
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3001277, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Survey of Multi-Access Edge
Computing in 5G and Beyond:
Fundamentals, Technology Integration,
and State-of-the-Art
QUOC-VIET PHAM1, FANG FANG2, VU NGUYEN HA3, MD. JALIL PIRAN4, MAI LE5,
LONG BAO LE6, WON-JOO HWANG7, AND ZHIGUO DING2
1Research Institute of Computer, Informationand Communication, Pusan National University, 46241 Korea (e-mail: vietpq@pusan.ac.kr)
2School of Electrical and Electronic Engineering, The University of Manchester, M13 9PL, UK (e-mail: {fang.fang,zhiguo.ding}@manchester.ac.uk)
3Ecole Polytechnique de Montreal, Montreal, Quebec, Canada (e-mail: vu.ha-nguyen@polymtl.ca)
4Department of Computer Science and Engineering, Sejong University, 05006 Seoul, Korea (e-mail: piran@sejong.ac.kr)
5Department of Information and Communications System, Inje University, 50834 Korea (e-mail: maile2108@gmail.com)
6Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada (e-mail: long.le@emt.inrs.ca)
7Departmentof Biomedical Convergence Engineering, Pusan National University, 46241 Korea (e-mail: wjhwang@pusan.ac.kr)

Corresponding author: Won-Joo Hwang (e-mail: wjhwang@pusan.ac.kr).

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under
Grants NRF-2019R1C1C1006143 and NRF-2019R1I1A3A01060518.

ABSTRACT Driven by the emergence of new compute-intensive applications and the vision of the Internet
of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic
volume and computation demands. However, end users mostly have limited storage capacities and finite
processing capabilities, thus how to run compute-intensive applications on resource-constrained users has
recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth
generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process
large data before sending to the cloud, provide the cloud-computing capabilities within the radio access
network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN
information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly
required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm
shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful
realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both
academic and industry communities. In this survey, we first provide a holistic overview of MEC technology
and its potential use cases and applications. Then, we outline up-to-date researches on the integration of
MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and
experimental evaluations, and open source activities, for edge computing. We further summarize lessons
learned from state-of-the-art research works as well as discuss challenges and potential future directions for
MEC research.

INDEX TERMS 5G and Beyond Network, Heterogeneous Networks, Internet of Things, Machine Learn-
ing, Edge Computing, Non-Orthogonal Multiple Access, Testbeds, Unmanned Aerial Vehicle, Wireless
Power Transfer and Energy Harvesting.

ACRONYMS
3GPP 3rd Generation Partnership Project
4C Communication, Computation, Control, and

Caching
5G Fifth Generation of Mobile Networks

AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
BBU Baseband Unit
BS Base Station
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D2D Device-to-Device
DC Data Center
DL Deep Learning
DQN Deep Q Network
EH Energy Harvesting
eNB Evolved Node B
ETSI European Telecommunications Standards

Institute
FDMA Frequency Devision Multiple Access
FiWi Fiber-Wireelss
HetNets Heterogeneous Networks
Het-MEC Heterogeneous MEC
HD High Definition
IoT Internet of Things
LTE Long-Term Evolution
MDP Markov Decision Process
MIMO Multiple-Input and Multiple-Output
MCC Mobile Cloud Computing
MCS Mobile Crowdsensing
MEC Mobile Edge Computing
mmWave millimeter Wave
ML Machine Learning
MNO Mobile Network Operator
NOMA Non-Orthogonal Multiple Access
NFV Network Function Virtualization
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RL Reinforcement Learning
RRH Remote Radio Head
RSU Roadside Unit
SBC Single-Board Computer
SCA Successive Convex Approximation
SWIPT Simultaneous Wireless Communication and

Power Transfer
OFDM Orthogonal Frequency-Division Multiplexing
OMA Orthogonal Multiple Access
SDN Software-Defined Networking
UAV Unmanned Air Vehicle
V2X Vehicle-to-Everything
VM Virtual Machine
VR Virtual Reality
WiFi Wireless Fidelity
WPT Wireless Power Transfer

I. INTRODUCTION

DURING the last four decades, the evolution of wireless
communication networks has changed every aspect of

our lives, society, culture, politics, and economics. Since the
commercialization of the first generation (1G) of cellular net-
works in early 1980’s, generations have been launched with
enormous differences in terms of the network architectures,
key technologies, coverage, mobility, security and privacy,
data, spectral efficiency, cost optimality, and so on. The brief
summary of wireless communication evolution is shown in

Fig. 1. Now, both academic and industry communities are
making tremendous efforts to finalize the 5G standardiza-
tion and commercialization in 2019. 5G communications
can be categorized into three categories: enhanced mobile
broadband (eMBB), ultra-reliable low-latency communica-
tion (URLLC), and massive machine type communications
(mMTC). Compared with previous generations, 5G will sup-
port not only communication, but also computation, control,
and content delivery (4C) functions [1]. Moreover, many
new applications and use cases are expected with the advent
of 5G, for example, virtual/augmented reality (VR/AR), au-
tonomous vehicle, Tactile Internet, and Internet of Things
(IoT) scenarios. These applications are poised to induce a
significant surge in demand for not only communication
resources but also computation resources. To meet such
ever-growing demands, various technological concepts have
been developed for 5G in terms of radio access, network
resource management, applications, network architectures
and scenarios, power supply, and performance improvement
[2]. For example, non-orthogonal multiple access (NOMA),
dense heterogeneous networks (HetNets), cloud radio access
network (C-RAN), unmanned aerial vehicle (UAV), IoT,
wireless power transfer (WPT) and energy harvesting (EH),
and machine learning (ML), have been considered as key
enabling technologies.

The Cisco white paper [3] showed that global data traffic
will grow at a compound annual growth rate (CAGR) of
26 percent between 2017 and 2022 (i.e., increase more than
threefold) and reach 122 exabytes (EB) per month by 2022.
Mobile and wireless networks carried 11.51 EB per month
in 2017, 28.56 EB per month in 2019, and 77.49 EB per
month at the end of 2022. Moreover, traffic generated by
new applications and services will increase at a much higher
CAGR, for example, 12-fold for AR and VR, ninefold for In-
ternet gaming, and sevenfold for Internet video surveillance.
It is also anticipated that the number of connected things
(e.g., sensors and wearable devices) will reach 28.5 billion by
2022, up from 21.5 billion in 2019. However, most connected
devices have limited communication and storage resources
and finite processing capabilities, which show the mismatch
between the stringent requirements for emerging applications
and the actual device capabilities. Despite recent advance-
ments in the hardware capability, mobile computing still
cannot cope with the demand of many applications that need
to generate, process, and store a massive amount of data and
require large computing resources. One potential solution to
these challenges is to transfer computations to centralized
clouds, which can be, however, burdened by many issues,
such as network congestion and privacy policies. This has
driven the development of mobile edge computing (MEC).

Prior to MEC, there have been some similar computing
concepts, for example, mobile cloud computing (MCC),
cloudlet, and fog computing. MCC combines cloud com-
puting, mobile computing, and wireless communication net-
works, thus enabling developers and service providers to
support more complex applications by moving the computing

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3001277, IEEE Access

Q.-V. Pham et al.: A Survey of MEC in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art

1G (AMPS)

- Voice services

- Analog signals

2G (GSM standard)

- 
V

o
ic

e 
se

rv
ic

es
 w

it
h
 d

ig
it
a
l 
si

g
n
al

s

- 
L

a
rg

er
 s

er
v

ic
e 

co
v

e
ra

g
e

2.5G 

E-Mail

Web-Browsing

1980's 1990's 2000's 2010's 2020's

3G (UMTS/IMT-2000)

- Advent of smart phones 

and mobile broadband

- Advanced  services, e.g., 

video telephony, mobile TV, 

and video conference

4G (LTE or WiMAX) 5G (New Radio (NR))

- All-Internet Protocol packet-

switched networks

- Mobile ultra-broadband

- High-data-rate applications, 

e.g., cloud computing, HD TV,

video gaming

- Main service types: eMBB, 

massive IoT, mission-critical 

communications

- Strict application requirements: 

e.g., compute-intensive, ultra-

reliable, and low latency

Video Gaming Cloud computing

The need for speed

2.4 kbps 64 kbps 2000 kbps 100 Mbps More than 1 Gbps

IoT

FIGURE 1: Evolution of wireless communication.

capabilities and data storage away from mobile devices and
into the cloud [4]. However, MCC suffers from considerable
disadvantages, e.g., low scalability, high latency, privacy and
security issues, and extreme burden on limited bandwidth.
As the very first edge computing concept, Cloudlet, proposed
by Satyanarayanan et al. in 2009 [5], refers to a trusted and
resource-rich computer or a cluster of computers that are
located in a strategic location at the network edge and well
connected to the Internet. The main purpose of cloudlet is
to extend cloud computing to the network edge and sup-
port resource-constrained mobile users in running resource-
intensive and interactive applications. The WiFi connection
between users and cloudlets can be a serious drawback.
In particular, users are unable to access cloudlets in the
long distance and use both WiFi and cellular connection
simultaneously [6], i.e., users have to switch between the
mobile network and WiFi when they use cloudlet services.
Fog computing, a term put forward by Cisco in 2012, refers
to the extension of cloud computing from the core to the
network edge, thus it reduces the amount of data needed to
transfer to the central cloud [7]. Fog computing plays an
important role in many use cases and applications [8], e.g.,
smart cities, connected vehicles, smart grid, wireless sensor
and actuator networks, smart buildings, and decentralized
smart building control. However, a fog node cannot act as
a self-managed cloud data center (DC) and needs the support
of the cloud. The cloudlet and fog computing are similar
in that cloudlets and fog nodes are not integrated into the
mobile network architecture, thus fog nodes and cloudlets are
commonly deployed and owned by private enterprises and it
is not easy to provide mobile users with the quality of service
(QoS) and quality of experience (QoE) guarantees [9], [10].

In late 2014, the European Telecommunications Standards
Institute (ETSI) Mobile Edge Computing Industry Specifi-
cation Group (MEC ISG) initiated the MEC concept. As a

complement of the C-RAN architecture, MEC aims to unite
the telecommunication and IT cloud services to provide the
cloud-computing capabilities within radio access networks
in the close vicinity of mobile users [27]. Therefore, MEC
enables a wide variety of applications, e.g., driverless ve-
hicles, VR/AR, robotics, and immerse media. In order to
reap additional benefits of MEC with heterogeneous access
technologies, e.g., 4G, 5G, WiFi, and fixed connection, ETSI
ISG officially changed the name of mobile edge computing
to mean multi-access edge computing in 2017 [28]. After
this scope expansion, MEC servers can be deployed by the
network operators at various locations within RAN and/or
collocated with different elements of the network edge, such
as BSs (aka eNB in 4G and gNB in 5G), optical network
units, radio network controller sites, and WiFi access points.
This transformation pushes intelligence towards the edge so
that not only communication functionalities but also compu-
tation, caching, and control services can be better facilitated.
From this point, the correct name for MEC is multi-access
edge computing and this paper uses that name.

Over the last few years, there have been a large number
of studies focusing on either technical aspects of MEC ar-
chitectures or reviews of attributes and application use cases
of MEC. Many also consider the importance of MEC in
5G enabling technologies and applications and cover certain
research aspects discussed in our article, for example, [1], [9],
[11]–[19], [21]–[23]. The previous surveys are summarized
as follows. The surveys in [17]–[19] presented a general
overview of MEC on definitions, architectures, advantages,
deployment scenarios and testbeds, and security and privacy
issues. The survey in [9], [11] reviewed several edge comput-
ing concepts and focused on computation offloading. The au-
thors in [1] reviewed joint communication and computation
resource management in MEC systems. In [12], the authors
described four fundamental enabling technologies for MEC
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TABLE 1: Summary of existing surveys on multi-access edge computing.

Theme Reference Major Contribution
Architecture and
computation
offloading

[9], [11] - Review of potential MEC architectures and computation offloading.
[12] - Introduction of MEC and its key enablers: NFV, SDN, and VM.

- Analysis of MEC reference architecture and orchestration deployment scenarios.
Resource
allocation

[1] - Survey of the basic MEC models from the communication perspective.
- Review of joint communication and computation resource allocation in MEC systems.

[13], [14] - Review of convergence and integration of communication, computation, and caching.
Mathematical
frameworks

[15] - Survey of computation offloading decisions using multi-objective optimization.
[16] - Fundamentals of game theory models and MEC.

- Review of game theoretical contributions to wireless networks and MEC systems.

General concepts
and research
directions

[17] - Fundamentals of MEC, use cases, infrastructure, and security & privacy issues.
[18]–[20] - MEC concepts, applications, architectures, and open research challenges.
[21]–[23] - Review of how to exploit MEC and other edge computing paradigms for IoT applications.
[24]–[26] - Review and analyses of security and resilience of edge computing technologies.

MEC with 5G
Technologies Our Survey

- Survey on integration of MEC with 5G technologies: NOMA, WPT and EH, UAV, IoT, and H-CRAN.
- Applications of ML to MEC: 4C optimization, security and privacy, big data analytics, and mobile crowdsensing.

including virtual machines and containers, network functions
virtualization (NFV), software-defined networking (SDN),
and network slicing. Moreover, the authors provided analyses
of the MEC service orchestration, MEC service mobility,
and joint optimization of virtual network functions and MEC
services. Several works in [21]–[23] revealed the role of
MEC for IoT applications and realization. Recent studies in
[13], [14] focused on reviewing the integration of communi-
cation, caching, and computation. Mathematical frameworks
for optimization of MEC systems were reported in [15], [16].
In particular, the authors in [15] conducted a survey on the
computation offloading decisions when multiple challenges,
e.g., heterogeneous resources, large amounts of computation
and communication, intermittent connectivity and network
capacity, are considered (i.e., multi-objective optimization).
The authors in [16] reviewed research works that applied
theoretical games in addressing problems and challenges of
MEC systems. The tutorial in [20] presented three main edge
computing concepts: MEC, cloudlet, and fog computing,
from the viewpoints of standardization, principles, architec-
tures, and application. In Table 1, we provide a summary of
the recently published surveys and reviews on MEC.

Previous surveys addressed important problems in MEC
systems, while they have several limitations. These surveys
are limited to specific aspects and potential use cases of
MEC, for instance, MEC overview [17], [19], architecture
and computation offloading [9], resource allocation [1], and
mathematical frameworks [15], [16]. Indeed, these articles
provide only high-level discussions of the problems and
challenges of MEC in 5G. To the best of our knowledge,
there is no existing survey to provide a discussion of MEC
in the context of other 5G technologies. Furthermore, it is
necessary to have an updated survey since MEC has gained
popularity in years with a fast-growing research trend and
ETSI has released a set of phase 2 specifications, but almost
all the articles mentioned in the related work were prepared
and/or submitted quite long ago. Therefore, this paper sets
to provide a comprehensive survey of the state-of-the-arts
which are focused on the integration of MEC and the forth-
coming technologies that will be deployed in 5G and beyond

network. In a nutshell, contributions offered by our survey
can be summarized as follows:
● We conduct an overview of MEC including funda-

mentals of MEC (e.g., characteristics, challenges, and
market drivers), and MEC integration in the 5G network
with potential use cases and applications.

● We discuss the role of MEC in the 5G network architec-
ture and undertake a holistic review of related literature
published in the last few years for the integration of
MEC with the forthcoming 5G and beyond technologies
and scenarios including NOMA, WPT and EH, UAV,
IoT, and heterogeneous C-RAN, and ML.

● We provide a concise summary of lessons learned from
the state-of-the-art research works and describe poten-
tial future directions.

The remaining of this paper is organized as follows.
Sections II provides the fundamentals of MEC, including
its benefits, integrated architecture in the 5G scenario, and
key use cases. The major part of this work is a review of
MEC in the context of NOMA (Section III), WPT and EH
(Section IV), UAV communications (Section V), IoT (Sec-
tion VI), heterogeneous C-RAN (Section VII), and machine
learning (Section VIII). For each section, we first outline
background, then provide motivations for the integration, and
finally outline learned lessons and potential directions. The
paper is concluded in Section X. For the sake of clarity, Fig. 2
shows the organization of this paper.

II. OVERVIEW OF MEC RESEARCHES
We present fundamentals of MEC by listing the main

features and discussing design challenges of MEC and the
benefits offered by MEC. We also show the interactions be-
tween MEC in the forthcoming 5G technologies and further
illustrate MEC use cases with representative examples.

A. FUNDAMENTALS OF MEC
The key idea of MEC is “providing an IT service envi-

ronment and cloud-computing capabilities at the edge of the
mobile network, within the RAN and in close proximity to
mobile subscribers" [29]. The demand for MEC has been
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FIGURE 2: Diagrammatic view of the organization.

driven by many factors, such as the increasing pervasiveness
of smart and IoT devices, rapid increase in the data volume
and velocity, the increasing need for the rapid develop-
ment of new high-bandwidth and low-latency applications,
introduction of new wireless technologies, and increasing
requirement of QoE and QoS. Among those factors, low-
latency computing is considered as the primary driven factor
for the development of MEC. The demand for low-latency
computing is increasing rapidly as low latency is a funda-
mental metric for network performance and is required by
many emerging applications (e.g., VR, interactive gaming,
and mission-critical controls). The development of MEC is
further fortified by great opportunities for business transfor-
mation. On the one hand, mobile network operators (MNOs)
need to shorten the time-to-market of new applications and
services to maximize the overall revenue. On the other hand,
the success and widespread deployment of MEC are guaran-
teed only when there is the participation of multiple stake-
holders (e.g., mobile operators, service providers, vendors,
and users) as well as their collaboration. As suggested in
[30], the key growth drivers in the MEC market can be
classified into four major categories: technical integration,
potential use cases, business transformation, and industry
collaboration (see Fig. 3). In the foreseeable future, MEC
will open up new markets for different industries and sectors
by enabling a wide variety of use cases, e.g., IoT, Industry
4.0, Vehicle-to-everything (V2X) communication, smart city,
and Tactile Internet. A complete picture of MEC, including
challenges, characteristics, use cases and applications, and
market drivers, is pictorially illustrated in Fig. 3.

According to the ETSI white paper [31], MEC can be char-

acterized by some features, namely on-premises, proximity,
lower latency, location awareness, and network context infor-
mation. These features can be shortly explained as follows:

● On-premises: MEC can operate in standalone environ-
ments (i.e., MEC can run isolated from the rest of the
network) and has access to local resources.

● Proximity: MEC servers are usually positioned in the close
vicinity of mobile users, thus MEC can capture informa-
tion from mobile users for further purposes such as data
analytics and big data processing.

● Lower latency: although an MEC server has a finite com-
putation power, it is usually sufficient to process emerging
compute-intensive applications in real time. MEC has the
potential of shortening the communication and propaga-
tion latency, which makes MEC a promising enabler for
latency-critical 5G applications. MEC also opens up the
opportunities to alleviate the burdens on the fronthaul and
backhaul links and to accelerate the content and service re-
sponsiveness by appropriately caching popular and locally-
relevant contents at the network edge.

● Location awareness: Due to the close proximity, MEC can
utilize signaling information received from end users to
estimate their precise locations. This becomes particularly
important for MEC location-based services.

● Network contextual information: characterized by prox-
imity, MEC can utilize the knowledge of real-time radio
network conditions and local contextual information to
optimize the network and QoS. For example, real-time
and contextual information can be used to improve user
experience via personalized services [30].

In spite of several opportunities and potentials, many
challenges need to be studied in order to create an edge
ecosystem where all network players (i.e., IoT users, ser-
vice/infrastructure providers, and mobile operators) can ben-
efit from edge services. The discussion can be summarized
as follows.

1) Distributed resource management: Resource allocation is
a key challenge for the success of MEC due to finite
resources, growing number of applications, and explo-
sive increase in the mobile traffic [32]. The optimiza-
tion of resource allocation may be multi-objective that
varies in different situations due to diverse nature of
applications, heterogeneous MEC servers, various user
demands/characteristics, and channel connection quali-
ties. With massive users, the wireless channel would be
bottlenecked and the competition among users for scarce
computing resources becomes highly intense [33]. Al-
though the centralized approach can achieve competitive
performance, it has the weakness of high computational
complexity and huge reporting overhead. Therefore, the
centralized approach is not suitable for distributed MEC
systems [34], [35]. Additionally, there may not exist a
dedicated backhaul for information exchange and com-
putation offloading and even if there is, the wireless
backhaul could be congested due to the high burden of
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FIGURE 3: An overview of MEC: challenges, characteristics, potential use cases and applications, and market drivers.

huge data sharing [36]. All of these points call for efficient
and distributed MEC resource allocation schemes.

2) Reliability and mobility: Densification is a key block for
the 5G network and is expected to lead to enormous
benefits. However, managing mobility and ensuring reli-
ability are quite challenging in such environments. First,
under the coverage of multiple small-scale servers, user
mobility can cause frequent handovers, which introduce
the service disruption problem and affect the overall net-
work performance [37]. Second, users (e.g. vehicles) may
move to new locations during the computation offloading
period. In such a case, users may not be able to receive
the computational result since they already move out of
the service coverage of their serving servers. Therefore,
efficient computation offloading models are necessary
for the application accomplishment. Third, variations in
the number of offloading users result in random uplink
interference and time-varying computing resources [38].
Finally, ultra-reliability is an important concept in 5G
since it initiated the implementation of industrial automa-
tion and smart transportation. For instance, AR-based
applications usually require the real-time response and
ultra-reliable connection between the server and users.
While ultra-high reliability on the order of 99.99999%
and extremely low latency of 0.1-1ms round-trip time
are the communication requirements in industrial control
networks or autonomous mobility systems [39]. These
requirements would not be well fulfilled under dynamic
channel qualities and intermittent connections. There has

been a great deal of efforts in utilizing MEC for providing
reliable and low-latency services. We invite the interested
readers to read the surveys in [40], [41] for more detail.

3) Network integration and application portability: Depend-
ing on the underlying technologies, technical and business
requirements, MEC servers can be deployed at different
places within the RAN. Thus, another critical challenge
is the seamless integration of MEC into the underlying
network architecture and existing interfaces [31]. The
existence of MEC and enabled applications should not
affect the standard specifications of the core network and
end devices. According to [28], the key component of
the MEC integration is the ability of MEC to interact
with 5G networks in routing the traffic and receiving
relevant control information. Furthermore, the application
migration necessitates a so-called application portability
requirement. This removes the need for app developers to
design multiple versions for different MEC platforms.

4) Coexistence of distributed MEC and centralized cloud:
Cloud DCs, with abundant computing resources, can pro-
cess big-data applications in near zero time and support
a large number of users. However, distributed MEC is
highly desired since the computation at the network edge
can not only meet the user requirement but also reduce
the end-to-end delay caused by the traffic congestion
and transmission delay. By analogy to the HetNet ar-
chitecture, it is highly beneficial to implement MEC in
a hierarchical manner, i.e., user, edge-computing, and
cloud-computing layers. In this way, the MEC vendor also
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injects computing resources to the small-eNBs so that the
advantages of HetNets can be exploited for diversifying
radio transmissions and spreading computing demands
[42]. We note that distributed MEC may not have enough
computing resources to process all computation requests
and complete reliance on the cloud poses challenges of
providing latency-critical services. Therefore, it is intu-
itive to distribute big-data/latency-critical computations
to distributed MEC servers while transferring compute-
intensive and delay-tolerant tasks to the cloud DC [43].
The coexistence of distributed MEC and centralized cloud
is an important issue and more research is needed for their
interactions.

5) Coexistence of human-to-human and MEC traffic: Incor-
porating both conventional Human-to-Human (H2H) traf-
fic (e.g., voice, data, and video) and MEC traffic in 5G is a
challenging task due to massive IoT connections coupled
with the diverse QoS requirements and unique character-
istics of MEC traffic [44]. For instance, the IoT system
comprises of human-type devices (HTDs) and machine-
type devices (MTDs) that may run different kinds of
applications, e.g., MTD with sensors and smart homes,
and HTD with video games. While MTDs have a mixed
set of QoS requirements, such as latency, reliability, and
energy efficiency, HTDs typically require a high-speed
rate with the limited energy budget [45]. Similarly, the
MEC system should be designed in a way that the QoS
requirements of H2H traffic are satisfied while unique
characteristics of M2M traffic (e.g., real-time response
and context awareness) are maintained.

6) Security and privacy: Although MEC has the capability
to improve security and privacy compared with MCC,
MEC has its own security and privacy challenges. First,
MEC can be collocated with different heterogeneous net-
work elements, thus making the conventional privacy and
security mechanisms, which have been already operated
in MCC, inapplicable to MEC systems. Second, the task
offloading over wireless channels may not be secure since
computation tasks can be overheard by malicious eaves-
droppers. The transfer of compute-intensive applications’
data can be secured by encryption at the user side and de-
cryption at the destination server side. This, however, can
increase the propagation delay as well as execution delay,
thus reducing the application performance [46]. Physical
layer security, blockchain, and federated learning have
emerged as effective solutions to secure and protect MEC
systems [47], [48]. Finally, sharing the same storage
and computation resources among multiple mobile users
raises issues of private data leakage and loss.

B. INTEGRATION OF MEC INTO THE 5G SYSTEM

After initializing the MEC concept, the ETSI ISG and
many members in the value chain have spent a great deal of
efforts for the development of MEC specifications based on
industry consensus. At the time of writing this paper, there

are 68 members and 35 participants in the ETSI consortium1,
which are not only mobile operators but also manufacturers,
service providers, and universities, e.g., Vodafone, IBM, In-
tel, NTT Corporation, University CarlosIII de Madrid, etc.
Their involvement plays a major role in ensuring an open
and interoperable MEC environment, and MEC is beneficial
to various stakeholders including MNOs, application devel-
opers, over-the-top players, independent software vendors,
telecom equipment vendors, IT platform vendors, system
integrators, and technology providers. The ETSI ISG has
published a set of standards and specifications focusing
on, for example, framework and reference architecture [49],
MEC in the NFV environment [50], and collocating C-RAN
and MEC [51]. The 3GPP started including MEC in the 5G
network standardization in the technical specification 3GPP
TS 23.501 [52]. Recently, in [28] and based on functional
enablers defined in [52, clause 5.13], the 3GPP clarified how
to deploy MEC in and seamlessly integrate MEC into 5G,
which can be illustrated in Fig. 4. The architecture comprises
two parts: the 5G service-based architecture (SBA) on the left
and an MEC reference architecture on the right.

The network functions defined in the 5G architecture and
their roles can be briefly summarized as follows.
● Access and Mobility Management Function (AMF):

establishes mobility and access procedures, e.g., con-
nection management, reachability management, mobil-
ity event notification, termination of the RAN control
plane, and access authentication/authorization.

● Session Management Function (SMF): performs func-
tionalities related to session management, e.g., session
establishment, termination of interfaces towards policy
control functions, and downlink data notification.

● Network Slice Selection Function (NSSF): executes the
allocation of slicing resources and AMF set to serve
users.

● Network Repository Function (NRF): supports the dis-
covery of network functions and their supported ser-
vices.

● Unified Data Management (UDM): handles user sub-
scription and identification services.

● Policy Control Function (PCF): unifies the network poli-
cies and provides policy rules to control plane functions.

● Network Exposure Function (NEF): acts as a service-
aware border gateway for providing secure commu-
nication with the services supported by the network
functions.

● Authentication Server Function (AUSF): performs au-
thentication procedures.

● User Plane Function (UPF): provides functionalities to
facilitate user plane operations, e.g., packet routing and
forwarding, data buffering, and allocation of IP address.

More details of the SBA and the 5G network functions can
be found in 3GPP TS 23.501 [52].

1The complete list of MEC members and participants is available at https:
//portal.etsi.org/TB-SiteMap/MEC/List-of-Members.
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The MEC reference architecture is composed of the MEC
system level and host level [49]. The MEC orchestrator
(MECO) is the core component of the MEC system level,
which maintains information on deployed MEC hosts (i.e.,
servers), available resources, MEC services, and topology
of the entire MEC system. The MECO is also responsible
for selecting of MEC hosts for application instantiation,
on-boarding of application packages, triggering application
relocation, and triggering application instantiation and ter-
mination. The host level management consists of the MEC
platform manager and the virtualization infrastructure man-
ager (VIM). The MEC platform manager carries out the
duties on managing the life cycle of applications, providing
element management functions, and controlling the appli-
cation rules and requirements. The MEC platform manager
also processes fault reports and performance measurements
received from the VIM. Meanwhile, the VIM is in charge of
allocating virtualized resources, preparing the virtualization
infrastructure to run software images, provisioning MEC
applications, and monitoring application faults and perfor-
mance. Finally, the MEC host comprises an MEC platform
and a virtualization infrastructure. The former includes the
set of functionalities needed to run MEC applications on a
particular virtualization infrastructure and the latter includes
the data plane functionalities of executing the traffic rules
received by the MEC platform and steering the traffic among
applications and networks.

New functional enablers were defined in [52] to integrate
MEC into the 5G SBA, which can be explained as follows.
● User Plane Reselection and Selection: The 5G core

network supports the UPF (re)selection for selective
traffic routing to the data network. Parameters used
for the UPF selection mechanism is dependent on the
UPF deployment scenario and MEC service operator
configuration.

● Local Routing and Traffic Steering: The UPF enables
various traffic routing schemes for MEC applications in
the 5G network. Moreover, application functions (AFs)
may affect the UPF (re)selection and make specific
traffic routing rules for a particular user.

● Local Area Data Network (LADN): The support for
LADN is enabled by the flexibility in the UPF location.
Then, MEC hosts can be deployed on the N6 interface
that is between the UPF and a data network. The user
using MEC services may discover LADN availability
during the registration procedure based on LADN in-
formation received from the AMF.

● Session and Service Continuity (SSC): The support for
SSC is essential to enable user and application mobility.
The 5G architecture allows MEC applications to select
one among three SSC modes [52]. Particularly, SSC
mode 1 provides the stable network connectivity to the
user, SSC mode 2 may release the current connectivity
to the user before making a new one, and SSC mode 3
ensures service continuity for the user by changing the
new user plane before disconnecting the existing one.

● Network Capability Exposure: The 5G architecture al-
lows both direct access to network functions for the
authorized MEC and indirect access via the NEF. Exam-
ples of exposed capabilities are exposure of user events,
exposure of user behavior provisioning to external func-
tions, and exposure of analytics to external parties.

● QoS and Charging: The PCF in the 5G SBA defines
QoS and charging rules for the user traffic routed to the
LADN.

C. MEC IN 5G AND BEYOND
Many services and applications will be supported in 5G

and beyond, which can derive substantial benefits from MEC
by being executed at the distributed edge servers. No matter
what the service is, MEC use cases can be classified under
three main categories, namely consumer-oriented services,
operator and third-party services, and network performance
and QoE improvements (see Fig. 3 and Fig. 5) [29]. The
fact is that the MEC ecosystem should support all these
categories to create a myriad of new services and applications
at the edge of mobile networks. Generally, the classification
is dependent on who could reap the advantages and benefits.
First, the use case “consumer-oriented services" aims to bring
direct benefits to users through the capability of running
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FIGURE 5: Integration of MEC with the forthcoming 5G technologies.

computation-heavy and latency-sensitive applications at the
network edge. By means of computation offloading, users can
exploit substantial computing resources on the edge server
[53]. Applications and services under the first category can
include graphical rendering applications (e.g., 3D gaming,
AR/VR, assisted reality, and cognitive assistance), intermedi-
ate data-processing (e.g., data analytics and video analysis),
and low-latency applications (e.g., remote surgery on tactile
Internet, AR/VR, video games, and interactive applications),
and location-based service recommendation. Under the sec-
ond category, operators and third parties take advantages of
MEC computing and storage facilities to place their own
applications and services on the network edge. This is en-
abled by the “open and interoperable environment" nature
of MEC, and is to encourage innovation and development
in MEC from multiple parties and overcome obstacles (e.g.,
deployment difficulties and operational costs) in providing
MEC services at the hard-to-reach areas [28]. Applications
and services offered by operators and third-party vendors
can include V2X applications (e.g., safety, convenience, and
driving assistance), big data, active device location tracking,
security, safety, data analytics, and indoor precise position-
ing. Finally, the services under “network performance and
QoE improvements" group intend to optimize operations
of the network, thus improving the network performance
and QoE. Examples of the third category are local content
caching at the edge, mobile backhaul optimization, traffic
deduplication, video delivery optimization for transmission
control protocol (TCP), multi radio access technology (RAT)

computation offloading, and network congestion in dense-
network environments.

To support the aforementioned applications and services,
new architectures and technologies will be introduced in the
5G network. As shown in Fig. 5, the integration of MEC
with the forthcoming 5G technologies is necessary to achieve
added values in MEC systems. A brief description of MEC in
the 5G scenario is given as follows.

1) NOMA, millimeter Wave (mmWave), and massive
multiple-input multiple-output (MIMO): As a multiple
access technology to meet the demand for massive con-
nectivity, the integration of NOMA into MEC systems is
an important research issue, which needs more attention
in the years to come. Moreover, the coexistence of
MEC with mmWave massive MIMO is necessary to en-
able massive wireless connectivity with high data rates,
low-latency, and large computing capabilities. These
schemes are provided in Section III.

2) EH and WPT: Thanks to EH and WPT, the design
of self-sufficient and self-sustaining wireless communi-
cations (aka green communication) becomes a reality.
The combination of EH and/or WPT with MEC in a
single system offers great potential to solve fundamental
limitations of traditional systems, e.g., limited battery
lifetime, unstable grid power supply, and low comput-
ing capability. To understand these issues more clearly,
research works on EH and WPT MEC systems are
surveyed in Section IV.

3) UAV communications: UAVs can be exploited to en-

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3001277, IEEE Access

IEEE Access

able many potential applications due to their features
of flexibility, mobility, maneuverability, and low cost.
On the one hand, UAVs can be aerial edge servers
to perform heavy computations offloaded from ground
users. On the other hand, UAVs can act as aerial users
and associate with ground BSs to offload their tasks. The
integration of UAV into MEC systems is a promising
research topic, which will be summarized in Section V.

4) IoT: IoT devices are quite resource-constrained to run
compute-intensive tasks due to their limited computing
capability and battery capacity. MEC is a powerful
solution to solve these limitations. Inversely, IoT ex-
pands MEC services into more scenarios and objects
like sensors, actuators, and mechanized agriculture. We
will provide a survey on recent MEC-enabled IoT appli-
cations in Section VI.

5) H-CRAN: With the realization of NFV, the collocation
of MEC and heterogeneous C-RAN (H-CRAN) is ex-
pected to bring potential benefits. In such a scenario, the
edge host (i.e., MEC server) in MEC and the BBU pool
in H-CRAN can be collocated with each other to share
the same virtualization infrastructure. We will study the
integration of H-CRAN and MEC further in Section VII.

6) Machine Learning: The massive amount of mobile data,
together with recent breakthroughs in ML and the non-
convexity nature of resource allocation in a complex
network, inspires many creative solutions for wireless
communications and networking problems. ML plays a
central role in the design of MEC mechanisms as we
will elaborate in Section VIII.

7) VM, SDN, NFV, and Network Slicing: MEC sys-
tems primarily rely on four enablers: VM, SDN, NFV,
and network slicing. VM virtualization enables tran-
sient customization of MEC infrastructure, while SDN,
NFV, and network slicing provide greater flexibility and
agility of multi-tenant MEC ecosystems. For more infor-
mation on these issues, we refer the interested readers to
[12], [49], [54] and references therein.

Besides aforementioned ones, integration of MEC with some
other technologies such as blockchain and cognitive radio is
expected to offer various benefits. A survey of blockchain
in the context of cloud of things can be found in [48] and
applications of blockchain for 5G and beyond networks were
reviewed in [55]. Cognitive radio is a vital technology for
efficient spectrum scarcity, which allows to meet the high
spectrum demand of many new applications and services, and
proliferation of massive IoT connections. studies on cogni-
tive radio MEC may have additional challenges, e.g., how
to sense available spectrum bands, how to protect primary
users, and how to allocate resources to improve the network
performance. Despite these issues, integrating cognitive radio
with MEC is expected to offer a number of advantages.
For example, the work in [56] showed that cognitive radio
edge computing can well support low-latency and compute-
intensive industrial applications. In the following sections,

TABLE 2: Comparison between OMA and NOMA.

Advantages Disadvantages

OMA
- Simpler receiver detection - Lower spectral efficiency

- Limited number of users
- Unfairness for users

NOMA

- Higher spectral efficiency - Increased complexity of re-
ceivers.

- Higher connection density - Higher sensitivity to channel
uncertainty.

- Enhanced user fairness
- Lower latency
- Supporting diverse QoS

we will review a number of studies related to these technolo-
gies in the context of MEC systems.

In summary, we focus on the following aspects in MEC
systems: radio access (NOMA, mmWave, and massive
MIMO), network architectures and scenarios (H-CRAN and
UAV), applications (IoT, V2X, and UAV), power supply
(EH and WPT), and performance improvement (ML). In the
following sections, these researches are discussed in more
details.

III. MEC WITH NON-ORTHOGONAL MULTIPLE ACCESS
A. FUNDAMENTALS OF NOMA

Non-orthogonal multiple access (NOMA) has been con-
sidered as an essential principle for the design of radio access
techniques in the emerging 5G network [57]. The key idea
of NOMA is the use of the superposition coding technique
at the BS side and interference cancellation techniques (e.g.
multiple user detection and successive interference cancella-
tion) at the user side. Compared to the conventional orthog-
onal multiple access (OMA), NOMA can enable multiple
users to share the same time-frequency resource to achieve
higher spectral efficiency. There are two main NOMA cat-
egories: power-domain NOMA and code-domain NOMA.
Power-domain NOMA exploits the channel gain differences
between users and multiplexes users in the power-domain
while code-domain NOMA uses user-specific sequences for
sharing the entire available radio resource [58]. Typical
examples of code-domain based access strategies are low-
density spreading code division multiple access (CDMA),
low-density spreading-based orthogonal frequency-division
multiple access (OFDMA), sparse code multiple access
(SCMA), and multi-user shared access (MUSA). NOMA has
the potential to accommodate more users than the number
of available subcarriers, which leads to various potentials,
including massive connectivity, lower latency, higher spectral
efficiency, and relaxed channel feedback [59]. The compar-
ison between OMA and NOMA is summarized in Table 2
[58].

Although NOMA is able to support a large number of
users simultaneously and surpasses OMA in several aspects,
various challenging problems associated with NOMA must
be addressed before this technology can be employed in
real networks. Islam et al. in [60] and Dai et al. in [61]
provided some research directives for NOMA in their survey:
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dynamic user pairing, the impact of transmission distortion,
channel and interference estimation, etc. NOMA can be flex-
ibly combined with many existing wireless technologies and
emerging ones including MIMO, massive MIMO, mmWave
communications, cognitive and cooperative communications,
visible light communications, physical layer security, energy
harvesting, wireless caching, and so on [62]. To gain a deeper
understanding of the benefits and opportunities that NOMA
offers as well as its challenges and application scenarios,
the interested readers are recommended to refer to NOMA
research works, such as, [58], [60], [61], [63]–[65].

B. MOTIVATION TO COMBINE NOMA AND MEC
Both NOMA and MEC are considered as the key enabling

technologies in 5G due to their enormous potentials and
wide-range applications. There are many benefits of MEC
and NOMA, including supporting massive users, reducing
the transmission latency and the energy consumption of end
users and providing high performance for more complex
network scenarios, i.e. mmWave massive MIMO.
● The combination of MEC and NOMA can significantly

improve the user satisfaction and network performance
through the provision of golden opportunities. While
NOMA offers several advantages at improving the spec-
tral efficiency and cell-edge throughput, relaxing the
channel feedback requirement, and reducing the trans-
mission latency, MEC brings considerable benefits to
not only users, but also operators and third-parties,
and enables to improve overall network performance
as well. It is expected that 5G will support a massive
increase in device connections, high-speed transmis-
sions of 1–10 Gbps, and greatly reduce latency and high
reliability.

● The combination of MEC and NOMA can reinforce the
services and applications that are supported by the 5G
network. On the one hand, NOMA is expected to vastly
increase the number of users in various scenarios where
rank deficiency can occur [61]. On the other hand, edge
computing in MEC indicates that computing resources
are provided for end users in close proximity and at the
edge of RANs. Therefore, MEC is capable of widely
distributing computing resources from centralized cloud
to the network edge and immediately serving a large
number of users, hence MEC has the potential to support
massive connectivity and distributed computation.

● The combination of MEC and NOMA can provide low-
latency transmission. Because the 5G network will not
completely rely on a single technology, we must opti-
mize the network from multiple perspectives, e.g., air
interface, network architecture, and enabling technolo-
gies. To cope with demands for lower latency, MEC
and NOMA are two promising solutions. MEC moves
the cloud services and functions to the network edge,
where data is mostly generated and handled. Hence,
MEC empowers the services running at the edge to
better meet the lower latency requirements of end users

compared to the cloud computing. In a similar sense,
flexible scheduling and grant-free access in NOMA
enables lower transmission latency for users in the 5G
network.

● NOMA and MEC can be flexibly combined with many
existing wireless technologies, e.g., MIMO, massive
MIMO, mmWave communications, etc., to further in-
crease connectivity, spectral efficiency, energy effi-
ciency and computing capability. For example, massive
MIMO can drastically increase the spectral efficiency
of wireless networks via excessive spatial multiplex-
ing, thus Massive MIMO-NOMA can support massive
connectivity and high spectral efficiency. To support
gigabits-per-second data rates, mmWave bands can be
used for wireless communications. The large path-
losses caused by mmWave can be compensated by high
gains, which can be obtained by massive MIMO. As
a result, NOMA MEC can be deployed jointly with
mmWave massive MIMO to enable multiple mobile
devices to offload tasks simultaneously with high up-
loading/downloading data rates.

Promoted by a variety of opportunities and advantages of-
fered by MEC and NOMA, both academic and industrial
communities have conducted extensive researches to design
the 5G network with MEC and NOMA [66]–[68]. However,
the state-of-the-art MEC researches still have not explored
the full potential benefits of NOMA in the context of MEC.
NOMA and MEC are both conceived as the bids to fill the
gap between IoT devices and IoT applications and services.
On the one hand, MEC empowers resource-constrained IoT
devices with significant additional computational capabilities
through computation offloading, thus bringing new applica-
tions and services to IoT devices. Similarly, with IoT, the
scope of MEC services and applications is applicable to not
only mobile phones, but also a wide range of smart objects
ranging from sensors and actuators to smart vehicles. On the
other hand, NOMA is capable of substantially improving on
system capability since it enables multiple users to transmit
using a dedicated orthogonal channel resource. Furthermore,
motivated by the benefits of NOMA over OMA, it appears
utterly reasonable that one can exploit NOMA to further
improve the use of MEC in IoT networks, as compared to the
performance of conventional OMA-based MEC approaches.

Apparently, NOMA can be exploited to increase the effi-
ciency and performance of multi-user MEC systems. In the
following, we present an overview of research works that
have explored the combination of NOMA and MEC and then
discuss fundamental challenges and open directions.

C. STATE OF THE ART
While the use cases of NOMA or MEC have been widely

studied in the literature, there have been some studies on
MEC-NOMA scenarios. The advantages of NOMA and
MEC have motivated several studies supporting the appli-
cation of NOMA to MEC [69], [70], [72], [73], [78], [79].
When NOMA uplink transmission is applied to the MEC sys-
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TABLE 3: Summary of existing works on NOMA MEC

Topic Designed frameworks References Contributions
Architecture of
NOMA MEC

Uplink NOMA MEC and
downlink NOMA MEC

[62], [69] NOMA MEC outperforms OMA MEC on lower latency and lower energy consump-
tion than the traditional OMA scheme.

Energy
consumption
minimization

Partial offloading [70], [71] Resource allocation schemes are proposed to minimize the energy consumption for a
uplink and downlink NOMA enabled MEC system.

Binary offloading [72]–[75] A hybrid NOMA MEC system is proposed to minimize energy consumption.

Task delay
minimization

Partial offloading [74], [76], [77] Optimal task and power allocation is proposed to minimize the task delay in NOMA
MEC system.

Binary offloading [78] Dinkelbach and Newton’s methods are compared to minimize task delay for the
hybrid NOMA MEC system.

tem, multiple users can offload their tasks to the MEC server
simultaneously via the same frequency band. By applying the
successive interference cancellation (SIC) technology at the
MEC server, the MEC server can remove the interference
from the user whose data has been decoded before on the
same frequency band. When NOMA downlink transmission
is applied to the MEC system, one user can utilize NOMA
to offload multiple tasks to multiple MEC servers simul-
taneously via the same frequency band. The performance
comparison of NOMA-MEC and OMA-MEC systems was
conducted in [69], which reveals that the NOMA-MEC sys-
tem can achieve superior performance in reducing latency
and energy consumption.

Most existing research works focus on resource alloca-
tion i.e., computation resource and communication resource.
Specifically, in [70], partial offloading assignment (i.e., each
user can partition the computation task into two parts for
local computing and offloading) and power allocation were
investigated to minimize the weighted sum of the energy
consumption for a multi-user NOMA-MEC system. In this
work, an efficient algorithm for user’s task partitioning, local
computing CPU frequency and transmit power allocation was
proposed to achieve the minimum energy consumption for
multi-user NOMA-MEC networks. Unlike OMA-MEC and
pure NOMA-MEC systems (i.e., both the users offload all
of their tasks at the same time) proposed in [69], [70], a
hybrid NOMA strategy (i.e., a user can first offload parts
of its task within time slot allocated to other user and then
offload the remaining of its task during a time slot solely
occupied by itself) was proposed in [72], in which power
allocation and time allocation were optimized to minimize
the energy consumption for an MEC-enabled NOMA system.
Subsequently, the delay minimization was investigated for
the hybrid NOMA-MEC system [78]. The work in [80]
defined the objective function balancing the tradeoff between
energy consumption and completion delay in hybrid NOMA-
MEC systems. A joint power allocation and user clustering
problem was investigated in [80], from which power alloca-
tion is provided in closed form and user clustering is solved
by using a matching theory approach.

Different from partial offloading tasks, the authors in [73]
considered that the offloading tasks are independent and non-
separate. Then the communication resource (i.e., frequency
bands and transmit powers) and the computing resource
(i.e., computing resource blocks) were jointly optimized to

minimize the energy consumption for the NOMA-MEC sys-
tem [73], in which an efficient heuristic algorithm of user
clustering and frequency and resource block allocation was
proposed to address the energy consumption minimization
problem per NOMA cluster. In [79], the computing offload-
ing scheme was investigated in the NOMA MEC system
where a distributed algorithm based on game theory was
proposed to improve the system performance. Moreover, the
delay minimization problem was investigated in [76], [77].
In [77] an efficient algorithm of the offloading workload,
offloading and downloading duration optimization was pro-
posed to minimize the overall delay of the computation tasks.
Another study on NOMA-MEC to minimize the average
overall delay can be found in [81], where a joint offloading
decision, subchannel assignment, power control, and com-
puting resource allocation problem is investigated and users
with differentiated uploading delays are taken into consider-
ation. The energy efficient power allocation, time allocation
and task assignment were proposed to minimize the en-
ergy consumption for MEC networks [71], [74]. Besides the
computational resource, SIC decoding order was optimized
to reduce the task delay for NOMA enabled narrowband
Internet of Things (NB-IoT) systems [75]. The summary of
the existing works on NOMA MEC is provided in Table 3.
The work in [82] considered minimizing the total completion
time of secondary users in a cognitive NOMA-MEC sys-
tem. The latency minimization problem is optimized under
constraints that the interference at primary users is below
an interference threshold and the total computing resources
assigned to users cannot exceed the maximum computing
capability of the MEC server. Another interesting work on
cognitive MEC was studied in [83], where downlink NOMA
is applied for the transmissions between secondary users to
the MEC servers. A joint offloading decision, local com-
puting capability control, and NOMA power allocation was
considered to minimize the system delay. Similar to [82], the
decomposition technique is applied to solve the problem in
[83] in an iterative manner.

D. LEARNED LESSONS AND POTENTIAL WORKS
Because of limited researches advocated to coexisting

MEC-NOMA scenarios there are many key open problems
that must be investigated. The potential works of NOMA
and MEC can be viewed from the following four aspects:
1) joint resource optimization; 2) secure communications; 3)
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cooperative NOMA MEC; 4) coexistence of NOMA MEC
and mmWave massive MIMO; 5) low-complexity and online
NOMA MEC schemes.

Joint resource optimization: Resource allocation plays an
important role to improve the performance of the wireless
network. Thus in MEC-NOMA networks, the communica-
tion and computing resource can be jointly optimized to
enhance the system performance, i.e., sum rate and energy ef-
ficiency. In other words, the scheduler may need to decide the
computation load that the user can offload to the MEC server,
and the remaining can be computed locally to minimize
the latency. Moreover, computation capacity (i.e. processing
speed of MEC servers or mobile devices) and communication
resource (i.e. transmit power) are also important factors to
reduce the computation latency. Joint optimization of these
factors presents an open and challenging research problem.
When NOMA uplink transmission is applied to the MEC sys-
tem, multiple users can offload their tasks to the MEC server
at the same time. Therefore, the total latency experienced
by the multiple users can be investigated. By controlling
the offloaded computation load and transmit power of each
user, the optimal and suboptimal strategies can be developed
to minimize the total latency of the system by considering
the total energy consumption. The proposed solution can be
extended to the NOMA downlink MEC system. Moreover,
user grouping or user association can be another trend in re-
source optimization of MEC-NOMA systems, where game-
theoretic approaches and metaheuristic optimizers [42], [84],
[85] can be exploited to group users into different groups
which use different subchannels to offload their tasks. Be-
sides, the performance of the SIC technology is sensitive
to the availability of channel state information (CSI). Thus
another possible direction to address this issue is to rely
on partial CSI. The application of partial CSI in downlink
NOMA system was investigated in [86], [87], which can be
investigated in resource allocation for MEC-NOMA systems.

Secure communication: Security and privacy-preserving
communication attract lots of research attention, especially
when NOMA is applied to the MEC system. For example,
two users are offloading tasks to an MEC server at the same
time by using the NOMA principle. When SIC is performed,
one user can decode the other user’s message. During this
period, an eavesdropper or an attacker may attempt to decode
the mobile user’s message. To address the scenario with
external eavesdroppers, the physical layer security can be
utilized to cope with this challenge for the NOMA-MEC
system [88], [89]. The combination of PLS and NOMA-MEC
is a promising research topic.

Cooperative NOMA-MEC system: To improve the connec-
tivity of the NOMA-MEC network, the cooperative MEC
can be adopted to enable computation offloading to the main
MEC server. In this scenario, the mobile device transmits
the superimposed signals to the primary MEC server and the
helper MEC server, which acts as a relay helping MEC server
[90], [91]. Considering the local computing capacity of the
mobile users and energy consumption constraint, the task

assignment and transmit power allocation can be optimized
to improve the performance of NOMA MEC system.

Coexistence of NOMA MEC and mmWave massive MIMO:
Massive MIMO-NOMA is another scenario to support mas-
sive connectivity and high spectral efficiency [62]. To further
improve the transmission data rate, the mmWave bands (30
GHz to 300 GHz) have been proposed to provide gigabit-per-
second data rates. Therefore, the integration of NOMA MEC
into mmWave MIMO based wireless networks can improve
the computing capability, spectrum efficiency and reduce
the task delay, where multiple mobile devices can transmit
tasks simultaneously via the mmWave bands. Inspired by the
challenges of the traditional MIMO transmission scheme, an
efficient approach of joint beamforming design and commu-
nication and computing resource allocation will be a major
challenge to tackle. Moreover, the user grouping needs to
be well investigated to further enhance the system perfor-
mance. Very recently, there have been some research studies
pertaining to MEC with massive MIMO and mmWave like
[92], [93]. For example, the work in [92] considered a cell-
free massive MIMO system with a cloud DC and a number
of access points (APs), and further derived the successful
edge computing probability (SECP). This work showed an
interesting observation that for a given SECP, the system
becomes more energy-efficient with higher AP density and
less antennas at each AP, rather than with smaller AP density
and larger number of antennas.

Low-complexity and adaptive NOMA-MEC: It is widely
known that the NOMA computational complexity (e.g., user
clustering, signal decoding, and CSI acquisition) is the main
barrier against the NOMA practicality [94]. Most of the
existing studies consider using convex optimization and
game theory approaches for solving resource management
problems in NOMA MEC systems; however, they typically
have high complexity. Therefore, low-complexity NOMA-
MEC techniques are of importance for the NOMA practical-
ity. Moreover, to cope with the dynamics of MEC wireless
environments and computation tasks, designing algorithms
that are well adaptive to the system dynamics and for online
implementation is necessary. Besides, investigation of MEC
systems employing other multiple access schemes, e.g., rate
splitting multiple access (RSMA), is a promising direction.
It is necessary since RSMA has shown considerable benefits
over NOMA and OMA [95].

IV. MEC WITH ENERGY HARVESTING AND WIRELESS
POWER TRANSFER
A. FUNDAMENTAL OF EH AND WPT

The current industrial landscape is becoming increasingly
aware of the need to optimize energy use and management for
all domains, including telecommunications. Among others,
EH, also known as energy scavenging or power harvesting,
is a promising technique for 5G systems since EH is an
alternative solution to traditional energy supply sources [99].
The basic concept of EH is to capture various available en-
ergy from different sources to power the energy-constrained
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FIGURE 6: EH technologies with generated intermittent power and power consumption for various devices, adapted from
[96]–[98].

devices for prolonging their lifetime [100]. Together with
the traditional energy grid, EH can help to fulfill the energy
requirements of the different tiers of 5G networks including
the sensors in IoTs, the mobile devices, the eNBs in HetNets,
assisting relays in D2D systems, and the computing servers
[96]. Additionally, the recent development in advanced ma-
terials and hardware designs helps realize the EH circuits for
small portable consumer electronic devices which accelerate
the adoption of EH for the IoTs [97].

EH is simple in concept, but more complex in imple-
mentation which strongly depends on the type of EH power
sources. The harvestable energy can be scavenged from natu-
ral or human-made sources which are controllable or uncon-
trollable [101]. As illustrated in Fig. 6, various EH techniques
(e.g., thermoelectrics, photovoltaic conversion, pyroelectrics,
piezoelectrics, electrostatics, and radio frequency (RF)-based
EH and WPT) can be employed to leverage the corresponding
sources of energy [96], [98]. Besides, different devices may
have different energy harvesting capabilities, for example,
a wearable device and a smart boot may harvest a power
value of 1 mW and 100 mW, respectively [96]. Compared
with the traditional natural energy sources, RF signals are
less affected by weather or other external environmental
conditions. As a result, these signals can be efficiently con-
trolled and designed, so RF-based EH has great potential to
provide stable energy to low-power energy-constrained net-
works including wireless sensor networks (WSNs), IoTs, and
extremely remote area communication (eRAC) use cases in
5G networks [102]. Specifically, RF-EH can be employed in
indoor, hostile, and harsh environments, e.g., sensors inside
a building or human body, toxic environment, and so on
[102]. RF-EH can scavenge wireless energy from 1) ambient
sources (e.g., WiFi, AM, and FM) which can be predictable
or unpredictable or 2) dedicated sources which are deployed
to provide an energy supply. RF-EH exploiting the ambient
sources normally requires an intelligent process to monitor
the communication frequency bands and time periods for

harvesting opportunities. RF-EH with proper management
of dedicated energy sources between the emitters and the
harvesters can be considered as WPT.

WPT was first proposed by Nikola Tesla in 1899 [101]
and continuously studied by both industry and academic
communities. Existing WPT technologies can be categorized
into three classes: inductive coupling, magnetic resonant
coupling, and RF-based WPT. The first two technologies rely
on near-field electromagnetic (EM) waves, which cannot sup-
port mobility for the energy-limited wireless communication
devices due to the limited wireless charging distances (a few
meters) and the required alignment of the EM field with the
EH circuits [103]. In contrast, RF-based WPT exploits the
far-field properties of EM waves over long distances (hun-
dreds of meters). In the RF-based WPT system, embedding
the modulated information (e.g., phase-embedded informa-
tion) into the RF-based WPT signals forms the concept of
simultaneous wireless communication and power transfer
(SWIPT) which was proposed and studied in [104] from an
information theoretical perspective.

Recently, [96], [99] have demonstrated that integrating
EH/WPT into typical 5G systems including IoTs, device-to-
device (D2D) networks, HetNets, and cognitive radio net-
works (CRNs), can bring benefits in improving energy and
spectral efficiency. However, integration of EH/WPT in 5G
architecture also raises some technical challenges as follows.

● How to cover the unstable and intermittent character-
istics of the ambient resources, i.e, power, spectrum,
periods, is a challenging problem which should be con-
sidered in designing an EH systems.

● How to allocate the network resources to well balance
between harvested energy and consumed power is an-
other issue. Towards this end, one must well understand
the generating environment and the characteristics of
energy source, the power consumption properties of
different elements in the system, the coverage area, the
communication distance, the data rate, and underlying

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3001277, IEEE Access

Q.-V. Pham et al.: A Survey of MEC in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art

AP/BS

AP/BS

AP/BS

AP/BS

AP/BS
MEC server

MEC server

MEC server

MEC server

AP

EH

Offloading

Battery
EH

EH

MEC server

FIGURE 7: EH/WPT enabled MEC Access Networks.

application specifics.
● In WPT systems, since the energy harvesting process

may affect the modulated information, joint resource
allocation for the EH and data transmission should be
investigated to improve the network performance.

An in-depth study of these challenges is required to design
an efficient wireless network, which must consider differ-
ent factors, like features of power generators, transducers,
power storage, power management methods and application
requirements. For deeper understanding of the benefits and
opportunities offered by EH and WPT techniques as well
as their challenges and potential application scenarios, the
interested readers are recommended to refer to EH and WPT
surveys, such as [100], [105], [106].

B. MOTIVATION
Both EH/WPT and MEC have been considered as promis-

ing technologies for the 5G networks, which can improve the
energy efficiency of mobile/edge devices and prolong their
battery lifetime of communication nodes at remote areas.
While MEC enables to detach the end devices from heavy
computation workloads for saving their energy consumption,
EH/WPT techniques allow them to exploit the energy in
their surrounding environment for re-charging their batter-
ies. Hence, integrating these two technologies in the future
wireless communication systems can significantly improve
network performance by leveraging the strengths of both
underlying technologies. EH, WPT and MEC technologies

will lead to the following benefits:

● EH/WPT techniques can power the edge devices in the
MEC systems to enlarge the set of options for com-
putation offloading which will result in improving the
network performance [107]. Specially in the IoT con-
text, important use cases of MEC-enabled 5G networks,
scavenging the ambient environment and utilizing WPT,
provide promising solutions to perpetually support the
massive number of electronic sensors [97]. Moreover,
EH/WPT modules by leveraging green energy (e.g. solar
and/or wind) can be employed to power MEC servers.
Especially, EH/WPT provides a great solution for the
eRAC use cases of MEC-based 5G where the MEC
servers and mobile edge devices can be located outside
the coverage of the electric grid for reasons such as
deployment constraints, reliability requirements, carbon
footprint, weather, disasters, and maintenance expenses.

● The distributed computing power of MEC systems can
be leveraged to learn time-varying properties of the
energy source for optimizing the network performance
[108].

● A MEC server can be deployed to support a cluster of
mobile/sensor nodes in EH-enabled wireless networks.
At the node level, MEC can help each EH device reduce
processing time and reserve more time for EH by of-
floading its heavy workloads to fog servers [109]. At the
network-level, MEC can allow deploying a centralized
EH strategy to tune the functionality of all devices for
better EH and performance [110].

A simple EH-enabled and wireless powered MEC system
is illustrated in Fig. 7, where the EH and WPT are employed
at MEC servers and mobile devices. For example, a battery-
less user can utilize WPT to harvest energy from the BS,
and then uses the harvested energy to offload computation
tasks to the MEC server for remote computing. While EH
and WPT bring many benefits as discussed above, the MEC
system also faces many challenges including communication
resource allocation, computing resource allocation, latency
minimization, and security problem. In the following, we
describe some major challenges which must be addressed for
efficient integration of EH/WPT into the MEC system.

● In general, mobile devices have limited battery size and
computation capability. Integrating EH/WPT into MEC-
based wireless networks facilitates mobile devices with
an external power source for processing heavy work-
load but this requires additional processing workload
on controlling the EH function. Thus, such integrated
system must cope with a more complicated resource
allocation problem. Major research issues along this line
include resource allocation and offloading design to well
balance between harvested energy and consumed energy
consumption. Specifically, how to perform the energy-
efficient computation offloading in EH/WPT-MEC sys-
tem considering practical constraints in the harvesting
process remains a challenging issue.
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TABLE 4: Summary of EH/WPT-MEC works.

EH-enabled
devices

EH-enabled
MEC server

WPT SWIPT

Resource
allocation

[111], [112] [113]–[115] [116]–[119] [120], [121]

Offloading
designs

[111],
[112], [122]

[116]–[119] [120], [121]

Load bal-
ancing

[113]–[115]

● In the scenarios where MEC servers are primarily pow-
ered by renewable energy, the availability of energy
source in the space and time domains would follow a
unstable and non-uniform distribution. Moreover, these
harvested energy level may vary over space which leads
to load imbalance among servers. Hence, load balancing
among all edge servers is also an interesting research
problem which should be addressed in engineering
EH/WPT-based MEC systems.

C. STATE OF THE ART
This section provides a survey on some recent works for

efficient integration of EH/WPT into MEC systems which
are summarized in Table 4. Existing works on combining
EH/WPT and MEC mainly consider three schemes. In the
first two schemes, the EH and WPT techniques are imple-
mented at mobile devices in MEC-enabled wireless com-
munication networks. These schemes can be applicable to
WSNs, IoTs, eRAC, and D2D systems in the 5G network
which support a massive number of small battery-operated
devices connecting wirelessly to MEC servers for offload-
ing and data processing. Because these devices typically
have very limited batteries to supply power for their com-
munication, EH and WPT technologies can be employed
to provide valuable additional powers for their long-term
operations such as sensing, reporting data, or offloading
the heavy computation load. To do so, the edge devices
need to estimate the power and time consumed by their
operation. The resource allocation and offloading decision
designs for these devices become more complicated due to
the additional energy harvesting stages in EH/WPT enabled
MEC systems which are promising research issues. The third
scheme focuses on the scenarios in which connecting the
MEC servers of MEC-enabled systems to the electric grid
is costly and even impossible in certain situations such as
natural disasters, remote locations. Then, on-site renewable
energy is mandated as a major or even sole power supply
source for these MEC servers [114]. In these cases, efficient
load balancing design among all MEC servers under the
unpredictable and unstable harvested energy has attracted a
lot of research attention.

1) Offloading and Resource Allocation for MEC-enabled
systems using EH technique

Recently, [111] considered the multi-user multi-task com-
putation offloading problem which aims to maximize the
overall revenue of the wireless EH-enabled devices. The

Lyaponuv optimization approach was adopted in this work to
devise the energy harvesting policy and the task offloading
schedule. The tradeoff between energy consumption and
execution delay for the MEC system with EH capability was
studied in [112] in which the authors proposed an online
dynamic task scheduling to minimize the average weighted
energy consumption and execution delay subject to con-
straints on the stability of buffer queues and battery level.
Employing the game theoretic approach, authors in [122]
studied the impact of the EH technique at mobile devices in
the computation offloading design. The work aimed to mini-
mize the social group execution cost. Different queue models
are applied to model the energy cost and delay performance,
based on which a dynamic computation offloading scheme
was designed. Using the deep learning (DL) approach, [107]
proposed a reinforcement learning offloading scheme, where
each EH-based IoT device selects its MEC server and the
offloading rate without knowledge of the MEC model based
on the current battery level, the previous radio transmission
rate to each server, and the predicted harvestable energy.

2) Offloading and Resource Allocation for MEC-enabled
systems using WPT technique

Considering the WPT-enabled MEC systems, [116] aimed
to maximize the (weighted) sum computation rate of all
wireless devices in the network by jointly optimizing the
individual offloading decision and the time allocation for
transmission. Similarly, [117] considered the time division
strategy for the two-way data exchange between the fog node
and the mobile user in WPT-based MEC systems. The closed-
form average age of information for both directions as well
as the achievable data rate of the mobile user was described
in this paper, based on which the trade-off between the down-
link and uplink performance was investigated. The coopera-
tion among edge users was studied in [118], [119]. Specif-
ically, the work [118] aimed to maximize energy efficiency
(EE) to ensure the fairness of users by encouraging the near
user (NU) forwarding the far user’s (FU) tasks to the edge
cloud. While [119] enabled the surrounding idle devices as
the helpers to use their opportunistically scavenged wireless
energy to help remotely execute active users’ computation
tasks. The work tried to maximize the computation rate by
jointly optimizing the transmit energy beamforming at the
ET, as well as the communication and computation resource
allocations at both the user and its helpers. [123] considered a
WPT-based UAV-assisted MEC system in which a UAV acts
as an MEC-enabled BS offering WPT and offloading services
to a number of EH-enabled ground mobile devices. The work
aimed to maximize the system computation rate under both
partial and binary computation offloading modes, subject
to the energy-harvesting causal constraint and the UAV’s
speed constraint. On another approach, [120] investigated
the power splitting problem for information transmission and
power transfer in the SWIPT-based MEC system. Specifi-
cally, the authors proposed a new algorithm to minimize the
required energy under the constraints on required information
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transmissions and processing rates. The work in [124] studied
imperfect spectrum sensing in cognitive radio MEC with
WPT. Specifically, a joint CPU frequency control, time power
allocation problem was formulated and solved via a number
of techniques, including dual decomposition, 1-dimensional
search, bisection and subgradient method.

3) Load balancing design for multiple EH-based MEC
servers

In the EH-based MEC systems where the computation
servers are mainly powered by the uncontrollable and unpre-
dictable energy sources (e.g, solar, wind), individual MEC
servers may be overloaded at any moment due to the lim-
ited harvested power and computing capacity [113]. Hence,
energy prediction and load balancing among all EH-based
servers are important research issues which must be tackled
to achieve effective MEC operations. In particular, [114]
considered a joint geographical load balancing and admission
control for EH-based MEC networks which aims to minimize
the long-term system cost due to violating the computation
delay constraint and dropping data traffic. To deal with this
geographically load balancing (GLB) optimization problem,
Xu et al. developed an algorithm, called GLOBE, by lever-
aging the Lyapunov stochastic optimization technique. In
particular, the algorithm enables MEC-enabled BSs to make
GLB decisions without requiring future system information.
Integrating the EH into MEC-enabled HetNets, authors in
[115] investigated the joint load management and resource
allocation problem that maximizes the number of offloading
users utilizing the limited energy and computation resources,
via managing the load and distributing the resources to
the users. To solve the underlying complicated problem,
a distributed three-stage iterative algorithm was proposed
to obtain the joint load balancing and resource allocation
solution.

D. LEARNED LESSONS AND POTENTIAL WORKS
Due to the great benefits offered by MEC and EH/WPT as

well as their complementary properties, it is convinced that
the combination of MEC and EH/WPT is beneficial in the
future. Although various problems and issues in EH/WPT-
MEC systems have been intensively studied, there are still
several challenges. In the following, we discuss some chal-
lenges and outline the open research directions.

Energy Prediction: Most of the renewable energy sources
are unpredictable. For example, clouds can appear or dis-
appear which can affect the solar harvesting process. Other
kinds of harvestable energy sources, e.g., wind, heat, and
vibration, vary over time. In the WPT systems, channel
characteristics practically vary depending on the environ-
ment in which the level of interference and the number
of paths cannot be known in advance. Thus, understanding
the surrounding ambient environment is critical for efficient
implementation of the EH and WPT techniques. Recently,
advanced machine-learning and deep-learning methods have
been utilized to predict the arrival energy based on the

historical and geographic data. Notwithstanding considerable
benefits, ML/DL mechanisms and big data analytics raise
some several challenging issues for implementation, such as,
collecting data, large computation resources required to pro-
cess the high-dimensional big data, which can be overcome
by employing the MEC concept. Exploiting learning at MEC
servers to extract useful information collected by all EH-
enabled devices can reduce the time caused by sending the
data to a remote cloud server; hence, the predicted informa-
tion can be achieved on-time for high efficient EH, which can
extend the capability of EH-enabled devices.

EH/WPT-based MEC for IoT/dense networks: An IoT net-
work aims at supporting massive connections from machine-
type devices which are small, fabricated and deployed at
very low cost, and are expected to operate in a self-sufficient
manner for a long time. The large number of connecting
devices and their low power operation require an advanced
wireless access networks, such as, dense access points or
multi-hop data transmissions. MEC systems can play a rel-
evant role in this scenario to manage functionality of in-
dividual nodes in terms of synchronization, reliability, effi-
ciency of utilizing channel resource and energy, to exploit
the available harvestable energy source, to cooperate with
others for WPT, data transmission and offloading. The other
challenge in successful large-scale deployment of devices in
an IoT infrastructure is to minimize their impact on human-
body and the environment [125]. The presence of multiple
devices implementing various EH technologies correspond-
ing to different kinds of energy sources, WPT and SWIPT
over different frequency bands in the dense-users networks
also require efficient and scalable offloading and resource
allocation designs.

V. MEC FOR UAV COMMUNICATIONS
A. FUNDAMENTALS OF UAV

Historically, UAVs have been considered as enablers
of various applications including military, surveillance and
monitoring, telecommunications, delivery of medical sup-
plies, and rescue operations, owing to their autonomy, flex-
ibility and broad range of coverage [126]. However, in those
applications, UAVs mainly focused on navigation, control,
and autonomy. As a result, the communication challenges of
UAVs have typically been either neglected or considered as
part of the control and autonomy components [127]. UAVs
are commonly known as drones or remotely piloted air-
crafts, and have several key potential applications in wireless
communication systems due to its high mobility, flexibil-
ity, adaptive altitude and low cost [128]. Specifically, small
UAVs are more easily accessible to the public recently due
to its continuous cost reduction and device miniaturization,
thus small UAVs can be used in weather monitoring, forest
fire detection, traffic control, emergence search and rescue,
cargo transport etc. In recent years, UAV-based wireless
communication systems attract lots of attention thanks to
their cost-effective wireless connectivity in scenarios without
infrastructure coverage, which is caused by severe shadowing
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by urban or mountainous terrain, or damage to the com-
munication infrastructure caused by natural disasters [129].
Among the UAV applications in wireless communication
systems, UAV mainly serves as two important roles: 1) aerial
BS and 2) flying mobile terminals. In the first scenario, when
UAV serves as an aerial BS, it can provide communications in
emergency and public safety situations to enhance coverage,
capacity, reliability and energy efficiency of the wireless
networks. In the second scenario, UAV can serve as a flying
mobile terminal within the cellular networks to deliver real
time video stream.

For UAV classifications, several factors such as outlook
and application goals, need to be taken into account. The
different types of UAVs depend on their functions, and ca-
pabilities. From their outlook characteristics, UAVs can be
broadly classified into two categories: fixed-wing UAVs and
rotary-wing UAVs. From the UAV application and goals, one
alternative classification of UAVs can be done to meet various
QoS requirements, the nature of the operation environment
and federal regulations. To properly classify the applications
and use of UAVs, UAVs’ flying altitude and capabilities
can be taken into account. Among these factors, flying al-
titude can be utilized for UAVs classification: high altitude
platforms (HAPs) and low altitude platforms (LAPs) [128].
HAPs, e.g., balloons, usually operate in the stratosphere that
is 17 km above the Earth’s surface. On the contrary, LAPs,
flying at altitudes not exceeding several kilometers, have
several important advantages: fast movement and more flex-
ibility compared to LAPs. The benefits of UAVs application
in wireless communications can be summarized as follow:

● Cost-effective, fast, flexible and efficient deployment:
UAVs can provide cost effective wireless communi-
cations and can be more flexibly deployed for unex-
pected or limited-duration missions. One of the main
applications is that UAVs can serve as aerial BS. It is
well known that building a conventional terrestrial BS,
including radio towers and infrastructure deployment,
is very expensive. In this case, UAV aided BS can
provide on-the-fly communications at low cost since
UAVs do not require highly constrained and expensive
infrastructures.

● Line-of-sight (LoS) link: Compared with conventional
terrestrial BSs, a UAV-aided flying BS is able to of-
fer on-the-fly communications and to establish LoS
communication links to ground users. Especially in
low-altitude UAVs, the established LoS communica-
tion links can improve the network performance sig-
nificantly. LoS communication can facilitate high fre-
quency (e.g., mmWave). Combined with other 5G and
beyond technologies, e.g., mmWave, MIMO, and visi-
ble light communications, UAV aided BSs can establish
LoS communication links so as to achieve high data
rates [65].

● Coverage and capacity enhancement: In the downlink
communications, UAV aided flying BSs can rapidly
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reconfigure UAV-to-ground user links to provide a large
coverage network due to its maneuverability. Specifi-
cally, in the uplink communications, the UAV-aided fly-
ing BS can also collect delay-tolerant information from
the distributed wireless devices within the coverage.
Since UAVs experience good channels, e.g., LoS link,
they can provide higher transmit data rates. Moreover,
the speed of UAVs can be manually adjusted to sup-
port wireless connectivity to the ground terminals. The
benefits of large coverage and capacity improvement
make UAV-aided wireless communication a promising
integral component of the 5G wireless systems and
beyond.

● Complementary network for emergency situations and
disaster relief, search and rescue: Compared to the tra-
ditional network scenarios (e.g., 4G long term evolution
(LTE) and WiFi), UAV aided wireless communication
networks can provide a complementary network to the
existing networks in emergency situations. For example,
UAVs can act as hotpots for an ultra dense network,
where the ground BS is overloaded. When the ground
BS is damaged or even completely destroyed by natural
disasters (e.g., earth quake, floods, severe hurricanes and
snow storms), UAV aided wireless networks enable to
provide effective communications and help rescue lives.

B. MOTIVATION TO COMBINE MEC AND UAV
Due to the features of UAV, such as mobility, maneuver-

ability, and flexible development, UAVs can be integrated
into wireless communication systems to provide seamless,
reliable, low delay and cost-effective communication [130].
To further improve the computation capacity, the combina-
tion of UAV and MEC has been proposed in existing works.
There are two typical scenarios as shown in Fig. 8, including
UAV-assisted communications and cellular-connected UAVs.
In Mode 1 of Fig. 8, UAVs serve as aerial BSs [131]. In
this scenario, UAV can be equipped with an MEC server.
Thus, MEC-enabled UAV servers provide opportunities for
ground mobile users to offload heavy computation tasks.
After computation, the mobile users can download the com-
putation results from UAV based MEC servers via reliable,
cost-effective wireless communication links. In Mode 2 of
Fig. 8, UAVs serve as new aerial mobile users of the cellular-
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connected network, where the MEC server based BS is able
to provide the seamless and reliable wireless communications
for UAVs to improve the computation performance. MEC has
strong computing capability which can be complementary
to the UAVs enabled wireless communications systems. The
combination of UAV and MEC technology will lead to the
following benefits:

● UAV based MEC server: In this scenario, UAVs can be
used as mobile cloud computing systems, in which the
UAV based MEC server can provide offloading oppor-
tunities to ground mobile users. Due to its flexibility and
mobility, UAVs can receive the offloaded tasks espe-
cially when the territorial MEC servers are not available.
For example, when the emergency relief or disaster
happened, the mobile device with limited processing
capability can benefit from the moving UAV aided MEC
server to execute tasks, e.g., analyzing assessment of
the status of victims, enemies and hazardous terrain
[131]. Thanks to LoS links between UAVs and ground
mobile users, the offloading and downloading capacity
can be largely enhanced. Moreover, the coverage can
be improved by the UAVs based MEC communication
system.

● UAV-UE MEC system: Different from the traditional
scenario where the mobile user is associated with a
fixed GBS over the complex fading channel, the UAV-
UE MEC system enables the high-mobility UAV-UEs
to offload their computation tasks to the number of op-
timized GBSs simultaneously leveraging more reliable
LoS links. There are two advantages of this scenario.
On the one hand, the trajectory of the UAV can be
jointly designed with the resource allocation (offloading
task scheduling) as it has controllable mobility in 3D
airspace. On the other hand, UAVs are associated with a
group of GBSs simultaneously over LoS links to exploit
their distributed computing resources to improve the
computation capability.

Despite the promising benefits from the combination of
UAV and MEC, there are several technical challenges exist-
ing in the MEC-enabled UAV systems. On the one hand, the
main challenges in the UAV-BS scenario include the optimal
3D deployment of UAVs, the flight time optimization and
the trajectory optimization. On the other hand, the challenges
faced in MEC including communication resource allocation,
computing resource allocation and security problem, need
to be addressed. Therefore, combining UAV with the MEC
system may raise the following challenges:

● Mobility control and trajectory optimization: Since
UAV has limited flight time, the optimal path planning
for UAVs MEC systems is an important research issue.
For the UAV-based MEC server, the location and flying
path must be optimized to provide better offloading
opportunities for the mobile devices. Similar with the
UAV-UE scenario, the location and flying path must
be optimized to better offload computation tasks to a

group of GBSs to provide seamless communication with
other UAVs. In both scenarios, the mobility control has
a significant impact on the quality of the network. It
is challenging to optimize the trajectory of UAV as it
typically requires to solve non-convex continuous op-
timization problems. The channel variation and energy
consumption and maximum flying speed are required in
this design. In addition, coupled with other optimization
factors, such as QoS metric, the trajectory optimization
is challenging to tackle.

● Communication and computation resource optimiza-
tion: In the UAV based MEC server communication
system, UAVs act as flying BSs equipped with MEC
servers. The communication resource (i.e., offloading
power) and computation resource (i.e., task offloading
ratio) need to be jointly optimized considering po-
tentially different objectives, e.g., relay minimization
and energy consumption minimization. In the UAV-UE
MEC system, UAVs act as high-mobility relay users to
offload their computation-intensive tasks to the MEC
server deployed at GBSs for remote execution. In this
case, the trajectory of UAVs can be jointly optimized
with the communication and computation resource al-
location, which would be more challenging compared
with the fixed user and BS cases.

C. STATE OF THE ART

There are two scenarios for which UAVs can be combined
with MEC in communication systems. In the first scenario,
UAVs act as flying BSs equipped with MEC servers offering
offloading opportunities for the users on the ground [131].
This scenario is quite common in practice. For example, the
moving MEC enabled UAV plays an important role in dis-
aster response and emergence scenario, in which the ground
BS (GBS) cannot provide any service due to the damages
caused by a sudden disaster, e.g. earthquake. Mobile devices
with limited processing capabilities can benefit from the UAV
based MEC server. In the scenario of UAV-based MEC server
[131], the UAV can act as a moving MEC server in the sky
to help execute the computation tasks offloaded by multiple
ground users. This work aimed to minimize the total energy
consumption considering the QoS requirement. By means
of successive convex approximation (SCA) methods, the bit
allocation was studied to minimize the mobile energy for
OMA uplink and NOMA downlink in the UAV based MEC
system. An energy consumption minimization problem was
investigated for the UAV-enabled MEC system in [132]. To
address the limited computing capacity and finite battery life
time of the mobile device, the UAV based MEC server was
proposed to provide offloading opportunities to the mobile
device. An alternative algorithm was proposed to minimize
the UAV’s energy consumption by optimizing the offloaded
computation bits and the CPU frequency of the users and the
trajectory of the UAV with the maximum speed limitation.
Simulation results in this work showed that the proposed
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TABLE 5: Summary of existing works on UAV MEC.

Topic References Scenarios or design objectives
UAV-based MEC server [132]–[135] UAV acts as flying BS with MEC server.
BS-based MEC server [136], [137] UAV is served by multiple ground BSs with MEC servers
Energy efficient design [131], [132], [137] To minimize the energy consumption of UAV MEC systems.
Delay minimization [133]–[136] To minimize the flying time of UAV.
UAV flight design [138] To optimize UAV trajectory, e.g., minimize the total flying distance of UAV.

scheme outperforms the benchmark schemes. In [133], the
computing resource allocation and UAV hovering time were
optimized to minimize the total energy consumption of the
UAV. Moreover, the CPU’s computational speed was con-
sidered in the optimization of UAV’s trajectory and task
assignment to minimize the energy consumption in [134].
Delay minimization is also an important issue for UAV-MEC
communication. In [135], the delay minimization among all
users was studied by jointly optimizing the UAV trajectory,
the ratio of offloading tasks and the user scheduling.

In the second scenario, a cellular-connected UAV is served
by multiple ground BSs that are equipped with MEC servers
[136]. In this scenario, UAV needs to complete certain
computation tasks during the flying time over some given
locations. Thus the tasks can be offloaded to some selected
ground BS. The work [136] aimed to minimize the UAV’s
mission completion time by jointly optimizing its trajectory
and computation task scheduling considering the maximum
speed constraint of the UAV and the computation capacity
of the GBSs. It turns out that the formulated problem is
nonconvex, thus it is difficult to find the global optimal
solution in polynomial time. Therefore, the alternating op-
timization and SCA were exploited to obtain a high-quality
suboptimal solution. In [138], the total travel distance of UAV
was minimized and two different solutions were proposed,
i.e., MEC-ware UAV’s path planning (MAUP) based inte-
ger linear programming and accelerated MAUP. Physical-
layer security was investigated in [137], where the optimal
solutions based on the condition of three offloading options
and the computational overload event from a physical-layer
perspective were provided. The summary of exiting works on
UAV MEC is provided in Table 5.

D. LEARNED LESSONS AND POTENTIAL WORKS
Thanks to the great benefits from the combination of

MEC and UAVs as well as their limited resource, it can be
concluded that MEC-UAV is an inevitable trend in the future
wireless communication systems. Although some existing
works have been done to engineer MEC-UAV systems, there
are still several challenges to address. In the following, we
discuss key open problems in MEC-UAV systems:

Performance analysis of UAV-MEC systems: A funda-
mental performance analysis is required for the UAV-MEC
system. In particular, the coverage probability, throughput,
delay or reliability can be investigated to evaluate the impact
of each design parameter on the overall system performance.
Due to the 3D development and short flight duration of UAVs
and the delay awareness of MEC, the performance analysis

for the UAV-MEC system is challenging.
Energy-aware resource allocation: The flying time and the

resource of UAVs are limited because UAVs typically have
small sizes, weight and limited power. Thus, the trajectory
and resource allocation (i.e., communication and computa-
tion) need to be optimally designed to reduce the energy
consumption. However, most existing works only consid-
ered designing trajectory and optimizing resource alloca-
tion separately, which cannot achieve the highest network
performance. Hence, jointly optimizing the path planning
and resource allocation for MEC-UAV system is an open
challenging problem. It becomes more challenging when
other factors, such as, QoS requirement, offloading power
allocation and task assignment together with the channel
variation, delay constraint and maximum flying speed, are
considered in such design.

User grouping and UAV association: In the UAV based
MEC server communication system, each UAV acts as a
flying MEC-enabled BS. The ground users need to offload
their tasks to one UAV or multiple UAVs simultaneously.
Thus the user group problem must be solved by using suitable
approaches, e.g., matching theory, game theory and convex
optimization methods. On the contrary, in the UAV MEC
systems, UAVs need to offload tasks to GBSs for remote
computation. The subchannel allocation and UAVs associa-
tion can be investigated.

VI. MEC FOR INTERNET OF THINGS
A. FUNDAMENTALS OF IOT

Thanks to significant advancement in computation and
storage technologies, and communication networks, billions
of devices with their every domain-specific applications are
able to connect to the Internet to generate/collect data, to
exchange important messages amongst themselves, and to
coordinate decisions via complex communication networks
[139]. This phenomenon has opened a new era of Internet,
the so-called the IoT [139]. The basic concept of IoT is that
anything can be interconnected with the global information
and communication infrastructure at any time and any place
[140]. Things can be physical things existing in the physical
world or virtual things existing in the information world.
IoT has been playing a significant role in solving vari-
ous challenges of modern society effectively and improving
the quality of human life, such as, safer, healthier, more
productive, and more comfortable [141]. The fundamental
characteristics of IoT can be condensed as follows: 1) inter-
connectivity, 2) things-related services, 3) heterogeneity, 4)
dynamic changes, see [140] for details. IoT is also one
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of the main motivations for developing the promising 5G
technologies to allow the massive connections from a large
numbers of “things” to the Internet via wireless networks.
Inversely, 5G is considered a basic platform to facilitate
emerging IoT applications [142]. As expected, manifold data
traffic (typically of Gbps order), low latency transmission
can be provided by 5G communication networks which can
support a tremendous increase in dense connected “things"
in wireless networks, including high-mobility IoT/UEs, em-
bedded sensors in the human body (or clothing), wearable
devices, equipment for monitoring biometrics, or even au-
tonomous cars (also called V2X communications). Further-
more, by exploiting spectrum resources in high-frequency
bands and providing the coexistence of multiple numerolo-
gies, 5G networks can realize Tactile Internet requiring ultra-
low latency with extremely high availability, reliability, and
security [143]. For more information on the techniques and
future trends of IoT, we invite the readers to further refer to
the following references [144]–[146].

A basic architecture of IoT as well as its specific every-
domain applications can be summarized in Fig. 9. In partic-
ular, the IoT basic architecture consists of three layers: Per-
ception, Network, and Application [144], [145]. In the first
layer, the physical sensors collect useful information/data
from things or the environment which are then transformed
into digital form and it marks all objects with a unique
address identification. The principal responsibility of the sec-
ond layer is to help and secure data transmission between the
perception and the application layers [146]. The third layer
is to provide the personalized based services according to
users’ relevant needs and to link the major gap between users
and applications. It combines the industry to attain the high-

level intelligent solutions for IoT specific every-domain ap-
plications such as the disaster monitoring, healthcare, smart
house, transposition, production controlling, health care, re-
tail, education. In other aspects, the third layer can be further
divided into three sub-layers: 1) The service management
layer, 2) The application layer, 3) The Business layer. Due
to the high-level requirement of some applications and ser-
vices, one more layer has been potentially added between the
application and network layers which consists of MEC and
fog computing servers to perform some specific distributed
computation duty or pre-data processing.

B. MOTIVATION TO USE MEC FOR IOT AND
CHALLENGES

ETSI, in its report [147], has distinguished IoT as one
of the most important MEC application instances. There
are many benefits of employing MEC into IoT systems,
including but not limited to, lowering the amount of traffic
passing through the infrastructure and reducing the latency
for applications and services [148]. Among these, the most
significant is the low latency introduced by MEC which is
suitable for 5G Tactile Internet applications requiring round-
trip latency in the millisecond range [149]. MEC technolo-
gies are envisioned to work as gateways placed at the middle
layer of IoT architecture which can aggregate and process
the small data packets generated by IoT services and provide
some additional special edge functions before they reach the
core network; hence, the end-to-end delay can be reduced.
Additionally, these techniques are also able to lower the en-
ergy consumption of small-size IoT devices and prolong their
battery-life by supporting significant additional computa-
tional capabilities through intelligent computation offloading
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strategies. Furthermore, MEC platforms will be offered and
deployed by the network operator at any tiers of 5G networks,
e.g., eNBs, multi-RAT aggregation points, neighbor mobile
devices, which can be made open to authorised developers
and content providers to deploy versatile and uninterrupted
services on IoT applications [9]. In addition, based on the
context and platforms of MEC, artificial intelligence (AI) on
the edge can gain the huge benefit to realize distributed IoT
applications and intelligent system management, which is
now considered as a part of beyond 5G standardization [150].
Inversely, IoT also energizes MEC with mutual advantages.
In particular, IoT expands MEC services to all types of smart
objects ranging from sensors and actuators to smart vehicles.
Integrating MEC capabilities to the IoT systems come with
an assurance of better performance in terms of quality of
service and ease of implementation.

C. STATE OF THE ART - MEC-ENABLED IOT
APPLICATION SCENARIOS

This section focuses on providing a survey on recent MEC-
enabled IoT works in application scenarios related to 5G
uses cases. The technical aspects and application scenarios
of these works are summarized in Table 6.

1) Smart home and Smart city
One of the most important use cases of IoT is smart

city and its important subset smart home/building [186].
Recently, the MEC contexts and novel 5G technologies have
been enabled to emerge the judicious edge big data analysis
and wireless access for IoT systems to further improve the
urban quality of life for citizen with many aspects including
security, privacy, energy management, safety, convenient life,
ect.. For energy management, an fog-based IoT automation
mechanism was validated in [151] to optimize the resource
management for smart building systems. By leveraging the
fog-enabled cloud computing environments, the novel imple-
mented smart home systems can reduce 12% utilized network
bandwidth, 10% response time, 14% latency and 12.35%
in energy consumption. For monitoring and controlling the
smart home/buildings, innovative analytics on IoT captured
data from smart homes was presented in [152] employing the
fog computing nodes. This fog-based IoT system can address
the challenges of complexities and resource demands for
online and offline data processing, storage, and classification
analysis in home/building environment. The MEC-enabled
IoT frameworks in [170], [171] focus on behaviour features
by monitoring the student’s location and activities in school
environment for safety aspect. In particular, [170] designed
a platform to identify any student activities that occur at the
classroom level in which the raw indoors environment data
is processed at an edge computing server (Raspberry Pi) for
detecting the presence of individuals in a classroom while
[171] exploited the DL algorithms in an MEC-enabled IoT
smart classroom for person recognition.

For the smart city use cases, the security and privacy
aspects were considered in [176] where a blockchain-based

smart contract services for the sustainable IoT-enabled econ-
omy is proposed for smart cities by employing AI solutions in
processing and extracting significant event information at the
fog nodes, and then utilizing blockchain algorithms to save
and deliver results. Recent work in [168] studied the energy
management aspect in smart city where the deep reinforce-
ment learning methods were employed into MEC-enabled
IoT system to manage the energy grid efficiently. [172], [180]
both considered the safety and convenience aspects where
Pratam et al. [172] implemented a Raspberry Pi-based MEC
system on school shuttle buses for tracking the locations of
students and vehicles while [180] developed a smart routing
for crowd management based on deep reinforcement learn-
ing algorithms to satisfy the latency constraints of service
requests from the people. A platform to detect potholes and
road monitoring was studied in [173] to cope with flooding
on the roads in rainy seasons for traffic safety.

2) Healthcare
Healthcare solutions with more intelligent and prediction

capabilities have been developed and implemented based
on the rapid developments of IoT and cyber physical sys-
tems [187]. MEC-enabled IoT has shown a huge potential
in improving the performance of healthcare systems which
includes but not limited to the mobile monitoring healthcare
scheme. In this system, the MEC-enabled gateways can offer
several higher-level services such as local storage, real-time
local data processing, embedded data mining, etc. beside
controlling the data transmission [188]. These enable to em-
power the system to deal with many challenges of managing
the remote devices, i.e., security, reliability, latency, energy
efficiency issues. Freshly, Li et al. in [177] considered the
security issue in mobile healthcare systems by proposing a
secure and efficient data management system named Edge-
Care in which healthcare data and facilitating data trading
are processed at edge servers with security considerations.
Focusing on improvement of latency and reliability perfor-
mance, [181] proposed BodyEdge, a novel body healthcare
architecture consisting of a tiny mobile client module and
an edge gateway for collecting and locally processing data
coming from different scenarios. Sharing the same view,
[153] implemented an accurate and lightweight classification
mechanism employing the edge computing to detect the
seizure at network edge based on the information extracted
from the vital signs with precise classification accuracy
and low computational requirement. The implementation
results show that the proposed system outperforms conven-
tional non-MEC remote monitoring systems by: 1) achiev-
ing 98.3% classification accuracy for seizures detection, 2)
extending battery lifetime by 60%, and 3) decreasing aver-
age transmission delay by 90%. For emergency department
systems, Soraia et al. [178] proposed a resource preservation
net framework integrated with cloud and edge computing
where the key performance indicators such as patient length
of stay, resource utilization rate and average patient waiting
time are modeled and optimized considering high reliability,
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TABLE 6: Summary of MEC-enabled IoT papers on different application scenarios and technical aspect.

Smart city Healthcare V2X Industrial
Internet

Wearable IoT/
AR and VR

Mechanized
Agriculture

Offloading/
Resource allocation [151], [152] [153] [154] [155]–[160] [161]–[165] [166], [167]

Energy Management [151], [168] [153] [154] [155], [156], [169] [161], [164]
Safety [170]–[173] [174] [175]
Security [170], [171], [176] [177], [178] [174]
Privacy [176] [179]
Convenience [172], [173], [180] [178] [174] [156], [159]
Monitoring/controlling [180] [154] [157], [158], [169] [166], [167], [175]
Reliability [153], [178], [181] [174] [149], [157], [160], [182]–[184] [161], [165] [167]
Latency [153], [181] [154] [149], [156], [157], [183]–[185] [162]–[165]
Scalibility [157]

efficiency and security.

3) Vehicle-to-Everything (V2X) IoT

In [189], 3GPP has identified 5G as the key technology
supporting the V2X concepts in several use cases: Infor-
mation (state map, environment, traffics) sharing, vehicle
platooning, remote driving, grouping-based cooperative driv-
ing, communication between vehicles, cooperative collision
avoidance, dynamic ride sharing. The QoS requirements in
data rate and communication range may vary in different
V2X applications [190]. However, the crucial factors such
as ultra low latency, high reliability, and security have to
be improved due to the safety in most use cases, which
can be fulfilled by employing MEC technologies [191].
Recently, the security aspects in V2X were considered in
[174] which enabled a cooperative intelligent transportation
system by deploying MEC-equipped cell towers hosting local
communication to increase the safety on roads and the traffic
efficiency with smoother flow. [154] focused on the latency
in MEC based dense mmWave V2X networks by optimizing
the offloaded computing tasks and transmit power of vehicles
and road side units to minimize the energy consumption
under delay constraint resulting from vehicle mobility. The
work in [179] enabled the object recognition enhancement
with DL algorithms at the edge side with MEC deployment
in V2X networks to improve the information sharing and
communication performance. Specifically, an Intel Movidius
Neural Compute Stick along with Raspberry Pi 3 Model B
is used as an edge computing server to analyze the objects
contained in real-time images and videos.

4) Industrial Internet

MEC yields a significant paradigm shift in industrial In-
ternet of Things (IIoT), well-known as Industry 4.0 - a use-
case of 5G technologies, by bringing computing resources
close to the lightweight IIoT devices in IIoT domain [155],
[192]. In IIoT, there are many application scenarios such
as, factory automation, process automation, human-machine
interfaces, production IT, logistics and warehousing, mon-
itoring and maintenance. Intelligently managing the edge
resources, MEC enables to power the IIoT system to address
some significant technical issues, e.g. latency, resilience,

connectivity, and security.
To make MEC an enabler for latency-critical IIoT ap-

plications, time-sensitive networking (TSN)2 is a vital so-
lution. [193] proposed TSN-based configuration architec-
tures of MEC that can support real-time IIoT applications.
Considering system resources, [155] reported that enabling
MEC in IIoT systems can improve the system efficiency by
jointly designing resource allocation and offloading based
on an auction-based method where both claimed bids and
asked prices were given by the MEC servers. Additionally,
Li et al. in [156] employed MEC servers in SDN for IIoT
systems to dynamically optimize the routing path considering
the aggregation of time deadline, traffic load balances, and
energy consumption to provide a better solution for IIoT data
transmission in terms of average time delay, throughput, en-
ergy efficiency, and download time. [157] proposed a service
popularity-based smart resource partitioning scheme for fog
computing-enabled IIoT. By demonstrating the notable per-
formance improvements on delay time, successful response
rate and fault tolerance, the authors confirm the significant
benefit of enabling fog computing to cope with the large-
scale IIoT services. While [185] implemented DL at the edge
servers to enhance the range and computational speed of
IIoT devices remarkably in the MEC-based IIoT framework
for increasing the energy efficiency and battery lifetime at
acceptable reliability (around 95 %). [182] focused on obtain-
ing higher reliability of network interactions by proposing
a deadlock avoidance resource provisioning algorithm for
Industrial IoT devices using MEC platforms.

Aiming at improving the quality of industrial production,
[158] implemented parallel MEC to improve the efficiency
of equipment identification. In particular, adopting the long
short-term memory to analyze big data features and build a
non-intrusive load monitoring system with MEC can enlarge
the average recognition rate to over 80%. MEC can also be
applied for smart IoT-based manufacturing to improve per-
formance of edge-equipment network, information fusion,
and cooperative mechanism, based on which the excellent
real-time, satisfaction degree and energy consumption per-

2TSN includes a set of protocols to provide timing guarantees for latency-
critical applications. The IEEE 802.1 TSN’s home page is available at
https://1.ieee802.org/tsn/ and its overview paper can be found in [41].
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formance of the manufacturing system can be significantly
improved [169]. On another view, to achieve higher goodput,
[160] enabled the MEC platform to improve the caching
management for IIoT system. For the security purpose, [159]
employed a smart blockchain-based platform with many
MEC servers in IIoT systems to effectively solve the network
congestion caused by transferring raw data (e.g., pictures or
video clips) between a publisher and workers.

5) Wearable IoT, AR and VR
The newly emerging applications corresponding to mo-

bile AR, VR, and wearable devices, e.g., smart glasses and
watches, are anticipated to be among the most demanding
applications over wireless networks so far, but there is still
lack of sufficient capacities to execute sophisticated data
processing algorithms. To overcome such challenges, the
emergence of MEC and 5G techniques would pose the longer
battery lifetime, powerful set of computing and storage re-
sources, and low end-to-end latency [163], [194]. Sharing
this view, [161] presented Outlet system to explore the
available computing resources from users’ ambiance, e.g.,
from nearby smart phones, tablets, computers, Wi-Fi APs,
to form an MEC platform for executing the offloading tasks
from wearable devices. Promising performance achieved by
Outlet, e.g., mostly within 97.6% to 99.5% closeness of
the optimal performance, has demonstrated the advantage
of edge computing into wearable IoT systems. Applying
MEC on VR devices, [162] presented an effective solution
to deliver VR videos over wireless networks minimizing the
communication-resource consumption under the delay con-
straint. This work also demonstrated the interesting tradeoffs
among communications, computing, and caching. In [163],
a novel delivery framework enabling field of views caching
and post-processing procedures at the mobile VR device was
proposed to save communication bandwidth while meeting
low latency requirement. Impressively, an implementation of
MEC concepts over Android OS and Unity VR application
engine in [164] enabled to reduce more than 90% computa-
tion burden and more than 95% of the VR frame data. On a
different view, Liu et al. in [165] illustrated the advantage of
implementing MEC in panoramic VR system to maintain the
high quality of the video streaming by intelligent balancing
the link adaptation, transcoding-based chunk quality adapta-
tion, and viewport rendering offloading.

6) Mechanized Agriculture with IoT
IoT emerging the use of low-cost hardware (sen-

sors/microcontrollers) and 5G communication technologies
for eRAC has opened a new era for cultivating soil, namely
“smart agricultural” [195]. Many advanced abilities, e.g.,
predictive analytic, weather forecasting for crops or smart
logistics and warehousing, can be offered by enabling MEC
technologies in this scenario [196]. Recently, there are some
works on emergence of MEC and IoT in agriculture. In
particular, [166] proposed an intelligent agricultural water
monitoring system with advanced MEC technology to effec-

tively manage the data collected by the sensors. As a part
of EU DrainUse project, [167] presented a local/edge/cloud
three-tier platform for monitoring and managing soil-less
agriculture in full re-circulation greenhouses using moder-
ately saline water. In this platform, the edge plane is deployed
to increase system reliability against network access failures
while the data analytic modules are located in the cloud.
To protect the plant on vineyard fields, [175] implemented
a disease alerting platform using a low-cost sensors in the
municipality of Vilafamés (Castelló, Spain). In this platform,
the edge computing is deployed to improve the capability of
monitoring meteorological phenomena collect (e.g. temper-
ature, humidity) based on that an alert disease model was
developed for improving the product quality.

7) Tactile Internet
Tactile Internet is defined by the International Telecom-

munication Union (ITU) as the next evolution of IoT that
combines ultra low latency with extremely high availabil-
ity, reliability and security [197]. Encompassing human-to-
machine and machine-to-machine interaction, Tactile Inter-
net will combine multiple technologies including 5G and
MEC, i.e., 5G may be employed for the data transmission
with low delay and high reliability while MEC efficiently
exploit computing resources close to the end users for better
QoE. The applications related to Tactile Internet can be
automation, robotics, tele-presence, tele-operation, AR, VR
[143], [197]. The works employing MEC in these scenarios
considering low latency and high reliability can be found in
Table 6 and introduced in the previous parts. The follow-
ing summarizes the recent works focusing on the technical
aspects involving to the MEC implementation in Tactile
Internet. [149] considered an energy-efficient design of fog
computing networks that supports low service response time
of end-users in Tactile Internet applications and efficiently
utilizes the power of fog nodes. The trade-off between the
latency and required power was presented and then extended
to fog computing networks leveraging cooperation between
fog nodes. [183] exploited the MEC systems including cloud,
decentralized cloudlets, and neighboring robots equipped
with computing resource collaborative nodes for computation
offloading in support of a host robot’s task execution. Then,
a proper task allocation strategy by combining suitable host
selection and computation task offloading was proposed to
meet the required task execution time. The work also showed
that the MEC-based collaborative task execution scheme
outperforms the non-collaborative scheme in terms of task
response time and energy consumption efficiency. Recently,
Xu et. al in [184] designed a hybrid edge caching scheme for
Tactile Internet which can reduce latency and achieve better
performance in overall energy efficiency than existing ones.

D. LEARNED LESSONS AND POTENTIAL WORKS
Several research works and implementations in the litera-

ture have demonstrated that MEC is an ideal solution for IoT
systems. In many applications and use cases, exploiting MEC
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resources for managing the data collection or pre-processing
the massive data at the edge networks is able to lead to signif-
icant advantages. These advantages include but not limited to
reducing the radio resource consumption (i.e., 12% in [151]),
shortening the reaction time (i.e., 10% in [151]), lessening
the system latency (i.e., 14% in [151], 90% in [153]), and
diminishing the overall energy consumption (i.e., 12.35% in
[151]). In addition, MEC also helps offload the computa-
tional burden at IoT devices, which results in prolonging their
battery life (i.e., 60% in [153]), increasing the accuracy rate
of task processing (i.e., improving the seizures detection rate
over 98% in [153]), mitigating the amount of transmission
data (i.e., 95% in [164]), and lowering the computation
load (i.e., 90% in [164]). However, to maximize benefits of
MEC in IoT applications, one requires the more efficient
management of the MEC resources and access networks,
and capacities as well as abilities of the IoT components
or elements. These demands open many potential research
directions to effectively governance MEC in IoT systems.
The future works considering technical aspects of IoT and
MEC, i.e., scalability, communication, computation offload-
ing and resource allocation, mobility management, security,
privacy, and trust management, have been well indicated and
manifested in some recent MEC-IoT surveys, such as, [198],
[199] to which the interested readers are recommended to
refer. In the following, we discuss key open problems in MEC
IoT systems which are different to the mentioned challenging
technical aspects.

Effective cooperation in dense MEC-based IoT networks:
Currently, each MEC server is deployed by the infrastructure
providers to supply the computing and radio access services
to a specific set of distributed edge IoT nodes at the IoT
network edge. In addition, a provisioning set of computation
or networking functions including data analyzing, compress-
ing, caching, routing, etc., are installed at a distributed MEC
server to serve its set of devices from the aspect of their
applications. In dense IoT-based smart cities, massive het-
erogeneous IoT devices running diversely advanced services
corresponding to various domains of city life [200]. This
leads to a huge number of devices with diverse service
requirements from different infrastructure providers locating
in a same geographical area. Although a new service (i.e.,
out-set-of-function service) can be supported by MEC by
offloading raw data to cloud for processing, this may lead
to huge cost of energy and time. In addition, non-cooperative
edge servers deployed by different infrastructure providers
may result in severe under-utilization of resources. Hence,
enabling cooperative edge computing environment can open
the resource of many types of edge computing servers for
serving the diverse requirements in the dense IoT networks.
However, to realize the cooperation among the edge nodes to
maximize their benefits, several particular challenges should
be solved: The trade-off between the cloud and the edge;
The optimization of the service placement on distributed
and limited edge resources; The contradiction between the
computation-intensive edge services and the limited edge
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resources [201].
Employing AI techniques in MEC-based IoT systems: Re-

cently, AI techniques with ML/DL have been considered
as important tools for processing big data in the IoT-based
environment. The integration of ML/DL and AI algorithms
at the network edge can provide efficient data analysis,
make accurate decisions, predict tasks at the network edge,
optimize the mobile edge caching, computation offloading,
and preserve network security and data privacy. In addition,
adopting AI techniques for MEC-enabled IoT system can
extract the behaviors of physical/networking resources and
users in different time and scenarios, dynamically monitor
and adjust the configuration of network resources, and realize
real-time data collection of loT, efficient processing of com-
putation, based on which the intelligent services for heteroge-
neous IoT devices can be optimized [202]. However, to apply
the AI technology regularly requiring big data processing
at the edge nodes which are commonly equipped limited
computation, storage resource, one needs novel ML/DL-
based algorithm with distributed computing and data access
which is an challenging issue for the future works. For more
detail on ML/DL for MEC applications, we invite the readers
to refer to Section VIII.

VII. MEC WITH HETEROGENEOUS CLOUD RADIO
ACCESS NETWORK
A. FUNDAMENTALS OF HETEROGENEOUS C-RANS

To meet the unprecedented increase in the network traf-
fic volume and the massive number of connected devices,
network densification has become the cornerstone of the
5G networks, where more base stations and access points
are added and spatial spectrum reuse is exploited. HetNet
is defined as an integration of higher-tier macrocells and
lower-tier small cells, for example, picocells, femtocells, and
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relay nodes [203]. HetNets have been developed because
of its following benefits: 1) better coverage and capacity,
2) improved macrocell reliability, cost benefits, and 3) re-
duced cost and subscriber turnover [42], [204]. However,
the deployment of dense HetNets has several challenges:
1) severe interference, 2) unsatisfactory energy efficiency,
and 3) inflexibility and unscalability. To overcome these
challenges, another new promising network infrastructure,
C-RAN, is proposed to provide a high transmission data
rate and high energy efficiency performance, which attracts
a lot of attention from academic and industrial communities
[205]. In [206], the challenges and requirements of C-RAN
were studied to enable network densification and centralized
operation of the radio access network over heterogeneous
backhaul networks. In C-RANs, shown in Fig. 10, a large
number of low-cost low-power RRHs connecting to the BBU
pool through the fronthaul links, are randomly deployed to
enhance the wireless capacity in hotspots. RRHs operate as
soft relay by compressing and forwarding the received sig-
nals from users to the BBU pool via wire/wireless fronthaul
links. As a result, the combination of HetNets and C-RANs,
known as heterogeneous C-RANs (H-CRANs), is proposed
as a potential solution to provide high spectral and energy ef-
ficiency [207]. In order to support more 5G applications and
reduce the investment cost of MEC deployment, MEC was
proposed to be combined with CRAN in [51], where MEC
services enable to exploit C-RAN by using the planned BBU
pool. Even though CRANs and MEC can be perfectly paired
to provide low latency for the IoT applications in HeNets, the
co-location of MEC and C-RAN results in some challenges
(e.g., network management), especially in HetNets.

B. MOTIVATIONS AND CHALLENGES
H-CRANs can provide large coverage and high energy ef-

ficiency, while MEC can provide the considerable computing
capability for the low-latency applications. Collocating these
two key technologies can help support more applications in
5G. Considering the computational and storage resources in
the BBU pool and the distribution of the RRHs, H-CRAN
can be combined with MEC to facilitate the implementation
of the MEC system. Therefore, the combination of MEC with
H-CRANs can bring the following benefits:
● The investment of MEC deployment can be significant

reduced by collocating MEC and H-CRAN. As we all
know, it is a significant investment to deploy a suffi-
ciently extensive MEC network. One way to mitigate the
investment cost is to bootstrap MEC deployment to the
C-RAN deployment. In this case, the cost of providing
additional task calculation across the existing BBU pool
or RRHs will be reduced.

● The combination of MEC and H-CRAN can provide
operational flexibility and network re-configurability,
which can be offered by virtualization of H-CRAN.
The H-CRAN can facilitate a faster radio deployment
by reducing the time needed in the conventional de-
ployments, e.g., standard General-Purpose Processors.

Since CRAN virtualizes much of the RAN functions,
thus MEC can also benefit large coverage, the energy
savings, network simplicity and high security from H-
CRAN.

● H-CRAN MEC can be flexibly deployed across dif-
ferent locations. For example, C-RAN can process the
task signals any locations, e.g., cell-tower co-located
hut. Since H-CRAN deployment requires a substantial
amount of processing power, it can automatically be-
comes an MEC server to calculate the tasks from the
mobile users.

In addition to the above benefits, there exist several chal-
lenges in H-CRAN MEC systems that can be induced by co-
location of MEC and H-CRAN, e.g., deployment scenarios
design. In the following, the major challenges of H-CRAN
MEC systems are discussed [51], [208].

● In the H-CRAN MEC system, the balance of the de-
ployment and the network performance should be well
investigated. Since H-CRAN supports a dynamic capac-
ity of the H-CRAN, how far the C-RAN/MEC site is
located to cell-sits will affect the performance of MEC
systems, e.g., how well it can support the applications.
For example, locating CRAN/MEC site in a central
office can reduce the cost significantly but it causes high
latency [51]. In this case, use-cases should be carefully
studied to run which applications at which sits.

● Most resource management methods for MEC consider
the computation resource at MEC servers [209], [210]
and thus can be applied in H-CRAN MEC directly.
However, it is still challenging to jointly optimize com-
puting resource and scheduling network resource in H-
CRAN [68]. Especially in HetNets, the cross-layer and
inter-cell interference needs to be considered. More-
over, based on NFV of C-RAN, the dynamic resource
management scheme may need to be redesigned to
elastically schedule virtual computation resources under
different network sizes and task arrival rates.

● Security is another issue to be addressed in H-CRAN
MEC systems. Since MEC service supports various
kinds of applications, such as third party applications,
which are not controlled by mobile network operators
directly. There may be risks that these applications will
exhaust resources or offer hackers to affect the functions
of the network. Therefore, the service of performing
integrity assurance checks on applications should be
considered at installation or upgradation.

● Due to the existence of inter-carrier interference, the
resource allocation problem in H-CRAN MEC networks
is much more challenging than that in traditional MEC
systems [68]. To mitigate this effect, the spectrum re-
source within each cell can be divided into orthogonal
subchannels, which should be efficiently allocated to
mobile users (i.e., which subchannel a user should use
to offload its computation task to the MEC server). In H-
CRAN MEC networks, various types of resources need
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to be considered to reduce the inter-cell interference,
including not only conventional wireless resources (e.g.,
subchannel, transmit power, time, and space) but also
contra costs (e.g., backhaul spectrum, harvested energy,
computing capabilities, and caching storage). The major
challenges of dense H-CRAN MEC systems are user
association, computation offloading, interference man-
agement, and resource allocation. More importantly,
these problems are tightly coupled and must be solved
jointly.

● On the one hand, it is foreseeable that a massive num-
ber of MEC servers will be widely deployed in the
near future, which can be distinctly different in sizes
(computing units) and configurations (computational
speeds). On the other hand, the association between
users and MEC servers (BBUs) greatly depends on the
deployment locations of the MEC servers (BBUs). User
mobility can be ignored whenever the UE moves inside
the geographical area covered by the centralized BBUs.
The type of BBU centralization determines the system
efficiency and the user experience.

C. STATE OF THE ART
The majority of the existing studies have focused on

Heterogeneous MEC (Het-MEC) and C-RAN MEC. For
Het-MEC network, there are several papers working on in-
terference management in dense Het-MEC systems [211]–
[216]. In [211], the authors investigated a joint problem
of radio and computational resources to minimize the to-
tal energy consumption of all mobile users under transmit
power budget, latency, and maximum computing capability
constraints. Similarly, Al-Shuwaili et al. in [212] considered
several issues in single-server multi-cell Het-MEC systems:
(1) the management of uplink and downlink interference,
(2) the allocation of backhaul capacity for task offloading,
and (3) the allocation of computing capabilities at the cloud
for offloading users. Moreover, the joint optimization of
offloading decisions and resource allocation has been ex-
tensively investigated to improve the network performance
[213], [214]. In order to realize the potential benefits of dense
Het-MEC networks, a new technical challenge is mobility
management. According to [217], [218], there are several key
issues for mobility management in Het-MEC systems. First,
users may experience frequent handover when they move
across different small-size and small-coverage smallcells/
MEC servers, thus increasing the overhead and interrupting
the MEC services [219]. Second, continuously performing
handover measurements and processing, which is needed
to discover new target MEC servers in dense Het-MEC
systems, is power- and radio resource-consuming, especially
for battery-limited users. Third, in traditional dense HetNets,
handover decision is mainly based on the quality of radio
signals between users and potential eNBs. In addition, due
to the lack of future information, e.g., channel conditions,
available computing resources, task arrivals, the offloading
and handover decisions should be known without prior in-

formation and be optimized in a long-term manner [216].
Due to its critical importance, an extensive body of work has
appeared in the literature to address the challenges of mobil-
ity management in conventional dense HetNets [217]–[224].
For example, two localized mobility management schemes
for dense HetNets were proposed in [217], a cache-enabled
mobility management framework in mmWave-microwave
HetNets was studied in [218], various energy-efficient cell
discovery techniques were discussed in [220], a comprehen-
sive review of mobility management was provided in [221],
and the adoption of distributed mobility management was
presented in [222]. Although interesting, the body of work
in [217]–[224] solely focused on mobility management in
HetNets. Taking challenges of mobility management in dense
Het-MEC systems into consideration, the study in [216]
optimized the association (which MEC server is selected for
remote execution) and handover (i.e., when task migration
is needed) decisions to minimize the average delay with the
long-term energy budget constraint. Simulation in [216] indi-
cated that without complete future information, the proposed
algorithm for energy-efficient mobility management can still
achieve close-to-optimal performance while guaranteeing the
long-term energy budget constraint.

There are several research works on the combination of C-
RAN MEC systems [209], [210], [225]. In [225], the authors
focused on C-RAN MEC systems to minimize energy by the
proposed two algorithms, i.e., decentralized local decision
algorithm and centralized decision and resource allocation
algorithm. To deal with the resource-limited mobile user
with computation intensive tasks, C-RAN with MCC was
combined to provide high energy efficiency performance
[209], in which a joint computational resource and transmit
power allocation allocation scheme was proposed to mini-
mize the energy consumption under the constraints of task
latency, and fronthaul capacity. To further enhance the capa-
bilities of mobile devices, C-RAN with MEC was proposed
to be combined with each other to efficiently address the
increasing mobile traffic issue [210]. Different from previous
work, in [210], a resource framework was proposed for
power-performance tradeoff of mobile service provider. In
this work, Lyapunov technique was exploited to dynamically
make online decisions in consecutive time slots for task
request. The proposed algorithm can achieve close to optimal
performance. In [226], the profit function based on revenue
and cost analysis was maximized by jointly optimization
of offloading strategy, communication and computation re-
source. MEC was applied to ultra dense networks (UDNs)
[227], where the authors investigated the task offloading
policy in MEC-enabled UDN and introduced the software
defined networking technology to manage the computation
resource in edge cloud with centralized controller. Further-
more, there are other resource allocation schemes were pro-
posed for other C-RAN MEC scenarios, i.e., Vehicular Fog-
RANs [228], Near-Far Computing Enhanced C-RAN and
[229].
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D. LEARNED LESSONS AND POTENTIAL WORKS
Due to the great benefits offered by MEC and H-CRAN,

it is envisioned that the combination of MEC and H-CRAN
is unavoidable in the future. Although various problems
and issues in H-CRAN MEC systems have been intensively
studied, there are still several challenges. In the following,
we discuss some challenges in dense H-CRAN MEC systems
and outline the open research directions.

Computational complexity and signaling overhead: It is
obvious that the centralized optimization is usually easy
to implement compared to distributed approaches and can
provide the optimal/near-optimal solution with the desired
performance guarantee. However, in H-CRAN MEC systems
such centralized approaches are not scalable due to the explo-
sive increase in the numbers of mobile users, eNBs, and MEC
servers. As a result, there is a need for lightweight and effec-
tive algorithms. In these schemes, distributed approaches can
offer many benefits as they do not need any central entity
and the algorithms are based on only local information or
small amounts of signaling overhead. However, it is hard to
guarantee the solution optimality with distributed approaches
due to the lack of complete information. Therefore, one needs
to tradeoff between the computational complexity and solu-
tion optimality. An effective way is to decompose the entire
network into several regions and assign the responsibility
for executing the algorithm to distributed MEC servers, that
is the underlying problem is decomposed into subproblems,
which are executed distributively at different MEC servers.
This would significantly reduce the amount of information
which need to be exchanged between the central entity and
all users; hence, the network overhead can be also degraded.

Mobility management: Ensuring the benefits of mobile
users through computation offloading while taking into ac-
count user mobility is a challenging issue. Most existing
studies in (Het-/CRAN-) MEC systems ignore the effect of
user mobility due to its difficulty and intractability. In the
proposed H-CRAN MEC systems, users may change their
positions while using MEC services, e.g., they can move
out of the coverage area of their source MEC servers and
are in the serving coverage of other ones. This will result in
user association in H-CRAN MEC since the scheduler may
need to re-associate the user to a different RRH and then the
offloaded task can be calculated by BBU pool with MEC
server. In this case, the scheduler (BBU pool) needs to be
aware of user mobility in order to maintain service continuity.
Thus the dynamic user association and resource allocation
can be well studied in the future work. For example, some
ML algorithms can be exploited to address the user mobility
issue in the resource allocation for H-CRAN MEC. Another
potential solution to deal with user mobility is enabling MEC
servers to continuously update the user context and then de-
signing context-aware algorithms. Instead of using one-shot
optimization, long-term optimization can be used to tackle
the challenges of user mobility. To illustrate this point, we
consider the following example with a mobile user, which is
located far from the MEC server. The short-term optimization

for computation offloading decision is not offloading, that
is local execution. However, fixing this short-term decision
is not always optimal since the user can move to a new
position with better channel quality. Moreover, the short-term
offloading decision affects not only the instant performance
but also the long-term energy budget. In summary, there is a
big room for researches into mobility management in dense
Het-MEC systems.

Interference management and joint resource allocation:
Inherited from dense HetNets, the spectrum reuse among
cells incurs severe mutual interference, which may signif-
icantly reduce the expected system spectrum and energy
efficiency. Therefore, the challenges for interference man-
agement in H-CRAN MEC systems remain to be solved
for many reasons. Heterogeneity of mobile users and BBU
pool with the MEC server makes the interference problem
more challenging due to various transmit power budgets
of users in the uplink. Moreover, the network scheduling
resource, communication resource and computing resource
at BBU pool are coupled with each other, which makes the
resource allocation more challenging. The various computa-
tion task characteristics require different priorities for users
in accessing radio and MEC resources. Finally, interference
management is highly coupled with other domains, such as
resource allocation and network planning. Hence, more so-
phisticated interference management schemes incorporating
features of H-CRAN MEC systems would be highly required
for improving the users’ QoS with MEC services.

Wireless backhaul limitation: In H-CRAN MEC scenarios,
the capacity of backhaul and fronthaul is of an important
issue. For example, in case that backhaul is limited, the
transmission time via backhaul links should be taken into
consideration, thus affecting the offloading decisions of users
(and other optimization variables as well). Most research
works assume that small cells are connected with the central
location (where vBBU and MEC servers are located) through
high-speed wired links, e.g., fiber links [230]. As a result, the
scenario with wired backhaul/fronthaul may be simple and
limited to implement for H-CRAN MEC networks, and then
discuss their proposed approach in such network settings.
The wireless bachhaul and fronhaul can be further investi-
gated to enhance the networks performance. For example, the
authors in [231] focused on MEC with wireless backhaul;
however, the network setting in this literature is simple,
comprising a small-eNB and an MEC server collocated at
the macro-eNB. This work is served as a fundamental study
for more complex frameworks, e.g., the extension to dense
Het-MEC systems and the consideration of mixed wireless
and wired backhaul links.

Physical security: In H-CRAN MEC networks, security
will be a significant issue since MEC applications will run
on the same physical platforms as some network functions.
Therefore, to reduce the risk of that the external eaves-
droppers/hackers who may affect the network functions, the
physical layer security can be studied for H-CRAN MEC
systems, which will be a promising research topic.
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VIII. MEC AND MACHINE LEARNING
This section reviews the fundamentals and applications

of ML in addressing various MEC problems: edge caching,
computation offloading, joint optimization, security and pri-
vacy, big data analytics, and mobile crowdsensing. We also
identify challenges and potential directions to energize fur-
ther studies on applications of ML in MEC.

A. A BRIEF REVIEW OF MACHINE LEARNING IN
WIRELESS NETWORKS

ML has been applied in a myriad of applications, for ex-
ample, virtual personal assistants, video surveillance, social
media services, email Spam and malware filtering, search
engine result refining, and product recommendation. There
are several reasons why ML algorithms are increasingly
being used: 1) ML enables systems that can automatically
adapt and customize themselves to individual users, 2) ML
can discover new knowledge from large databases, 3) ML can
mimic human and replace certain monotonous tasks, which
requires some intelligence, 4) ML can develop systems that
are difficult and expensive to construct manually because
they require specific detailed skills or knowledge tuned to
a specific task, and finally 5) there is a vast increase in
computational power, growing progress in available algo-
rithms and theory developed by researchers, and increasing
support from industries. Generally, ML is divided into three
core types: supervised learning, unsupervised learning, and
reinforcement learning (RL), while DL has been introduced
as a breakthrough technique and a huge step forward in
ML, which can achieve higher-level representations based on
simpler ones. The classification and applications of ML in
mobile and wireless networking, also in MEC and other edge
computing paradigms, are illustrated in Fig 11. Recently, the
ITU Telecommunication Standardization Sector proposed a
unified architecture for ML in future networks, where MEC
is expected to play crucial roles as source, collector, pre-
processor, model, policy, distributor, and sink [232]. For
example, MEC can collect data from end users, then perform
data preprocessing, and execute an ML model to extract
necessary information before sending the output to the cen-
tral cloud for further training. Moreover, some surveys and
tutorials on ML, DL, (deep) RL, as well as their applications
in communications and networking [233]–[235] have come
out, and readers can refer to these literature for more details.

Due to the rapid evolution of wireless communications and
networks, it is believed that artificial intelligence in general
and ML in particular will play vital roles in beyond 5G
and 6G [236]. In general, ML can provide the following
advantages:
● First, the most natural advantage of ML is the ability

to learn from big data to improve the network opera-
tion and performance, which can be done without any
hand-crafting feature. The importance of learning arises
naturally in wireless networks since 1) mobile data is
massive, 2) mobile data increases at exponential rates,
3) mobile data is non-stationary (i.e., the time duration

MACHINE 

LEARNING

Unsupervised Learning

- Clustering

- Dimensionality reduction

Supervised Learning

- Classification

- Regression

Reinforcement Learning

- Q learning

- Deep RL learning

APPLICATIONS

- Resource allocation: Transmit power, user association, spectrum management

- Security and privacy: physical layer security, connectivity preservation

- Network planning, traffic engineering, localization services

- MEC:  edge caching, computation offloading, resource allocation, privacy and 

security, big data analytics, mobile crowdsensing, 

FIGURE 11: Classification and applications of ML in mobile
and wireless networking.

for data validity can be relatively short), 4) mobile data
quality is not guaranteed (i.e., data collected can be low-
quality and noisy), and 5) mobile data is heterogeneous
(i.e., data can be generated from many sources, such as
mobile users and IoT devices, and in different types)
[237].

● Second, the design and optimization of wireless net-
works are sufficiently challenging without known chan-
nel and mobility models. Conventional optimization
techniques are usually performed in an offline, heuris-
tic, or iterative manner, which cannot guarantee the
performance optimality or is not suitable for dynamic
and time-varying systems. ML is a promising tool such
that the network operation can be optimized over time,
thus continuously improving the network performance.
For example, ML showed a noticeable improvement
in uplink data rate by managing uplink interference in
cellular networks [238].

● Third, joint 4C optimization in 5G and beyond is
immensely complicated due to large state and action
spaces, heterogeneous network devices, and various
QoS requirements. In such a case, ML is capable of pro-
viding online and/or fully-distributed algorithms. More-
over, model-free wireless networks introduce various
issues of channel modeling, problem formulation, and
closed-form solution, which, however, can be efficiently
solved by ML.

● Next, ML should be deployed at the IoT device level and
on large-scale distributed networks without violating
user data privacy. In 2017, Google introduced an ad-
ditional ML approach, called “federated learning" that
enables individual devices collaboratively learn a shared
prediction model while keeping their own data locally,
thus improving the training efficiency and data privacy.
As the network will be highly dense and heterogeneous,
federated learning is expected to be a major tool of
beyond 5G. Motivated by the application of federated
learning in Google board in Android [239], there have
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been a wide range of applications and problems in
wireless networks that can adopt federated learning.

● Last, since edge computing will play an important role
in providing low-latency actions and the majority of
intelligent applications will be deployed at the network
edge, the emergence of edge learning is unavoidable. On
the one hand, exploiting edge learning to extract useful
information from a massive amount of mobile data can
extend the capability of small IoT devices and enable
the deployment of compute-intensive and low-latency
applications at the edge [240]. On the other hand, edge
learning can circumvent drawbacks of cloud AI and
on-device AI through the tradeoff between the learning
model complexity and the training time [241].

B. MACHINE LEARNING FOR MULTI-ACCESS EDGE
COMPUTING

Optimizing MEC faces several challenges of caching
placement, allocation of radio and computing resources, as-
signment of computation tasks, and joint 4C optimization.
The existing literature has studied a number of problems
in MEC systems, including computation offloading [107],
[236], [242]–[247], caching [248]–[251], joint 4C optimiza-
tion [251]–[256], security and privacy [257]–[263], big data
analytics [237], [261], [264], and mobile crowd sensing
[265]. In what follows, we summarize the sate-of-the-art
related to applications of ML approaches in these aspects.

1) Edge Caching
Studies on mobile edge caching have focused on three

main issues that are where to cache, what to cache, and how
to cache [13], [266]. In terms of caching places, the state-
of-the-art showed that the requested content can be cached
at macro-eNBs, small-eNBs, and/or end users, where the
storage resource of nearby mobile devices is exploited for
content caching and D2D communication is used for content
retrieving [267]. To decide what to cache, one popular metric
is the content popularity, which is defined as the ratio of
the number of requests for a particular content to the total
number of requests from all users within a specific region
during a period of time. The survey paper [13] showed that
there are five main algorithms: content replacement policies
such as the least frequently used (LFU) and least recently
used (LRU), user preference based policies, learning based
policies, non-cooperative caching, and cooperative caching.

As the content popularity is time-varying and cannot be
known in advance, many studies have focused on ML based
caching strategies. Most of the existing works focus on
applications of deep RL (DRL) for proactive caching since
DRL is able to learn caching policies automatically without
any predefined network model and explicit assumption. The
authors in [248] explored the key challenges of edge caching
and reviewed the state-of-the-art related to learning-based
caching policies and algorithms. They showed that mobile
edge caching schemes can be classified into two main ap-
proaches: popularity-prediction-based approach, where the

popularity estimation and caching policy are learned sepa-
rately, and RL based approach, where these two terms are
learned simultaneously. Other studies on (deep) RL based
caching algorithms can be found in [250], [251]. It is a
widely held axiom that besides the historical data, the cor-
relation between social and geographic data of mobile users
can be utilized to provide more accurate content popularity
prediction. Thus, the authors in [268] proposed using big
data analytics techniques to advance edge caching designs
and proved the effectiveness of these techniques via two case
studies of eNB caching and device caching. However, big
data analytics, particularly ML/DL mechanisms, has several
challenging issues for implementation [269]: huge computa-
tion resources required to process the high-dimensional big
data, lack of an appropriate prediction model for various
types of DL models, optimization of DL parameters, e.g., the
depth of deep neural networks and learning rate.

2) Computation Offloading
Due to the importance of computation offloading from the

user perspective, recent years have seen many research works
pertaining to computation offloading. In [243], the authors
formulated the computation offloading decision problem of
a user in ad-hoc mobile clouds as an MDP. More specif-
ically, both channel gains between the user and cloudlets
and the user’s and cloudlets’ queue states are considered in
the system state, the action is the task distribution decision
(i.e., how many tasks to process locally and how many
tasks to offload to each cloudlet), and the reward function is
defined to maximize the user utility and minimize the cost of
required payment, energy consumption, delay and, task loss
probability. Simulation results showed that the DQN based
offloading decision algorithm performed well under various
task arrival rates. In [107], the combination of a “hotbooting"
Q-learning3 and DL was adopted to find the computation
offloading decision and offloading rate in IoT with energy
harvesting. Another study on computation offloading in IoT
with energy harvesting can be found in [263]. The work
in [244] formulated the offloading decision problem as a
multi-label classification problem and then utilized the deep
supervised learning to minimize the computation and of-
floading overhead. Simulation results demonstrated that the
proposed scheme can reduce the system cost in average by
49.24%, 23.87%, 15.69%, and 11.18% compared to the no
offloading, random offloading, total offloading, and multi-
label linear classifier-based offloading schemes, respectively,
and can achieve a higher offloading accuracy. The literature
[245] jointly studied the offloading and autoscaling policy
(i.e., the number of MEC servers is activated) in energy
harvesting MEC systems, which was learned by a post-
decision RL algorithm. In [246], the DQN was deployed
to learn the offloading decision and energy allocation of a
representative mobile user in ultra-dense sliced RAN. The

3The hotbooting Q-learning technique exploits experiences in similar
scenarios to initialize the Q-function value so as to save the exploration time
at the beginning of learning.
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state is characterized by the energy level, computation task
queue, user association, and channel gain quality, and the im-
mediate reward is the weighted sum of satisfaction of the task
execution delay and computation task drops, the task queuing
delay, the penalty of failing to execute a computation task,
and the payment of accessing the MEC service. The work in
[247] utilized RL to jointly consider traffic and computation
offloading for industrial applications in fog computing.

3) Joint Optimization
Due to the facts that 1) the joint 4C optimization is needed

for improving the network performance and 2) conventional
approaches cannot efficiently solve the optimization prob-
lems with large action and state spaces, recent studies on
MEC have addressed various problems pertaining to joint 4C
optimization. For example, the authors in [251] investigated
two deep Q-learning models for mobile edge caching and
computing in vehicular networks. To reduce the computa-
tional complexity of the original problem and circumvent the
high mobility constraint of vehicles, the authors further pro-
posed deploying two DQN models at two distinct timescales.
In particular, each epoch is divided into several time slots and
then the large timescale deep Q-learning model is executed at
every epoch while the small timescale model is performed at
every time slot. We note that the concept of multi-timescale
control has been applied for some existing research works,
e.g., cross-layer optimization [270], [271]. The authors in
[252] investigated two learning models, classical Q-learning
and DQN method, for joint optimization of offloading de-
cision and computation resource allocation in single-server
MEC systems. Since DRL with discretized states suffers
from the curse of dimensionality and slow convergence when
a high quantization accuracy is required, a continuous control
with DRL based framework of computation offloading and
resource allocation in wireless powered MEC systems was
studied in [253]. As shown in [253, Fig. 3], the proposed al-
gorithm is composed of two alternating phases: i) offloading
action generation to quantize the relaxed offloading decision
as a set of binary actions, and ii) offloading policy update to
select the best offloading action among quantized ones. Sim-
ilarly, the authors in [272] extended the framework proposed
in [253] for multi-carrier NOMA based MEC systems.

More recently, there have been some works that study the
joint optimization of computation, caching, and communi-
cation. The work in [254] studied the joint optimization of
resource allocation in hierarchical networks of fog-enabled
IoT with edge caching and computing capability. In [255],
the authors proposed an integrated framework of networking,
caching, and computing for connected vehicle networks and
showed that the proposed DRL based algorithm is superior
to the existing static scheme and those without virtualization,
MEC offloading, or edge caching. Besides the integration
of edge computing, in-network caching, and D2D commu-
nication, the literature [256] also took into consideration the
social relationships among mobile users so as to improve the
reliability and efficiency of resource sharing and delivery in

mobile social networks.

4) Security and Privacy
The following reasons explain why security and privacy

are the greatest challenges [273]. First, since there are many
enabling technologies of MEC, it is necessary to not only
protect individual enabling technology, but also orchestrate
the diverse security algorithms. Second, the distributed nature
of MEC causes many new network situations (e.g., heteroge-
neous computing capabilities and collaboration between edge
devices), which call for new security mechanisms. Third, it
is possible that a large-scale edge computing system can be
severely affected by the security threats of just a network
component. Finally, there are many scenarios and aspects that
can be influenced by privacy and security threats, e.g., pri-
vate data generated by in-car sensors and critical emergency
systems. In edge computing paradigms, there are numerous
security and privacy threats, for example, wireless jamming,
denial of service, man-in-the-middle, spoofing attacks, pri-
vacy leakage, virtual machine manipulation, and injection of
information [259], [273].

Recently, ML-based security and privacy in MEC have
been studied from various perspectives. The use of DL for
cyber-attack detection in edge networks was considered in
[258], where the experiments demonstrate that the DL based
model is better than that with a shallow model in terms of
learning accuracy, detection rate, and false alarm rate. The
authors in [259] proposed different RL based edge caching
security mechanisms of anti-jamming mobile offloading,
physical authentication, and friendly jamming. Taking the
randomness and variation of wireless channels between mo-
bile users and fog nodes, the literature [260] studied Q-
learning based physical layer security in fog computing to
improve the impersonation detection attack and the accuracy
of receivers by learning from the dynamic environment.
The work in [262] investigated a new ML based privacy-
preserving multifunctional data aggregation framework in
order to overcome drawbacks of existing methods, which are
high computation overhead, communication efficiency, and
single aggregation function calculation. In [263], privacy-
aware computation offloading in MEC-enabled IoT was stud-
ied, where the post-decision learning is used in conjunction
with the standard DQN to accelerate the learning speed.

5) Big Data Analytics
As aforementioned, there are three main challenges of

mobile big data (MBD) analytics: large-scale and high-speed
mobile networks which reflect MBD volume and velocity,
portability which causes MBD volatility, and crowdsensing
which introduces MBD veracity and variety. Big data ana-
lytics enable the design of many smart applications, such as
smart city, smart building, and smart manufacturing [274].
Intelligence at the edge is expected to play a major role
in data analytics applications. In [237], DL is considered
as an attractive solution for MBD analytics by leveraging
several advantages: 1) DL scores highly accurate results,
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2) DL can automatically generate intrinsic features from
MBD, 3) DL does not require labeled samples as the input
training data, and 4) multimodal DL allows the learning
from heterogeneous data sources. MEC is highly suitable for
big data processing. However, there are several challenges
[275]: 1) how to distribute big data to distributed resource-
finite servers, 2) collaborative MEC for resource sharing and
optimization is needed, 3) 4C resources are tightly coupled,
and 4) privacy is a critical issue due to the lack of a central
management entity.

Some recent studies have utilized ML to address various
problems pertaining to MEC big data. The work in [261]
divided big data processing into three steps: data collection,
aggregation, mining and analysis. Moreover, the authors pro-
posed two privacy-preserving methods, namely output per-
turbation (OPP) and objective perturbation methods (OJP).
In particular, training data privacy can be achieved by adding
randomization noise to aggregated query results in the OPP
method and to the objective function in the OJP method.
Experimental results showed the high accuracy and data
utility of OPP and OJP algorithms. In [264], the authors tried
to provide users with better QoE in pervasive edge com-
puting environments. The authors first deployed a Tensor-
Fast convolutional neural network (TF-CNN) algorithm to
guarantee accuracy and increase training speed with big
data and next managed high-dimensional big data by using
different accurate data transmission rates. It was shown that
the proposed TF-CNN algorithm can achieve a higher QoE
performance than the state-of-the-art training model.

6) Mobile Crowdsensing
While mobile crowdsensing (MCS) has been widely stud-

ied in the literature, there are only a handful of studies on
edge computing empowered MCS. There are several benefits
of MEC in the context of MCS as follows [276]. First, MEC
enables the parallelization and partitioning of the centralized
and large-scale problem, where MEC servers are responsi-
ble for controlling the sensing process on mobile devices
located within their deployment area and manage MCS tasks
within the same area. Second, the immense computational
complexity of the central cloud that is caused by a large
number of mobile users participating in MCS tasks with fre-
quent context changes can be greatly reduced because of the
distributed deployment of MEC. Third, MEC can reduce the
latency of data and information propagation, that is suitable
for real-time MCS services. Next, intensive computations
can be offloaded from both mobile users and cloud servers
to the edge and then being processed therein. Finally, MEC
can reduce privacy threats since privacy-sensitive data can be
distributed and handled across MEC servers. Recently, the
work in [265] proposed a framework that integrates DL and
MEC for robust MCS services. In particular, the proposed
framework can be implemented by firstly designing an auc-
tion mechanism for participant recruitment, then using DL
for data validation, and finally implementing data processing
at the network edge. In [265], the authors also discussed

several open research problems, including how to leverage
DL to detect privacy and security threats, how to reduce com-
putational overhead in vastly and rapidly changing environ-
ments, and how to implement DL in mobile users for energy
and cost efficiency. A hierarchical computing architecture
for task allocation was proposed in [277], where the cloud
layer does learning of participants’ reputation and the edge
layer communicates with participants for data collection and
optimization.

C. CHALLENGES AND FUTURE WORKS
Clearly, ML techniques will be an important tool for

various problems in wireless networks and at the network
edge so as to optimize edge caching, computation, enhance
big data analytics, and improve security and data privacy. A
summary of key problems solved by ML techniques in MEC
is presented in Table. 7 along with major challenges. Despite
many studies on ML MEC, there are still several key open
problems that could be investigated in the future.

Machine learning based frameworks of ultra-dense MEC
systems: It is widely expected that both wireless and wired
backhaul solutions will coexist in future wireless networks.
The simulation results in [231] showed that the bandwidth
allocation between wireless access and wireless backhaul
plays a major role in the achievable performance. In this
case, ML approaches can be deployed at the macro-eNB to
predict the appropriate bandwidth partitioning factor based
on user CSI and task characteristics. Moreover, a critical
issue in ultra-dense MEC system is user association and its
joint optimization with other aspects such as computation of-
floading and resource allocation. However, the joint problem
of user association, offloading decision, and resource allo-
cation are typically NP-hard non-convex, which are further
exacerbated in time-varying and dynamic environments. In
such networks, DRL can be used to provide fast and near-
optimal solutions.

Distributed and collaborative ML implementation in hier-
archical and heterogeneous MEC: The central implementa-
tion of ML algorithms faces serious challenges, such as learn-
ing complexity, storage and computation resources, and non-
suitability for pervasive computing applications and large-
scale systems. A potential solution is distributed ML, where
the computation of a learning algorithm is divided into
smaller parts and then these computations are allocated to
distributed MEC servers. However, a number of questions
need to be exhaustively answered when distributed ML is
used: which computation parts can be divided, how to di-
vide the computation to subtasks, how to synchronize the
output among different MEC servers, and how to integrate
the outputs from subparts into the output of the master
model? Distributed ML becomes particularly important when
a learning agent (e.g., MEC server) cannot observe the global
state and action, and is merely aware of its local state, reward,
and action.

Actually, there is a tradeoff between the computation ca-
pability and learning efficiency when ML mechanisms are
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TABLE 7: Summary of key MEC problems that can be solved by machine learning techniques.

Applications Existing Works Proposed
Framework

Challenges

Edge caching

DRL-based caching
strategies

[248]–[251] - Combination of transfer learning and DRL to exploit knowledge from other domains, e.g.,
content distribution in mobile social networks can be used to learn caching strategies in D2D.
- Tradeoff between exploration and exploitation due to edge dynamics.
- Competition and collaboration between caching nodes (e.g. eNB or device caching).

DL-based caching [269] - Determining the suitable model among various types of deep learning models.
- Configuring hyperparameter settings.

Big data analytics
based caching

[268] - Utilization of different features of the previously requested data.
- Time-varying and spatio-temporal user behaviors.

Computation
offloading

DRL-based compu-
tation offloading

[107], [236],
[242]–[247]

- Dependence on statistical information of channel quality and task arrival rates.
- Time-varying user behaviors and unknown MEC network model.

Joint resource
optimization

ML for caching,
computation,
communication, and
control

[251]–[256] - The complexity of joint optimization problems, and immense action and state spaces due to
the combination of couple of different resource types.
- Real-time learning training model for time-varying and dynamic MEC systems.
- High overhead of signaling transmission and information exchange for Generation of the
network state and action spaces, especially in ultra-dense networks.

Privacy and
Security

DRL-based privacy
and security

[258] - Lack of massive and high-quality training, validation, and test datasets, which is caused by
heterogeneity of wireless networks, mobile devices, and edge nodes.
- Limited storage and computation for training DL models.

DL-based privacy
and security

[259], [260],
[263]

- Inaccurate and delayed state information, e.g., CSI and energy state information.
- Reward function evaluation that is usually estimated according to the security/privacy gain and
the protection cost (e.g., computation and communication delay, and energy cost).
- Bad security policies at the beginning of learning (the basis of the trial and error methods),
which can be effectively addressed by transfer learning techniques.
- Tight coupling between privacy and performance gain, thus requiring the optimization of
privacy-aware computation offloading and resource allocation schemes.

Big data
analytics

ML-based big data
processing

[237], [261],
[264]

- Storage and computation burdens due to the curse of big data dimensionality.
- Tradeoff between the resource-limited MEC servers and the large-scale DL models.

Mobile
crowdsensing

DL based MCS [265] - Lack of privacy and security protection schemes for crowdsensing data.
- High computation overhead for collecting training data, i.e., the DL model requires a large
amount of data to retrain the learning model due to edge dynamics.
- Lack of efficient DL approaches to be deployed at the lower-tier devices and to detect
contaminated and/or fake data.

centralizedly implemented at resource-limited MEC servers.
Thus, it is hard to efficiently implement a ML algorithm
at MEC server with a very large number of users and an
enormous amount of training data. Due to the fact that an
artificial neural network (ANN) is composed of many layers
(e.g., input, hidden, and output layers) [236], the ANN model
and the hierarchical MEC architecture are supposed to fit
together, where an immediate layer of the entire ANN model
can be offloaded to and performed by MEC layers (e.g.,
MEC at macro-eNBs and at small-eNBs) and the output of
the edge learning is then transferred to higher-tier clouds for
further processing. The collaborative learning offers consid-
erable benefits from the reduction of training data size, the
exploitation of ubiquitous computing, and the preservation of
user data privacy. Moreover, DL approaches can be deployed
at the MEC servers to detect contaminated and/or fake data,
thus improving the data quality. For instance, Li et al. in
[278] considered a two-layer DL model for video recognition
with IoT devices. Due to resource-limited MEC compared,
the authors proposed determining the maximum number of
computation tasks that can be handled at the edge layer.

Federated learning and applications for MEC: Conven-
tional ML approaches are not a suitable way to preserve
data privacy. Federated learning leaves the training data dis-
tributed across individual users, thus enabling them to collab-
oratively learn a shared model while keeping their own data
locally. Moreover, federated learning is able to address major

drawbacks of distributed learning [279], which are 1) lack
of time and training data, 2) low performance due to hetero-
geneous user capabilities and network states, 3) unbalanced
number of training data samples, and 4) nonindependent and
identically distributed data among users. Federated learning
is expected to be a sharp tool for various problems in MEC.
Take the computation offloading problem as an example,
where massive users are trying to offload their computations
to an MEC server for remote execution. Conventionally, to
determine the offloading decision, users need to report their
information such as channel gain, current battery level, and
computation characteristics, to the MEC server [246], [253];
however, such information can be revealed by eavesdrop-
pers and can be used illegally to predict the user location.
Applying federated learning, each user needs to download
the master model from the MEC server and then learns
the offloading decision based on its local information only,
and the MEC server is merely responsible for updating the
master model according to updates from individual users. In
such way, federated learning can preserve data privacy and
provide distributed offloading decisions, thus being suitable
for large-scale MEC systems. Recently, the authors in [280]
applied federated learning to estimate the tail distribution of
the queues in URLLC vehicle communications and the works
in [281] proposed a new adaptive federated learning protocol
in heterogeneous MEC systems.
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IX. MISCELLANEOUS RESEARCHES
In this section, we first focus on recent open source ac-

tivities. Then, we look at studies denoted to the testbed and
implementation of MEC systems.

A. OPEN SOURCE ACTIVITIES
The ETSI ISG has created a new group, namely De-

ployment and Ecosystem Development working group (WG
DECODE) to accelerate the adoption and implementation of
MEC services in the industry4. The group is expected to play
a leading role in pursuing research activities defined in Phase
2 specifications.

To achieve its objectives, the WG DECODE first exposes
MEC descriptions based APIs to increase the adoption of
MEC specifications and develop a strong MEC ecosystem.
The set of open APIs (e.g., bandwidth management service
API and radio network information API) are publicly avail-
able at https://forge.etsi.org/rep/mec. Moreover, the WG DE-
CODE promotes the initiation of open source initiatives and
facilitates the implementation of open source solutions for
MEC applications. For instance, the Open Edge Computing
Initiative5 was introduced in Jun. 2015 by Carnegie Mellon
University and industry partners (e.g., Intel, Vodafone, and
T-Mobile). Recently, the Open Edge and HPC Initiative6

was launched in Nov. 2018 by Atos, E4, Forschungszentrum
Jülich, Fraunhofer FOKUS, Huawei, Mellanox, and SUSE.
But the availability of many platforms can cause edge market
fragmentation, thus it leads to the interoperability problems
and limits the industry collaboration. To circumvent these is-
sues, the Linux Foundation started LF Edge in Jan 2019 to es-
tablish an open and interoperable framework, which currently
includes five projects: Akraino Edge Stack, EdgeX Foundry,
Open Glossary of Edge Computing, Home Edge, and Edge
Virtualization Engine7. Due to the importance of edge com-
puting, we believe that there will be many more groups
and frameworks. More importantly, harmonizing open source
platforms for MEC necessitates closer cooperation between
ETSI and other edge organizations/standards like Open Edge
Computing, LF Edge, OpenFog, and OpenStack in the future.

B. TESTBED AND IMPLEMENTATION
1) Single-Board Computer based Edge Cloud

There are many ways to create an edge server; however,
the implementation of single-board computers as edge clouds
has been considered as an efficient and cost-effective solu-
tion. The increase in popularity of single-board computers
(SBCs) (e.g., Raspberry Pi (RPi), Asus Tinker Board S, and
Arduino Mega 2560) is due to their low cost, low energy,
enough resource for various applications in not only educa-
tion, but also in industry, hobbyists, prototype builders, and

4Announcement was issued at www.etsi.org/newsroom/press-releases.
5https://www.openedgecomputing.org/
6http://www.open-edge-hpc-initiative.org/
7https://www.lfedge.org/

gamers [282], [283]. The availability of SBCs has introduced
a new concept, disposable computing, such that SBCs are
deployed as edge servers at any location where the edge
service is not available or the current edge server is discarded
and needs to be replaced by a new one. Another advantage
is its potential use in emergency applications and security
crises. For example, SBCs, built as edge servers, can be
used for rescue missions in the area, where the underlying
infrastructure has been destroyed by natural disasters, e.g.,
earthquakes and windstorms.

Elkhatib et al. [284] considered the concept of “micro-
cloud" and examined the suitability and performance trade-
offs of RPi-based micro-clouds using four metrics: serv-
ing latency, hosting capability, the cost of memory writ-
ing/reading, and booting time. Experimental evaluations in
[284] demonstrated that RPi clouds can serve a large number
of users with low latency and booting time, and can further
reduce the cost compared with that of Amazon EC2. In
[285], the authors proposed an IoT-edge cloud framework
for a smart healthcare information system using SBCs. The
authors in [286] implemented an MEC framework with the
OpenAirInterface8 and evaluated their prototype framework
with a streaming face detection application. Other studies
have been conducted to realize SBCs for various applica-
tions: fast and accurate object analysis for AR applications
[287], real-time image-based object tracking from live videos
[288], social sensing applications [289], and latency-aware
video analytics [290].

2) Lightweight Platforms for Edge Computing
As MEC and D2D communication are both applications

of the offloading concept [9], [291], [292], the authors in
[293], [294] proposed different MEC architecture to further
improve the network performance compared with the stan-
dard MEC. A D2D-based MEC architecture was proposed
in [293], where each relay gateway can act as a local cloud.
Further, D2D communication is used to establish direct con-
nections between a relay gateway and users so as to provide
edge services and between two neighbor relay gateways to
balance the traffic and computation demands among them.
The work in [294] introduced a concept of “MEC D2D".
Concretely, D2D MEC enables the direct link between users
and the MEC server, neighboring D2D helps users to connect
with the other server if they are not satisfied with the local
MEC sever, cooperative relay can extend the MEC service,
conventional MEC provides service to users via the collo-
cated eNB, and remote cloud let all users with Internet access
use cloud services.

Wang et al. [295] proposed a lightweight edge computing
platform that is based on SBCs, lightweight virtual switch-
ing, and lightweight container virtualization. Taking into
account both the QoS requirements of edge services and the
deployment cost and status of the underlying hardware, a
lightweight platform for service deployment at the network

8http://www.openairinterface.org/
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edge was considered in [296]. To evaluate performance of
the proposed platform, the authors developed RPis as edge
servers and identified a set of the system parameters, such
as, the number of services to be deployed and the number
of supported users per service. The work in [297] proposed
an open carrier interface to offer a fair pay-on-use business
model and to provide edge services in a distributed and
autonomous manner.

3) Middleware for Edge Computing
The very first context-adaptive middleware, named

CloudAware, for computation offloading was proposed in
[298]. CloudAware is able to predict arbitrary context at-
tributes, thus supporting a wide range of applications with
dynamics of the underlying network. The evaluation showed
that compared with local computing only, CloudAware can
reduce the execution time by 276% while maintaining the
same level of offloading success rate. More recently, there
have been a number of other studies on messaging mid-
dleware for edge computing applications. The middleware
investigated in [299] optimized diverse user QoS require-
ments and orchestrated connections between users and bro-
kers, [300] leveraged SDN to monitor network conditions
for resilient data exchange of mission-critical applications,
and the messaging middleware proposed in [301] enabled
the development and deployment of emerging applications
in distributed and heterogeneous edge computing systems.

In [302], the author proposed a middlebox approach to im-
plement the MEC paradigm in 4G LTE networks. Some crit-
ical issues are needed to implement the proposed approach
without the need to modify the underlying infrastructure: 1)
how to intercept and forward the data packets, 2) how to serve
the data packets by the MEC servers, 3) how to redirect data
traffic to the MEC servers and to the centralized clouds, and
4) how to identify the tunnel for specific users? To solve these
issues, the authors in [302] proposed implementing the MEC
middlebox between the LTE eNB and the core network, and
utilizing some novel design principles, for example, tunnel
stateful tracking and traffic redirection.

X. CONCLUSION AND DISCUSSION
This paper covers both fundamentals of MEC and a re-

view of up-to-date research on “integration of MEC with
the forthcoming 5G technologies". In each section, we have
presented a brief background, motivations, and overview
in combining the corresponding individual technology in
MEC systems. Moreover, we have outlined and discussed
the lessons learned, open challenges, and future directions. A
number of lessons have been learned from this survey paper:
● There have been enormous efforts from academia and

industry to realize MEC as the key enabler for applica-
tions and services (e.g., V2X, Tactile Internet, AR/VR,
and big data) in the 5G and beyond network. MEC
provides a great number of opportunities and potentials;
however, some challenges exist and need to be further
studied and tackled, e.g., distributed resource manage-

ment, reliability and mobility, network integration and
application portability, the coexistence of heterogeneous
(i.e., H2H and MEC) traffic, data privacy, and security.

● There are three main types of MEC use cases:
consumer-oriented services, operator and third-party
services, and network performance and QoE improve-
ments. To support these categorizations, the integration
of MEC with the key enabling technologies in the 5G
and beyond network is essential. Moreover, to enable a
seamless integration of MEC into the 5G network archi-
tecture, the 3GPP has introduced several new functional
enablers, namely user plane (re)selection, data network
interface, local routing and traffic steering, session and
service continuity, network capability expose, and QoS
and charging.

● By integrating with other 5G technologies, MEC sys-
tems can support massive IoT (NOMA), maintain the
system self-sustainability and self-sufficiency (ET and
WPT), improve the network performance, adaptability,
and scalability (ML), improve the connectivity and cov-
erage of terrestrial cellular networks (UAV), and help
service/infrastructure providers make the economics of
MEC services (collocation with C-RAN).

● To accelerate the adoption of MEC services, the ETSI
ISG has defined and exposed a set of open APIs, and
further participated in open source activities. Moreover,
there have been many efforts and solutions for MEC
testbeds and implementation.

For the sake of achieving the seamless integration of
MEC in the 5G and beyond network, a number of potential
works have been given before. Here, we outline some open
problems and challenges which need to be further studied and
tackled.

● Higher-Level Integration: Although existing research
integrates MEC with several enabling technologies, in
fact, they are completely independent of each other.
Therefore, it is possible to combine more than one
of these technologies into a single MEC system. For
example, IoT devices first harvest energy from a power
source and then follow the NOMA principle to offload
their computation tasks to a flying BS equipped with
computing capability, where a DRL model is trained
to determine the UAV’s trajectory and adapt to the
underlying dynamic network.

● Coexistence of Multiple MEC Designs: This issue be-
comes crucial when a number of proposals for the same
problem of MEC systems are simultaneously proposed,
e.g., offloading decision and resource allocation. There
has been no answer for how different proposals can be
integrated into a unique framework. One possible solu-
tion to overcome this issue is that different proposals
are classified to find their common viewpoints and then
a standard solution should be investigated to support
MEC systems with these viewpoints.

● More Opportunities and Challenges from 6G: While the
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5G standards are not well established yet, there have
been some speculative studies for 6G wireless systems
to circumvent limitations of the 5G network. For exam-
ple, a wireless system must support ultra reliability, low
latency, high data rate simultaneously, which cannot be
fulfilled in the 5G system [303]. It is expected that 6G
will include new use cases like haptic communications
for eXtended Reality (XR) services, massive IoT for
smart city applications, automation and manufacturing.
To support these new services, various promising tech-
nologies have been speculated and discussed recently,
including pervasive and collective AI, radar-enabled
communications, metamaterials and intelligent struc-
tures, cell-free networks, visible light communication,
quantum computing and communications, and tiny cells
with THz spectrum [303]. It is inevitable that besides
many more use cases and scenarios, new 6G technolo-
gies and application requirements also introduce hurdles
in MEC and tremendous efforts need to be paid in the
future.

● More challenges and opportunities with distributed
learning and FL: To cope with stringent security re-
quirements, data privacy concerns, massive connectiv-
ity, and network heterogeneity, enabling learning tech-
niques (e.g., distributed and FL) in mobile edge net-
works is of crucial importance. Despite their consid-
erable advantages, there are still many challenges and
issues. In recent review articles [304], several challenges
and issues of deploying FL in mobile edge networks are
discussed, which include, participant selection, tradeoff
between privacy protection level and system perfor-
mance, beyond supervised learning, interference man-
agement, communication security, incentive mechanism
designs, and asynchronous FL approaches. Moreover,
promising research directions, e.g., convergence guaran-
tees for the non-convex loss function, heterogeneity di-
agnostics, and mobile crowdsensing for FL are outlined.
In summary, providing solutions to these problems and
enabling more applications of FL in MEC systems re-
quire interdisciplinary efforts from a variety of research
communities.

We strongly believe that this survey can help the readers to
deeply understand MEC and its interactions with the enabling
technologies in 5G and beyond. We also hope that this survey
will stimulate further 5G and MEC research activities.
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