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ABSTRACT Steganography in inactive Voice-over-IP frames is a new technique of information hiding,
which can achieve large steganographic capacity while maintaining excellent imperceptibility. To prevent
the illegitimate use of this technique, the entropy-based and poker test-based steganalysis methods have
been presented. However, the detection performance of these two methods is not so good for the cases
of having small quantity of inactive frames or low embedding rates. Thus, we present a new steganalysis
method based on statistic characteristics of fundamental frequency. Specifically, we employ the statistics
for zero-crossing count (ZCC), including the average ZCC of inactive frames, the ratio between the average
ZCC of inactive frames and that of all frames, and the difference between the average ZCC of inactive
frames and their calibrated versions, to characterize the frame-level dynamic characteristic of speech signals;
we utilize the average values of Mel-frequency cepstral coefficients (MFCCs) to represent the invariant
characteristic of inactive frames; further, using the feature set consisting of the zero-crossing statistics and
average MFCCs, we propose a support-vector-machine based steganalysis for inactive speech frames. The
proposed steganalysis method is evaluated with a large number of ITU-T G.723.1 encoded speech samples,
and compared with the existing methods. The experimental results demonstrate that the proposed method
significantly outperforms the previous ones on detection accuracy, false positive rate and false negative rate
for any given embedding rates or using the same number of inactive frames. Particularly, the proposedmethod
can provide accurate detecting results for the existing steganographic methods only using very small quantity
of inactive frames, and thereby be employed to detecting potential inactive-frame steganography behaviors
in real-time speech streams.

INDEX TERMS Steganography, Steganalysis, Voice over IP, Inactive frames, Fundamental frequency.

I. INTRODUCTION
Steganography is a technique of covert communication by
hiding information into digital media (such as image [1],
video [2], audio [3] and text [4]) without causing any
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perceptible distortion. In recent years, Voice over Internet
Protocol (VoIP), which enables phone calls based on IP
networks, has been widely applied in people’s daily life, for
its convenience, low costs and high speech quality [5]. With
the increasing popularity of VoIP, VoIP-based steganography
has attracted extensive attention from research communi-
ties [6]–[11]. Compared with traditional carriers, there are
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many advantages of VoIP for information hiding, such as
instantaneity, huge amounts of carrier data, high stegano-
graphic bandwidth, and alterable conversation length [6]–[9].
Therefore, VoIP-based steganography is popularly regarded
as one of ideal solutions for secure communications. How-
ever, it might be also abused by lawbreakers, terrorists and
hackers for cybercriminal activities, because unauthorized
information flow with its help can covertly pass through
firewalls and monitors without being noticed [12]. Therefore,
in order to improve cybersecurity, it is indispensable to
develop the corresponding countermeasure technique, i.e.,
steganalysis of VoIP, whose primary aim is to detect covert
communications based on VoIP accurately [13]–[15]. In this
paper, we focus on detecting steganography in inactive frames
in VoIP streams, which is still an open problem.

In general, VoIP-based steganography can be divided into
two categories [6]–[9]. One employs the network protocols
as carriers [10], [16]–[18], while the other hides information
by modifying payloads in speech streams [7]–[9], [19]–[28].
Due to its high steganographic capacity, the second category
has been the mainstream of VoIP-based steganography.
In VoIP, to obtain required low data rates, speech signals
are often encoded into digital frame streams using code
excited linear prediction (CELP) codecs, such as ITU-
T G. 723.1, ITU-T G.729a, Speex, Internet Low Bitrate
Codec (iLBC) and adaptivemulti-rate (AMR) codec. Accord-
ingly, most of the payload-based steganographic algorithms
achieve information hiding by modifying some specific
parameters in speech frames, including linear predictive
coefficients (LPC) [19]–[21], fixed codebook (FCB) param-
eters [22]–[24] and adaptive codebook (ACB) parameters
[25]–[27]. In addition, differing from the steganographic
methods based on the modification of specific parameters,
Huang et al. [11] presented a novel high-capacity stegano-
graphic algorithm by hiding information into inactive frames
of VoIP streams. The work suggested that the steganography
in inactive frames can achieve much larger steganographic
capacity than that in active frames, while maintaining the
same imperceptibility. For the speech streams encoded with
ITU-T G.723.1 codec at 6.3 kbps mode, the proposed method
can obtain the steganographic bandwidth of up to 101 bits
per frame. Further, Lin [28] extended the idea into speech
streams encodedwith ITU-TG.723.1 codec at 5.3 kbpsmode,
whose experimental results show that the presented method
can achieve the steganographic bandwidth of up to 81 bits
per frame without causing perceptible degradation of speech
quality.

As for the steganalysis of VoIP, there have been also
many fruitful studies [13]–[15], [29]–[35]. For example,
Lin et al. [15] introduced a recurrent neural network to detect
quantization index modulation-based steganography for LPC
parameters in G.729a speech streams, which can achieve
excellent detection performance, even for very short speech
samples, and significantly outperforms the steganalysis based
on quantization codeword correlation network [29]. To detect
steganography for FCB parameters in AMR speech streams,

Tian et al. [14] presented a support-vector-machine (SVM)
based steganalysis method using three kinds of statistical fea-
tures for pulse pairs, namely, long-term distribution features
based on the probability distributions of pulse pairs, short-
term invariant features based on Markov transition proba-
bilities of pulse pairs, and track-to-track correlation features
based on the joint probability matrices of pulse pairs. More-
over, they proposed a feature selection mechanism based
on adaptive boosting to optimize the feature set as well
as reduce its dimension. The experimental results demon-
strate their method can effectively detect the state-of-the-art
steganography based on FCB parameters, and achieve much
better detection performance than the steganalysis based
on Miao et al. [31] and on the probability of same pulse
position [32]. At the aspect of detecting steganography for
ACB parameters, Ren et al. [34] presented an SVM-based
steganalysis method, which uses the matrix of the second-
order difference of pitch delay (MSDPD) as the detection
features. Moreover, they employed the calibration method to
obtain the calibrated MSDPD features to further enhance the
detection accuracy. The experimental results demonstrated
that it is by far the best method for detecting steganography
based on ACB parameters in AMR speech streams. By con-
trast, the steganalysis for inactive speech frames is largely
unexplored. Recently, two classical statistics, i.e., entropy and
poker test statistic, were employed as the steganalysis fea-
tures to detect steganography in inactive speech frames [35].
The experimental results show that these two methods are
feasible, while the latter is better than the former. How-
ever, the detection performance of these methods is not so
good for the cases of short sample lengths or low embed-
ding rates. Moreover, our observations through research and
experiments suggest that the embedding operations would
significantly impact on the statistical characteristics of fun-
damental frequency for inactive speech frames. Specifically,
the statistics for zero-crossing count (ZCC) are employed
as the steganalysis features, including the average ZCC of
inactive frames, the ratio between the average ZCCof inactive
frames and that of all frames, and the difference between
the average ZCC of inactive frames and their calibrated ver-
sions. These statistics are used to characterize the frame-
level dynamic characteristic of speech signals. Moreover,
the average values of Mel-frequency cepstral coefficients
(MFCCs) are employed to represent the invariant character-
istic of inactive frames. Note that, differing from the pre-
vious Mel-frequency cepstrum-based steganalysis schemes
[36], [37], we directly employ the original 12-dimensional
MFCCs without calculating the first-order or second-order
differences ofMFCCs, because theMFCCs in inactive frames
are independent, meaning that there is no correlation between
any two MFCCs. Further, using the feature set consisting of
the zero-crossing statistics and average values of MFCCs,
an SVM-based steganalysis for inactive speech frames is
presented. The proposed method is evaluated with a large
number of ITU-T G.723.1 encoded speech samples, and
compared with entropy-based [38] and poker test-based [35]
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methods. The experimental results demonstrate that the pro-
posed method significantly outperforms the previous ones in
detection accuracy, false positive rate and false negative rate
for any given embedding rates or using the same quantity of
inactive frames.

The rest of this paper is organized as follow. Section 2 anal-
yses how the steganography in inactive frame impacts on
the statistical characteristics of fundamental frequency, and
presents two types of detection features, i.e., the zero-crossing
statistics and average values of MFCCs. An SVM-based ste-
ganalysis scheme is proposed in Section 3. The performance
evaluation through comprehensive experiments is described
in Section 4. Finally, Section 5 offers the concluding remarks.

II. CHARACTERISTICS OF FUNDMENTAL FREQUENCY
FOR INACTIVE FRAMES
Assume that a speech signal containsNS inactive frames, each
of which is sampled n times. Let the set of inactive frames be
S = {si|i = 1, 2, . . . ,NS}, and each inactive frame be si =
{ri,j|j = 1, 2, . . . , n}, where ri,j is the j-th sample of si. For
each inactive frame, the encoding process can be described
as

s∗i = ϕ(si), (1)

where s∗i is the i-th encoded inactive frame. Accordingly, the
set of the encoded inactive frames can be denoted as S∗ =
{s∗i |i = 1, 2, . . . ,NS}. Further, the process for embedding
secret information into an encoded inactive frame can be
stated as

s̃i = ψ
(
s∗i
)
, (2)

where ψ(.) is the steganographic operation and s̃i is the
steganographic version of the i-th encoded inactive frame and
the decoding process of s∗i is

ϕ−1(s∗i ) = si, (3)

According to the additive noise model for steganography
[39], [40], the decoding process of s̃i is

ϕ−1(s̃i) = ϕ−1(s∗i )+ εi = si + εi, (4)

where εi is the additive noise generated by the steganographic
operation on the i-th inactive frame. This equation suggests
that the steganographic operation would inevitably impact on
the signal decoding of inactive frames.

In addition, fundamental frequency estimation is popularly
applied in the field of speech signal processing [43]–[46],
particularly in voice activity detection [45], [46]. Inspired
by these successful applications, we study the impact of
steganography in inactive frames on fundamental frequency
characteristics, and find out that the statistics for zero-
crossing count and Mel-frequency cepstral coefficients are
eminently suitable for discriminating the cover and stegano-
graphic speech samples. In the following text, we will intro-
duce how we exploit these fundamental frequency statistics
as the steganalysis features in detail.

A. STATISTICS FOR ZERO-CROSSING COUNTS
In the field of signal processing, zero-crossing counts (ZCC)
are widely employed to characterize the frequency of a given
signal [47]. Particularly, the zero-crossing counts can help
differentiate between active and silent speech. In general, for
the i-th speech frame in a sample, denoted as fi = {ri,j|j =
1, 2, . . . , n}, the ZCC λ can be calculated as

λ =

n∑
j=2

δ
(
ξ (ri,j) · ξ (ri,j−1) < 0

)
, (5)

where ξ (x) is the sign function, namely,

ξ (x) =


1, if x > 0
0, if x = 0
−1, if x < 0,

(6)

and δ(x) is a discriminant function, which is given by

δ (x) =

{
0, if x is true
1, else.

(7)

For a normal inactive frame, the ZCC should be 0 in theory,
since the value of each sample in the inactive frame is equal
to 0. However, as mentioned above, if secret information
is embedded into the inactive frame, the values of some
samples are no longer equal to 0, due to the noises induced
by steganography. Accordingly, the ZCC for a steganographic
inactive frame would be not equal to 0. In this sense,
the ZCC can be used to distinguish between the normal and
steganographic inactive frames. Moreover, with the increase
of embedding rate, more sample values in the inactive frame
would be modified by the steganographic operation, which
suggests that the change of the ZCC for a steganographic
inactive frame at a high embedding rate is larger than that
at a low embedding rate.

In addition, because there are different numbers of inactive
frames in different speech samples, it is hard to use all the
ZCCs of the inactive frames as the detection feature. Instead,
the average ZCC of the inactive frames in each speech sam-
ple is utilized in practice. To verify the above deduction,
we compare the distribution of the average ZCCs for ran-
domly chosen 1000 cover speech samples with that for the
corresponding steganographic samples at the embedding rate
of 100%, as shown in Figure 1. The experimental results show
there are obvious distinctions between the average ZCCs for
cover speech samples and those for steganographic samples,
meaning that it is feasible to employ the average ZCC as a
steganalysis feature to detect the steganographic behavior in
inactive frames.

In the steganography for inactive frames, the secret infor-
mation is embedded into inactive frames. Thus, only the
ZCCs of inactive frames would increase, while those of active
frames are unaffected. For a given cover speech sample,
the ratio between the average ZCC of inactive frames and that
of all frames, denoted as ω, can be calculated as

ω =
λS

λ
, (8)
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FIGURE 1. The distribution contrast of average ZCCs between cover
samples and steganographic samples at the embedding rate of 100%.

where λ̄S is the average ZCC of inactive frames, and λ̄ is
the average ZCC of all frames. Assume that, the number of
inactive frames is NS , the sum of ZCCs of all inactive frames
is ZS , the number of all active frames is NA, the sum of ZCCs
of all active frames is ZA, then ω can be further written as

ω =

ZS
NS

ZS+ZA
NS+NA

=
NS + NA
NS

·
1

1+ ZA
ZS

, (9)

Apparently, for the steganographic version of the given
speech sample, the sum of ZCCs of all inactive frames
(denoted by Z ′S ) is larger than ZS . Accordingly, we have
ω′ > ω , where ω′ is the ratio between the average ZCC
of inactive frames and that of all frames for the stegano-
graphic sample. That is to say, the ratio between the aver-
age ZCC of inactive frames and that of all frames (simply
called ZCC_Ratio) would be changed by the steganographic
operation, and could be thereby employed to detect the
steganography in inactive frames. Similarly, we compare the
distribution of ZCC_Ratios for randomly chosen 1000 cover
speech samples with that of ZCC_Ratios for the correspond-
ing steganographic samples at the embedding rate of 100%,
as shown in Figure 2. The experiment results show that there
are obvious distinctions between the ZCC_Ratios for cover
speech samples and those for steganographic samples, and
thereby demonstrate the feasibility of using ZCC_Ratio as a
steganalysis feature.

In addition, like Ren et al. ’s work [34], we employ
the calibration technique to estimate the cover signal of a
given speech signal. To obtain the calibrated speech sam-
ple, the given speech sample, is first recompressed, namely,
encoded and decoded again, whether it is a cover or stegano-
graphic one. As shown in Figure 3, we can respectively
extract the average ZCC from the given sample and the
average calibrated ZCC from the calibrated version. Finally,
we can obtain the third type of ZCC statistic, i.e., the dif-
ference between the average ZCC of inactive frames and
their calibrated versions, called DIF-ZCC and denoted as ν,

FIGURE 2. The distribution contrast of ZCC_Ratios between cover samples
and steganographic samples at the embedding rate of 100%.

FIGURE 3. The extraction process for the third type of ZCC statistic.

namely,

ν = λO − λC , (10)

where λ̄O is the average ZCC of inactive frames in the original
speech sample, and λ̄C is the average ZCC of inactive frames
in the calibrated speech sample. Similarly, we compare the
distribution of DIF-ZCC for randomly chosen 1000 cover
speech sampleswith that of the corresponding steganographic
samples at embedding rate of 100% as shown in Figure 4. The
experimental results show that there are obvious distinctions
between them. Thus, it is valid to employ DIF-ZCC as a
steganalysis feature.

B. MEL-FREQUENCY CEPSTRAL COEFFICIENTS FOR
INACTIVE FRAMES
Mel-frequency cepstral coefficients (MFCCs) are often used
to describe the frequency characteristics similar to the
human auditory system’s response, and commonly applied
in speech processing. In general, MFCCs are calculated
by applying a Mel-scaled filter-bank to the short-term fast
Fourier transform (FFT) magnitude spectrum to obtain a
perceptually meaningful smoothed gross spectrum [48], [49].
Figure 5 shows the procedure of extracting the FFT-based
MFCCs from a speech signal.
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FIGURE 4. The distribution contrast of DIF-ZCCs between cover samples
and steganographic samples at the embedding rate of 100%.

FIGURE 5. The procedure of extracting the FFT-based MFCCs [51].

As mentioned above, in accordance with the additive noise
model for steganography, the FFT spectrum of a stegano-
graphic inactive frame S ′ can be stated as

S ′ = S + Sε, (11)

where S is the FFT spectrum of the corresponding cover inac-
tive frame and Sε is the FFT spectrum of the additive noise.
Further, let FL,i, FC,i and FH ,i respectively denote the low
limit frequency, center frequency and high limit frequency of
the i-th (i = 1, 2, . . . ,T ) triangular overlapping window of
Mel-scaled filter-bank, where T is the number of the involved
filters. T is the number of triangular overlapping windows,
and usually set as 24. The relationship among the adjacent
triangular overlapping windows can be described below

FC,i = FH ,i−1 = FL,i+1. (12)

All the spectrums for the frames would be passed through
their corresponding Mel-filters. For the given inactive frame,
an output value of the i-th Mel-filter, denoted as θi, can be
obtained by calculating

θi =

FH ,i∑
x=FL,i

Wi(x) |S| , (13)

where Wi(x) is the frequency response function of the i-th
Mel-filter, and can be determined as

Wi(x) =


x −FL,i

FC,i −FL,i
, FL,i ≤ x ≤ FC,i

FH ,i − x
FH ,i −FC,i

, FC,i ≤ x ≤ FH ,i

(14)

Correspondingly, the output of the i-th Mel-filter for the
steganographic inactive frame, denoted as θ ′i , is given by

θ ′i =

FH ,i∑
x=FL,i

Wi(x) |S + Sε| . (15)

MFCCs are the result of a discrete cosine transform (DCT)
operation on the logarithm of theMel-filter outputs. There are
24 filters in theMel bank, which leads to 24DCT coefficients.
However, due to the decorrelation property of DCT, only the
first few coefficients are chosen in practice. In this work,
L is equal to 12, following the convention of speech process-
ing [50]–[52]. For the given cover inactive speech frame, each
MFCC, denoted as ηj(j = 1, 2, . . . ,L,L = 12), which can be
written as

ηj =

T∑
i=1

(
lg (θi)∗ cos

(
π (i+ 0.5)j

T

))
, (16)

Correspondingly, each MFCC for the steganographic inac-
tive speech frame, denoted as η′j(j = 1, 2, . . . ,L), is

η′j =

T∑
i=1

(
lg
(
θ ′i
)∗ cos(π(i+ 0.5)j

T

))
, (17)

Apparently, ∃j ∈ [1,L], ηj 6= η′j, since it is largely possible
that θi 6= θ ′i for i ∈ [1,T ], which suggests that the set
of MFCCs for the inactive frames can be employed as the
steganalysis feature.

To verify this deduction, we compare the distributions
of MFCCs for the inactive frames in randomly chosen
1000 cover speech samples with those in the corresponding
steganographic samples at embedding rate of 100%, as shown
in Figure 6. All the MFCCs are calculated with a window
of 256 samples and overlapping length of 80 sampling points.
The experimental results show that the steganographic oper-
ation indeed induces effects on the distributions of MFCCs
for the inactive frames, although the impacts caused on the
different MFCCs vary. Therefore, we can safely conclude
that the set of MFCCs for the inactive frames is very suitable
for distinguishing between the cover and the steganographic
samples.

Resembling the average ZCC, the average MFCCs (i.e.,
η̄1, η̄2, . . . , η̄12) of the inactive frames in each speech sample
are employed as the steganalysis feature, since there are dif-
ferent numbers of inactive frames in different speech samples.

III. PROPOSED STEGANALYSIS SCHEME
Combining the above two types of features, namely,
the statistics for zero-crossing counts and the average
MFCCs, we can obtain a 15-dimensional steganalysis feature
φ = {λ̄s, ω, ν, η̄1, η̄2, . . . , η̄12}. Further, incorporating the
SVM [53], we present a steganalysis scheme, as shown in
Figure 7, which includes two processes. Specifically,
the training process includes the following steps:

STEP 1: Sample preparation. Collect a large number
of speech samples, encode them with ITU-T G.723.1 codec
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FIGURE 6. The distribution contrast of MFCCs for the inactive frames between cover samples and their steganographic samples at the
embedding rate of 100%.

at 6.3 kbps (or 5.3 kbps) mode, and finally embed random
information into these samples with the steganography for
inactive frames at the designated embedding rate.

STEP 2: Feature extraction. For each sample, extract the
15-dimensional steganalysis feature φ.
STEP 3: Classifier training. Train the classifier based on

SVM with the feature set φ.
Correspondingly, the detection process consists of two

steps as follows.
STEP 1: Feature extraction. Extract the feature set φ

from each sample to be detect.
STEP 2: Detection. Input the feature set into the well-

established SVM-based classifier, and decide whether the

given test sample contains secret information in accordance
with the output of the classifier.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
To evaluate the performance of our proposed scheme, we col-
lect a total of 2200 ten-second speech samples, which are
PCM coded files with 8 kHz sampling rate, 16 bits quanti-
zation and mono. The sample set consists of two categories,
i.e., English and Chinese. In each category, there are male
and female speech samples. All speech samples are encoded
with the ITU-T G.723.1 codec at 6.3 kbps mode and that
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FIGURE 7. The proposed SVM-based scheme for detecting the steganography in inactive frames.

FIGURE 8. The distribution for the number of inactive frames in all the
samples.

at 5.3 kbps mode, respectively. Each speech sample after
encoding includes 333 frames. Figure 8 shows the distribution
for the numbers of inactive frames in all the samples, which
indicates that each speech sample contains a certain num-
ber of inactive frames, and the numbers of inactive frames
in different speech samples are various. Moreover, in the
steganographic experiments, Huang et al.’s method [11] and
Lin’s method [28] are respectively carried out on the speech
samples encoded at 6.3 kbps mode and those encoded at
5.3 kbps mode. In all the experiments, the embedded mes-
sages are randomly generated.

In this section, we evaluate the performance of the pro-
posed method, and compare it with the entropy-based and
poker test-based methods [35]. In the steganalysis experi-
ments, all the SVM-based classifiers are implemented based
on LibSVM [53] with RBF kernel, where the default param-
eter setting is adopted. In each steganalysis, three statistics,
namely, accuracy (ACC), false positive rate (FPR), and false
negative rate (FNR) are employed to evaluate the detection
performance of the steganalysis schemes. ACC is the propor-
tion of true results and is calculated by

ACC =
NTP + NTN

NTP + NTN + NFP + NFN
, (18)

whereNTP is the total of true positives;NTN is the total of true
negatives; NFP is the total of false negatives and NFN is the
total of false negatives. FPR is calculated as the ratio between
the number of negatives wrong categories as positives and the
total number of actual negatives, which is given by

FPR =
NFP

NFP + NTN
, (19)

FNR is calculated as the ratio between the number of positives
wrong categories as negatives and the total number of actual

TABLE 1. Ten test modes.

VOLUME 8, 2020 6123



H. Tian et al.: Detecting Steganography in Inactive Voice-Over-IP Frames Based on Statistic Characteristics of Fundamental Frequency

FIGURE 9. The detection performance for different test modes.

positives, which is expressed as

FNR =
NFN

NTP + NFN
, (20)

B. BASIC PERFORMANCE ANALYISIS
To verify the effect of the proposed feature set, we define
ten test modes through changing the sample numbers of
training and test sets, as shown in TABLE 1. For each mode,
we carry out the experiments with the ten-second speech
samples respectively encoded at 5.3 kbps mode and 6.3 kbps
mode. All the steganographic samples are produced at the
embedding rate of 100%. Figure 9 shows the experimental

results for the ten test modes. From the results, we can learn
that the detection accuracies are larger than 99% in any
cases, indicating that the presented steganalysis feature set
is highly effective. Moreover, even with small numbers of
training samples, we can obtain good classifier model. In the
following experiments, however, to obtain the best classifier
model as well as achieve the most reliable detection results,
we carry out each steganalysis experiment with the mode 10.

In addition, to evaluate the performance of the presented
scheme, we compare the detection performance between the
training sets and test sets at various embedding rates (from
10% to 100%), as shown in Figures 10 and 11. From the
experimental results, we can learn the following facts: First,

FIGURE 10. The contrast of performances on training and testing sets at 5.3 kbps mode.

FIGURE 11. The contrast of performances on training and testing sets at 6.3 kbps mode.
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FIGURE 12. The performance contrast of test and cross validation at 5.3 kbps mode.

FIGURE 13. The performance contrast of test and cross validation at 6.3 kbps mode.

there is almost no difference between the detection results
for the training sets and test sets, meaning that there is no
overfitting in all the training processes. Second, at the cases
of embedding rates not smaller than 30%, the detection accu-
racies are larger than 80%, indicating the classifier models
in these cases are relatively good. However, at the cases of
very low embedding rate (e.g., smaller than 20%), there is
much room to improve the detection accuracies, meaning the
classifier models in the cases are somewhat underfitting. That
is to say, improving the detection performance at the cases of
very low embedding rates is still a challenge and deserves
further study.

To further evaluate the generalization ability of the pro-
posed model, we conduct 5-fold cross-validation at various
embedding rates (from 10% to 100%). Specifically, for each
embedding rate, the training set, including 1100 cover sam-
ples and 1100 corresponding steganographic versions, are
randomly divided into 5 subsets. In each experiment, four
subsets are used to train the model, and the remaining one
is employed for test. The average ACC, FPR and FNR for all
the five test subsets are considered as the final results of the
5-fold cross-validation. The experimental results for various
embedding rates are shown in Figures 12 and 13. From the
charts, we can learn that there are only very slight differences
between the results of 5-fold cross-validation and those for
the test sets, indicating that the proposed model has a good
generalization ability.

C. PERFORMANCE COMPARISON WITH PREVIOUS
METHODS
We first compare the proposed method with the entropy-
based and poker test-based methods using the speech sam-
ple at various embedding rates (from 10% to 100%).
Figures 14 and 15 show the experimental results for the
speech samples respectively encoded at 5.3 kbps mode and
those encoded at 6.3 kbps mode, from which we can learn the
following facts: First, for all the three detection methods for
steganography in inactive frames, the accuracy increases with
the embedding rate of the steganographic samples, which
means that the detection performance has a positive corre-
lation with the adopted embedding rate of the steganographic
methods. Second, for both Huang et al.’s method [11] per-
formed on the speech samples encoded at 6.3 kbps mode
and Lin’s method [28] performed on the speech samples
encoded at 5.3 kbps mode, the proposed steganalysis method
can achieve better detection performance than the entropy-
based and poker test-based methods, particularly at the cases
of relatively low embedding rates. For example, for detecting
Huang et al.’s method, the accuracy of the proposedmethod is
higher than 85%when the embedding rate is only 40%, while
the poker test-based method achieves the similar accuracy
rate when the embedding rate is larger than 70%, and the
entropy-based method cannot achieve this accuracy rate even
if the embedding rate is 100%; for detecting Lin’s method,
the accuracy of the proposed method is higher than 88%
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FIGURE 14. Performance comparison of the proposed method and state-of-the-art methods at various embedding rates at 5.3 kbps mode.

FIGURE 15. Performance comparison of the proposed method and state-of-the-art methods at various embedding rates at 6.3 kbps mode.

FIGURE 16. The ROC curves of the proposed method and state-of-the-art methods at 5.3 kbps mode.

when the embedding rate is only 30%, while the poker test-
based method achieves the similar accuracy rate when the
embedding rate is larger than 60% and even if the embedding
rate is 100% the entropy-based method cannot achieve this
accuracy rate. To further evaluate the performance of the three
steganalysis methods, the receiver-operating-characteristic
(ROC) curves for detecting the existing two steganographic
methods at typical embedding rates of 30%, 60% and 100%,
are shown in Figures 16 and 17. The results demonstrate once
again that the proposed method significantly outperforms
the entropy-based and poker test-based methods in detection
performance, particularly at the relatively low embedding
rates.

In addition, we evaluate the performance of the three ste-
ganalysis methods for detecting the existing steganographic
methods at the embedding rate of 100%, using various small
quantities (from 1 to 10) of inactive frames. Figures 18 and 19
show the experimental results for the speech samples respec-
tively encoded at 5.3 kbps mode and those encoded at
6.3 kbps mode, from which we can learn the following facts:
First, for all the three steganalysis methods, the detection
performance has a positive correlation with the number of
the used inactive frames. Overall, the more the used inac-
tive frames, the better the detection performance. Second,
the proposed steganalysis method can achieve much better
detection performance than the entropy-based and poker
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FIGURE 17. The ROC curves of the proposed method and state-of-the-art methods at 6.3 kbps mode.

FIGURE 18. Performance comparison of the proposed method and state-of-the-art methods using various quantities of inactive frames at
5.3 kbps mode.

FIGURE 19. Performance comparison of the proposed method and state-of-the-art methods using various quantities of inactive frames at
6.3 kbps mode.

test-based methods in all cases. For example, for detecting
Huang et al.’s method, the accuracy of the proposed method
is higher than 83% using only three inactive frames, while
entropy-based method cannot achieve this accuracy rate even
using ten inactive frames, and the poker test-based method
needs at least seven inactive frames to achieve this simi-
lar accuracy rate; for detecting Lin’s method, the accuracy
of the proposed method is higher than 86% using only
two inactive frames, while entropy-based method cannot
achieve this accuracy rate even using ten inactive frames,
and the poker test-based method needs at least nine inactive
frames to achieve this similar accuracy rate. To sum up, the

experimental results demonstrate again that, for the case
of detecting the steganography in the same small quantity
of inactive frames, the proposed steganalysis method out-
performs the existing methods in detection performance.
Particularly, the proposed steganalysis method can effectively
detect the existing steganographic methods even using very
small quantities of inactive frames.

V. CONCLUSION
Steganography in inactive speech frames is a new effective
technique of covert communication based on VoIP, which
can achieve large steganographic capacity while maintaining
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excellent embedding transparency. However, its illegitimate
use by terrorists and lawbreakers would facilitate cybercrimes
and pose a serious threat to cybersecurity. Thus, in this paper,
we aim to develop an efficient steganalysis technique to
detect this type of steganography. Differing from the existing
entropy-based and poker test-based methods, we employ the
statistics for ZCC, including the average ZCC of inactive
frames, the ratio between the average ZCC of inactive frames
and that of all frames, and the difference between the average
ZCC of inactive frames and their calibrated versions, to char-
acterize the frame-level dynamic characteristic of speech
signals; moreover, we utilize the average values of MFCCs
to represent the invariant characteristic of inactive frames.
Further, an SVM-based steganalysis for inactive speech
frames is presented. The proposed steganalysis method is
evaluated with a great quantity of ITU-T G.723.1 encoded
speech samples, and compared with the existing methods.
The experimental results show that the proposed method
significantly outperforms the previous ones in detection per-
formance for any given embedding rates or using the same
number of inactive frames. In particular, the proposedmethod
can render accurate results for detecting the existing stegano-
graphic methods only using very small quantity of inac-
tive frames, and thereby be adopted to detecting potential
inactive-frame steganography behaviors in real-time speech
streams.
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