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Abstract— We consider the nonlinear, grey-box sys-
tem identification problem. We establish an approxi-
mation of the covariance of a parameter estimate in
this context, with several attractive theoretical prop-
erties. Our approximation is analogous to the inverse
Fisher Information matrix, which approximates the
covariance through the Cramer-Rao Lower bound.
Indeed, it agrees asymptotically with the Cramer-Rao
based covariance estimate in the limit of increasing
data, where the theoretical assumptions necessary
for both methods hold. However, our approximation
requires fewer assumptions. In particular, it can be
applied when the process is undermodelled, and does
not require consideration of either the magnitude
or form of the undermodelling. Thus our covariance
approximation is relevant when it is known that the
physical process cannot be perfectly recreated by any
allowable parameterisation of the model structure.

I. Introduction

Mathematical models are only approximations of the
physical processes they attempt to recreate, and, as such,
there is a mismatch between dynamics of the model
and the true process. This mismatch is known as model
error, and is comprised of variance error, caused by noise-
corruption of the data, and undermodelling, caused by
neglect of process dynamics in the model [7]. White/grey
box system identification is concerned with the selec-
tion of a nominal model, from a parameterised family
of model structures, which minimises estimated model
error. A wealth of literature considers quantification of
model error induced by the nominally parameterised
model, see e.g. [11, 8, 10, 5].

Often the goal of system identification is not just
the development of a good nominal model as previ-
ously described, but the estimation of certain parameters
of physical significance. In this case, a white/grey-box
model structure directly incorporating these parameters
is derived from physical principles, and the specific
numerical values of the nominal parameterisation are
important. So too is the uncertainty associated with
these values. This uncertainty generally arises due to
noise corruption of the observed process data. It can also
arise due to structural unidentifiability of the model [1].
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Here, multiple parameterisations induce identical model
dynamics, and are therefore indiscriminable on the basis
of observed data.

Generally one assumes existence of an unknown opti-
mal parameterisation, which represents the ‘true’ values
of the estimated parameters, and would be found in the
absence of measurement noise and structural unidentifi-
ability. The nominal parameterisation, which is obtained
by fitting the model structure to noisy data, is known
as an estimator of the optimal parameterisation. In
particular we consider the maximum likelihood estima-
tor (MLE) in this paper. A common measure of the
uncertainty associated with this estimator is then its
covariance with respect to the probability distribution
of measurement noise. A standard approximation of
this covariance is the inverse of the Fisher Information
Matrix (FIM) associated with the parameter estimate
[7, Ch. 9]. This is meaningful through the Cramer-Rao
Lower Bound: under certain regularity conditions the
inverse of the FIM is a lower bound on the true covariance
of the estimator. A key drawback of this method is that
it assumes that there is no undermodelling. In other
words, one assumes that the true physical process and the
optimally parameterised model have identical dynamics.

In this paper, we derive a new approximation of the
covariance of the MLE, valid when considering discrete-
time observations of an unknown dynamic process cor-
rupted by Gaussian measurement noise. As with all
methods, the approximation becomes more accurate as
the signal-to-noise ratio of data decreases. However the
source of error in our approximation is different from that
in the FIM-based method. Thus the two methods could
be considered complementary in that for problems in
which one approximation is inaccurate, the other may be
accurate. Unlike the FIM, it is mathematically valid even
when the process is assumed to be undermodelled. In
fact, no quantification of the magnitude or form of under-
modelling is required. In this sense it belongs to the field
of non-parametric statistics, along with more recognised
procedures such as the bootstrap method for estimating
confidence intervals (see e.g. [6]). Unlike the bootstrap
method, accuracy does not rely on the distribution of
datapoints over the performed number of experimental
repeats accurately representing the (unknown) true dis-
tribution, but only on the sample mean of the datapoints
accurately representing the (unknown) true mean. Thus
fewer experimental repeats might be necessary for a
reasonable approximation. On the other hand, we neglect



higher moments of the MLE distribution, which can be
approximated through the bootstrap method. Note that
our method is valid for nonlinear models.

II. Problem Formulation

A. Notation

We denote the Lebesgue measure of a set S ∈ Rn
by λ(S). The determinant of a matrix A ∈ Rn×n is
denoted |A|. The Frobenius distance between matrices

A,B ∈ Rn×n is denoted ‖A − B‖F . The relation
D−→

denotes convergence in distribution, while
P−→ denotes

convergence in probability.

B. Problem Statement

Assume that data Y is generated from discrete-time
observations of a process corrupted by Gaussian noise.
Specifically,

Y ji ∼ N (g(tj),Σ
j), i ∈ {1, . . . ,K}, j ∈ {1, . . . , r}. (1)

Here tj denotes the jth measured time point, and K
denotes the number of experimental runs undertaken.
Note that data is i.i.d, so the distribution of Y ji is
invariant with respect to i. Meanwhile, g : R+ → Rn is an
unknown deterministic process, and Σj is the covariance
matrix associated with measurement noise. In the sequel
we shall assume, for ease of exposition, that this is a
diagonal matrix, although all results of this paper are
easily generalised to the case in which this is not true.

We assume that the distribution of data is modelled
(but not generated) as follows:

Y ji ∼̂N (y(tj , θ
∗),Σj) i ∈ {1, . . . ,K}, j ∈ {1, . . . , r}.

(2)

Here y(tj , θ
∗) ∈ Rn is the output of a known pa-

rameterised deterministic model at time tj ∈ R+, with
θ∗ ∈ Rq being the unknown, unique optimal param-
eterisation. θ∗ is defined as the limit of the maximum
likelihood estimator (MLE) as K → ∞. The model
can also be parameterised by any member θ of the set
Θ ⊆ Rq. Note that we have attached a hat to the ∼
symbol in (2). This signifies that the true distribution
of the data is provided by (1), and as such (2) may
actually be incorrect. Nevertheless y(t, θ∗) is the best
approximation of the unknown process g(t) within the
parameterised model structure constructed a priori.

In this setup, the system identification problem con-
sists both of finding the parameterisation θ∗, and ap-
proximately quantifying the model error, which can be
taken as the distance between y(t, θ∗) and g(t) according
to some metric. Given data Y , we take the maximum
likelihood estimator θest(Y ) as our best guess of θ∗,
where

θest(Y ) = arg min
θ∈Θ

K∑
i=1

r∑
j=1

(
Y ji − y(tj , θ)

)T
Σj
(
Y ji − y(tj , θ)

)
.

(3)

If we take µ̂j = 1
K

∑K
i=1 Y

j
i , i.e. the vector of sample

means of the data at each timepoint, (3) can be simplified
to

θest(µ̂) = arg min
θ∈Θ

ν(µ̂, θ), where

ν(µ̂, θ) =

r∑
j=1

(
y(tj , θ)− µ̂j

)T
Σj
(
y(tj , θ)− µ̂j

)
. (4)

The sample means are distributed as

µ̂j ∼ N
(
µ,

1

K
Σj
)
, (5)

where µ ∈ Rn×r is the concatenation of the uncorrupted
process outputs, i.e. µj = g(tj) ∈ Rn.

We make some assumptions on the problem:

A1 Consistency:

lim
K→∞

θest(µ̂) = θ∗ P a.s. (6)

A2 C2 Differentiability: ∇θy(t, θ) and ∇2
θy(t, θ) are de-

fined for all θ ∈ Θ, t ∈ R+.
A3 Unique nominal parameterisations: Let

W = {x ∈ Rn×r : arg min
θ∈Θ

ν(µ̂, θ) is not unique}

Then λ(W ) = 0.
A4 Let U = {x ∈ Rn×r : θest(x) /∈ C2}. Then λ(U) = 0.

A3 guarantees that θest is a well-defined mapping
from data space to parameter space. This allows us to
formulate A4. Assumption A1 requires technical con-
ditions covered in [7, Ch. 9]. These include structural
identifiability of the model at θ∗, which is hard to check in
general, but necessary for well-posedness of optimisation
protocols solving (3) and a prerequisite to any parameter
estimation protocol. The relationship between structural
identifiability and consistency is expanded upon at the
beginning of Section IV. Assumption A2 is easily fulfilled
when y(t, θ) is the output of an ODE with a differentiable
vector field. Note that Assumptions A3 and A4 are not
restrictive conditions. To be broken, we would require the
existence of a ball of strictly positive radius in Rn×r, on
which θest was nowhere twice differentiable (for A4) or
uniquely defined (for A3).

The problem addressed in the paper can now be for-
mulated. We wish to estimate the covariance of θest(µ̂),
according to the probability distribution induced by the
measurement noise. This is denoted cov(θest(µ̂)) in the
sequel.

III. Results

A. Review of the Cramer-Rao Lower Bound

We now briefly review standard results on the covari-
ance of the MLE as provided in e.g. [7, Ch. 9]. Given a
parameterisation θ, the Fisher Information Matrix of θ
is defined as

I(θ) = K

r∑
j=1

(
∂y

∂θ
(tj , θ)

)T
(Σj)−1

(
∂y

∂θ
(tj , θ)

)
. (7)



Let Y(T, θ) ∈ Rn×r be the matrix obtained by con-
catenating the vectors: {y(tj , θ)}rj=1. The matrix Σ ∈
Rnr×nr is taken as a block diagonal matrix, with the
entries {Σj}rj=1 along the diagonal. In this way, we can
reformulate I(θ) as the matrix product:

I(θ) = K[∇θY(T, θ)]TΣ−1[∇θY(T, θ)]. (8)

Suppose temporarily that g(tj) and y(tj , θ
∗) are identical

for all tj (i.e. the model structure includes the true
process). In this case, under easily fulfilled regularity
conditions detailed in [2], the Cramer-Rao lower bound
holds. This states that the covariance of any estimator of
θ∗ is greater than the inverse of the FIM. This includes
our MLE θest(µ̂), so we have that

cov(θest(µ̂)) ≥ I(θ∗)−1. (9)

The MLE θest(µ̂), as opposed to other estimators, also
satisfies asymptotic normality: (9) attains equality in the
limit of increasing data quantity. Mathematically,

lim
K→∞

cov(θest(µ̂)) = I(θ∗)−1 P a.s. (10)

Note that these results no longer hold when we assume
the process is undermodelled, i.e. we drop the assumption
that g(tj) = y(tj , θ

∗) for all measured timepoints tj .
Furthermore, in practical terms, I(θest(µ̂)) is commonly
used to approximate I(θ∗), whose inverse in turn ap-
proximates cov(θest(Y )) (see e.g. [4, 9, 14]), yielding a
covariance estimate of variable quality [6].

B. The Limiting Distribution of the Maximum Likelihood
Estimator

We now derive new results on the distribution of the
MLE in the limit of increasing data quantity. Critically,
our results are valid when the process is undermodelled.
A method of calculating the covariance of this limiting
distribution is then provided.

Lemma 3.1:

θest(µ̂)− θest(µ)
D−−−−→

K→∞
N
(

0,∇θest(µ)
Σ

K
∇θest(µ)T

)
.

(11)
Proof: First note that A1 and A3 together ensure

that θest(µ) = θ∗. Taking a Taylor Expansion of θest(µ̂)
around µ gives

θest(µ̂)− θ∗ = [∇θest(µ)]T [µ̂− µ] +O([µ̂− µ]T [µ̂− µ])

The distribution of the first order term then follows from
the distribution of the sample mean given in (5). We get

∇θest(µ)]T [µ̂− µ] ∼ N
(

0,∇θest(µ)
Σ

K
∇θest(µ)T

)
It remains to show that the high-order terms in the Tay-
lor Expansion are unimportant in the limit of increasing
data. The Law of Large Numbers, recalling (5), gives

µ̂− µ P−−−−→
K→∞

0.

This means that we can apply the multivariate Delta
Method (see e.g. [2], p242) to each component θesti (µ̂) of
the nominal parameterisation, providing the result.

Lemma 3.1 provides a limiting distribution for the
nominal parameterisation. We now provide a tractable
expression for the covariance term in this distribution.

Theorem 3.1: Let g : R+ → Rn be any deterministic
process producing experimental data according to (1).
Let x ∈ Rn×r be a random variable such that xj ∈ Rn
is distributed according to (1). Suppose that θest(·) is C1

differentiable in an open neighbourhood N 3 x, and take
θest(x) = θ̂. Then, if |∇2

θν(x, θ̂)| 6= 0, we have

∇θest(x) =
(
∇2
θν(x, θ̂)

)−1

∇x∇θν(x, θ̂) (12)

Moreover, if ∇θν(x, θ̂) at x is Ck differentiable for k >
1, then so too is θest(x).

Proof: First order optimality conditions imply that
∇θν(x, θ̂) = 0. The implicit function theorem [12] guar-
antees the existence of a unique, continuously differen-
tiable function ψ : Rn×r → Rq, and an open set U 3 x,
such that:

∇θν(z, ψ(z)) = 0 ∀z ∈ U.

Without loss of generality we can assume U ⊆ N . By
first order optimality conditions, we have

∇θν(z, θest(z)) = 0 ∀z ∈ U.

Uniqueness of ψ then implies that θest(z) = ψ(z) on U .
Their gradients at x must therefore correspond, giving
(12). Another consequence of the implicit function theo-
rem is that if ∇θν(x, θ) is Ck differentiable at x, for some
k, then so too is ψ(x), and by extension θest(x).

Note that nonsingularity of ∇2
θν(x, θ̂) is a key assump-

tion of Theorem 3.1. However, it is not restrictive. To see
why, consider the Lebesgue measure of the following set:

A = {x ∈ Rr×n : |∇2
θν(x, θest(x))| = 0}

Suppose λ(A) = 0. This is necessary and sufficient for the
probability of drawing data with a singular ∇2

θν(x, θ̂) to
be zero. If λ(A) were strictly positive, we would require
the existence of a z ∈ Rr×n, ε > 0 satisfying

∀y : ‖y − z‖22 < ε; D(y) = 0,

where D(y) = |∇2
θν(y, θest(y))|. Since the mapping y →

D(y) goes from Rn×r to R, and depends in a complicated
way on the characteristics of the model y(t, θ), one would
not expect it to be identically zero on an open set.

C. Estimation of Distribution of Data

We take our estimate of the covariance of θest as

C(µ̂) = ∇θest(µ̂)
Σ

K
∇θest(µ̂)T , (13)

as motivated by Lemma 3.1. This can be calculated
using Theorem 3.1. We now show that, in the absence
of undermodelling (i.e. the special case in which the



Cramer-Rao bound is valid), our covariance estimate
agrees asymptotically with the inverse FIM.

Lemma 3.2: Suppose that

y(tj , θ
∗) = g(tj) ∀j ∈ {1, . . . , r}.

Then

lim
K→∞

cov(θest(µ̂)) = lim
K→∞

C(µ̂) = I(θ∗)−1, (14)

Proof: We have

µ̂j = y(tj , θ
∗) + Ēj Ēj ∼ N

(
0,

1

K
Σj
)
.

Where A1 holds in an open set surrounding θ∗, we can
differentiate (6) to get:

∇θ∗ lim
K→∞

θest(µ̂) = I, (15)

since θest corresponds locally to the identity function.
Application of the chain rule to the LHS of (15) conse-
quently gives:

lim
K→∞

∇µ̂θest(µ̂)∇θY(T, θ) = I.

Hence, from (8) and (13):

lim
K→∞

C(µ̂)I(θest(µ̂)) = I

Unlike I(θ∗)−1, our covariance estimate C(µ̂) in (13)
is not a lower bound on the true covariance. However in
practical terms this is irrelevant as θ∗ is never known: we
only gain an estimate θest(µ̂), and I(θest(µ̂))−1 is not a
guaranteed lower bound in the sense of (9).

Error in the respective covariance approximations
C(µ̂) and I(θ∗)−1 comes from different sources: Consider
the linearisation of our deterministic model,

ỹ(t, θ) = y(t, θ∗) +∇Tθ y(t, θ∗)(θ − θ∗).

Note that the linearisation does not affect I(θ∗), cal-
culated according to (7). Furthermore, we now have
that I(θ) = I(θ∗), ∀θ ∈ Θ. This demonstrates how
nonlinearities in the dependence of y(t, θ) on θ couple
with the estimation error θest(µ̂)− θest(µ) to induce the
approximation error on the FIM: I(θest(µ̂))−I(θ∗). This
error term may magnify when estimating the covariance,
as I(θest(µ̂)) is furthermore inverted. The consequences
of an ill-conditioned FIM on covariance quantification
have been explored in [13].

Now consider the original nonlinear model y(t, θ), and
suppose that the parameter estimation routine is itself
linearised. Thus:

θ̃est(µ̂) = θest(µ) +∇µθest(µ)T (µ̂− µ)

= θ∗ +∇µθest(µ)T (µ̂− µ)

⇒ θ̃est(µ̂)− θ̃est(µ) ∼ N
(

0, C(µ̂)
)

In other words, the convergence in distribution relation
in (11) would be replaced by equality, regardless of K.
Furthermore, the covariance estimate would be immune
to the sample error µ̂−µ. So the approximation error in

C(µ̂) is induced by the coupling between nonlinearities in
the dependence of the parameter estimate on the sample
mean, and the sample error µ̂− µ.

IV. Examples

Assumption A1, as stated previously, is a prerequisite
to meaningful parameter estimation. When y(tj , θ

∗) =
g(tj) ∀j ∈ {1, . . . , r}, consistency is equivalent to struc-
tural identifiability of the model at θ∗, where structural
identifiability is defined as follows:

y(tj , θ) = y(tj , θ
∗) ∀j ∈ {1, . . . , r} ⇒ θ = θ∗.

This property is hard to verify for nonlinear ODE models
[3]. Even then, it ceases to be a sufficient condition for
consistency in the case that there is a nonzero residual
between the mean data and the trajectory of the opti-
mally parameterised model. This is demonstrated below.

A. Illustrative example

We wish to estimate a process ġ(t) = Ag(t), with

A =

[
−3 1
2 1

]
g(0) = [4, 5]T .

Noisy process observations are taken according to (1)
at arbitrary timepoints {tj}rj=1, with Σ = I. Suppose
we undermodel this process, by choosing a model of the
form: ẋ(t) = Ãx(t), y(t, θ) = C(θ)x(t), where

Ã =

[
A 0
0 G

]
C(θ) =

[
1 0 sin(θ) − sin(θ)
0 1 cos(θ) − cos(θ)

]
G =

[
−3.5 1.5

2 −1

]
x(0) = [g(0), 1, 1]T .

Note that ‖y(t, θ)− g(t)‖22 is invariant to change in θ,
for all t > 0. In particular, y(t, θ′) can be obtained from
y(t, θ), for θ′ > θ, by a clockwise rotation through the
angle θ′ − θ around g(t) (see Figure 1).

Figure 1. For any t∗ >
0, the set of parameterisa-
tions y(t∗, θ), for θ ∈ (−π, π]
forms a circle with centre
g(t∗).

The true probability density function for the sample
mean µ̂ of K experiments is Gaussian, with mean µ
and variance 1

KΣ (see (5)). It is therefore invariant over

sets of the form:
{
x :
(
x− µ

)T
Σ
(
x− µ

)
= c
}

, for any

c ≥ 0. Since Σ = I, we have that {y(t, θ)} is such a
set, and the likelihood of any parameter being the MLE
is therefore constant over parameter space. Since the
distribution of the MLE is uniform over (−π, π], we can
calculate its true covariance as cov(θest(µ̂)) = 1

3π
2. Note

that this covariance is independent of K, the number of
experimental iterations taken.
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Fig. 2. Plot of θest(µ̂). Each iteration alters the sample mean,
changing the nominal parameter estimate. This scheme is carried
out four times, to emphasise unpredictability. Fig. 3 uses the bold,
red, set of iterations.

Assumption A1 (consistency) does not hold, as the
covariance does not decay with increasing K. Thus
asymptotic covariance quantification of any parameter
estimate, either through C(µ̂) or I(θest(µ̂))−1, is mathe-
matically invalid. Nevertheless the model is structurally
identifiable. Verification/invalidation of Assumption A1
is generally impossible despite being key to much of
the theory associated with the field. In this case it is
possible only because we know the process dynamics
a priori. Therefore it is worthwhile to test the fidelity
of the covariance approximations C(µ̂) and I(θest(µ̂))−1

regardless.

The trajectory of g(t) was simulated multiple times,
and data Y was collected by adding measurement noise
and storing outputs at the measurement timepoints. At
the Kth iteration (i.e. after K experimental repeats), an
MLE parameter estimate θ̂ was calculated, taking into
account the sample mean of all K iterations. A plot of
parameter estimate against K is provided in Figure 2. Al-
though the distribution of parameter estimates given K
iterations is uniform for any K, as proved previously, this
is not true given knowledge of the parameter estimate
over K − 1 iterations. Thus significant autocorrelation
is clearly visible. At each iteration K of the experiment,
both I(θest(µ̂))−1 and C(µ̂) were calculated, and graphs
of the estimated covariance for both methods are pro-
vided in Fig. 3.

The sample mean µ̂ converges to the true mean µ as it-
eration number increases. The function θest(µ̂) possesses
an asymptote at µ̂ = µ, at which point all parameters are
optimisers of (3). The gradient ∇θest(µ̂) correspondingly
tends to infinity as this asymptote is approached. The
estimate C(µ̂), despite being blind to the underlying pro-
cess dynamics, is predicated on this gradient, and thus
flags the estimation problem as ill-conditioned, whereas
the FIM-based covariance incorrectly predicts a swiftly
decaying covariance (see Fig. 3).
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Fig. 3. Estimate of covariance using (13) (TOP), and (7) (BOT-
TOM), and the sample mean after each iteration. Top figure: any
estimates over 100 were taken to be 100 to maintain the scaling of
the graph. The maximum estimate was 4.97e5.

B. Chemical reaction network example

We first consider a process that is not undermodelled,
i.e. the Cramer-Rao lower bound holds, and compare our
covariance estimate C(µ̂) with the FIM-based estimate.
They correspond closely. We then alter the process so
that it is undermodelled, and again compare estimates.
They no longer correspond, and C(µ̂) better approxi-
mates the sample covariance of the MLE, which is gener-
ated by running multiple estimation routines for different
measurement noise realisations. Structural identifiability
of the model guarantees A1 when the process is not
undermodelled. In the undermodelled case, as discussed,
A1 is not generally possible to verify.

Consider the following ODE system:

ẋ(t, θ) = A(θ)x(t) y(t, θ) = x(t, θ) ∈ R3

A(θ) =

−0.7− θ1 θ2 0
θ1 −θ2 2
0.7 0 −3

 x(0, θ) = [50, 50, 50]T

θ ∈ R2

(16)

which represents, through the law of mass action, the
following chemical reaction network structure:

x1

θ1


θ2
x2 x1

0.7→ x3 x3
2→ x2 x3

1→ ∅.

We fix θ∗ = [3, 4], and take g(t) = y(t, θ∗). We model
the process g(t) through the model structure y(t, θ), with
‘unknown’ θ, and attempt to recover θ∗ by fitting the
model structure to noisy data generated according to (1).
g(t) is measured over the vector T = [0, 1, 2, . . . , 10] of
timepoints. We take the measurement noise covariance
as Σ = I.

Data Y was collected for K process realisations. MLE
parameter estimation was performed using the ‘greyest’
function in MATLAB, to gain an estimate θest(µ̂) of θ∗.
The covariance estimates C(µ̂) and I(θest(µ̂))−1 were
calculated, and compared against sample covariance over
1000 parameter estimation with different measurement
noise realisations (see Fig. 4, top).
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Fig. 4. Sample covariance matrix of θest taken by running
1000 identifications. Graphs show Frobenius distance between
sample covariance and covariance estimators C(µ̂) (red, dotted)
and I(θest(µ̂))−1 (black, dashed). The blue, solid line represents
Frobenius distance between C(µ̂) and I(θest(µ̂))−1. Y -axis scaled
by K to cancel the effect of absolute decrease in covariance with
increasing K. All graphed distances are monotonically decreasing
with K in the absence of this scaling. Covariance estimates are
taken at increasing integer values of log10 K, starting from 0. Model
dynamics given by (16) for both figures. TOP: Process dynamics
are model dynamics at θ∗ = [3, 4]. BOTTOM: Undermodelled case:
process dynamics given by (17).

We now alter process dynamics without changing the
model structure given in (16), as given below. The pro-
cess is now undermodelled.

ġ(t) = A(θ∗)g(t)− g3(t) θ∗ = [3, 4]T ,

(17)

x1

θ∗1


θ∗2

x2 x1
0.7→ x3 x3

2→ x2 x3
2→ ∅

Here A is as in (16), and g3(t) represents the third
component of the vector g(t) ∈ R3. Fig. 4 compares
different covariance estimates against sample covariance
in this modified case, and demonstrates the superior
convergence of C(µ̂).

V. Conclusion

We have introduced a new method of estimating the
covariance, with respect to Gaussian measurement noise,
of a nominal parameter estimate in the grey-box sys-
tem identification problem. Our covariance estimator,
unlike the traditional inverse Fisher Information Matrix,
preserves its mathematical properties when the process
is undermodelled. Indeed, no bounds on the form or
magnitude of the undermodelling are required. When
undermodelling is not a concern, our result agrees asymp-
totically with the inverse Fisher Information. This was
proven and demonstrated by example.

An additional example was provided of a
measurement-noise corrupted process, together with a
parameterised model, where the model was globally

structurally identifiable, yet the parameter estimation
problem was not consistent. Unlike the inverse Fisher
Information, our covariance estimate flags the ill-
conditioned nature of the problem.
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