is similar to other Q-

learning algorithms, and it updates Bellman residuals. The

difference is that its value function contains entropy, and its

objective function is:

1

2

(, ,): arg

arg 1 1 1 1

1
() [((,) - (,))],

2

(,) (,) ((,) - log((|))).

t t tQ s a s D t t t et t t

t et t t t t t t f t t

J E Q s a Q s a

Q s a r s a Q s a a s

(15)

Where θ̄ represents the parameter of the target Q network,

and the parameter θ of the Q network will be updated every a

certain time, so as to calculate the loss function by the

differences between the two Q network parameters, which

improves the stability and convergence of training.

The strategy function is updated through the soft Q function.

It expects that the action probability distribution of the strategy

in the state st can confirm to the distribution of Q value, so it

updates the strategy network parameters by minimizing the

KL divergence:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 3

,

1
() ((|) || exp((,) log ()))

1
[log (|) (,) log ()],

(;) () ().

t t

KL t t t

s D a t t t t t

t t t t t t

J D s Q s Z s

E a s Q s a Z s

a f s f s f s

(16)

Where Z(st) is the sum of the all action Q values’

expectation with the current strategy in the state st , the

function f is used to calculate the average and variance of the

Gaussian distribution, and ε is the noise of Gaussian sampling.

Therefore, the strategy function update formula and gradient

formula based on action sampling are:

,() [log ((;) |) (, (;))],

() log (|) (log (|)

(,)) (;).

t

t

t

s D N t t t t t t

t t a t t

a t t t t

J E f s s Q s f s

J a s a s

Q s a f s

(17)

2) MADDPG

Traditional reinforcement learning is difficult to apply directly

to a multi-agent environment. The main reason is that each

agent is constantly learning and improving strategies.

Therefore, changes in the strategies of the other agents cause

the instability of the dynamic environment for a single agent,

then the agent's own state transition probability will be

different in different situations, there is P(s′|s, a, π1, . . . , πn) ≠
P(s′|s, a, π1

′ , . . . , πn
′) for any πi ≠ πi

′ . Thereby, the multi-agent

reinforcement learning cannot directly use the experience

replay method for training [19]. At the same time, the

complexity of the environment will increase with the

increasing number of agents, and the optimization method of

estimating the gradient by sampling will also cause great

variance, so the strategy gradient algorithm cannot be trained

in a multi-agent environment. In view of the above problems,

it is mainly because there is no interaction between the various

agents, which leads to the neglect of the whole. Therefore, this

paper mainly solves the problems of target server selection and

the data amount of task offloading by the MADDPG algorithm.

The MADDPG algorithm is an extension of the DDPG

algorithm. It solves the problem of perception among multiple

agents by centralized training and decentralized execution.

The Actor of the DDPG algorithm will choose action at

according to the current state st during training, then the Critic

utilizes the state action function to calculate the Q value as

feedback to the action taken by the Actor, and then it calculates

the difference between the estimated Q value and the actual Q

value to update the network parameters, and the Actor

improves strategies based on the Critic ’s feedback. In addition,

the Critic of the MADDPG algorithm can obtain the state and

action of other agents during training to calculate a more

accurate Q value. That is, each agent not only based on its own

state but also based on the behavior of other agents to evaluate

the value of current actions for achieving centralized training;

At the same time, after the training, the Actor of each agent

only needs to take appropriate actions according to its state

rather than obtain the information of other agents to assist

calculation, so as to achieve decentralized execution [20].

This paper assumes that ϕ = (ϕ
1

, . . . , ϕ
k

) represents the

strategy parameters of k agents, π = (π1, . . . , πk) is the

corresponding strategy, and the strategy gradient formula of

the i-th agent is:

, 1() [log (|) (, ,...,)].
i i i ii s a i i i i kJ E a s Q x a a

 (18)

Where si represents the observation value of the i-th agent,

x = (s1, . . . , sk) represents the state vector containing the

observation values of all agents, and Qi
π(x, a1, . . . , ak)

represents the Q value evaluated by centralized Critic for the

i-th agent. Because each agent learns a different Qi
π function,

it can have different reward values to complete cooperation or

competition tasks. For the agent's deterministic strategy μ
ϕi

(abbreviated as μ
i
), the gradient formula is:

, 1 ()() [(|) (, ,...,) |].
i i i i i ii x a D i i i a i k a sJ E a s Q x a a

(19)

The element composition of the experience replay buffer D

is (x, a1, . . . , ak, r1, . . . , rk, x′), which records the observation

values, actions and rewards at the current moment and

observation values at the next moment of all agents. The

update formula of the centralized Critic's action value function

Qi
μ
 is:

'

2

, , , ' 1

' ' '

1 ()

() [((, ,...,))],

(, ,...,) |
j j j

u

i x a r x i k

i i k a s

L E Q x a a y

y r Q x a a

 (20)

Where Qi
ū represents the target network and μ̄ =

(μ
ϕ̄1

, . . . , μ
ϕ̄k

) is the set of target strategies with delay

parameters ϕ̄
i

. At the same time, since the MADDPG

algorithm can only solve the problem of continuous action

space, and the problem of edge server selection is a discrete

problem, this paper utilizes re-parameterization of Gumbel

Softmax to perform category sampling without losing gradient

information, so as to realize the mapping relationship between

continuous actions and discrete actions. The calculation

formula is:

1

log log(log)
softmax() , [0,1].ki i

i i

p
x U

 (21)

Where p represents the probability vector of k-dimensional,

and the parameter τ > 0 is used to control the smoothness of

the softmax function. The larger the value is, the smoother the

distribution generates, and the smaller the value is, the closer

the distribution is to the discrete one-hot distribution [21].

Therefore, it can obtain a discrete distribution that is closer to

the reality in training by reducing τ gradually.

Although the Actor in the MADDPG algorithm uses a

random strategy to ensure sufficient exploration, but the

Critic's deterministic strategy only considers one optimal

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 3

action for a state and cannot explore all possible optimal

actions. Therefore, the algorithm is easy to fall into the local

optimal solution in this case. In order to solve this problem,

this paper combines the MADDPG algorithm and the SAC

algorithm to enable it to explore optimal paths as many as

possible in a multi-agent environment, thereby enhancing the

robustness and generalization of the algorithm. The improved

algorithm flow is as follows:
Algorithm 1 MADDPG+SAC
Input: reward function r

Output: Online policy parameter ϕ
i
 of each actor after training

1. initialize each Actor’s online policy parameter ϕ
i
 ，target policy

parameter ϕ̄
i
，online Q function parameter θ of centralized

Critic，target Q function parameter θ̄ and memory replay buffer

D

2. for episode = 1 to episodemax do

3. reset environments and get state si,1
episode

 of agent i

4. for t=1 to Tdone do

5. select action 𝑎i,t
episode

∼ πϕi
(∙ |si,t

episode
) of agent i

6. get observation si,t+1
episode

 and immediate reward ri,t+1
episode

 of agent

i after execute action 𝑎i,t
episode

 in environment

7. store the transition (st
episode

, 𝑎t
episode

, rt+1
episode

, st+1
episode

) in D

8. for each agent i do

9. calculate QTarget
i by (15)

10. calculate critic loss Li(θ) =
1

2
(QTarget

i −

Qθ
i (sI,t

episode
, 𝑎1,t

episode
, … , 𝑎N,t

episode
))2

11. end for

12. calculate overall critic loss L(θ) =
1

N
∑ Li(θ)N

i=1 and update

online Q network parameter θ
13. for each agent i do

14. update online policy network parameter ϕ
i
 by calculating the

gradient value ∇ϕJπ(ϕ) according to (17)

15. end for

16. update target Q network parameter θ̄ of critic by θ̄ ← τθ + (1 −
τ)θ̄, τ ∈ [0,1]

17. update target policy network parameter ϕ̄
i
 of each agent i by

ϕ̄
i

← τϕ
i

+ (1 − τ)ϕ̄
i
, τ ∈ [0,1]

18. end for

19. end for

According to the above algorithm flow, Figure 3 is the flow

chart of the improved algorithm in two agents.

V. EXPERIMENT

A. SIMULATION ENVIRONMENT

This paper builds the task offloading model of MEC by

comprehensively considering the computing performance,

signal range and geographic location of the edge server; the

computing performance, remaining power, charging power,

location information of the mobile device, and the data amount

of different application services. The initial location

information of the edge server and mobile device is simulated

based on the Melbourne CBD area in the EUA data set, and

the location of mobile devices changes with time following the

Truncated Levy Walk mobility model to ensure that it moves

in the area covered by the signal [22]. The signal coverage

radius of the HAP is randomly distributed between [100,400],

the uploading bandwidth of the mobile device w = 10MHz,

the fixed communication power p0 = 0.4W, the data

transmission power ptran = 0.1W, the signal power amplifier

coefficient α = 40, the energy conversion efficiency υ = 0.8 ,

the integrated channel gain G = 20, the initial power is

4000mah, and it is assumed that each mobile device can only

send one application request at the same time [23-26]. In order

to consider the computing performance and power

consumption of different edge servers and mobile devices, this

paper refers to Standard Performance Evaluation Corporation

(SPEC) to set the device configuration and average

performance power consumption ratio. A larger value

indicates that the device consumes less energy at the same

performance and the energy consumption coefficient k is

smaller [27-28]. At the same time, models of edge servers and

mobile devices follow a uniform distribution respectively, and

the detailed information is shown in Table 1.

Due to the different amounts of data calculation and

popularity requested by different types of applications, this

paper sets the application of each mobile device to sample

according to its popularity value, and its data amount will also

follow a uniform distribution within the setting interval.

Detailed settings for different applications are shown in Table

2.
TABLE 1

 DETAILED CONFIGURATION TABLE OF COMPUTING DEVICES

Model Type CPU Frequency/MHz Cores Memory/GB Average Performance
to Power Ratio

Unit Price/CNY

RX350 S7 Edge Server 2200 16 24 5035 0.05

DL325 Gen10 Edge Server 2000 32 128 8083 0.03

DL360 Gen10 Edge Server 2500 28 48 11550 0.01
TX120 Mobile Device 2666 2 4 454 0

TX150 S5 Mobile Device 2666 2 4 356 0

TX150 S6 Mobile Device 2400 4 8 667 0

TABLE 2

DETAILED INFORMATION TABLE OF MOBILE APPLICATIONS

Application Popularity Min amount of data/bit Max amount of data/bit

translation_language 0.1 3000 40000

face_recognition 0.2 300000 30000000
natural_language_processing 0.4 10000 100000

speech_recognition 0.2 80000 800000

virtual_reality 0.1 100000 3000000

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 3

FIGURE 3. Multi-agent algorithm flow chart.

B. RESULT ANALYSIS

In order to ensure that the strategies generated by deep

reinforcement learning algorithms are efficient and usable, this

paper first selects 126 edge servers’ location information and

a certain number of mobile devices’ location information from

the EUA data set as the initial starting point of each device.

Then, the simulation environment is trained by fixing the

movement trajectory of each mobile device and the requested

application data. Finally, the random motion path data and

application data of each device are used to test the trained

decision model, so as to compare the universality and

efficiency of each strategy. Figure 4 shows the results of the

average reward value of each episode obtained by each deep

reinforcement learning algorithm in the training process. The

larger the value is, the better the result of the decision model

is. It can be seen from the figure that the DDPG algorithm and

the SAC algorithm have poor convergence results in a multi-

agent environment. Compared with DDPG algorithm, the

reward value of SAC algorithm after convergence is higher but

the convergence speed is slower. This is mainly because SAC

algorithm needs more iterations to explore more decision

paths, and it is easier to obtain better solutions. In addition, the

MADDPG algorithm and the improved MADDPG + SAC

algorithm perform better in a multi-agent environment, and the

improved MADDPG + SAC algorithm has a higher reward

value after convergence.

FIGURE 4. The average reward value of each algorithm.

Environment

Adam
optimizer

Online policy network

Target policy network

Actor1

Adam
optimizer

Online Q network

Target Q network

Critic1

update
policy

gradient

soft
update

11, 1,()t ta s

1 1, 1,(,)t tQ s a

update
policy

gradient

ty soft
update

1
1, 1()ts

Adam
optimizer

Online policy network

Target policy network

Actor2

Adam
optimizer

Online Q network

Target Q network

Critic2

2

Q

update
policy

gradient

soft
update

22, 2,()t ta s

2 2, 2,(,)t tQ s a

update
policy

gradient

ty soft
update

2
2, 1()ts

2

1,ta

2,ta

Experience
replay

memory

1, 2, 1, 2, 1, 1 2, 1 1, 1 2, 1(, , , , , , ,)t t t t t t t ts s a a r r s s

Mini
batch

1, 2, 1, 2, 1, 1 2, 1 1, 1 2, 1*(, , , , , , ,)t t t t t t t tN s s a a r r s s

1

1

1

1
Q

1

Q

1

2

2

2

2
Q

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 3

Figure 5 is a graph of resource consumption generated by

each algorithm during task offloading. The number of mobile

devices will increase in this experiment, and the total data

amount of all applications will account for 50% -150% of the

processing capacity of the entire edge server cluster. Among

them, the offloading strategy based on the Mobile algorithm

can achieve good results in terms of cost, but performs poorly

in terms of energy consumption and task failure rate. This is

mainly because Mobile algorithm takes priority in processing

application data on local devices, and then gradually offloads

to edge servers when resources are insufficient. In this paper,

mobile devices are only considered for energy consumption

and edge servers are only considered for the cost, so this

strategy consumes the least cost but consumes the most energy.

But at the same time, according to the data in Table 1, the

processing capacity of the mobile device is much poorer than

that of the edge server, so the processing of application data

by the mobile device will have a higher delay and failure rate.

In addition, the offloading strategy based on the Edge

algorithm performs best in terms of energy consumption,

while it performs generally in the rest. The main reason is that

the Edge algorithm preferentially offloads subtasks to the edge

server cluster for processing, which results in the resource

utilization of all edge servers can be maintained at a high level

and the cost is high, and the corresponding mobile devices

consume less energy. Because the processing performance of

the edge server can meet the processing requirements of more

tasks, so it performs better than the Mobile algorithm in terms

of task failure rate.

DDPG algorithm, SAC algorithm, MADDPG algorithm

and MADDPG + SAC algorithm all use deep reinforcement

learning to automatically generate corresponding offloading

strategies from data. As shown in Figure 5, it can be seen that

with the growth of the number of mobile devices, the

offloading strategy generated by DDPG algorithm performs

well in terms of cost, while the performance of SAC algorithm

is better than DDPG algorithm in terms of energy

consumption and task failure rate. The strategies generated by

the above two deep reinforcement learning algorithms

perform generally in various indicators, which is mainly

because the training results of the two algorithms are unstable

in multi-agent environment, and it is difficult to converge to

the optimal solution. In contrast, MADDPG algorithm can

effectively learn stable strategies by centralized training and

distributed execution, which is better than DDPG algorithm

and SAC algorithm in comprehensive performance, and the

improved MADDPG + SAC algorithm performs best in all

deep reinforcement learning algorithms in terms of energy

consumption, delay, and task failure rate when the number of

mobile devices is the largest.

FIGURE 5. Performance of each algorithm in task offloading.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 9

VI. CONCLUTION

In order to solve the task offloading problem of mobile devices

in large-scale heterogeneous MEC clusters, this paper first

proposes to use multi-agent deep reinforcement learning to

solve the problem of how much and where to offload. Then,

according to the EUA data set, the offloading strategies

generated by each algorithm are simulated. Finally, the

advantages and disadvantages of each algorithm strategy are

verified by comparing energy consumption, cost, delay and

task failure rate. According to the results of comparing various

algorithms, the improved MADDPG + SAC algorithm has

good performance in comprehensive results.

In future work, we intend to improve the multi-agent

reinforcement learning algorithm by transfer learning, reusing

knowledge that comes from previous experience or other

agents can learning a more complex MEC task, and it makes

the task offloading strategy more practical.

REFERENCES
[1] Li, Bin, et al. "Dynamic offloading for energy harvesting mobile edge

computing: Architecture, case studies, and future directions." IEEE
Access. vol. 7, pp. 79877-79886, 2019.

[2] Zhang, Guanglin, et al. "Energy-delay tradeoff for dynamic offloading

in mobile-edge computing system with energy harvesting devices."
IEEE Transactions on Industrial Informatics. vol. 14, no. 10, pp.

4642-4655, Oct. 2018.

[3] Wang, Feng, et al. "Joint offloading and computing optimization in
wireless powered mobile-edge computing systems." IEEE

Transactions on Wireless Communications. vol. 17, no. 3, pp. 1784-

1797, March 2018.
[4] Z. Wei, B. Zhao, J. Su and X. Lu, "Dynamic Edge Computation

Offloading for Internet of Things With Energy Harvesting: A Learning

Method," in IEEE Internet of Things Journal. vol. 6, no. 3, pp. 4436-
4447, June 2019.

[5] Yang, Zhaohui, Jiancao Hou, and Mohammad Shikh-Bahaei.

"Resource allocation in full-duplex mobile-edge computing systems
with noma and energy harvesting." arXiv preprint arXiv:1807.11846,

2018.

[6] K. Cheng, Y. Teng, W. Sun, A. Liu and X. Wang, "Energy-Efficient
Joint Offloading and Wireless Resource Allocation Strategy in Multi-

MEC Server Systems," 2018 IEEE International Conference on

Communications (ICC). Kansas City, MO, 2018, pp. 1-6.
[7] Z. Ding, J. Xu, O. A. Dobre and H. V. Poor, "Joint Power and Time

Allocation for NOMA–MEC Offloading," in IEEE Transactions on

Vehicular Technology. vol. 68, no. 6, pp. 6207-6211, June 2019.
[8] F. Messaoudi, A. Ksentini and P. Bertin, "On Using Edge Computing

for Computation Offloading in Mobile Network," GLOBECOM 2017

- 2017 IEEE Global Communications Conference, Singapore. 2017,
pp. 1-7.

[9] Y. He et al., "Deep-Reinforcement-Learning-Based Optimization for

Cache-Enabled Opportunistic Interference Alignment Wireless
Networks," in IEEE Transactions on Vehicular Technology. vol. 66,

no. 11, pp. 10433-10445, Nov. 2017.

[10] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu and W. Zhuang,

"Learning-Based Computation Offloading for IoT Devices With

Energy Harvesting," in IEEE Transactions on Vehicular Technology.

vol. 68, no. 2, pp. 1930-1941, Feb. 2019.
[11] J. Xu, L. Chen and S. Ren, "Online Learning for Offloading and

Autoscaling in Energy Harvesting Mobile Edge Computing," in IEEE

Transactions on Cognitive Communications and Networking. vol. 3,
no. 3, pp. 361-373, Sept. 2017.

[12] J. Li, H. Gao, T. Lv and Y. Lu, "Deep reinforcement learning based

computation offloading and resource allocation for MEC," 2018 IEEE
Wireless Communications and Networking Conference (WCNC).

Barcelona, 2018, pp. 1-6.

[13] D. Zeng, S. Pan, Z. Chen and L. Gu, "An MDP-Based Wireless Energy
Harvesting Decision Strategy for Mobile Device in Edge Computing,"

in IEEE Network. vol. 33, no. 6, pp. 109-115, Nov.-Dec. 2019.

[14] Li, Chunlin, et al. "Energy efficient computation offloading for
nonorthogonal multiple access assisted mobile edge computing with

energy harvesting devices." Computer Networks. vol. 164, pp. 1-12.

Dec 2019.
[15] H. Lin, Z. Chen and L. Wang, "Offloading for Edge Computing in

Low Power Wide Area Networks With Energy Harvesting," in IEEE

Access, vol. 7, pp. 78919-78929, 2019.
[16] S. Mao, S. Leng, S. Maharjan and Y. Zhang, "Energy Efficiency and

Delay Tradeoff for Wireless Powered Mobile-Edge Computing

Systems With Multi-Access Schemes," in IEEE Transactions on
Wireless Communications, vol. 19, no. 3, pp. 1855-1867, March 2020.

[17] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu and W. Zhuang,

"Learning-Based Computation Offloading for IoT Devices With
Energy Harvesting," in IEEE Transactions on Vehicular Technology,

vol. 68, no. 2, pp. 1930-1941, Feb. 2019.

[18] Chen, Tao, et al. "Soft Actor-Critic-Based Continuous Control
Optimization for Moving Target Tracking." International Conference

on Image and Graphics. Springer, Cham, pp. 630-641, 2019.

[19] Learning M R. "SparseMAAC: Sparse Attention for Multi-agent
Reinforcement Learning." Database Systems for Advanced

Applications. vol. 11448, pp. 96-110, 2019.

[20] Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-
competitive environments." Advances in neural information

processing systems. pp. 6379-6390, 2017.
[21] Christodoulou P. "Soft actor-critic for discrete action settings." arXiv

preprint arXiv:1910.07207, 2019.

[22] Lai et al. “Optimal Edge User Allocation in Edge Computing with
Variable Sized Vector Bin Packing.” 16th International Conference

on Service-Oriented Computing (ICSOC2018), Hangzhou, China,

2018, pp. 230-245.
[23] Q. Peng et al., "Mobility-Aware and Migration-Enabled Online Edge

User Allocation in Mobile Edge Computing," 2019 IEEE

International Conference on Web Services (ICWS), Milan, Italy, 2019,
pp. 91-98.

[24] Guerrero, Carlos, Isaac Lera, and Carlos Juiz. “A lightweight

decentralized service placement policy for performance optimization
in fog computing.” Journal of Ambient Intelligence and Humanized

Computing. vol.10, no.6, pp. 2435-2452, 2019.

[25] Lai P, He Q, Abdelrazek M, et al. “Optimal edge user allocation in
edge computing with variable sized vector bin packing.” International

Conference on Service-Oriented Computing, vol. 11236, pp. 230-245,

Nov 2018.
[26] J. Feng, Q. Pei, F. R. Yu, X. Chu and B. Shang, "Computation

Offloading and Resource Allocation for Wireless Powered Mobile

Edge Computing With Latency Constraint," in IEEE Wireless
Communications Letters, vol. 8, no. 5, pp. 1320-1323, Oct. 2019.

[27] L. Huang, S. Bi and Y. -J. A. Zhang, "Deep Reinforcement Learning

for Online Computation Offloading in Wireless Powered Mobile-Edge
Computing Networks," in IEEE Transactions on Mobile Computing,

vol. 19, no. 11, pp. 2581-2593, Nov. 2020.

[28] Z. Kuang, L. Li, J. Gao, L. Zhao and A. Liu, "Partial Offloading
Scheduling and Power Allocation for Mobile Edge Computing

Systems," in IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774-

6785, Aug. 2019.

HAIFENG LU was born in 1993. He graduated from

computer science department of Donghua University in
Shanghai in 2017 and obtained his master's degree. In the

same year, he studied in the school of information science

and engineering of East China University of Science and
Technology and studied for his PhD degree. His main

research interests include edge computing and

reinforcement learning.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3036416, IEEE Access

 H. Lu et al.: Optimization of Task Offloading for MEC Based on Deep RL

VOLUME XX, 2017 9

CHUNHUA GU was born in 1970. Professor and PhD

supervisor in the School of Information Science and

Engineering, East China University of Science and

Technology. Senior member of China Computer

Federation. His main research interests include cloud
computing and internet of things.

FEI LUO was born in 1978. He received the B.S., M.S.

and Ph. D. degrees in Computer Science from Huazhong

University of Science and Technology in 1997, 2004 and

2008, respectively. He have been an Associate Professor
since 2015 in the same college. He is the author of more

than 30 papers and more than 10 inventions. His research

interests include distributed computing and cloud
computing.

WEICHAO DING was born in 1989. He received the

B.S. degree in computer science and technology from
Northeast Forestry University, Haerbin, China, in 2013

and is currently pursuing the M.S and Ph.D. degree in

computer applications at East China University of
Science and Technology, Shanghai, China. His main

research interests include cloud computing, cloud
resource management and optimization, big data

applications.

SHUAI ZHENG was born in 1994. He received the B.S.

degree in information science and technology from

DongHua University, Shanghai,China, in 2018 and is

currently a graduate student at East China University of
Science and Technology, Shanghai, China. His main

research interests include edge computing and

reinforcement learning.

YIFAN SHEN was born in 1997. He received the B.S.

degree in computer science and technology from

Nanjing Forestry University, Nanjing, China, in 2019

and is currently working toward the M.S degree in

computer technology at East China University of
Science and Technology, Shanghai, China. His research

interests include mobile edge computing, deep

reinforcement learning and convex optimization.

