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ABSTRACT Deep learning approach has been used extensively in image analysis tasks. However, imple-
menting the methods in 3D data is a bit complex because most of the previously designed deep learning
architectures used 1D or 2D as input. In this work, the performance of deep learning methods on different 3D
data representations has been reviewed. Based on the categorization of the different 3D data representations
proposed in this paper, the importance of choosing a suitable 3D data representation which depends on
simplicity, usability, and efficiency has been highlighted. Furthermore, the origin and contents of the major
3D datasets were discussed in detail. Due to growing interest in 3D object retrieval and classification tasks,
the performance of different 3D object retrieval and classification on ModelNet40 dataset were compared.
According to the findings in this work, multi views methods surpass voxel-based methods and with increased
layers and enough data augmentation the performance can still be increased. Therefore, it can be concluded
that deep learning together with a suitable 3D data representation gives an effective approach for improving
the performance of 3D shape analysis. Finally, some possible directions for future researches were suggested.

INDEX TERMS 3D data representation, 3D deep learning, 3D models dataset, computer vision, classifica-
tion, retrieval.

I. INTRODUCTION
The increasing availability of 3D models from con-
structed and captured 3D data from low-cost acquisition
devices and other modeling tools requires effective algo-
rithms to perform key tasks such as retrieval [1]–[3],
classification [4]–[7], recognition [8]–[10], and other 3D
shape analysis tasks [11]–[15]. In 3D deep learning algo-
rithm, there are two key challenges, i.e., the 3D data represen-
tation to use and the network structure adopted. Majority of
the deep learning methods are deeply rooted in 2D data [15]
which makes it more challenging on 3D data, fortunately
with increase interest on 3D objects like the yearly 3D shape
retrieval contest organized by [16] in order to evaluate the
effectiveness of 3D retrieval algorithms and other 3D objects
related tasks have increased tremendously the number of deep
learning algorithm on different 3D data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

The success of deep learning in image feature extrac-
tion over handcrafted methods have attracted interest in raw
3D data like points clouds because of their simplicity and
flexibility. [17], [18] process points cloud directly without
any transformation to other formats. These approaches prove
effective in 3D object classification and segmentation tasks.
However, point clouds are permutation invariant and there is
uncertainty on how these methods can be processed without
affecting output quality. 3D data can also be projected into
2D space and still maintains some of the main properties
of the original 3D data [19], [20] but their major limitation
is information loss when the 3D objects are very complex,
in order to overcome this shortcomings, some approaches
adopted reconstruction methods that retrieved objects from
a 3D shape database and use a real time scanning of the
environment which helps to replace scanned RGB-D data
with complete hand-modeled objects from the shape database
and finally align and scale retrieved models to the input
data to obtain a high quality virtual representation of the
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real world environment which is very similar to the original
geometry. Surfaces mesh is among the most popular 3D data
representation which is commonly used in computer graphics
and computer vision fields [21]. MeshCNN was Proposed
in [22] which utilizes the key features of mesh data by
combining convolution and pooling layers to operate on the
mesh edges by taking advantages of their intrinsic geodesic
connections. The major limitations of mesh data are its com-
plexity and irregularity which makes it less usable in the
research community as can be seen in Fig. 2 which shows the
history of 3D data representation using different types of data
from 2003 to 2018.

Voxels and octrees are the two popular solids 3D data rep-
resentations that exploit the full geometry of the 3D objects.
[23] represents the input object as a 30 × 30 × 30 binary
tensor which categorized the 3D object, even though this
approach is among the first to exploit 3D volumetric data on
deep learning directly, they imposed many constraints among
which is the additional kernel which leads to difficulty in
processing high-resolution data. Octrees which is a varying
sized voxel was exploited in [24] for 3D object classification,
retrieval and segmentation tasks. The authors proposed octree
based convolutional neural network that support a modest
octree structure that supports all CNN operations on the GPU.

Some works exploit the high-level structures of 3D shape
by expressing the 3D shape in form of high-level shape
feature which is informative and contains geometric extract
of the 3D objects. 3D descriptors can be divided into Global
descriptor [25]–[27] and local descriptor [28]–[30]. The other
classification is based on the essence of the information char-
acterization e.g. non-diffusion 3D descriptors e.g. statistical
moments [31], light field descriptor [32], and the diffusion-
based descriptors [33]–[36] this will be discussed in details
in section IID. Other two popular high-level 3D data repre-
sentations are the graphs and skeleton. [37] Performed a 3D
object retrieval based upon a graph-based object represen-
tation which is composed of new mesh segmentation along
with a graph matching between graph of the query and each
of the graph that corresponds to the object of the 3D objects
database. In [38], a unified framework was proposed that
generalize CNN architectures to graphs and manifolds and
learn compositional task- specific features. The relationship
between graphs and meshes will be elaborated in section III
D. To have an effective deep learning model on 3D data
representations, there is a need to consider the fundamental
properties of the 3D data representations and its efficiency,
simplicity and usability which is the main priority in this
work.

3D data representation used in deep learning methods for
3D objects retrieval and classification have continued to grow
rapidly in recent time. In [39], Griffiths et al. review the
current state of the art deep learning architectures but focus
on unstructured Euclidean data only, also in [40], Pichao
et al. presented a detailed overview of recent advances in
RGB-D based motion recognition. In this survey, the meth-
ods are categorized into four groups based on the modality

adopted for recognition which are; RGB-based, depth-based,
skeleton-based and RGB+D-based. A special consideration
was given to the way in which the spatial, temporal and
structural information have been utilized. Some of the key
benefits of this survey is the comprehensive discussion of the
challenges of RGB-D based motion recognition, analysis of
the limitations of available methods and finally discussion
of potential research directions. The aim of our paper is to
broadly review the performance of deep learning methods on
different 3D data representations. We emphasize on the com-
putational difference of each 3D data representations which
include: Simplicity (less difficulty of acquisition, hardware
speed/timing), Usability (benefit) and Efficiency (effective-
ness).

In [41], a survey was presented that classified 3D data
representation into Euclidean and non-Euclidean data. How-
ever, the recent deep learning methods that explore octree
data representation were not presented. Therefore, our cur-
rent work presented all the different 3D data representations.
currently used in deep learning architectures including the
most popular 3D objects datasets available in the deep learn-
ing community. The main contributions of this paper are as
follows:

1) A comprehensive review about the performance of
deep learning methods on different 3D data representa-
tions with an emphasis on the computational difference
of each 3D data representation based on simplicity,
usability and efficiency.

2) Thorough Analysis about the future direction of 3D
data representations used in deep learning models with
literature to support the field where the future direction
would be beneficial

II. REVIEW OF DIFFERENT CATEGORIES OF 3D DATA
REPRESENTATIONS
3D data representations serve as the basis for computer graph-
ics, robotics, visualization and many others. They serve as the
language for defining geometry syntax and semantics. In this
section, we reviewed in details the different categories of 3D
data representation which include: Raw data, solids, surfaces,
multi views and high-level structures. Recent work [42] focus
on unstructured Euclidean data only in contrast to ours which
extensively study both structured and unstructured data which
will serve as a guide for choosing the suitable 3D data repre-
sentation for future research.

A. RAW DATA
Raw 3D data can be obtained by different divergent scanning
devices such as Microsoft Kinect [43], structured lights scan-
ning [44] and many others. Some of the popular 3D data rep-
resentations that belong to this group are point cloud, RGB-
D data, and 3D projections subsubsectionPOINT CLOUD
Point clouds have a background in photogrammetry and in
recent time lidar. A point cloud is simply a set of 3D data
points and each point is represented by three coordinates in

VOLUME 8, 2020 57567



A. S. Gezawa et al.: Review on Deep Learning Approaches for 3D Data Representations in Retrieval and Classifications

a Cartesian or other coordinate systems.it is regarded as a set
of unstructured 3D points that symbolize the geometry of 3D
objects and are utilized in many computer vision tasks. E.g.
classification and segmentation [17], object recognition [45],
reconstruction [46] etc.

Even though points clouds can be obtained easily using
Kinect [43] and other sensors like devices, processing them
can be challenging due to absence of connectivity information
in the point clouds and capturing them from the environment
in the acquisition setup. The point clouds obtained some-
times are incomplete, with noise and missing data which can
be caused due to constrained of the sensors [47] and other
environmental factors [48]. Recent methods deal with noise
reduction in point cloud [49].

1) RGB-D DATA
Microsoft Kinect [43] can be used to characterize 3D data
to RGB-D images. It gives a 2.5D data about the obtained
3D object by giving the depth map (D) together with color
information (RGB). Many RGB-D datasets are available like
RGB-D object dataset [50], SUN 3D [51] and many more.
RGB-D data prove to be effective in pose regression [52],
correspondence [53] and character recognition [54].

2) 3D DATA PROJECTIONS
3D projections are a way of mapping 3D points to 2D planes.
It is realized using imaginary projections which give the
projected data crucial features of the original 3D object.Many
of the projection’s methods convert the 3Dmodel to a 2D grid
with key properties. Spherical domains projections [55] aid
the data projected to be invariant to rotations. However, some
projections are not optimal in complicated computer vision
tasks due to loss of information in projections [56].

B. SOLIDS
Solids representations of 3D models are virtually space con-
trol information for a given object. Usually the information
is binary which implies that the space can be occupied by the
object or none. Octree and voxels are the two major solids
representations used in deep learning community.

1) OCTREE
An octree is a simplified data structure for effective storage
of 3D data. It is an extension of a 2D quadtree. The individual
node in an octree contains eight children [57]. Octree is
simply a fluctuating sized voxel and it is considered one of the
most scattered voxel representations which was recently used
in conjunction with CNN for 3D shape analysis task in [12]
and [24]. It has the advantages of efficient memory utilization
and can be used for generating high resolution voxels [58].
However, it has a major drawback which is caused by its
inability to maintain the geometry of some 3D objects like
the smoothness of the surface.

2) VOXELS
Voxels are used to represent 3D data by characterizing
the manner the 3D object is allocated through the three

dimensions of the scene. The occupied voxels can be clas-
sified into seeable block or self-occluded by encoding the
view information about the 3D shape. [60] and [61] used a
voxel variational auto encoder for shape classification. [62]
Create CNN learning as a beam search with the intention of
identifying an optimal CNN architecture namely, the number
of layers, nodes, and their connectivity in the network, but the
major limitations of voxels are its demand for unnecessary
storage due to representation of both the occupied and non-
occupied scene [63]. The huge demand for memory storage
makes it not good enough for high resolution data [57].

C. SURFACES
Surfaces polygons are usually used in boundary representa-
tion of 3D objects which surround the inner part of the object.
The set of this polygons are usually stored for the description
of the object which has the benefit of simplicity and speeding
of the rendering of the surface and object display because all
surfaces can be characterize with linear equations. There are
many methods for surface representations of 3D objects such
as the polygon mesh, sub division, parametric and implicit
but among these representations’ polygon mesh is the most
popular surface representations used in the deep learning
community.

1) 3D MESH
3D meshes consist of a combination of vertices, edges and
faces that are mostly used in computer graphics applica-
tion for storing 3D objects and for rendering purpose. The
vertices contain connectivity list that describes how each
vertices are connected to one another. The major challenges
of mesh data are, they are irregular and very complex, which
makes them not usually used in deep learning methods until
recently when [21] propose MeshNet which can to deal with
the complexity and irregularity problems of mesh data and
successfully performed 3D shape classification and retrieval
task on Model 10 dataset. Also [22] used the edges of the
mesh to perform pooling and convolution on the mesh edges
by taking advantages of their intrinsic geodesic connections.

D. HIGH-LEVEL STRUCTURES
In 3D shape retrieval and classification, there is a need for
succinct still, very rich representation of a 3D object that
will be used to describe an object as representative of some
category. 3D shapes can be represented in the form of high-
level 3D shape descriptors which is a simplified represen-
tation that contains the geometric characteristics of the 3D
object [25]–[30]. Apart from 3D descriptors, the graph can
also be expressed in the form of high-level structures.

1) 3D DESCRIPTORS
3D shape descriptors play a significant role in 3D shape
retrieval and other shapes analysis tasks. For 3D shape
retrieval which can be describe as a way of querying a
3D object from a database of many 3D models in order to
discover the closest match, there is a need to change the
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shapes into feature descriptors in order to keep the enormous
volume of 3D data and expeditiously query to find the closest
match [25]–[30]. 3D shape descriptors can be divided into
Global descriptors [25]–[27] and local descriptors [28]–[30].
The other categories of 3D shape descriptors are the
diffusion -based [33]–[35] and non-diffusion based [like
the statistical moments [31], light field descriptor [32], and
Fourier descriptor [64]. The diffusion-based descriptors are
effective in capturing the geometric properties of the 3D
shape. For example the Global Point Signature which is term
as (GPS) [34] characterizes the shape of a 3D model by
using the Laplace-Beltrami Operator that is defined on a
3D surface. Other two popular diffusion based descriptors
are the Heat Kernel Signature (HKS) [33] and Wave Ker-
nel Signature (WKS) [35] which both have the advantages
of invariance to isometric deformations. Regardless of the
capabilities of HKS, GPS and WKS they are still point based
descriptors that lacks the global description of the shape.
Temperature Descriptor which is a global descriptor was
developed to represent the entire shape which is very efficient
but represents the shape at only one single scale that leads to
an incomplete description.

2) GRAPH
Graph 3D data representation collect the geometric essence
from a 3D object by linking different shape parts using a
graph. Graph approaches are usually categorized into three
based on the category of graph used e.g. model graph [65],
reeb graphs [66] and skeleton graph [67]. Meshes are also
extended to graph-structured data in which the nodes of the
graph are used as the vertices of the mesh and the edges
represent the connections between the vertices [68].

E. MULTI VIEW DATA
Another form of 3D data representation is to render a set of
images from verities of views and takes the pile image and use
as an input to CNNwhich can be used for shape analysis tasks
[69], [70]. The key benefits of these approaches are that they
can handle high-resolution inputs as well as utilizing the full
image-based CNNs for 3D shape analysis tasks. However,
determining the number of views and self-occlusions are
major draw-backs of these methods which can lead to huge
computational cost if the numbers of views are large.

III. DATASETS
Datasets are very useful for fair comparisons between dif-
ferent deep learning algorithms. Synthetic and real-world
datasets are the two major categories of datasets available
in the deep learning community. Most of these datasets are
produced by universities research groups or large industries.
This section presents the benchmark datasets mostly used in
testing the deep learning algorithms. We present the datasets
in chronological order based on the category.

A. RGB-D DATASETS
The following list outlines the different types of RGB-D
datasets that are captured using a Kinect or similar devices:

1) RGB-D OBJECTS DATASETS
This dataset consists of 11,427 RGB-D images which are
manually segmented. The dataset was developed in con-
junction with the Intel labs Seattle by researchers from
Washington University. It is available freely for educa-
tional/noncommercial use and consists of 300 common
objects that are categorized into 51 classes. The kinect
style sensor was used to acquire the images and generate
640 × 480 RGB-D frames.

2) NYU DEPTH DATASETS
The NYU depth dataset was developed by researchers at
Yew York University and was obtained using Microsoft
Kinect V1 and consist of 1449 RGB-D segmentation labels
for images of indoor scans. There are 40 classes of objects
split and 407,024 validation images are available.

3) SUN RGB-D DATASETS
This dataset was developed at Princeton University using four
sensors to acquire the datasets and consist 10,000 manually
segmented images which are split into 63 classes of indoor
scenes.

B. OTHER 3D DATASETS
The following list outlines other Synthetic and real-world
datasets that are mostly used in the deep learning community.

1) ShapeNet
ShapeNet is a large collection of 3D objects e.g. bicycles,
planes, bottles, chairs, tables, etc. that are developed by a team
of researchers from Stanford and Princeton universities as
well as TTIC institute. Two categories datasets are available
that is ShapeNet Core that includes 51,300 3D models that
are divided into 55 classes and ShapeNetSem which consist
of 270 classes of 12,000 models.

2) SCAPE DATASET
One of the key aims of this dataset is providing human shapes
models. The 3Dmodels are obtained using both the shape and
pose parameters so that changes due to deformation in both
poses and shapes can be captured. Cyberware whole-body
scanner is used to capture the surface data then meshes of the
full body are created after merging scans of four directions
that are captured by the scanner simultaneously. It consists of
scanned human figure of 37 people having 70 different poses
each.

3) TOSCA DATASET
The Tosca dataset consist of 3D non-rigid shapes which are
categorized into Non-rigid world and Tosca high-resolution
datasets. Both of the datasets consist of animals and humans
in a variety of poses that can be used for shape analysis and
correspondence experiments

4) SHREC DATASETS
Network of Excellence AIM @ SHAPE [71] initiated the
now famous 3D Shape Retrieval Contest (SHREC) in 2006.
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FIGURE 1. Examples of different 3D data representations.

It contains a track of models from the Princeton Shape
Benchmark. Now it is organized in collaboration with the
Eurographics Workshop on 3D object Retrieval every year
including many tracks which consist of CADmodels, protein
models, water tight models and many more. The main aim
is to provide researchers with an opportunity to test their
algorithms by using common test collection.

5) NIST SHAPE BENCHMARK
The National Institute of Standard and Technology (NIST)
shape benchmark consist of 800 3D models of daily life
objects which are sub-divided into 20 models per class.

6) FAUST
The dataset contains 300 high resolutions of human body
scans in 10 subjects and 30 poses. The models are obtained
through full body high accuracy 3D multi-stereo system with
172,000 average numbers of vertices for each object and the
ground truth correspondence are computed automatically.

7) ENGINEERING SHAPE BENCHMARK (ESB)
This dataset was developed by Purdue University researchers.
It consists of 867 triangulated meshes mostly fromCAD parts
in the field of mechanical engineering. This dataset has two
levels of order with 3-main classes and 4 sub-classes.

8) McGILL 3D SHAPE BENCHMARK
The models in this repository are mostly adopted from PSB
and other internet websites that are mostly created from CAD

modeling tools. The dataset consists of 456 models in total
and 255 of which are articulated parts shapes. They are
divided into 10 classes with 20-30 models in each category.

9) ModelNet
The ModelNet dataset is a comprehensive collection of clean
3D CAD models provided by researchers from department
of computer Science of Princeton University. The datasets
contain 127,915 CAD models belonging to 662 object cate-
gories. It is obtained using online search engines after query-
ing for each object category and then manually annotated
the data. ModelNet has two subsets which ModelNet10 and
ModelNet40 that are mostly used in object recognition and
classification tasks.

10) PERSISTENT HEAT SIGNATURE
This dataset was developed by researchers at Ohio state
university for used in Shape Retrieval algorithms for partial
and incomplete models with pose variations. The dataset
consist of 50 queries models among which 18 are complete
and the remaining are incomplete or partial models. In total
in consists of 300 shapes from 21 classes of dogs, horses,
airplanes etc.

11) ScanNet
This is one of the recent and rich datasets for real world
scenes. The dataset was annotated and labeled with semantic
segmentation and consist of 2.5 million views that are used
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FIGURE 2. Progress of 3D data representation along with time from 1999-2019.

for training directly without the need for pre-training on other
datasets.

IV. PERFORMANCE OF DEEP LEARNING METHODS ON
DIFFERENT 3D DATA REPRESENTATIONS
With the increase number of 3D models, 3D shape retrieval
and classification tasks continue to receive attention in the
field of computer vision,medical imaging, graphics andmany
others. 3D shape retrieval deals with the issue of discovering
3D objects from a shape database that are similar to a partic-
ular query. Network of Excellence@Shape [71] initiated the
famous 3D shape retrieval contest (SHREC) in 2006. It con-
tains a track of models from the Princeton shape benchmark
and now it is organized in collaborationwith the Eurographics
Workshop on 3D object Retrieval every year including many
tracks that consist of CAD models, protein models, water
tight models and many more. Deep learning has achieved
tremendous success in image-based task [72]–[74]. Despite
the success of deep networks in image concepts, in sufficient
training examples can leads to decayed performance more
especially for deep networks with strong representations
structure making them vulnerable to overfitting. To address
some of these problems, Shu et al. in [75] proposed a novel
deep network structure that can transfer labeling information
across heterogeneous domains particularly from text domain
to image domain which has the advantage of reducing the
issue of insufficient image training data by utilizing the labels
in the text domain. They built multiple weekly shared layers
of features which enable them to share the labels from text to
image. Experiments on real world datasets show the compet-
itive performance of the propose method. Motivated by their
success in [75], the authors in [76] proposed a more Gen-
erative Deep Transfer Networks (DTNs) that are equipped
with more generated layers and they use several parameter
and representative-shared layers that helps to hierarchically

learn to transfer the semantic knowledge from web texts to
images. They used two SAEs to accept both text and images
as inputs then followed by multiple generalized layers. They
test their approach on their new datasets that is an extension of
NUS-WIDE [77] that can be used for social image retrieval,
multilabel image classification and cross-domain processing
of image and text. With the high rise of 3D models available
examining and understanding them is of great significance
more especially in retrieval and classifications tasks.one of
the clue for this kind of tasks is to get the features of 3D
shape that can rightly describe both the shape and their parts.
Many researchers utilized the different 3D data represen-
tations available to perform shape analysis task. A recent
survey in [78] reviewed the most common architectures of
deep neural networks which are: Convolution Neural Net-
work (CNN), Autoencoder, Restricted Boltzmann Machine
(RBM) and Long Short-Term Memory (LSTM). CNN which
is most widely use deep neural network in computer vision
contains many convolutional and subsampling layers which
are sometimes follow by fully connected layers. The training
example (x,y) with respect to the cost function in hidden
layers are expressed as [78]:

J (W , b; x, y) =
1
2

∥∥hw,b(x)− y∥∥2 (1)

For layer l, the error term δ equation as [78]:

δ(1) = ((W (l))T δ(l+1)) · f ′(z)(1) (2)

δl+1 represent the error of the (l + 1)th layer of a network
with cost function J (W , b; x, y) while f ′(z)(1) is the activation
function derivative [78].

OwjJ (W , b; x, y) = δ
(l+1)(a(l+1))T (3)

Ob(j)J (W , b; x, y) = δ
(l+1) (4)
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a serve as the input. while the error for sub-sampling layer is
computed also as [78]

δ
(l)
k = upsample((W (l)

k )T δ(l+1)k ) · f ′(z(l)k ) (5)

Here k is the filter number in the layer. In [4], a voxel-based
method was used to characterize a 3D shape and use a 3D
CNN to the whole volume. References [79], [80] used the fea-
tures describe on a manifold to execute CNN operations. But
still using deep learning methods on 3D data is very challeng-
ing because of the complexity and geometric properties of the
3Dmodels. The advantage of havingmany verities of 3D data
representation has given researchers the opportunity to select
the suitable data representations for their tasks. This section
reviewed the performance of deep learning methods used in
different 3D shape analysis tasks based on the representation
of 3D data adopted. Figure 2 below illustrates the taxonomy
of different 3D data representations currently in used in deep
learning community.

A. PERFORMANCE OF DEEP LEARNING METHODS ON
RAW DATA
Depending on the scanning device used to capture object of
particular interest, raw 3D data can be obtained in differ-
ent kinds. Range image can be obtained from UAV scans
using different viewpoints and then used a registration pro-
cess to combine them together to make a correspondence
between them. The 3D point cloud can be obtained using lidar
scanners to capture a scene, while RGB-D images can also
be obtained using Kinect devices. Previously, Handcrafted
descriptors signatures are used to extract features from the 3D
objects or images. The success achieved by [81] in the image
classification task now makes deep learning taking over of
majority of computer vision tasks. While neural networks
have been in existence since [82], the development of pow-
erful computer hardware’s like the GPU and the accessibility
of large-scale datasets makes deep learning a success. In this
section, we will cover the performance of deep learning
methods on raw 3D data namely: Point Cloud, Projections
and RGB-D including their strength and weakness.

1) PERFORMANCE OF DEEP LEARNING METHODS ON
POINT CLOUDS
Point cloud is a special type of 3D data representation because
of its irregular structure. Point cloud is uncomplicated and
integrated data structures which are clear of complexities of
mesh data. Previous methods for using point cloud are mostly
hand crafted for a particular task. They aremostly categorized
into intrinsic [83], [84] and extrinsic [85], [86] which are used
as point features to encrypt some statistical information of
points.

Reference [87] used point clouds as a combination of sets
with distinct sizes. In this method, they show that when learn-
ing an underlying model, the orders in which input/output
data are organized are important. They used read-write net-
work to learn sorting numbers. Reference [88] Introduce a
simple permutation equivariant layer for deep learning with

set of structures. The layers are obtained by parametric shar-
ing and have a linear time complexity in the size of each set.
They successfully use deep permutation invariant networks
to perform point cloud classification and MNIST- digit sum-
mation. Even though their network has a linear time com-
plexity in the size of each set and it is comparatively simple,
the performance of the network on ModelNet dataset was
low. Reference [89] Proposed DeepSet that operate on sets
and can also be used in different scenarios in both supervised
and unsupervised task. The applicability of their method was
demonstrated on population estimation, set expansion, outlier
detection and point cloud classification.

Qi et al. in [17] proposed pointNet which is a network
architecture that rightfully utilizes unordered point clouds
and provides end-to-end classifications with less memory
requirement than voxels grids or possible loss of information
from 2D image representations. Reference [17] represents
{x1, x2, . . . xn} as unordered pointset and xi ∈ Rd , f : X → R
can be define as a set function that maps a vector to a set of
points [17]:

f (x1, x2, . . . , xn) = γ
(
MAX
i=1,...n

{h(xi)}
)

(6)

where γ and h are the multi-layer perception (MLP) net-
works. pointNet does not use convolution operations to
extract features as commonly used by other methods, instead
it used fully connected layers to represent each point in a
Euclidean space. It uses a spatial encoding for every point to
combine into a global point signature for classification pur-
pose. They use a Multi-layer Perception (MLPs) to generate
features and combined them using max-pooling and single
symmetric function. To help with the classification, they use
the objects orientation in a canonical form to intensify the
invariance to permutation of the input. PointNet demonstrates
its robustness against input perturbation and partial data by
producing comparable results in classification and segmen-
tation task to the state-of-the-art methods as can be seen
in table 2. A major challenge of pointNet is that it fails to
capture local structures caused by the points occupied by the
metric space. To overcome this limitation, the authors in [18]
proposed pointNet++which is a hierarchical neural network
that uses the idea of 2D-CNNs where features are capture
on a larger scale progressively through a multi-resolution
hierarchy. Despite the fact that this network captures more
features, it is very complicated and very low in computational
speed. Nevertheless, PointNet++ performance on ModelNet
40 dataset is 90.7% which is a 2.7% higher than PointNet and
also out performed [90].

Reference [91] proposed KD-Networks and avoids
operating on the point clouds structure directly. Instead
KD-Network uses multiplicative transformations based on
the sub-divisions of the point clouds foist onto them
by Kd-trees. The network is feed forward network and it
demonstrate competitive performance in shape retrieval, clas-
sification and shape part segmentation tasks. Also, in [92],
Roveri and Rahmann et al. avoided using point cloud directly
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TABLE 1. A summary of 3D data representations.

by automatically transforming 3D unordered input data
into a set of 2D depth images and successfully classified
them by utilizing excellent performing image classifica-
tion CNNs [93]. Their network consists of 3 key modules,
the first module deals with input point cloud after learn-
ing k-directional views to create the depth maps, while
the last two modules processed the already created k-depth
maps for object classification. Previous deep networks that
directly deal with points usually used a supervised learning
approach. Yang et al. in [94] proposed FoldingNet a novel
end-to-end deep auto-encoder to deals with unsupervised
learning issues on point clouds. Their network used a graph-
based enhancement on the encoder tomake local structures on
top of pointNet and a folding decoder successfully deforms
a canonical 2D grid onto the underlying 3D object surface
of a point cloud. They also used an SVM together with the

FoldingNet which is used for 3D classification. The network
performed well on ModelNet40 dataset which achieved high
classification accuracy. Recently, Li et al. proposed So-
Net [95] which used unsupervised model for a permutation
invariant architecture with orderless point clouds. The key
idea of So-Net is the building of Self Organizing Map (SOM)
tomodels the spatial distribution of point clouds. The network
represents the input point cloud by a single feature vector by
using the SOM to execute hierarchical feature extraction on
each points and SOM nodes. SO-Net archived higher classi-
fication accuracy on ModelNet 40 as can be seen in table 2.

Reference [96] propose RS-CNN a relation shape CNN
which extends regular grid CNN to the irregular configuration
of point cloud. The network learns from geometric topol-
ogy constraint among individual points. Each local convo-
lutional neighborhood is created by using a sample point x
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FIGURE 3. The taxonomy of different 3D data representations currently in used in deep learning community.

which the centroid then surrounding points as its neighbors.
RS-CNN performed well on ModelNet40 which achieves
a state-of-the-art performance as can be seen in table 2.
In another work, [97] address the problem of 3D seman-
tic segmentation of unstructured point clouds using a deep
learning architecture by introducing grouping techniques that
define point neighborhoods in the initial world space and the
learned feature space. They use a dedicated loss functions to
help structure the learned point feature space by defining the
neighborhood in an adaptive manner which is very sensitive
to the local geometry by utilizing k-means clustering on the
input point cloud and then defining dynamic neighborhoods
in the learned feature space using K-nearest neighbor (KNN).
The effectiveness of the propose method was demonstrated
on the task of semantic segmentation of 3D point clouds
on indoor data from the standard 3D indoor scene dataset,
ScanNet dataset and outdoor data from the virtual KITTI 3D
dataset. Similarly, [98] propose PointSift which is similar to
a SIFT. The module tries to encode information of variants
of orientations which is adaptive to scale. Instead of using
K-nearest neighbor as used in PointNet++, they obtain the
information from all the points in the local neighborhood by

combining the pointSIFT module on the PointNet++ archi-
tecture which demonstrate a high performance on segmen-
tation task on ScanNet and Standard Large-Scale 3D indoor
spaces datasets. In similar work, [99] proposed SPLANet that
used unordered point cloud and incorporate a spatial convo-
lution operator within the network structure. In this method,
sparse bilateral convolutional layers are utilized that use
indexing structures to perform convolutions only on the parts
of the lattice been occupied. One of the major variations of
SPLANet to PointNet++ is the use of flexible specification
of the lattice structure to help hierarchical and spatially aware
feature learning. SPLATnet have many advantages among
which are: it accepts the input point cloud and use it directly
without requiring any pre-processing to voxels or images and
it allows an easy specification of filter neighborhood as in
standard CNN architectures.

Reference [100] proposed to use ConvNets to recognize
human actions from depth maps on a dataset based on Depth
Motion Maps (DMMs). They employ three strategies to
effectively utilized the capability of ConvNets in minimizing
discriminative features for recognition. they start by rotat-
ing virtual cameras around subjects represented by the 3D
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TABLE 2. Classification and mean average precision accuracies of some methods on ModelNet40 datasets.

points of the captured depth maps in order to mimicked
different viewpoints, then DMMs are encoded into Pseudo-
RGB images which helps in turning the spatial-temporal
motion patterns into textures and edges and finally through
the use of transfer learning, the three ConvNets are trained
independently on the color coded DMMS which are con-
structed in three Orthogonal planes. There proposed method
was evaluated on MSR Action 3D, MSR action 3D Ext and
UT-Kinect-Action datasets and achieved the state-of-the-art
results on these datasets. As can be observed from the lit-
eratures reviewed in this section, the major challenges in
raw point cloud are its non-uniform nature of the data which
was usually caused by occlusions, sensor noise and distance
from the sensors. Since point cloud has unordered structure
researchers usually use a learning approach that is invariant
to the order of the point cloud.

2) PERFORMANCE OF DEEP LEARNING METHODS ON
RGB-D DATA
The availability of RGB-D datasets from RGB-D sensors
e.g. Microsoft Kinect has motivated researchers to exploit
RGB-D data representation due to the added advantage
of color information and depth representation provided by
the sensors. Socher et al. [101] were the first to use

RGB-D data for 3D object classification. The authors used the
integration of convolution and recursive neural networks to
process depth channel and color independently. In the begin-
ning, two single-layers CNN are used to extract low level
descriptors from the RGB-D data. The output descriptor was
forwarded to a set of Recursive Neural Networks (RNNs) that
are initialized with random weights. The resultant descrip-
tors from the RNN were merged to serve as input to a
SoftMax classifier. This approach demonstrates good perfor-
mance for house-hold object classifiers. Reference [102] also
used a multi-scale CNN for semantic segmentation on indoor
RGB-D scenes. The network use three different scales to
process the input depth and RGB images then used the com-
bined upsampled results which are forwarded to a classifier
to obtain object class labels. The classifier predictions were
merged with a super pixel’s segmentation of the scene which
is performed in parallel to get the final labeling of the scene.
This method showed efficient and fast performance than the
previous methods. However, its major limitation is the failure
of the CNN to learn the geometry of the shape by focusing on
learning only the class objects.

Motivated by the performance of [100], Eitel et al. in [103]
proposed RGB-D architecture for object recognition that con-
sist of two separate CNN processing for each representation
and finally merging them with a late fusion network as can
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FIGURE 4. Object recognition Architecture for RGB-D data were two streams CNN are
utilized [100].

be seen in figure 4. They avoided using the same network for
more than one different learning task like segmentation and
classification instead they used one CNN stream for process-
ing RGB color information and the other stream for the depth.
They trained each network separately and then fused in the
results to the Fully Connected (FC) layers and the SoftMax
for object classification which leads to promising results for
object recognition task that outperformed existing methods.
In [104], Feng et al. used Ensemble of auto-encoders for 3D
shape retrieval. Each auto encoder was trained to learn a com-
pressive representation of depth views using the Stochastic
Gradient Descent algorithm with a large-scale CAD dataset.
A likelihood score is derived as a similarity measure by
viewing each auto-encoder as a probability model. They also
used Domain Adaptive layer (DAL) to receive the output
score of the auto-encoders to rank the retrieved scenes. This
method demonstrates increased performance when compared
with other similar methods.

Reference [105] proposed an approach that utilize multi-
scale CNN that is trained from raw pixels and use it to extract
dense feature vectors which encode regions of multiple sizes
centered on each pixel. They also propose a technique to
automatically obtains from a pool of segmented compo-
nents, a best set of components that thoroughly explain the
scenes. There method achieved a record accuracy on the SIFT
flow dataset, Barcelona dataset and on standard background
dataset. The major limitation of this approach is that by
stacking a depth channel onto an existing CNN architecture
leads to less exploitation of the full geometry information
encoded in the depth channel. Gupta et al. exploits stacking a
depth channel on existing CNN architecture by representing
each pixel in terms of horizontal disparity pixel height above
ground and angle between normal and gravity. They stacked

these three computations into a three-channel image. In the
pipeline, a structured forest approach was first implemented
to get the contours from the RGB-D image which is used to
generate region proposals in the depth channel of the image
using a RF regressor at the same time, the RGB channels
of the region proposal are handle by a CNN for feature
extraction then SVM classifier is used to processed both the
RGB and depth channels features. In [106], a long-Short term
memory (LTSM) fusion on top of multiple convolutional lay-
ers to fuse RGB and depth data are proposed. In this method,
many convolutional layers and a long short-term memory
layer are stacked together to obtain depth channels and pho-
tometric features. Both the long-range spatial dependencies
and short-range are encoded by the memory layer in an image
along the vertical direction. The proposed method achieved a
state-of-the-art performance on the large-scale SUN RGBD
dataset and the NYUDV2 dataset.

The concept of transfer learning and CNNs are combined
to train 4 CNN individually by Alexandre [107]. The four
individual CNN are train in sequence against training them in
parallel and then using the weights of an already trained CNN
as a beginning point to train other CNNs that will process
the remaining channels. This approach saves training time
and also further improves the recognition accuracy based on
the experiments carried out. Schwarz et al. [108] also delve
into the transfer learning idea for object classification. In this
model, they use a canonical perspective to rendered RGB-D
data to obtain depth color because of the distance from the
object center. The CNN used in this method are pre-trained
CNNs for object categorization and the features obtained
by the CNN are forwarded to SVM to decide object class
and pose. Inspired by the success of [104], Zhu et al. [109]
proposed to learn a robust domain invariant representation
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between 3D shape and depth image domain by creating a pair
of distance neural network for every domain. The networks
are connected via a loss function with a restriction on the
inter-class and intra-class margin that helps to reduce the
intra-class variance and still maximizing the inter-lass margin
between the data from the two domains i.e. depth image
and 3D shape. This method produces superior results over
existing state of the art methods based on depth image 3D
shape retrieval.

Learning RGB-D data using deep learning approach have
demonstrated effective performance. Furthermore, the extra
depth representation been provided by the RGB-D sensors
on top of the standard RGB-channels allows researchers to
treat the depth channels and the colors individually even
though others utilized only the depth information for their
systems. The major disadvantages for this kind of data is that
sometimes the data might be noisy and incomplete capture
data which makes them difficult to use in complex situations.
There is also the issue of lack of learning the full geometry
of the 3D object this motivates many researchers to exploit
the volumetric representations of the 3D shape as discussed
in section C.

3) PERFORMANCE OF DEEP LEARNING METHODS ON 3D
DATA PROJECTIONS
Representing a 3D shape by using a number of 2D projections
rendered frommany directions is also used in many 3D shape
analysis tasks. Stereographic projection can be described
as a special mapping that directly projects a sphere on to
a plane. Early works on this direction is the approach of
Zhu et al. [110] which learn the features of a 3D shape by
projecting them into 2D planes. A global deep representation
of a 3D object was obtained by using an Auto encoder for the
task of 3D object retrieval. Initially each 3D shape undergoes
a series of scaling, translation and pose normalization then
a set of 2D projections were applied on already processed
3D object and then forward to a stack of RBMs to obtain
the features for all projections. [110] also introduce the pre-
training procedure for binary units and generalize to real
valued by showing that the pixels correspond to the visible
units because their states can be observed while the feature
detectors correspond to the hidden units. they then defined
a joint configuration (v, h) for both the visible and hidden
units [110] as

E(v, h) = −
∑

iεvisible

aivi −
∑

jεhidden

bjhj −
∑
i,j

wi,jvihj, (7)

vi, hj represents the binary states of both the hidden units and
visible units of i and j while ai, bj denote their biases and
finally wij the weight between them. Experiments showed
that the proposed method performed better compared to
global descriptors-based approaches. This is due to the com-
bination of local descriptor with the global representation
which results in a good performance.

Leng et al. [111] also used an AE for 3D object retrieval.
In this method, an extension of the normal AE i.e. Stacked

Local Convolutional Auto-Encoder (SLCAE) was used. They
exploit multiple depths images of different views of 3D shape
as input to the AE then trained each layer of the architecture
with gradient decent method. Themethod was tested onmany
standard datasets with promising results. In [8], Shi et al.
proposed DeepPano which extract 2D panoramic views of 3D
shape using a cylindrical projector in the principal axis of
the 3D shape. To make the learned features Invariant to
rotations they train the model architecture with 2D classical
CNN and use a row-wise max pooling layer in between the
convolution layer and the fully connected layers. This method
was tested on 3D object retrieval and recognition task which
demonstrate effective performance in comparisons with pre-
vious methods. In [112], Sinha et al. convert a 3D object
into a geometry image and use CNNs to learn 3D shapes.
Rotation, scaling, data augmentation is carried out as pre-
processing step to have more training data. This method uses
authelic parameterization to create planar parameterization
on a spherical domain which helps to learn the 3D object
surfaces. This framework was tested on standard 3D shape
datasets like ModelNet 10, ModelNet 40, McGill11 and
SHREC1 which achieved a higher performance in compar-
isons to state of the art.

Motivated by the success of projections methods, in [113],
Cao et al. projects a 3D object onto a spherical domain cen-
tered on its barycenter then classify the spherical projections
using a neural network. To successfully captures the 3D fea-
tures, they used two complementary projections with the first
capturing the depth variations of the 3D object and the second
one dealing with the contour information fix in different pro-
jections from different angles. This method produces com-
parable results on 3D object classification tasks on different
standard datasets. In [114], Sfikal et al. extracted 3D objects
normalized pose and then represent them as panoramic views.
They used SYMPAN method to pose normalized the 3D
model after the panorama representation is extracted then
used it to train CNN network by utilizing the augmented view
of the extracted panoramic representation views. This method
performed well in standard large-scale dataset on classifica-
tion and retrieval task. The method in [115] is extensions of
their previous method where they used an ensemble of CNNs
for the learning taskwhich leads to impressive performance in
ModelNet10 and ModelNet40. Projections based approaches
proved to be effective for learning 3D shapes more especially
by exploiting the deep learning methods. To overcome the
loss of geometric properties of the shapes during projec-
tions, [112] used many projections representations to recover
the loss data. There is a lot of benefits of using 2D deep learn-
ing models directly on Projections data but it still requires
much fine-tuning.

B. PERFORMANCE OF DEEP LEARNING METHODS ON
MULTI-VIEW DATA
Exploiting multi-view data of 3D objects have shown that
building 3D objects descriptors directly on 3D data might
not be the best approach to solving 3D shape retrieval and
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FIGURE 5. Multi-view CNN a novel architecture that combines information from multiple views of a 3D shape into a single shape descriptor [70].

classification tasks. Despite the efficiency of the volumetric
deep learning methods, most of this approach requires huge
computational resources due to the used of convolutional
filters to obtain the features. These motivate researchers to
exploit the multi-view data representation which has the ben-
efit of utilizing the standard 2D deep learning models. Multi-
view CNNs consist of several of 2D rendered views of a
3D shape that are used to obtained the viewpoints by utiliz-
ing the normal rendering devices. Some of the key reasons
why multi-view CNN performed better than the volumetric
CNNs are: High resolution 3D data can be used because
of low memory requirement, availability of large training
dataset and the use of standard 2D deep learning models.
Leng et al. [116] were among the first researchers to exploit
2D deep learning models to learn multi-view 3D data. In this
method, high level features of 3D object were extracted on
a number of view-based depth images using deep belief net-
work. They adopted a contractive divergence method to train
the network in a layer-wise approach. This method performed
better than [90] that use composite descriptors. In [117],
Xie et al. adopted the multi-view depth image representation
and proposed Multi-View Deep Extreme Learning Machine
(MVD-ELM) that achieved rapid and qualitative projective
feature learning for 3D models. This method uses 20 multi-
view depth images that are captured uniformly at the center
of each 3D shape using a sphere. in ELM feature mapping,
an input data xεRD, the generalized output function of a single
hidden layer feedforward neural network for ELM is given by
as in [117]

f (x) =
i=1∑
k

βihi(x) = h(x)β, (8)

h(x) = [h1(x), . . . hk (x)] represent the output vector
of the hidden layer while β = [β, . . . βk ]T εRKXM is
the output weights vector [117], while in ELM learning

T εRNXM is denoted as the target matrix supplied by the
training data N. The N random feature maps contains in
[h(x1), . . . , h(xN )]T εRNXK are obtained in the initial stage
and the weighted sum of the training error and the norm of
output weights is minimize as the objective function [117]

w ‖Hβ − T‖22 + ‖β‖
2
2 (9)

using the closed form solution, β can be obtained [117] as:

β =


(HTH +

1
w
I )1HTT , L ≤ k,

HT (HHT
+

1
w
I )−1T , L ≥ k,

(10)

I represent the identity matrix. in the case of multi view
feature mapping, they represent the input data as N = MXD
depth images that are denoted by a matrix of (dXdXD) which
is an array of N depth images of dXd resolution [117]. Since
the MVD-ELM consist of layers of convolution and pooling
operations, for a given layer L, the random convolution for
the normalized kernels is given by [117]

Wl = [wl,k ]
kl
k=1 ⊂ RclXclXKl , l = 1, . . . ,L (11)

which include Kl convolution kernels wl,k of size clXcl and
the k − th normalized random convolution kernel is obtained
as [117]: Wl,k (i, j) = rand(0, 1), i, j = 1, . . . , cl

Wl,k (i, j) = Wl,k (i, j)/
∑
i,j

(Wl, k(i, j)) (12)

rand(0, 1) generates a random number in [0,1]. Also, the k−
th feature map for any view n at layer l can be obtained [117]
as:

Fl,k,n = (Fl−1,k,n ∗Wl,k )
⊗

ml,n, n = 1, . . . ,D (13)

The ∗ is convolution operation while
⊗

is the multiplication
of the element-wise that put in the foreground mask ml,n
that remove the background. while for multi-view pooling,
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they use the average pooling. For the l-th layer, the size
of the pooling is taking as sl that cause the pooling maps
of size dl/slXdl/sl [117]. The average pooling is then
applied to obtained the k − th pooling map for layer l and
view n as [117]

Pl,k,n(p, q) =
1

s2l

p∗sl∑
i=(p−1)∗sl+1

p∗sl∑
j=(p−1)∗sl+1

Fl,k,n(i, j). (14)

p, q = 1, . . . , sl where Pl,k,n is the next layer input fea-
ture map. This method was extended to fully convolutional
(FC-MVD-ELM) which was used for 3D segmentation by
training the multi-view depth images and then projected
the predicted labels obtain during training back to the 3D
object then smoothed the final result using the graph cut
optimization method. Both the two methods are tested on 3D
shape segmentation and classification tasks and the results
significantly outperformed [23] with less processing time.

Leng et al. carried out more research in an effort to exploit
deep learning models on multi-view 3D data and came-
up with the extension of classical auto-encoders in [111].
In this work, 3D object retrieval approachwas proposed based
on Stacked Local Convolutional Auto-Encoder (SLCAE).
The SLCAE was trained using greedy layer-wise strategy
and then use gradient descent to train each layer to obtain
the representative of input data which is the feature of 3D
object. The results of the experiments conducted demon-
strate that the approach significantly improved on 3D shape
retrieval compared with several state-of-the-art methods on
PSB, SHREC 09 and NTU datasets. Reference [118] pro-
posed a 3D CNN to deals with a number of 2D views of the
3D object where a Stochastic Gradient Descent (SGD) was
used to pre-train the convolutional layer and then employ a
back propagation to fine-tune the whole network and finally
used the results of the two phases for 3D shape retrieval.
This method also outperformed the state-of-the-art methods
based on the experiments carried out on public available 3D
datasets.

In [70], the novel multi-view CNN (MV-CNN) was pro-
posed by Su et al. for 3D shape retrieval and classification
tasks. In this method, there is no specific order use in view
pooling layer to process multiple views of 3D objects which
is not the case in [103]. Multi-view CNN rendered 12 and
80 virtual views for the object and used the image stacks to
serve as the input of CNNwhichwas pre-trained on ImageNet
1k dataset and fine-tune on ModelNet40 [4]. For the shape
retrieval part, the fully connected layer of the network which
is the seventh layer serves as shape descriptor. They defined a
distance between shape x with nx image descriptors and shape
y with ny image descriptors as [70]

d(x, y) =

∑
j mini

∥∥xi − yj∥∥2
2ny

+

∑
i minj

∥∥xi − yj∥∥2
2nx

(15)

they represent the distance between a 2D image xi and a 3D
shape y as (x, y) = minj

∥∥xi − yj∥∥2 then they compute the
average of all nx distances between x ′s 2D projections and y.

Experiments evaluation on shape retrieval and classification
showed that multi-view CNN outperformed all other previous
methods tested and also the shape descriptor outperformed
the state of the art 3D ShapeNet [4] with a wide margin in
the retrieval task on ModelNet40 dataset figure 5 shows the
architecture of multi view CNN. Johns et al. [119] use a
different approach to utilize the views of a 3D object using
camera trajectories. The views are arranged in pairs together
with their relative pose and then supply to a CNN. Each pair
are classified separately and the final result is obtained using
theweight contribution of each pair. TheVGG-Marchitecture
Chatfield et al. [120] was employed which consists of three
fully connected layers and five convolutional layers. It can
accept depth image, gray-scale or both as input. This method
performed better than ShapeNet [23] and [70].

The impressive performance of multi-view deep learning
architectures pushes researchers to carry out more work on
GPU based approaches to learn multi-view 3D data. Bai et al.
in [69] propose a multi-2D views real time GPU CNN search
engine. The method is called GIFT and use two inverted files
in which one is use for matching and the other for ranking the
initials results. This method was tested on many standard 3D
datasets like ModelNet, PSB, SHREC 14, McGill and many
others and produced more qualitative results than the state-
of-the-art methods. More research work to exploit multi-view
3D data was carried out. Zanuttigh and Minto in [121] used
a multi-branch CNN to classify different 3D objects. In this
work, the input consists of a rendered depth maps from dif-
ferent point of views of the 3D object and five convolutional
layers for each CNN branch to process each depth maps to
produce a class file vector. These vectors are then supply
to a linear classifier to indicate the class of the 3D object.
In [9], Wang et al. proposed the view clustering and employ
pooling layers on the dormant sets. The main idea here is to
pool views that are similar and cluster them recursively to
build a pooled feature vector and then forward this feature
vectors which serve as input to the same layer in a recurrent
training approach. This network performed effectively on
3D shape recognition task with a higher performance than
the state of the art [23], [70]. Based on the perception that
multi-view deep neural networks perform better than the ones
utilizing the full 3D information of 3D shapes, Qi et al. [5]
carry out extensive study and compare volumetric and multi-
view CNNs for object classification. In this study, sphere
rendering based on multi-resolution 3D filtering is used to
get information from multiple scales for the multi-view CNN
were proposed and using combination with training data
augmentation achieved enhancement of multi-view CNN on
ModelNet 40. The multi-view approaches proved to perform
better compared to the volumetric counterparts with less
computational requirement need. Nevertheless, this kind of
representation still has some challenges which include lack
of preserving the intrinsic geometric features of a 3D object
and the needs to have sufficient number of views.

More research work to improve on the performance of
multi-view-based data representation was carried out and
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in [14], Kanezaki et al. proposed RotationNet which utilizes
the multi-view images of an object as input and together
estimate both the pose and object category. Different from
previous methods that use known view point labels for
training, this method deals with the view point labels as
latent variables. The network use only a partial set of multi-
view images for inference. The performance of this method
is demonstrated by its higher performance on ModelNet
datasets. Against the view to shape setting normally adopted
by many methods, Feng et al. [10] propose group view CNN
(GVCNN) in order to exploit the intrinsic hierarchical corre-
lation and discrimination among views. This model consists
of a hierarchical view group shape architecture which is
organized into view level, group level and shape level that
are re-arranged using a grouping strategy. Initially, view level
descriptor was first extracted using an expanded CNN, then a
groupmodule was used to estimate the content discrimination
of each view in order to split all views into different categories
based on their discriminative level and pooling from view
descriptors was done to further generate a group level descrip-
tor and finally combined all group level descriptors into the
shape level descriptor based on their discriminative weights.
This approach achieved a robust performance on 3D shape
retrieval and classification tasks on ModelNet40 dataset.

References [122], [123] extensively discusses 3D model
retrieval methods which they classified into model based
and view based methods. At the beginning, majority of the
approaches used model-based methods and deals directly
with a 3D model data for retrieval. Examples of this
methods are (geometric moments [124], surface distribu-
tion [125], volumetric distribution [126], surface geome-
tries [127] among others. Similarly, Osadi et al. [127] utilized
the shape feature of 3D models by constructing the distribu-
tion of the shape that is sampled from the 3D model as the
digital signature of an object which was used to calculate the
similarity between different models. Most of themodel-based
methods require 3D model reconstruction which requires
high computational costs. Recently, view basedmethods have
been used in 3D model retrieval in [128]–[130] and have the
advantages of not requiring 3D model reconstruction [122].
In view-based methods, many visual features are extracted
frommultiple views of a single 3D object that are represented
by a set of 2D images captured from different views such
as HOG descriptors [131], Zernike moments [132] among
others. In [122] a Multi-modal clique graph (MCG) match-
ing method was propose that systematically generates MCG
that used cliques and contains neighborhood nodes in multi-
modal feature space together with hyper-edges that link pair-
wise cliques. In this method, the issue of set-to-set distance
measurewas addressed using an image set-based clique/edge-
wise similarity measure which is central difficulty in MCG
matching. By representing an individual 3D model with
multi-view and multi-modal information their MCG preserve
both the local and global structure of a graph. The proposed
MCGmatching method was applied to view-based 3D model
retrieval which is evaluated extensively using three popular

single-modal datasets; NTU, PSB, ETH datasets and a novel
multi-viewRGB-D object dataset (MV-RED)whichwas con-
tributed by the authors.

Reference [122] list three main steps of view-based meth-
ods which include selection of representative view through
clustering, the measurement of similarity based on distance
metrics or probabilistic models and the generation of a
ranking list based on the computed similarity measure. The
authors proposed a discriminative multi-view latent variable
model (MVLVM) for 3D object retrieval where they regarded
each individual 3D model as a square of ordered 2D images
capture from multiple views then they used an undirected
graph model with latent variables to automatically find the
context among multi-view images in both the spatial and fea-
ture domains. Each node in the graph denotes a latent repre-
sentative view and each edge represents the latent spatial con-
text between the corresponding latent representative views
which helps to get a joint distribution over similarity labels
and latent variables given the observed features obtained from
multiple views by using an undirected graph model to learn
the dependencies among the latent variables. There proposed
method was evaluated on single modal datasets (NTU and
ITI datasets) and a multi-modal dataset (MVRED-RGB and
MVRED-DEPTH) which shows the superiority of the pro-
posed method.

In an attempt to study variants of deep metric learning
losses for 3D object retrieval, [133] proposed two kinds of
representative losses which are center loss and triplet loss
to learn more discriminative features than the normal tradi-
tional classification loss for 3D shape retrieval. The authors
also propose the normal loss to the triplet center loss, this
loss learns a center for each class and minimizes the dis-
tance between samples and centers from the same class.
This method was tested on ModelNet40 dataset and outper-
formed [68]. Recently, Jiang et al. [134] proposed a multi-
loop view CNN (MLVCNN) for 3D object retrieval which
used different loop directions to extract a number of views
and introduce a hierarchical view loop shape architecture that
consist of view level, loop level and shape level in order to
carry out 3D shape representation for different scales. A CNN
is trained to extract view features in the view level, and then
the loop level features are generated using the proposed loop
normalization and LSTM for each loop of view considering
the intrinsic associations of different loops in the same loop.
Finally, all the loop level descriptors are combined into a
shape level descriptor for 3D shape representation which is
used for 3D shape retrieval. This method was evaluated on
ModelNet40 dataset and outperformed the state-of-the-art
methods in 3D shape retrieval task as can be seen in table 2.

C. PERFORMANCE OF DEEP LEARNING
METHODS ON SOLIDS
Two major representations of volumetric 3D shapes are
Octree and Voxels i.e. representation of 3D in three-
dimensional space as a regular grid. Volumetric 3D data
representation usually encodes a 3D object as a 3D tensor
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FIGURE 6. ShapeNet Architecture were the input is represented as a 30× 30× 30 binary
tensor [23].

of binary or real values. Voxel representation characterize
3D object by describing its distribution through the three
dimensions of the scene. A 3D convolution accepts a shape
w,h,l as input, then use a kernel k, k, d and delivers a shape
w, h,m. The depth is increase by a set of strides after the
convolution of each 2D plane. GivenC(n, d, f ) as an operator
for 3D convolution for which nxnxn is the input and d as the
size of the feature maps f× f× f. At position x, y, z the output
on m− th feature map of layer l as in [39] is:

vx,y,zlm = blm +
∑
q

f−1∑
i=0

f−1∑
j=0

f−1∑
k=0

wlmqijk v
(x+1)(y+j)(z+k)
(l−1)q (16)

blm represents the layer bias and wlmqijk are the weights at
position i, j, k of the kernel at the 5 − th feature map while
q pass through the feature maps in the l − 1th layer [39].
The major limitation of voxels based method is their unnec-
essary demand of computer storage because of its abil-
ity to represents both non-occupied and occupied parts of
the scene which makes it not suitable for high resolution
3D objects [57], [63].

Octree which is also a volumetric representation of the 3D
object is more efficient and it is a varying size voxel. Octree
data representation was recently utilized in conjunction with
CNN for 3D shape analysis tasks [24], [58] and prove to be
effective for high resolution input [59]. In this section, wewill
explore the performance of deep learning methods on these
two volumetric 3D data representations.

1) PERFORMANCE OF DEEP LEARNING METHODS ON
VOXELS DATA
Wu et al. in [23] are one of the first deep learning methods
to utilize the voxels 3D data representation. In this method,
a 30 × 30 × 30 binary tensor represent the object which is
used as the input to indicate if the voxel belongs to the 3D
object or not as shown in figure 6. Also [135] adopted the

concept of a Convolutional Deep Belief Network (CDBN)
used in 2D deep learning to characterize the 3D model.
The CDBN framework also use convolution to minimize the
number of parameters because of its ability to share weights.
This property gives CDBNs the ability to learn the joint
probability distribution of voxels by representing varieties
of object categories with a few parameters. The ShapeNet
network consist of one input layer, one output layer and
three convolution layers which in total makes five layers
which were initially pre-trained in a layer wise manner and
Contrastive Divergencemethodwas used to train the first four
layers while the last layer was trained using Fast Persistent
Contrastive Divergence. A single depth map was used as the
input during testing stage which represents the 3D object and
then converted to a voxel grid representation. The network
was tested on retrieval and classification, view-based view
prediction. The major constrained in this method include
the additional dimension in the convolutional kernel which
leads to computationally unmanageablemodel that is difficult
to process high resolution input and there is the issue of
very hard learning process because the network was trained
on isolated view of fixed sized with minimum information.
Nevertheless, the network performs better despite the fact that
it is operating on low resolution voxels.

VoxNet was proposed by Maturana and Scherer in [136].
In this method, the concept of 3D convolution was employed
on 3D object recognition task on different of 3D data rep-
resentation which include RGB-D, 3D CAD models, and
Lidar point clouds. The key difference of convolution used
in VoxNet with the 2D convolution is the filter. A 3D filter
replaces the 2D filter and the network consist of two FC
layers, one pooling layer, two Convolution layers and one
input layer. A volumetric occupancy grid of 32 × 32 ×
32 voxels was used as the input data and then supply to
the network which they used Stochastic Gradient Descent
(SGD) to train with a momentum. Extensive experiments
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demonstrate that VoxNet outperformed [23] in NYUv2,Mod-
elNet datasets when the network was trained from scratch
for classification task but [23] outperformed the VoxNet on
NYUv2 if the pre-trained model of ModelNet10 is employed.
In [137], inspired by the impressive performance of [136],
Seaghat et al. improved the architecture of VoxNet to accom-
modate orientation of 3D object during the learning pro-
cess which helps improve the classification performance on
ModelNet 10 dataset.

Unsupervised learning approach was used in [138]. In this
method, 3D GAN was proposed in which probabilistic latent
space was used to tactically learn the features of 3D object
by employing the adversarial discriminator which was used
to model 3D objects then create synthetic data. Voxception-
ResNet was proposed by Brock et al. [139]. In this method,
a 2D very deep model was adopted on ModelNet10 and
ModelNet40 datasets for classification task. The authors
very deep model (VRN) that depends on the architecture
of [93] and [140] and also used the same batch normalization
of [93]. This network required data augmentation for training
and consist of 45 deep layers. This network is also similar
to VoxNet because of the presence of 3D filters with Con-
vNet. The VRN model demonstrates effective performance
on ModelNet datasets in classification task which is a state-
of-the-art result. In spite of the efficiency of thismethod, there
is a likelihood of over fitting problem if a large amount of data
augmentation is not provided which usually leads to small
dataset of a deep architecture.

The Beam search model for learning the optimal 3D CNN
architecture was proposed byXu and Todorovic in [141]. This
model performs 3D classification on ModelNet 40 dataset
and successfully indicates number of layers of 3DCNN, num-
ber of nodes, training parameters and connectivity. It consists
of one FC layer and two Conv. layers which are the starting
points of this architecture and then increase to building 3D
CNN optimal model through adding a new Conv. Filter. The
training of the network was similar to [135] where they also
adopted the Contrastive Divergence method to train Conv.
Layers and then used Fast Persistent Contrastive Divergence
to train the FC layers. After one layer was successfully
learned, its weights are fixed and parameters of the activation
are sent to the next layer. The network produced effective
results on ModelNet 40 dataset for classification task. Deep
Sliding shapes was proposed by Song and Xiao in [142] in
order to learn the features of 3D objects at different scales by
utilizing 3D CNNs for object classification and recognition
task on ModelNet dataset. In this method, depth maps of
RGB-D scenes are converted to 3D voxels by exploiting a
directional Truncated Signed Distance Function (TSDF). The
TSDF representation gave this model the advantage of learn-
ing the geometry of the 3D object which is an alternative to
using depth map directly. This model demonstrates effective
performance on NYUv2 dataset on various object classes for
object detection task.

Even though volumetric 3D models prove to be effective,
most of the existing architectures needs large amount of

computational resources because of convolution operation
and the huge number of parameters. Due to this major con-
strains, Zhi et al. [62] proposed a real time volumetric CNN
for 3D object recognition task which is termed LightNet. The
network architecture has two major capabilities which are:
the use of multi-tasking to learn a lot of features at the same
time and its ability for fast convergence with fewer param-
eters by adding the batch normalization operation between
both the activation and convolution operations. The network
was tested on ModelNet datasets and it outperformed [136]
by 24% in both ModelNet10 and ModeleNe40 datasets for
classifications tasks. Recently, Wang et al. [143] propose
NormalNet which is a voxel-based CNN for 3D shape
retrieval and classification task. In this method, normal vec-
tors of the object surfaces are used as input instead of binary
voxels. The authors propose a Reflection Convolution Con-
catenation (RCC) module for extracting clear features for 3D
vision tasks and at the same time minimizing the number
of parameters. The performance of NormalNet was signif-
icantly improved by combining two networks that accept
normal vectors and voxels as input respectively. The network
achieves a competitive performance on 3D shape retrieval and
classification task on ModelNet10 and ModelNet40 datasets.

2) PERFORMANCE OF DEEP LEARNING METHODS ON
OCTREE DATA
Octree data representation serve as a central method used in
many computer graphics applications such as shape recon-
struction, rendering, collision detection and 3D shape anal-
ysis tasks. Recently due to its GPU implementation friendly
approach, some methods start to use it for many shape analy-
sis tasks. In [144], Häne et al. proposed a hierarchical surface
prediction (HSP) which aid high resolution voxel grid predic-
tion. The interior and exterior of the object are represented by
a course resolution voxel. Tatarchenko and Dosovitskiy [57]
used octree representation to generate volumetric 3D output
in a memory efficient manner by utilizing deep convolutional
decoder architecture. This method can predict the occupancy
values of individual cells and the structure of the octree which
makes it possible for higher resolution output with minimum
amount of memory.

Reference [58] proposed OctNet which is a representa-
tion for deep learning with sparse 3D data. In this method,
the sparsely of the input data was exploited to hierarchically
partition the space by utilizing a set of unbalanced octrees
that used each leaf node to stores pooled features represen-
tation. OctNet was build based on the observation that 3D
data is usually sparse in nature like point cloud, meshes etc.
which leads to an unwanted computation when using 3D
convolutions this motivated the authors to exploit the sparsely
property of this data representation. OctNet was trained
on [23] for 3D shape classification task. OctNet showed the
advantages of octree-based decoder on depth fusion, 1283
2563 and even higher resolutions output could be achieved
by octree-based decoders.
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Motivated by the success of OctNet, Wang et al. [24]
proposed O-CNN which is an Octree-based Convolutional
Neural Network (O-CNN) for object classification, retrieval
and segmentation tasks. The O-CNN was designed using a
modest octree structure that supports all CNN operations on
the GPU. The average normal vector of a 3D shape was
used as input and the features of the finest level octants are
then computed. A pooling operation was performed to down-
sample to the parent octants at next coarser level which is then
supplied to the next CNN layer, and this operation repeated
continuously until all the layers are evaluated. Repeated con-
volution and pooling operations are performed on the octree
data structure from bottom to top and a Relu function was
used for output activation and finally batch normalization was
used to reduce internal covariance shift. 3D convolution is
applied efficiently to an octant by picking its neighboring
octants at the same depth and the convolution operator 8c
is represented in the unrolled form as in [24]

8(O) =
∑
n

∑
i

∑
j

∑
k

W n
i,j,k · T

(n)(Oijk ). (17)

where Oijk represents a neighboring octant of O and and
the feature vector represented by T (.).O-CNN was tested
on SHREC16 dataset for shape retrieval task and achieved
comparable results to state of the art. Moved by the suc-
cess of O-CNN, the authors in [12] proposed Adaptive
O-CNN (AOCNN) which represents 3D shapes adaptively
with octants at different levels, and the 3D shape was mod-
els within each octant with a planar patch. In this method,
an adaptive encoder and decoder for encoding and decoding
3D shapes were proposed. The encoder is used to receive
the planar patch normal with displacement as it is input and
then execute 3D convolutions at the octants at each level only
while the decoder read the shape occupancy and the status
of the sub-division at each level to estimate the best plane
normal and displacement for each leaf octant. AOCNN was
validated on effectiveness on 3D auto-encoding, shape pre-
diction, shape classification and shape completion for noisy
and incomplete dataset with a classification accuracy better
than [17], [58] and [24]. AOCNN have two major limitations
which are: one, lack of seamless in the adjacent patches at the
adaptive octrees and secondly, the planar patch used does not
approximate curved features very well.

D. PERFORMANCE OF DEEP LEARNING METHODS ON
SURFACES
Surface mesh is one of the most significant and powerful
3D shape representation and it is widely used in computer
graphics. However, due to the irregularity and complexity of
mesh data not much deep learning work has been done using
this data representation for 3D shape analysis tasks as can
be seen in figure 1 which shows the progress of 3D data
representations along with time used for 3D shape analysis
tasks from 1999 to 2019 based on the literature’s discussed in
this review.

Reference [21] recently proposed MeshNet which directly
learns 3D shape representation from mesh data. The authors
proposed face unit and feature splitting with a general archi-
tecture with effective blocks to deal with the key challenges
of mesh data. The faces are treated as the unit and there
exists a defined connection between faces sharing common
edges which help to solve the irregularity and complexity
problem with a symmetry function and per-face processes.
Furthermore, faces features are split into structural feature
and spatial descriptors that are used for learning the initial
features and then a mesh convolution block for aggregating
neighboring features. MeshNet was able to solve both the
irregularity and complexity problem of mesh. MeshNet was
tested on ModelNet 40 dataset for 3D shape retrieval and
classification task. Experimental results and comparison with
the state-of-the-art method shows MeshNet achieved satis-
fying result on ModelNet datasets. Reference [22] proposed
MeshCNN that utilize the distinctive features of mesh data
and design a convolutional neural network that specifically
deals with triangular meshes. In this method, a well spe-
cialized convolution and pooling layers that work on the
edges of the mesh are designed by taking advantage of their
intrinsic connections. The convolution operations are applied
on edges and the four edges of their incidental triangles
and an edge collapse operation is used for pooling operation
that maintains surface topology which generates new mesh
connectivity for further convolutions. Using this approach,
a task driven process was established were the network get
rid of redundant features and then exposes and expands the
significant ones. In MeshCNN, edges of a mesh are treated
similar to pixels in an image because they are the building
block which usually all operations are performed on. Since
every edge is incident to exactly two faces (triangles) that
normally defines a natural fixed sized convolution neighbor-
hood of four edges, they exploit the consistent face normal
order and apply a symmetric convolution operation which
learns edges features that are invariant to transformations in
translations, scale and rotation. Another important feature
of MeshCNN is its pooling operations which adopted the
popular mesh simplication technique [132] to downsample
the features. But different from the original edge collapse
which directly removes edges that have a minimal geometric
distortion, themesh pooling assigns the option ofwhich edges
to collapse to the network.

E. PERFORMANCE OF DEEP LEARNING METHODS ON
HIGH-LEVEL STRUCTURES DATA
3D objects can also be represented in the form of high-level
structure for 3D shape analysis tasks. 3D shape descriptors
ease the operations of many shape analysis tasks e.g. for 3D
shape retrieval which consist of querying a 3D object against
a database of many 3D models in order to find the closest
match, it is very important to transform the shapes into feature
descriptors to keep the huge amount of 3D data models and
efficiently query and find the nearest match. This section
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covers the up to date innovations in using deep learning
methods on 3D descriptor and graphs.

1) PERFORMANCE OF DEEP LEARNING METHODS ON 3D
DATA DESCRIPTOR
Zhang et al. [146] published the first survey on 3D shape
descriptors in 2007 where a categorization of 3D shape
descriptors was done. In 2013, Kazim et al. in [147]
performed extensive reviewed on 2D and 3D descriptors.
However, most of the previous reviews cover traditional
approaches of constructing 3D shape descriptors. Recently,
Rostami et al. [148] carryout a comprehensive study on
Data-Driven 3D shape descriptors. In this study, the 3D
descriptors are divided into two main categories which are
shallow descriptors and deep shape descriptors. The shallow
descriptors are further sub-divided into optimization based
which are mostly implemented in a supervised manner [149]
and clustering based descriptors that are mostly unsupervised
and are built using Bag of Features technique (BoF) [150].
The deep shape descriptors are sub-divided into probabilistic
models [151], auto-encoding [152], or CNN [101]. The prob-
abilistic groups are again sub-divided into DBN-based and
GAN-based. Deep learning models offered the advantage of
learning hierarchical discriminative features effectively.

In [153], Liu et al. encoded low-level features in the visual
Bag ofWords (BoW) in order to learn high level features from
DBNs for retrieval and classification tasks. An experiential
evaluation shows that this approach achieved superior perfor-
mance than the normal BoW low level features. Bu et al. [154]
used a three-staged approach to learn the geometric essence
of 3D objects. In this work, middle level geometric features
are built from low-level features extracted from the 3D shapes
and then a deep learning model was then utilized to learn the
hierarchical high-level features of the 3D shapes. TheAuthors
used scale invariant heat kernel signature [84] and Averaged
Geodesic Distance (AGD) as local low-level descriptors and
then employ the Spatially Sensitive Bag of Words (SS-BoW)
to establish the connection between spatially close words
from the extracted low-level features and finally using DBN
to learn the high-level features from the SS-BoW). Experi-
ments demonstrate the effective performance of this approach
in comparisons to using low-level descriptors alone.

GPU implementation was used in the extension of [154]
by Bu et al. in [155] which adopted a GPU based implemen-
tation for symmetry detection and correspondence tasks in
which the proposed method showed improved performance.
Inspired by the success of Heat kernel Signature (HKS) in
obtaining low-level descriptors, Xie et al. [155] utilized the
HKS as a low-level descriptor at different scales and used
auto-encoder to discriminate features from the HKS for 3D
shape retrieval task. In [156], Han et al. learn the discrim-
inative features of 3D shapes from a Mesh Convolutional
Restricted Boltzmann Machines(MCRBMs) in which Local
Function Energy Distribution (LFED) was used to preserved
the structure of the local features which leads to success-
ful learning of the local and global features of 3D shapes.

The use of MCRBMs which is a deeper model showed
effective performance for shape retrieval and correspondence
task which outperformed [4] and [84]. Ren et al. [157] pro-
posed 3D A-Nets which is a 3D deep shape descriptor in
which a new definition of 2Dmulti-layer dense representation
(MDR) of 3D volumetric data was developed in order to cap-
ture geometric informative shape descriptor using adversarial
neural networks that train a combination of convolutional
neural network, adversarial discriminative and recurrent neu-
ral network. 3D shape features that stimulate clustering of
samples of the same category with correct class label are
produced by the generator network while the discriminator
network prevent the clustering by allocating them with incor-
rect adversarial class labels which helps in addressing the
challenges caused by computational cost of directly using
CNN to 3D volumetric data. The proposed method was tested
on ModelNet40 dataset which showed superior performance
on 3D shape retrieval and classification tasks over the state of
the art.

Motivated by the achievement of 3D deep shape descrip-
tors, Xie et al. [158] proposed 3D DescriptorNet which com-
bine the volumetric ConvNets in [136] and the generative
ConvNet [159] to model 3D shape patterns. In this method,
a probability density function is defined on voxilized shape
signal and the model which is a deep convolutional energy-
based model can synthesize 3D shape patterns by sampling
from the probability distribution via MCMC like Langevin
dynamics. In the training stage, analysis by synthesis [15]
is used unlike the adversarial learning on the variational
inference. The same set of parameters of a single model is
used for both the learning and sampling process which leads
to statistically rigorous framework. The model produced very
high results when tested on ModelNet10 dataset.

[160], Bu et al. proposed 3D feature learning framework
which fuse different representation data effectively using
deep learning approach by promoting the discriminability
of uni-modal feature. Firstly, CNNs and CDBNs are used
to extract both the geometric and visual information of 3D
data then two independent CDBNs are used to learn high-
level features from geometric and visual features and finally
a Restricted Boltzman Machine (RBM) was trained for min-
ing the deep correlations between different representations.
Experiments conducted for 3D shape retrieval and recog-
nition tasks shows that the proposed framework achieved
promising results. Similarly, Zhao et al. in [161] used a
feature fusion method via multi-modal graph learning for
view based 3D object retrieval. In this method, a variety of
visual features including 2D fourier descriptor, 2D Zernike
moments and 2D krawtchouk moments are extracted to
describe each view of a 3D object. Then a similarity measure
between two 3D objects with multiple views are computed
using Haudorff distance and finally using different features,
a multiple graph was constructed and the optimized weight
of each graph was learned automatically for feature fusion
task. Experiments performed on the ETH-80 datasets and
National Taiwan university 3Dmodel dataset demonstrate the
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superior performance of the proposed method.The increasing
availability of 3D models from construct and capture 3D data
from low-cost acquisition devices and other modeling tools
requires effective 3D shape descriptors in order to analyze
and retrieve them, However, there is need for enough training
data for the learning algorithm to extract 3D shape descriptors
accurately from the examples which help reduce over fitting
as in [162]. Despite some of the limitations mention above,
the use of 3D descriptors have proved to be effective in 3D
shape analysis task.

Recently, Vishwanath et al. [163], proposed two simple
yet effective early fusion approaches to combine the RGB
and point cloud representations which are term point-fusion
and voxel-fusion. In this method, a multi-modal voxel-Net
(MVX-Net) is presented which augment LIDAR points with
semantic image features and learn to fuse image and LiDar
features at early stages. In the point fusion, points from the
LiDar sensor are projected onto the image plane, preceded
by Image feature extraction from a pre-trained 2D detec-
tor and a voxelNet architecture is used to jointly processed
the concatenation of image features and the corresponding
points. While in the voxel fusion part, voxelNet is use to
create a non-empty 3D voxel which are then followed by
extracting image features for every projected voxel using a
pre-trained CNN. The features are then pooled and appended
to the VFE feature encoding for every voxel and further
used by the 3D Recognition Proposal Network (RPN) to
produce 3D bounding boxes. Experimental results on the
KITTI datasets demonstrates significant improvements over
approaches using a single representation.

2) PERFORMANCE OF DEEP LEARNING METHODS ON
GRAPHS
The ability of graph convolution to encode the structure of
graph on variety of data input using neural networks has
attracted lots of attention recently [37], [164] and it can also
be utilized in the semi supervised learning process. Previous
approaches for GraphConvolutionNeural Networks (GCNN)
are usually divided into spatial filtering and Spectral filtering
methods. The major difference between these two methods
is on the way the locally processed information is merge and
how the filtering is used. In this section, we will overview the
performance of deep learning methods on both the spatial and
spectral filtering methods.

Bruna et al. was the first to introduce the concept of
spectral convolution on graph data structured in [165]. In this
method, spectral CNN (SCNN) is proposed using spectral
Eigen decomposition of the graph Laplacian to define a
convolution operation. The authors successfully propose two
constructions, the first based on the spectrum of the graph
Laplacian and the second based on the hierarchical cluster-
ing of the domain. Experiments evaluation showed that it
is feasible to learn convolutional layers on low-dimensional
graphs with a number of parameters in respective of the
size of the input which leads to efficient deep architectures.
However, this method has some major limitations of being

computationally expensive and inconsistent results are
produced using the learned spectral filters coefficients
on different domain with different basis as in [166].
Kovnatsky et al. in [167] overcome this limitation using
orthogonal compatible basis on many domains by utilizing
a joint diagonalization. But, this needs prior information
of correspondence across domains. Some recent approaches
used the concept of approximation to construct local spectral
filters so that all graph information will be included in the
processing [168], [169]. In these methods, the filters are rep-
resented through a polynomial expansion to avoid operating
on the spectral domain directly. In [168], Defferred et al used
Chebysher polynomials on graphs to performed local spectral
filtering to estimate graph spectral filters. A more simplified
polynomial approximation process introduced in [168] was
proposed in [169] by Kipf and Welling. In this method local
spectral filters are obtained by graph spectral filters first order
linear approximation which is utilized in a two-layer graphi-
cal convolution neural network (GCNN). The local spectral
filters are used in both the two layers and the information
from the closest neighborhood of each vertex is then clustered
together.

Inspired by the performance of the local spectral fil-
tering models, Wang et al. [170] used the concept of
PointNet++ [18] in GCNNs to deals with ordered point
clouds. In this method, the framework of PointNet++ was
combined with local spectral filtering in order to address
two major limitations of these models separately. Spectral
filtering was adopted as a learning approach to include the
structural details in the neighborhood of all points against
processing each point separately in the point clouds [13].
Furthermore, clustering strategy and recursive pooling are
used against the graph max pooling operation which avoid
the winner takes all approach. This method can be trained in
an end to end form which has the advantages of dynamically
building the graph and ease of computation of the pooling
hierarchy and the graph Laplacian different from [165], [168]
and [169]. This method was tested on numerous datasets and
achieved a state-of-the-art performance.

The graph spatial filtering idea was first used in [171].
In this method, GNNs are introduced in an effort to used deep
learning models on graphs. The GNNs consist of a number of
layers in which the graph low-pass and high pass operators
serve as the linear combination of each layer. This shows that
the graph features learning is based on every vertex neigh-
borhood. Highly sophisticated Architectures are obtained
by fluctuating nonlinear function of the vertex [172]–[174].
Similar to CNNs, graph structured data can undergo pool-
ing operation using graph coarsening. In spatial filtering,
due to the spatial structure of the input graph, the graph
topology is used to aggregate the neighborhood nodes with
the feature vectors directly. The approaches used in [171]
and [175] typically embed all vertex of the graph using the
recursive connections in the RNN. A diffusion function was
adopted for the transition function and the node representa-
tion are continuously propagated up to the time it is fixed
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and stable. The nodes representation obtained are then used as
features for regression and classification problems. However,
the major limitation here is the continues propagation of
the node features which leads to a computational cost but
addressed by [172]. Li et al. proposed a different version of
the previous model that utilized the gated recurrent units to
execute the update states in order to learn the optimal graph
representation. The work of Bruna et al. [165] obtained the
local spatial formulation of GNN by forcing the spatial local
receptive field on the GNN tominimize the number of learned
parameters by using similarity measure [176], [177] to group
similar features. In Bruna et al. [165], the same idea of local
receptive field was also used in the graph to calculate a multi-
scale clustering to be supplied to the pooling layer which
the model successfully decreases the number of processed
parameters by forcing the locality on the already processed
features.

Linked Dynamic Graph CNN (LDGCNN) for classify-
ing and segmenting point clouds directly was proposed by
Zhang et al. [178]. The LDGCNN consist of two parts; con-
volutional layers that serve as the extractors and the fully con-
nected layers which are the classifiers. LDGCNN achieved a
state-of-the-art performance on ModelNet40 and ShapeNet
datasets. A comprehensive study about the spectral methods
can be found in [179]. In this study, the authors showed
that mathematically, both the spatial and spectral methods
are equivalent more especially with the capabilities of their
representations. However, the key distinctions are on the
aggregation of the learned features and how the convolution
operations are performed which depends on the task.

Recently, in [180], Feng et al. proposed a Hypergraph
Neural Network (HGNN) for data representation learning.
In this method, a hypergraph structure was used to encode
high order data correlation in a hypergraph structure which is
different from the normal graph that uses mandatory 2 for the
degree for all edges. The framework uses degree free hyper-
graph which gives it’s the ability to encode high order data
correlation using a simple hyper-edge convolution operation.
HGNN was tested on four standard 3D dataset which shows
effective performance on learning data representation using
high-order and more complex correlations.

3D meshes can also benefit from models design for graphs
to be used onmesh structured data. In this setting, the nodes of
the graph correlate to the vertices of the mesh while the edges
are the connectivity between these vertices. Using this con-
cept, Masci et al. [181] proposed Geodesic CNN which gen-
eralizes classical CNNs to triangular meshes. In this method,
local patches are constructed in a local polar coordinate and
a mapping is established between local polar coordinates
and the values of the functions around each vertex through
the patch operator that helps to define the patches in which
the geodesic convolution can be used. Using the idea of
multiplication by a template in which the geodesic convolu-
tion is built on while here arbitrary rotation is required for
the convolution filters due to angular coordinate ambiguity.
Despite the advantages of this method which results in using

CNN framework to triangular meshes, it has a number of
limitations that include computational cost due to rotations
on the convolution filters. Boscaini et al. [182] try to over-
come the limitations of [181] by proposing Anisotropic CNN
(ACNN) that is not limited to triangle meshes alone and
can easily be used on graphs. ACNN framework adopted a
simpler construction of local patches which does not depend
on the injectivity of the radius of the mesh. The idea of
spectral filtering was used in which a weighting function was
employ to in cooperate the spatial information to get a local
function which is defined on the meshes. The Eigen values of
the Anisotropic Laplacian Beltrami Operator (LBO) received
the learnt spectral filters while anisotropic heat kernels serve
as spatial weighting functions for the convolution filters. This
approach shows remarkable performance for local correspon-
dence tasks.

Monti et al. [38] proposed MoNet which void the used of
fixed kernel construction. In this method, local systems of
coordinates of pseudo-coordinates are defined around each
vertex with weight functions. Fey et al. [183] proposed Spline
CNN which discards the requiring of defining local patches
on graph or meshes explicitly. Spline CNN can be utilized on
meshes and graphs irrespective of dimensionality. The 1-hop
neighborhood ring features of the graph as the patch is used in
place of using the charting-based method to define the local
patches. The method proved to be computationally efficient
and state of the art results are produced on correspondence
tasks which is attributed to the used of local support of the
B-spline basis which helps to make the kernel size and the
computational time independent.

F. PERFORMANCE OF DEEP LEARNING METHODS ON
MIXED DATA REPRESENTATIONS
In order to take the full advantages of more than
one 3D data representations, some efforts to combined
more than one 3D data representation were exploited by
Wang et al. [184] which uses a pair of multi views and 2D
sketch to represent each 3D object. In this method, a Siamese
CNNs is used which consist of two similar sub-convolutional
networks in which one treats the 2D sketches and the other
the multi views input. Both the networks are composed of
three convolution layers followed by max pooling layer and
a fully connected layer at the top. The stochastic Gradient
Descent method was used to train the networks. The method
was tested on three benchmark datasets including SHREC13,
which achieved competitive results when compare to other
methods in the literature on 3D shape retrieval task.Motivated
by the performance of [184], the authors in [185] combine
the learning pair of AEs, ConvNets and Extreme Learning
Machine (ELM) to proposed Convolutional Auto -Encoder
Extreme Learning Machine (CAE-ELM) 3D descriptor. they
use the extreme learning machine as an Auto-Encoder to
represent the input into three main representations which are:
compressed representations, sparse representation and equal
dimension representation. The ELM-AE hidden nodes biases
and the random weights extend the input data to a different
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FIGURE 7. ML-ELM. (a) Output weights β1 with respect to input data x (b) Output weights βi + 1 with respect to ith hidden layer (c) Final weights
computed [186].

dimension space using the equation as in [186]:

h = g(ax + b) (18)

aT a = I , bT b = 1 (19)

where a = [a1, . . . , aL] are the orthogonal random weight
while b = [b1, . . . , bl] represent the random bias between
the input nodes and hidden nodes [186]. In the case of com-
pressed and and sparse ELM-AE representations, their output
weights β are computed as in [186]:

β = (
I
C
+ HTH )−1HTX (20)

where H = [h1, . . . , hN ] serve as the outputs of the hidden
layer of ELM-AE while X = [x1, . . . , xN ] represent both the
input data and output data of ELM-AE [186]. And the equal
dimension ELM-AE representations, their weights output β
are computed as in [186]:

β = H−1X (21)

β = Tβ = I (22)

The major advantages of the ELM are its ability to learns
high level discriminative features of input data in unsuper-
vised learning way which prove to be effective than many
deep learning models [186] and efficient with large scale 3D
datasets. The CAE-ELM accepts two different data represen-
tations which consist of Signed Distance Field (SDF) and
voxels data while global and local features of the 3D models
are obtained by the SDF. The CAE-ELM approach is a mixed

method that utilized the 3D descriptor with the structured
of the 3D objects and achieved a superior performance on
classification task on ModelNet datasets. Figure 7. below
show the Adding layers in ML-ELM.

The mixed methods continue to attract more interest and
in [187], Ben-Shabat et al. proposed 3D modified Fisher
vectors (3DMFV). The 3DMFV is a 3D point cloud rep-
resentation that utilized the mixed data representations of
continuous generalization of fisher vectors with discrete grid
structure to represent the 3D data. In this method, the input
point cloud is converted to 3D modified fisher vector by
a module then another module which is the deep learning
module is represented in the CNN. The network consists of
fully connected layers on top, max-pooling layers, and an
inception module [188]. The method achieved competitive
performance when to the state of the art. Reference [189] also
combine voxels and 2D views for object classification task
by fushioning both representations. In this method, AlexNet
was used for processing the 2D views while the 3D voxels are
treated using two 3D CNNs. The advantages of this approach
are that it does not require much computational requirements
and there is no need for data augmentation.

V. CONCLUSION, DISCUSSION AND TRENDS
FOR FUTURE RESEARCH
In this paper, we surveyed the performance of the deep
learning methods based on the taxonomy proposed in fig-
ure 3 which is discussed here.
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In figure 3, the 3D data representations are categorized
based on the representations of the 3D object. We divided
the 3D object representations into four major categories (Raw
data, Surfaces, Solids, High level structures andMulti-views)
accordingly.

Understanding the proper categorization of each deep
learning method reviewed in the literature is a bit difficult
for some methods due to the fact some approaches adopted
the mixed data representations [184]. In assigning 3D data
representations to most categories, we consider the mode of
acquisition of the 3D data and the data structure of each
representation.

Also, in the case of graphs, 3D meshes can also benefits
from models design for graphs to be used on mesh struc-
tured data. But models design for meshes alone cannot be
used for graphs. For example, Boscaini et al. [182] proposed
Anisotropic CNN (ACNN) that can be used in both graph and
meshes while in [21], Feng et al. proposed MeshNet which
learns 3D shape representation from mesh data that can only
be used on mesh data alone. We listed the method of [182]
under graphs-based categorization not meshes because of the
used of local patches construction which does not depends on
the injectivity radius of themesh. Some of the examples stated
above shows that there is not rigid border among different 3D
data representations proposed taxonomy.

In table 1, we summarize the reviewed 3D data represen-
tations based on divergent standard. The following list below
analyzes each column of the table.

1) MODE OF ACQUISITION
This column describes how the 3D data is obtained. for
example, RGB-D data are obtain from mostly kinect style
sensors which are categorized as raw data

2) PROPERTY/KEY FEATURES
This column describes the key characteristics of each 3D data
representations discussed in the literature

3) ADVANTAGES
This column describes the key benefits of each 3D data
representations discussed in the literature

4) LIMITATIONS
This column describes the restriction or constraint of each 3D
data representation.

Previously, deep learning methods have been used exten-
sively in 1D and 2D data. However, utilizing them in 3D
field is challenging due to the fact that most of the deep
learning architectures previously designed used 1D or 2D as
input data. To deal with this limitation, several deep learning
models for 3D data have been proposed. Some researchers
exploit the local or global descriptors for 3D data to extract
low-level features but because the low-level descriptors are
not strong enough to describe the high-level semantics of 3D
shape other works used them together with deep learning
models to obtained high-level descriptors. However, due to

the complex nature of 3D data, this approach has insufficient
discriminative power due to missing information from the 3D
representations because of the shallow nature of the represen-
tations.

The availability of RGB-D datasets from RGB-D sensors
e.g. Microsoft Kinect has motivated many researchers to
exploit this data representation due to the presence of color
and depth representation provided by the sensors. However,
sometimes the data might be noisy and incomplete capture
data which makes them difficult to use in complex situations.
There is also the problem of not learning the full geometry
of the 3D object which motivated some researches to exploit
the full volumetric representations of the 3D shape. 3D vol-
umetric are powerful and rich 3D shape representations that
attracted many researches works but their major limitations
is the huge demand for computation time and memory which
makes them not suitable for high resolution data. Other works
exploit the multi view 2D images which have the benefits
of learning many feature sets to minimize noise, occlusion
and incompleteness issues. However, selecting the number
of views is still an open question with many views causing
computational overhead.

In order to ease the comparisons between different meth-
ods, some of the works discussed in the literature address-
ing 3D shape classification and retrieval that used Model-
Net40 datasets are presented in tables 2 respectively. The
table give a summary of state-of-the-art works for 3D retrieval
and classification tasks as well as the data representation
used, the deep learning models adopted, the dataset and some
other key experimental details.

For 3D shape classification, multi views performed very
well as can be seen in table 2, Asako et al. [14] reported 97.3%
classification accuracy on ModelNet40 datasets exceeding
other 3D data representations by a relatively great margin.
Sfikal et al. [114] using 3D data projections achieved mean
Average Precision (mAP) of 93.2% exceeding by 2.1% the
previous performance of 91.1% by Bai et al. [69] on the same
dataset. Also [114] achieved 95.5% classification accuracy on
ModelNet40 respectively. Recently, Feng et al. [180] using
graph 3D data achieved 96.6% classification accuracy on
ModelNet40 dataset surpassing [178] by 3.7% which also
adopt the same graph 3D data respectively. Point clouds 3D
data representations also demonstrate high performance with
mostmethods reporting classification accuracy above 90%on
both ModelNet40 datasets. Towards using the mixed 3D data
representations, [184] reported 91.4% classification accuracy
on ModelNet40 outperforming other methods that used sin-
gle 3D data representation (Chen et al. [4], Shi et al. [8])
with more than 15% difference on the same ModelNet
datasets.

In general, regarding the findings of this survey, the 3D
data representation adopted plays a crucial role in determin-
ing the performance of a particular method and it can be
concluded that deep learning together with a suitable 3D data
representation presents effective approach for improving the
performance of 3D shape analysis tasks.
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All the 3D data representations discussed in this review are
very active areas of research. Even though we have highlight
where each 3D data has advantages over the other in conclu-
sion no direct winner among the 3D data representations.

In spite of the fact that 3D deep learning is not as matured
as 2D deep learning, the works reviewed showed a rapid
developing community of researchers that are highly effective
in solving 3D computer vision tasks. The papers reviewed
present state of the art results using almost all the 3D data
representations which clearly showed no winner takes all
approach.

We present a summary table which addressed the key ben-
efits and limitations of each 3D data. Furthermore, we looked
at the major 3D benchmark datasets by discussing the origin
and content of each dataset.

Recently, Wang et al. [24] performed 3D shape analysis
tasks using octrees where they perform CNN computations
in the octree data structure. Utilizing similar lattices hierar-
chical structures like the tetrahedral lattices or permutohedral
lattices could be a great future research.

There have beenmany techniques in the literature that used
3D projections for 3D shape analysis tasks. Majority of these
methods used traditional images, geometry images together
with deep learning could be of great interest.

Another future direction is to continue to explore themixed
3D data representations for feature extraction like the low-
level and mid-level features and then used AEs for 3D shape
retrieval.
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