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ABSTRACT Combined with wireless power transfer (WPT) technology, mobile edge computing can 

provide continuous energy supply and computing resources for mobile devices, and improve their battery life 

and business application scenarios. This paper first designs the mobile edge computing (MEC) model of 

mobile devices with random mobility and hybrid access point (HAP) with data transmission and energy 

transmission. On this basis, the selection of target server and the amount of data offloading are taken as the 

learning objectives, and the task offloading strategy based on multi-agent deep reinforcement learning is 

constructed. Then combined with MADDPG algorithm and SAC algorithm, the problems of multi-agent 

environment instability and the difficulty of convergence are solved. The final experimental results show that 

the improved algorithm based on MADDPG and SAC has good stability and convergence. Compared with 

other algorithms, it has achieved good results in energy consumption, delay and task failure rate. 

INDEX TERMS Mobile edge computing, task offloading, wireless power transfer, multi-agent, deep 

reinforcement learning.

I. INTRODUCTION 

With the rapid development and widespread popularity of the 

Internet of Things (IoT) technology, cloud computing has 

been unable to meet the demand in business scenarios where 

the amount of data collection is too large, immediate and 

continuity interaction is required, such as online games, real-

time streaming media, and augmented reality [1]. To solve 

above problems, the MEC builds an open platform for data 

collection, data processing and data analyzing at the edge of 

the network, so that mobile devices can actively offload 

computing tasks to edge servers, thereby reducing service 

response time, improving device battery life, ensuring data 

security and user privacy [2]. In addition, with the large-scale 

deployment of 5G and the continuous development of mobile 

communication system, most energy-consuming applications, 

including video streaming services, AR/VR transmissions, 

etc., are now running on battery-powered mobile devices, 

which leads to huge energy consumption and interruption of 

user services. Therefore, in order to meet the continuous 

service needs of mobile devices, the WPT technology realizes 

wireless charging of mobile devices and IoT devices by using 

the principle that radio frequency (RF) signals can transmit 

energy in the far field. It is a flexible, controllable, on-demand 

and low-cost solution, which has the characteristics of stable 

power supply, short response time, simple installation and 

environment-friendly [3]. In order to satisfy the information 

download request and wireless charging request of mobile 

devices, HAP can realize wireless information transmission 

(WIT) and WPT in the same frequency spectrum based on the 

broadcast characteristics of RF signal and wireless channel. 

The key difference between HAP and traditional access point 

(AP) is that the former enables WPT and WIT services at the 

same time, which fundamentally solves the problem of low 

computing ability and short battery life of mobile devices, 

makes the business scenarios more diversified [4]. 

Although edge servers can relieve computing pressure and 

battery life pressure for mobile devices through HAP, since 

WIT and WPT are performed in the same frequency spectrum, 

only one operation can be completed at the same time. If all 

the mobile tasks are offloaded to the edge server for processing, 

the amount of data transmission will be too large, the service 

time of WIT is too long and the service time of WPT is too 
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short, which will eventually cause the mobile device to run out 

of power and interrupt user services. At the same time, if a 

large number of mobile tasks are collectively offloaded to a 

small number of edge servers for processing, considering the 

limited computing performance and network bandwidth of the 

edge servers, it will cause serious congestion of computing 

tasks and significant delays in user services [5]. Therefore, in 

order to make full use of MEC's computing resources and 

ensure that mobile devices can provide continuous services, it 

needs to design a strategy which can determine the amount of 

offloaded data and the target server for mobile tasks, so that 

the edge server and mobile devices can perform collaborative 

processing to effectively improve the user's service quality. In 

this paper, we propose a strategy that uses multi-agent deep 

reinforcement learning to solve the problem of how much and 

where to offload the tasks in the MEC by comprehensively 

considering the computing performance, the signal range, the 

geographic location of the edge server, and the computing 

performance, remaining capacity of battery, energy 

transmission, location information, application data amount of 

the mobile device. And it effectively reduces the energy 

consumption, delay and task failure rate of mobile devices and 

edge servers, and improves the service quality of the entire 

MEC platform. The main contributions of this paper include 

three aspects: 

1) The MEC model of mobile devices with random 

mobility and HAP nodes with data transmission and 

energy transmission is constructed. Since the HAP node 

can only perform WIP or WPT at the same time, it is 

necessary to reasonably design the running time of both 

in unit time to ensure the quality of user service. In this 

paper, the time required for data transmission is 

calculated by considering the amount of data offloading 

and the transmission rate based on the location of mobile 

devices. At the same time, the remaining time is used as 

the energy transmission time to charge the device, so as 

to ensure that the total power of the device can complete 

the computing task and transmission task in unit time. 

2) Combined with the actual application scenario of MEC, 

the target server selection and data amount to be 

offloaded are taken as the learning objectives, and the 

task offloading strategy based on multi-agent deep 

reinforcement learning is constructed. This paper 

combines the MADDPG algorithm and the SAC 

algorithm to solve the problem of instability and 

convergence difficulty in the multi-agent environment. 

Among them, the MADDPG algorithm optimizes the 

strategy of each agent through the idea of centralized 

training and distributed execution to reduce the variance 

of the algorithm; the SAC algorithm introduces 

maximum entropy into the reward function to ensure 

that it can explore more action possibilities, and enhance 

its exploration ability and robustness. At the same time, 

the MADDPG algorithm and the SAC algorithm are 

used to solve the continuous action space problem. 

Considering that the target server selection is a discrete 

problem, this paper uses the reparameterization trick of 

Gumbel Softmax to solve discrete problems without 

losing gradient information. 

3) The energy consumption, cost, delay and task failure 

rate of task offloading strategies are comprehensively 

compared to analyze their advantages and disadvantages. 

Experiments show that the improved algorithm based on 

MADDPG and SAC has good stability and convergence. 

Compared with other algorithms, it achieves good 

results in energy consumption, delay and task failure 

rate when the number of mobile devices is large. 

The remainder of this paper is organized as follows. In 

Section 2, the scope of related works is discussed. The MEC 

model and evaluation metrics such as energy consumption, 

delay, cost and task failure rate are described in Section 3. The 

proposed task offloading algorithm is presented in Section 4. 

The experimental setup and performance evaluation are 

described in Section 5. Finally, Section 6 concludes the paper 

and gives directions for future work.  

II. RELATED WORK  

With the popularization of 5G technology, the task offloading 

problem of MEC has received extensive attention, and there 

are a lot of researches in recent years. For instance, the 

reference [6] proposed an Orthogonal Frequency-Division 

Multiplexing Access (OFDMA) based multi-user and multi-

MEC-server system, which is used to investigate the task 

offloading strategies and wireless resources allocation for 

latency-critical applications. The reference [7] mathematically 

modeled the MEC architecture, it optimized the MEC 

calculation offload strategy to decide when to offload the 

user ’s computing tasks to the MEC server for processing, and 

verified the effectiveness of the strategy through the face 

recognition application by measuring the round-trip time. 

Compared with the local execution of mobile devices, the 

strategy greatly reducing the service delay and saving the 

energy consumption of the device. The reference [8] studied 

the multi-user service delay problem in the MEC offloading 

scenario and proposed a new type of partial computing 

offloading model, which optimizes the allocation of 

communication and computing resources through strategies 

such as optimal data segmentation. Compared with local 

execution of devices and edge cloud execution, the proposed 

partial offloading strategy can minimize the delay of all 

devices, thereby improving the user's service experience 

quality. In the above research, when heuristic algorithms are 

used to deal with large-scale task offloading problems, 

algorithms take too long to generate decision-making due to 

the high dimension of the problem. At the same time, such 

algorithms can only find approximately optimal solutions. 

Therefore, it cannot meet the expected requirements in actual 

use. In addition, reinforcement learning is also widely used in 

the problem of offloading MEC tasks. The reference [9] 

proposed that mobile tasks can select multiple base stations in 
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the MEC for offloading according to demand. And on this 

basis, it studied the task offloading strategy based on a deep 

reinforcement learning algorithm to maximize the long-term 

performance. The reference [10] used RL-based resource 

management algorithms to optimize the data processing 

volume of cloud servers and edge servers. And the strategy 

can reduce service delay and operating costs. The reference 

[11] chose whether to offload tasks to the edge server which 

serves for multiple users by deep reinforcement learning 

algorithm, so as to reduce energy consumption and average 

computing delay. At the same time, it further optimized the 

selection strategy of the edge server by adding wireless 

transmission rate, charging power and battery power to the 

learning process, so that the entire computing cluster provides 

better service performance. 

Based on the above researches, compared with heuristic 

algorithms, deep reinforcement learning has the characteristics 

of self-learning and self-adaption by combining the 

advantages of deep learning and reinforcement learning. It 

needs fewer parameters and has better global search 

capabilities, which can solve the more complex, high-

dimensional and more realistic task [12]. However, the 

researchers of current MEC task offloading, which based on 

deep reinforcement learning, are all about single agents. They 

mainly focus on one learning target such as the amount of data 

offloading or the selection of edge servers. The amount of data 

offloading only pays attention to the amount of data to be 

processed by the local device and the remote server cluster 

respectively, but the impacts of performance and location 

between different devices are ignored. The selection problem 

of the target server only focuses on whether the data is 

offloaded and where it is offloaded, which ignores the fact that 

the application data can be split for collaborative computing, 

to save computing time and transmission time. Therefore, this 

paper takes the target server selection and the data amount to 

be offloaded as comprehensive learning goals with the multi-

agent deep reinforcement learning algorithm, so as to improve 

the resource utilization rate of the entire MEC platform [13]. 

In addition, in order to ensure that the multi-agent algorithm 

has better convergence and generalization performance in the 

MEC partial offloading problem, this paper combines the 

advantages of the SAC algorithm and the MADDPG 

algorithm to form a partial offloading strategy:  

1) In order to solve the problem that deep reinforcement 

learning algorithm is influenced by super parameters 

and easy to fall into local optimal solution, the SAC 

algorithm adds the maximum entropy to the reward 

function, so that the actor can explore as many actions 

as possible on the premise of completing the task, to 

achieve approximate optimal multiple trajectory 

selection. Therefore, the SAC algorithm is conducive to 

learning new tasks and as the initialization of more 

complex tasks. At the same time, the algorithm has 

stronger exploration ability and robustness, and can 

solve the problem of unstable convergence.  

2) In multi-agent environment, since the strategy of each 

agent is constantly learning and changing, which causes 

an unstable environment for a single agent, so the 

variance value of traditional deep reinforcement 

learning algorithm will become larger with the increase 

of the number of agents. Therefore, the MADDPG 

algorithm solves the problem of instability in the multi-

agent environment by centralized training and 

distributed execution. When the MADDPG algorithm is 

updated, the overall optimization can be performed 

according to the training strategy of each agent, so as to 

improve the stability and robustness of the algorithm. In 

addition, the MADDPG algorithm allows each agent to 

design its own reward function, which can be used to 

solve the problem of cooperation or confrontation. 

III.  SYSTEM MODEL 

A.  MEC MODEL 

In order to marginalize and localize computing resources and 

cache resources, edge servers are usually deployed at HAPs to 

ensure that mobile devices can obtain WIT and WPT services 

[14]. As shown in Figure 1, the entire MEC system is 

composed of HAP nodes, edge servers and mobile devices. 

Each HAP has a certain signal coverage area, and mobile 

devices in this range can offload tasks to an edge server for 

calculation and get a certain amount of power supplement. 

However, as the location of mobile devices changes, the 

connection between the mobile devices and the edge server 

will become extremely unstable due to the long relative 

distance, which will further exceed the signal range and cause 

service interruption. 

 

FIGURE 1.  MEC structure based on HAP. 

 

In the entire MEC system, the HAP node has the functions 
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to energy transmission per unit time to ensure that the mobile 

device has a certain processing capability, and then provides 

data upload and download services to realize task offloading 

of the mobile device. As shown in Figure 2, the mobile device 

can decide whether to perform the task offloading operation 

according to the strategy. If this operation is performed, the 

mobile device first converts the HAP radio frequency signal 

into electrical energy and stores it in the battery at each time 

step. Then the battery provides energy for data transmission 

and task calculation. In this operation, one part of data is 

transmitted from the mobile device to the edge server for 

remote calculation and the edge server returns the result, 

another part is calculated directly on the mobile device, which 

make full use of the computing resources of edge servers and 

mobile devices. But it mainly needs to consider the delay 

caused by data transmission and the energy consumption 

generated by computing and communication of mobile 

devices. If task offloading is not performed, the mobile device 

will store the converted electrical energy in the battery and 

directly provide energy for local computing. Local computing 

only uses the computing resources of the mobile device, while 

the delay and energy consumption of its computing must be 

considered [15]. 

 

FIGURE 2. Resource transfer of task offloading and local computing. 

 

B.  PROBLEM MODEL 

In this paper, all computing devices in MEC are represented 

by (ES,MD), where ES represents a set of m edge servers 

{es1,es2,...,es𝑖,...,es𝑚} , and the signal range SR𝑖  and 

processing performance EC𝑖  of each edge server are set 

separately; MD   represents a set of n mobile devices 

{md1,md2,...,md𝑗,...,md𝑛} , the processing performance of 

each mobile device is set to MC𝑗 , the corresponding 

application is denoted by {data𝑗,L𝑗
max}, data𝑗 and 𝐿𝑗

max refer to 

the total amount of data to be processed by the application and 

the maximum allowable completion time, where data𝑗  is 

directly proportional to the complexity of the application. 

Suppose that the data partition of each application is full 

granularity, that is to say, the application can be divided into 

subprograms of any size. It is assumed that the operation 

process of all computing devices will be in accordance with 

the set of time steps T = {1,2,...,t,...}, and the amount of data 

to be processed by the application in each time step is 𝐶. The 

MEC needs to determine the target server TS𝑡 and the amount 

of offloading data 𝜆𝑡𝐶 based on the location of each mobile 

device, energy supply power, remaining power, remaining 

amount of application data, and connectable edge servers in 

the current time step t [16]. At the same time, the remaining 

data (1-λ𝑡)𝐶 needs to consume power while processing on the 

mobile device, which cannot exceed the remaining power of 

the device, otherwise the application processing fails. The 

delay, energy consumption, cost, and charging capacity of 

mobile devices and edge servers in the current time step t are 

modeled as: 

1) DELAY MODEL 

Assuming that the CPU frequencies of the mobile device and 

the target server are η
t
local  and η

t
offload , respectively, and the 

data amount of local processing and remote processing  are (1-

λt)C and λtC in the unit time, respectively, the time required 

for mobile device j to process data is: 

,

(1- )
.local t

j t local

t

C
H




                                 (1) 

The delay caused by data offloading mainly includes data 

uploading delay and data processing delay. The data uploading 
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delay is determined by the transmission rate TR between the 

edge server and the mobile device. Its calculation formula at 

time step t is: 
- 2

2

| |
log (1 ).tran t t

t

p d h
TR w

N



                  (2) 

where w is the upload bandwidth, ptran is the transmission 

power of the mobile device, dt  is the distance between the 

edge server and the mobile device, θ ≥ 2 is the path loss, ht is 

the channel attenuation coefficient, and N  is the Gaussian 

distribution of noise. Therefore, the calculation formula for 

uploading delay is: 

.up t

t

t

C

TR


                                    (3) 

The data processing delay formula of the edge server is: 

.exec t

t offload

t

C



                                 (4) 

The time required for mobile device j to offload data is: 

, .offload up exec

j t t tH                                (5) 

Since data processing and offloading are performed 

simultaneously, the time required by mobile device j to 

process unit data in time step t is: 

, , ,max{ , }.local offload

j t j t j tH H H                       (6) 

2) ENERGY CONSUMPTION MODEL 

Because the mobility of mobile devices is not convenient for 

replenishing power in time, and the edge server is deployed 

near the base station to facilitate power supply management, 

this paper takes the energy consumption of mobile devices as 

the main research object, which is composed of computing 

energy consumption and transmission energy consumption. 

The calculated energy consumption of mobile device j at time 

step t is: 
3

, ( ) .exec offload

j t tE k                             (7) 

where k is the energy consumption coefficient based on the 

type of CPU. The data transmission energy consumption of 

mobile device j at time step t is: 

, 0( ) .tran up

j t tran tE p p                           (8) 

where p0  is the fixed energy consumption of the mobile 

device for communication, α  is the signal power amplifier 

coefficient, ptran is the transmission power consumption of the 

mobile device, and τt
up

 is the data transmission time. Therefore, 

the total offload energy consumption of mobile device j at time 

step t is: 

, , , .offload exec tran

j t j t j tE E E                             (9) 

3) COST MODEL 

Users need to pay the corresponding fees to obtain the 

computing resources that provided by the edge server. In this 

paper, a dynamic price model based on the remaining amount 

of computing resources is used. When the remaining amount 

of resources is less, the resource price is higher. At this time, 

users tend to choose service nodes with lower prices as an 

offloading server, thereby reducing user expenses while 

increasing resource utilization. At the same time, because 

computing resources of the mobile device belong to the user, 

which does not need to pay the operator for computing, the 

cost model only needs to calculate the used resource by the 

edge server, and the dynamic price model of the i-th edge 

server based on the remaining amount of computing resources 

is: 

, ,Cos .exec

i t i t it pc                              (10) 

where τi,t
exec is the computing time of the edge server, pci is 

the unit price of the computing resources, and γ is the ratio of 

computing resources currently occupied by the edge server. 

4) ENERGY SUPPLY MODEL 

Mobile devices in MEC can use RF-DC converter to convert 

RF signal into electric energy and store it in battery. The 

electrical energy collected per unit time is inversely 

proportional to the relative distance between the mobile device 

and the edge server. The energy conversion calculation 

formula of mobile device j is as follows: 
-

, .harvest

j t tran tE p d G                         (11) 

Where υ ∈ (0,1) is the energy conversion efficiency, ptran 

is the transmission power consumption of the mobile device, 

dt  is the distance between the edge server and the mobile 

device, θ ≥ 2 is the path loss, and G is the integrated channel 

gain between the edge server and the mobile device. 

IV. ALGORITHM DESIGN 

Reinforcement learning is a sequential decision-making 

method that continuously conducts trial-and-error learning in 

the target environment and modifies strategies through 

feedback results to maximize rewards. Although it has many 

advantages, it also lacks scalability and is essentially limited 

to fairly low-dimensional problems. This is mainly because 

reinforcement learning algorithms have the same memory 

complexity, computational complexity, and sample 

complexity as other algorithms. Therefore, in order to solve 

the high-dimensional decision-making problem that 

reinforcement learning is difficult to deal with, deep 

reinforcement learning combines the perceptual ability of deep 

learning with the decision-making ability of reinforcement 

learning, and solves the problem with high-dimensional state 

space and action space by strong function approximation and 

deep neural network. In this paper, the MDP model based on 

the MEC environment is built, which combines with the multi-

agent deep reinforcement learning algorithm, to solve the 

problem of edge server decision-making and data offloading 

decision-making [17]. 

A.  MDP MODEL 
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1) STATE SPACE 

In order to comprehensively consider the characteristics of 

mobile tasks and edge server resources in MEC, this paper 

defines the state space of the j-th mobile device at time step t 

as St
j

= (TR1,t,…,TRI,t,…,TRm,t,U1,t,…, UI,t,…,Um,t,RDj,t, 

RBj,t,HBj,t) , where TRi,t  represents the transmission rate 

between the mobile device and the i-th edge server , Ui,t 

represents the CPU utilization of the i-th edge server, RDj,t 

represents the amount of remaining data that the mobile device 

needs to process, RBj,t represents the remaining power of the 

mobile device, and HBj,t represents the power generated by 

the mobile device using RF-DC conversion. 

2) ACTION SPACE 

In order to offload part of the mobile task to the target edge 

server for collaborative computing, this paper designs two 

agents with the same state space but different action spaces to 

determine the target server and the data amount to be offloaded. 

In the decision-making problem of target server, the action 

space is defined to be corresponding to the set of edge servers, 

so the discrete action space is Aedge = (es1,es2,...,esm), using 

(0/1)i
j
 to indicate whether the task of the j-th mobile device is 

offloaded to the i-th edge server. For example, action space 

Aj
edge

= (0,0,1,...,0) indicates that the target server of the j-th 

mobile device is the 3rd edge server; For the problem of 

offloading data amount, the continuous action space 

Apercent=λt is the offloading percentage of the data amount C 

in the time step t, and the precision is kept to two decimal 

places. 

3) REWARD FUNCTION 

The multi-agent deep reinforcement learning based on the 

target server and the offloading amount of data is a completely 

cooperative game problem. The objective of both agents is to 

reduce the delay, energy consumption, cost, and task failure 

rate as much as possible. Therefore, the reward function of the 

agent is consistent, and its calculation formula is: 

, ,

1 1 1

, ,

1

- - - Cos

1.

- ( 0),
n n m

offload

j t i t

j j i

n

j t j t

j

F H E t I RB  

  


   



  








   

  (12) 

where ∑ Hj,t
n
j=1  and ∑ Ej,t

offloadn
j=1  represent the total delay 

and total energy consumption of all mobile devices; 

∑ Cos ti,t
m
i=1  represents the total cost of all edge servers; The 

σ, ξ, δ  represent the weights of the above three indicators; 

I(RBj,t = 0) represents that the remaining power of mobile 

device j is empty when the value is 1, otherwise it is 0. This 

value is used to measure whether the task is processed 

successfully; ω  represents the penalty value for the task 

processing failure. 

B.  METHODOLOGY 

1) SAC 

The SAC is an improved actor-critic algorithm based on 

maximized entropy reinforcement learning, which maximizes 

the entropy to enable the actor to explore action possibilities 

as many as possible under the premise of completing the task, 

so as to achieve several approximately optimal trajectory 

choices [18]. Therefore, the SAC algorithm has stronger 

exploration ability and robustness, and is not easy to fall into 

the local optimal solution. Its optimal strategy calculation 

formula is: 

*

( , )

0

arg max [ ( ( , ) ( ( | )))],

( ( | )) log ( | ).

t t

T
t

s a t t t

t

t t

E r s a s

s s




   

 





   

    







      (13) 

Where π∗ represents the optimal decision, T represents the 

time series, ρ
π

 represents the trajectory distribution 

probability under the decision π , γ ∈ [0,1]  represents the 

discount coefficient, r: S × A → R  represents the reward 

function, st ∈ S represents the environmental state at time step 

t, at ∈ A represents the action taken at time step t, α > 0 is a 

weighting coefficient used to control the entropy, it is more 

inclined to explore when the value is larger, and Η(π(⋅ |st)) 

represents the entropy of the strategy   in the state st. 

In order to solve the high-dimensional continuous control 

problem, the SAC algorithm approximately calculates the 

state value function Vφ(st) , soft Q function Qθ(st, at)  and 

strategy function πϕ(at|st) by a neural network. Besides, it 

updates each parameter alternately by stochastic gradient 

descent (SGD), where the strategy function follows the 

Gaussian distribution, and its mean vector and covariance 

matrix are all obtained by neural network fitting. The objective 

function of the state value function Vφ(st) is: 

2

: :

1
( ) [ ( ( ) - [ ( , ) - log ( | )]) ].

2t t fV s D t a t t f t tJ E V s E Q s a a s   

    (14) 

Where D represents the replay buffer of past experience, 

φ, θ, ϕ represent the parameters of each neural network. 

The update method of soft Q function is similar to other Q-

learning algorithms, and it updates Bellman residuals. The 

difference is that its value function contains entropy, and its 

objective function is: 

1

2

( , , ): arg

arg 1 1 1 1

1
( ) [ ( ( , ) - ( , )) ],

2

( , ) ( , ) ( ( , ) - log( ( | ))).

t t tQ s a s D t t t et t t

t et t t t t t t f t t

J E Q s a Q s a

Q s a r s a Q s a a s







  



   





  

    

(15) 

Where θ̄ represents the parameter of the target Q network, 

and the parameter θ of the Q network will be updated every a 

certain time, so as to calculate the loss function by the 

differences between the two Q network parameters, which 

improves the stability and convergence of training. 

The strategy function is updated through the soft Q function. 

It expects that the action probability distribution of the strategy 

in the state st can confirm to the distribution of Q value, so it 

updates the strategy network parameters by minimizing the 

KL divergence: 
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Where Z(st)  is the sum of the all action Q values’ 

expectation with the current strategy in the state st , the 

function f is used to calculate the average and variance of the 

Gaussian distribution, and ε is the noise of Gaussian sampling. 

Therefore, the strategy function update formula and gradient 

formula based on action sampling are: 

,( ) [log ( ( ; ) | ) ( , ( ; ))],

( ) log ( | ) ( log ( | )

( , )) ( ; ).
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(17) 

2) MADDPG 

Traditional reinforcement learning is difficult to apply directly 

to a multi-agent environment. The main reason is that each 

agent is constantly learning and improving strategies. 

Therefore, changes in the strategies of the other agents cause 

the instability of the dynamic environment for a single agent, 

then the agent's own state transition probability will be 

different in different situations, there is P(s′|s, a, π1, . . . , πn) ≠
P(s′|s, a, π1

′ , . . . , πn
′ ) for any πi ≠ πi

′ . Thereby, the multi-agent 

reinforcement learning cannot directly use the experience 

replay method for training [19]. At the same time, the 

complexity of the environment will increase with the 

increasing number of agents, and the optimization method of 

estimating the gradient by sampling will also cause great 

variance, so the strategy gradient algorithm cannot be trained 

in a multi-agent environment. In view of the above problems, 

it is mainly because there is no interaction between the various 

agents, which leads to the neglect of the whole. Therefore, this 

paper mainly solves the problems of target server selection and 

the data amount of task offloading by the MADDPG algorithm. 

The MADDPG algorithm is an extension of the DDPG 

algorithm. It solves the problem of perception among multiple 

agents by centralized training and decentralized execution. 

The Actor of the DDPG algorithm will choose action at 

according to the current state st during training, then the Critic 

utilizes the state action function to calculate the Q value as 

feedback to the action taken by the Actor, and then it calculates 

the difference between the estimated Q value and the actual Q 

value to update the network parameters, and the Actor 

improves strategies based on the Critic ’s feedback. In addition, 

the Critic of the MADDPG algorithm can obtain the state and 

action of other agents during training to calculate a more 

accurate Q value. That is, each agent not only based on its own 

state but also based on the behavior of other agents to evaluate 

the value of current actions for achieving centralized training; 

At the same time, after the training, the Actor of each agent 

only needs to take appropriate actions according to its state 

rather than obtain the information of other agents to assist 

calculation, so as to achieve decentralized execution [20]. 

This paper assumes that ϕ = (ϕ
1

, . . . , ϕ
k

)  represents the 

strategy parameters of k agents, π = (π1, . . . , πk)  is the 

corresponding strategy, and the strategy gradient formula of 

the i-th agent is: 

, 1( ) [ log ( | ) ( , ,..., )].
i i i ii s a i i i i kJ E a s Q x a a





        (18) 

Where si represents the observation value of the i-th agent, 

x = (s1, . . . , sk)  represents the state vector containing the 

observation values of all agents, and Qi
π(x, a1, . . . , ak) 

represents the Q value evaluated by centralized Critic for the 

i-th agent. Because each agent learns a different Qi
π function, 

it can have different reward values to complete cooperation or 

competition tasks. For the agent's deterministic strategy μ
ϕi

 

(abbreviated as μ
i
), the gradient formula is: 

, 1 ( )( ) [ ( | ) ( , ,..., ) | ].
i i i i i ii x a D i i i a i k a sJ E a s Q x a a

                  

(19) 

The element composition of the experience replay buffer D 

is (x, a1, . . . , ak, r1, . . . , rk, x′), which records the observation 

values, actions and rewards at the current moment and 

observation values at the next moment of all agents. The 

update formula of the centralized Critic's action value function 

Qi
μ
 is: 

'
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Where Qi
ū  represents the target network and μ̄ =

(μ
ϕ̄1

, . . . , μ
ϕ̄k

)  is the set of target strategies with delay 

parameters ϕ̄
i

. At the same time, since the MADDPG 

algorithm can only solve the problem of continuous action 

space, and the problem of edge server selection is a discrete 

problem, this paper utilizes re-parameterization of Gumbel 

Softmax to perform category sampling without losing gradient 

information, so as to realize the mapping relationship between 

continuous actions and discrete actions. The calculation 

formula is: 

1

log log( log )
softmax( ) , [0,1].ki i

i i

p
x U







 
     (21) 

Where p represents the probability vector of k-dimensional, 

and the parameter τ > 0 is used to control the smoothness of 

the softmax function. The larger the value is, the smoother the 

distribution generates, and the smaller the value is, the closer 

the distribution is to the discrete one-hot distribution [21]. 

Therefore, it can obtain a discrete distribution that is closer to 

the reality in training by reducing τ gradually. 

Although the Actor in the MADDPG algorithm uses a 

random strategy to ensure sufficient exploration, but the 

Critic's deterministic strategy only considers one optimal 
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action for a state and cannot explore all possible optimal 

actions. Therefore, the algorithm is easy to fall into the local 

optimal solution in this case. In order to solve this problem, 

this paper combines the MADDPG algorithm and the SAC 

algorithm to enable it to explore optimal paths as many as 

possible in a multi-agent environment, thereby enhancing the 

robustness and generalization of the algorithm. The improved 

algorithm flow is as follows: 
Algorithm 1 MADDPG+SAC 
Input: reward function r 

Output: Online policy parameter ϕ
i
 of each actor after training 

1. initialize each Actor’s online policy parameter ϕ
i
 ，target policy 

parameter ϕ̄
i
，online Q function parameter θ of centralized 

Critic，target Q function parameter θ̄ and memory replay buffer 

D 

2. for episode = 1 to episodemax do 

3.   reset environments and get state si,1
episode

 of agent i 

4.   for t=1 to Tdone do 

5.     select action 𝑎i,t
episode

∼ πϕi
(∙ |si,t

episode
) of agent i 

6.     get observation si,t+1
episode

 and immediate reward ri,t+1
episode

 of agent 

i after execute action 𝑎i,t
episode

 in environment 

7.     store the transition (st
episode

, 𝑎t
episode

, rt+1
episode

, st+1
episode

) in D 

8.     for each agent i do 

9.         calculate QTarget
i  by (15) 

10.         calculate critic loss Li(θ) =
1

2
(QTarget

i −

Qθ
i (sI,t

episode
, 𝑎1,t

episode
, … , 𝑎N,t

episode
))2  

11.     end for 

12.     calculate overall critic loss L(θ) =
1

N
∑ Li(θ)N

i=1  and update 

online Q network parameter θ 
13.     for each agent i do 

14.         update online policy network parameter ϕ
i
 by calculating the 

gradient value ∇ϕJπ(ϕ) according to (17) 

15.     end for 

16.     update target Q network parameter θ̄ of critic by θ̄ ← τθ + (1 −
τ)θ̄, τ ∈ [0,1] 

17.     update target policy network parameter ϕ̄
i
 of each agent i by 

ϕ̄
i

← τϕ
i

+ (1 − τ)ϕ̄
i
, τ ∈ [0,1]  

18.   end for 

19. end for 

According to the above algorithm flow, Figure 3 is the flow 

chart of the improved algorithm in two agents. 

V. EXPERIMENT 

A.  SIMULATION ENVIRONMENT 

This paper builds the task offloading model of MEC by 

comprehensively considering the computing performance, 

signal range and geographic location of the edge server; the 

computing performance, remaining power, charging power, 

location information of the mobile device, and the data amount 

of different application services. The initial location 

information of the edge server and mobile device is simulated 

based on the Melbourne CBD area in the EUA data set, and 

the location of mobile devices changes with time following the 

Truncated Levy Walk mobility model to ensure that it moves 

in the area covered by the signal [22]. The signal coverage 

radius of the HAP is randomly distributed between [100,400], 

the uploading bandwidth of the mobile device w = 10MHz, 

the fixed communication power p0  = 0.4W, the data 

transmission power ptran = 0.1W, the signal power amplifier 

coefficient α = 40, the energy conversion efficiency υ = 0.8 , 

the integrated channel gain G  = 20, the initial power is 

4000mah, and it is assumed that each mobile device can only 

send one application request at the same time [23-26]. In order 

to consider the computing performance and power 

consumption of different edge servers and mobile devices, this 

paper refers to Standard Performance Evaluation Corporation 

(SPEC) to set the device configuration and average 

performance power consumption ratio. A larger value 

indicates that the device consumes less energy at the same 

performance and the energy consumption coefficient k  is 

smaller [27-28]. At the same time, models of edge servers and 

mobile devices follow a uniform distribution respectively, and 

the detailed information is shown in Table 1. 

Due to the different amounts of data calculation and 

popularity requested by different types of applications, this 

paper sets the application of each mobile device to sample 

according to its popularity value, and its data amount will also 

follow a uniform distribution within the setting interval. 

Detailed settings for different applications are shown in Table 

2. 
TABLE 1 

 DETAILED CONFIGURATION TABLE OF COMPUTING DEVICES 

Model Type CPU Frequency/MHz Cores Memory/GB Average Performance 
to Power Ratio 

Unit Price/CNY 

RX350 S7 Edge Server 2200 16 24 5035 0.05 

DL325 Gen10 Edge Server 2000 32 128 8083 0.03 

DL360 Gen10 Edge Server 2500 28 48 11550 0.01 
TX120 Mobile Device 2666 2 4 454 0 

TX150 S5 Mobile Device 2666 2 4 356 0 

TX150 S6 Mobile Device 2400 4 8 667 0 

 
TABLE 2  

DETAILED INFORMATION TABLE OF MOBILE APPLICATIONS 

Application Popularity Min amount of data/bit Max amount of data/bit 

translation_language 0.1 3000 40000 

face_recognition 0.2 300000 30000000 
natural_language_processing 0.4 10000 100000 

speech_recognition 0.2 80000 800000 

virtual_reality 0.1 100000 3000000 
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FIGURE 3. Multi-agent algorithm flow chart. 

 

B.  RESULT ANALYSIS 

In order to ensure that the strategies generated by deep 

reinforcement learning algorithms are efficient and usable, this 

paper first selects 126 edge servers’ location information and 

a certain number of mobile devices’ location information from 

the EUA data set as the initial starting point of each device. 

Then, the simulation environment is trained by fixing the 

movement trajectory of each mobile device and the requested 

application data. Finally, the random motion path data and 

application data of each device are used to test the trained 

decision model, so as to compare the universality and 

efficiency of each strategy. Figure 4 shows the results of the 

average reward value of each episode obtained by each deep 

reinforcement learning algorithm in the training process. The 

larger the value is, the better the result of the decision model 

is. It can be seen from the figure that the DDPG algorithm and 

the SAC algorithm have poor convergence results in a multi-

agent environment. Compared with DDPG algorithm, the 

reward value of SAC algorithm after convergence is higher but 

the convergence speed is slower. This is mainly because SAC 

algorithm needs more iterations to explore more decision 

paths, and it is easier to obtain better solutions. In addition, the 

MADDPG algorithm and the improved MADDPG + SAC 

algorithm perform better in a multi-agent environment, and the 

improved MADDPG + SAC algorithm has a higher reward 

value after convergence. 

 

FIGURE 4.  The average reward value of each algorithm. 
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Figure 5 is a graph of resource consumption generated by 

each algorithm during task offloading. The number of mobile 

devices will increase in this experiment, and the total data 

amount of all applications will account for 50% -150% of the 

processing capacity of the entire edge server cluster. Among 

them, the offloading strategy based on the Mobile algorithm 

can achieve good results in terms of cost, but performs poorly 

in terms of energy consumption and task failure rate. This is 

mainly because Mobile algorithm takes priority in processing 

application data on local devices, and then gradually offloads 

to edge servers when resources are insufficient. In this paper, 

mobile devices are only considered for energy consumption 

and edge servers are only considered for the cost, so this 

strategy consumes the least cost but consumes the most energy. 

But at the same time, according to the data in Table 1, the 

processing capacity of the mobile device is much poorer than 

that of the edge server, so the processing of application data 

by the mobile device will have a higher delay and failure rate. 

In addition, the offloading strategy based on the Edge 

algorithm performs best in terms of energy consumption, 

while it performs generally in the rest. The main reason is that 

the Edge algorithm preferentially offloads subtasks to the edge 

server cluster for processing, which results in the resource 

utilization of all edge servers can be maintained at a high level 

and the cost is high, and the corresponding mobile devices 

consume less energy. Because the processing performance of 

the edge server can meet the processing requirements of more 

tasks, so it performs better than the Mobile algorithm in terms 

of task failure rate. 

DDPG algorithm, SAC algorithm, MADDPG algorithm 

and MADDPG + SAC algorithm all use deep reinforcement 

learning to automatically generate corresponding offloading 

strategies from data. As shown in Figure 5, it can be seen that 

with the growth of the number of mobile devices, the 

offloading strategy generated by DDPG algorithm performs 

well in terms of cost, while the performance of SAC algorithm 

is better than DDPG algorithm in terms of energy 

consumption and task failure rate. The strategies generated by 

the above two deep reinforcement learning algorithms 

perform generally in various indicators, which is mainly 

because the training results of the two algorithms are unstable 

in multi-agent environment, and it is difficult to converge to 

the optimal solution. In contrast, MADDPG algorithm can 

effectively learn stable strategies by centralized training and 

distributed execution, which is better than DDPG algorithm 

and SAC algorithm in comprehensive performance, and the 

improved MADDPG + SAC algorithm performs best in all 

deep reinforcement learning algorithms in terms of energy 

consumption, delay, and task failure rate when the number of 

mobile devices is the largest.

 

FIGURE 5.  Performance of each algorithm in task offloading. 
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VI. CONCLUTION 

In order to solve the task offloading problem of mobile devices 

in large-scale heterogeneous MEC clusters, this paper first 

proposes to use multi-agent deep reinforcement learning to 

solve the problem of how much and where to offload. Then, 

according to the EUA data set, the offloading strategies 

generated by each algorithm are simulated. Finally, the 

advantages and disadvantages of each algorithm strategy are 

verified by comparing energy consumption, cost, delay and 

task failure rate. According to the results of comparing various 

algorithms, the improved MADDPG + SAC algorithm has 

good performance in comprehensive results. 

In future work, we intend to improve the multi-agent 

reinforcement learning algorithm by transfer learning, reusing 

knowledge that comes from previous experience or other 

agents can learning a more complex MEC task, and it makes 

the task offloading strategy more practical. 
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