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Abstract
Purpose of Review As intelligent robots enter our daily routine, it is important to be equipped with proper adaptable social
perception and explainable behaviours. To do so, machine learning (ML) is often employed. This paper intends to find a
trend in the way ML methods are used and applied to model human social perception and produce explainable robot
behaviours.
Recent Findings The literature has shown a substantial advancement in ML methods with application to social perception and
explainable behaviours. There are papers which report models for robots to imitate humans and also for humans to imitate robots.
Others use classical methods and propose new and/or improved ones which led to better human-robot interaction performances.
Summary This paper reports a review on social perception and explainable behaviours based on ML methods. First, we present
literature background on these three research areas and finish with a discussion on limitations and future research venues.

Keywords Social perception . Explainable behaviours . Machine learningmethods . HRI

Introduction

Since 1495, when Leonardo da Vinci designed what may be
the first humanoid robot thought to sit up, wave its arms, and
move its head via a flexible neck while opening and closing its
jaw, a lot of progress, evolving from design to actual produced
and/or commercialized humanoid robots, has been done in the
study of human-robot interaction (HRI) [1].

Nowadays, benefiting from being an eminently multidisci-
plinary field, studies in HRI gather a large amount of contri-
butions in fields such as socially assistive robots [2] and col-
laborative robots [3], which result in robots integrating
human-like behaviours in order to help improve people’s
comfort and daily task performance in both their homes and
working places.

In this study, it is considered that successful HRI of
social robotic systems can be achieved by applying ma-
chine learning (ML) methods to have robots with human
social perception (SP) and explainable behaviours (EB).
We believe that human SP is an important aspect to be
transposed to both socially assistive robots and collabora-
tive ones in industrial settings, as it is important for robots
to perceive the environment shared with human beings and
how they interact with it; EB refer to verbal and non-verbal
responses a robot make to communicate the why and how
behind the motor-control signals it produces, while the ML
methods can play the role of a core algorithm in both SP
and EB, and also connect both to produce natural interac-
tions between humans and robots.

For these reasons, the contributions of this study respond
the following research questions by reviewing the latest stud-
ies on HRI involving SB, EB based on ML methods:

1. Is there a trend in how the ML methods are applied in
HRI studies since 2014, and how close are we in hav-
ing robots with human social and/or explainable
behaviours?

2. How does SP and EB through ML can help in making
robots capable to imitate humans and humans willing to
imitate and learn from robotic systems?
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Methods

A thorough search of studies published in (i) ACM/IEEE
International Conference on Human-Robot Interaction, (ii)
ACM Transactions on Human-Robot Interaction, and (iii)
International Journal of Social Robotics between 2014 and
March 2020 was conducted. We included all studies which
contain social human perception and explainable robot behav-
iours using ML with applications in every aspect of human life.
We also used Google Scholar to include relevant papers citing
these studies in other publication venues. When feasible, we
also included experimental, quasi-experimental, and survey/
questionnaire studies with a scope to see how people understand
robotic system behaviours or if provides some capacities and/or
abilities of recognizing and identifying emotions in others, in
addition to biological and physiological processes involved.

In total, we found 127 papers and, after eliminating most of
the 2/4-page abstract papers, obtained 79. Another selection
process was performed to eliminate all papers which did not
investigate ML-based SP and EB methods, ML methods ap-
plied to situations involving socially assistive or collaborative
robots, or new ML methods in HRI. Finally, we reviewed 70
articles which included 6 survey papers.

Social Perception

Because being able to interact is at the core of social robots, SP
is very important in HRI to provide a connection between a
social robot and its surrounding environment. A thorough sur-
vey [4] was presented in 2014 on widely used perception
models, which brings them down to three steps: feature ex-
traction (to convert the raw signals from sensors to feature
descriptors for subsequent understanding tasks), dimensional-
ity reduction (to reduce the complexity of computation after
feature extraction), and semantic understanding (to infer the
objects or human behaviours from the extracted features).
Moreover, ML methods used in semantic understanding tasks
such as object recognition, object tracking, object segmenta-
tion, and speaker localization are reported.

The ability to perceive emotion has been widely studied in
HRI, as it is a critical component in social interactions. Emotions
can be expressed verbally, e.g. vocal and speech, or non-verbal-
ly, e.g. facial, gait and/or posture, and touch. In the following,
studies in which emotion recognition is performed through vo-
cal and speech, facial, gait and/or posture, and touch based on
ML methods are introduced. Speech recognition is also an im-
portant aspect of SP, but we believe that a complete coverage of
speech recognition advances would be beyond the scope of this
review. However, we can note one paper that proposes an ap-
proach to train models for HRI-specific scenarios [5].

In Yu et al. [6], multimodal data from thermal facial images
and human gait data were used to recognize four emotions

(neutral, happiness, angry, and sadness), while in Boucenna
et al. [7], happiness, sadness, anger, and surprise are recog-
nized online with the help of a realistic baby-learning model.
In the learning phase, the human mimics random facial ex-
pressions created by a robotic head; then, the robotic head
mimics the human’s facial expression. Another interesting
contribution consists in a proposed face/non-face internal su-
pervision based on a neural network which learns to predict
the rhythm of the HRI; hence, the robot can recognize a hu-
man presence or absence in front of the camera.

Several studies are reviewed in Crumpton et al. [8] which
used vocal prosody to transmit emotions between humans, to
convey emotions from robotic systems to the human users,
and to use vocal prosody in robot speech synthesizer with
ML methods. Still, the main contribution of the previous sur-
vey consists in the raised and discussed issues such as em-
bodiment effects of robots, avoiding confounding factors
when portraying emotions, and generation and validation of
emotional robot speech.

Reliable recognition of four emotions, e.g. anger, joy, sad-
ness, and neutral, due to the fusion of six emotional models in
parallel was reported by Devillers et al. [9]. The fusion was
generated between two training corpora and three acoustic fea-
ture sets onwithML classifier were applied, and a performance
improvement was reported due to the performed fusion.

Even if emotion recognition from gait and posture still
seems to be at an early stage, a thorough review on the matter
is presented by Stephens-Fripp et al. [10] as well as cultural
similarities in emotional recognition by people from different
backgrounds. ML methods reported in this review can be
found in Table 1.

ML methods can be used to recognize emotions, and also
to express them. The ability to express emotions through
touch is investigated by Andreasson et al. [11] where both
female and male conveyed eight emotions (five primary emo-
tions: anger, disgust, fear, happiness, and sadness, and three
prosocial emotions, gratitude, sympathy, and love) by touch-
ing a small humanoid robot. The provided data was used as
training set by the support vector machine (SVM) classifier
and the reported results are quite similar with observations
found in human-human interactions, for example squeezing
and pressing were found as the dominant touch used for com-
municating fear, while stroking was the most frequently used
when communicating sympathy [ [12], p. 570]. Furthermore,
while expressions are often used to express a simulated, inter-
nal emotion model of the agent for interaction purposes only,
Feldmaier et al. [13] propose a novel approach to express the
state of the simultaneous localization and mapping (SLAM)
system of a robot.

Finally, according to Fischer et al. [14], emotions in human
interactions can be conventionally defined and activity-specif-
ic, and emotional displays in HRI should follow such expec-
tations towards the activities the robot is carrying out. Thus,
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Table 1 Review studies on social perception (SP) and explainable behaviours (EB) based on machine learning published in ACM/IEEE International
Conference on Human-Robot Interaction, ACM Transactions on Human-Robot Interaction, and International Journal of Social Robotics since 2014

Paper Year Semantic understanding task Learning algorithm Robotic system

[4] 2014 Survey on perception methods: visual-, audio-,
tactile-, range sensor-based

Template matching
Clustering
Nearest neighbour
Neural network
Boosting
Hidden Markov model

[7] Emotion recognition (facial expressions) Neural network architecture Robotic head (minimal
facial expression
capabilities)

[23] Familiarization, e.g. human learns from the robot’s
demonstration

Functional gradient optimization Herb

[60] Collaborative task: puzzle Bayesian network Keepon

[47] 2015 Learning by observing an assistant Probabilistic approach: GP binary discriminative
classifier and GP regressor

Smart wheelchair

[9] Emotion recognition (audio signals) Linear support vector machines (SVM)

[46] Modeling of polite approach behaviour SVM

[65] Learning by teaching (writing) Principal component analysis (PCA) Nao

[59] Learning from demonstration Hierarchical task networks PR2

[40] Robots learn to collaborate with humans through
cheap talk [36]

Repeated stochastic games Nao

[8] 2016 Survey on of using vocal prosody to convey emotion
in robot speech

Hidden Markov models
Deep belief networks
Deep neural networks

[48] Socially adaptive path planning Inverse reinforcement learning Smart wheelchair

[54] Programming by demonstration Incrementally assisted kinesthetic teaching KUKA LWR4+

[56] Affordance learning Hidden Markov models Curi

[61] Integrated affective tutoring system that uses an
integrated child-tablet-robot

Reinforcement learning Tega

[64] Fully autonomous robotic tutor Decision trees, neural networks, clustering algorithms Nao

[58] Learning from demonstration; human-robot
collaborative

Gaussian process (Gaussian process latent variable
model)

Jaco robotic arm, Nao

[33] Head pose estimation Discriminative random regression forest RGB-D camera

[10] 2017 Survey on emotion recognition from gait and
posture

Logic regression
Naïve Bayes
Decision tree
Artificial neural network
Support vector machine
Gaussian mixture model
Random forest
SMO classifiers
Adaptive boosting with naïve Bayes
k-Nearest neighbour
Adaboost with naïve Bayes
Multilayer Perceptron

[13] Expressing the state of a simultaneous localization
and mapping (SLAM) algorithm with a model of
emotion

SLAM, component processing model (CPM)

[30] Generating natural language instructions that allow
humans to navigate a priori unknown
environments

Markov decision process via inverse reinforcement
learning

[24] Obtain legibility via a model-free approach Model-free reinforcement learning Baxter

[31••] Synthetizing natural language explanations of
controller policies

Markov decision processes, reinforcement learning,
deep learning

PR2

[62] A tutor robot helps people learning how to solve
grid-based logic puzzles called nonograms

Exponential-weight algorithm for exploration and
exploitation: decision tree model with a multi-armed
bandit (MAB) algorithm

Pepper

[43] Adapt the robot proxemics behaviour with respect to
the human users’ personality

Fuzzy logic, neural networks, and Bayesian classifiers
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the expression of emotions can play a key role in producing
explainable behaviours.

Explainable Behaviours

Along SP, explainable robotic behaviours (EB) are also criti-
cal for proper and successful human-robot interactions.

Without having studies which understand how human beings
interpret the behaviour of robotic systems and what are their
expectations of such systems, it would be impossible, for ex-
ample, to help humans trust their robot counterparts in critical
and non-critical situations [15].

On this subject, Han et al. [16] proposed a literature review,
while interesting studies from a computer science, artificial
intelligence, cognitive psychology, and philosophical

Table 1 (continued)

Paper Year Semantic understanding task Learning algorithm Robotic system

[11] 2018 Emotion recognition (touch) SVM classification Nao

[28] Learning card game Reinforcement learning used in three versions: basic,
advance, and generalized learning algorithm

Nao

[49] Create intelligent agents Interactive machine learning: Newtonian action advice
and critique-driven policy shaping

[53] Teach socially assistive robots personalized
behaviours

Combines learning from demonstration and
reinforcement learning

Casper

[27] Learning the desired objective function for a robot
from comparative queries

Probabilistic model

[55] Learning robot objective functions from human
guidance

Kinesthetic teaching 7-DoF robotic
manipulator

[25] Enable robots to express their incapability Sequential convex optimization

[66] Learning by teaching (writing) Inverse optimal control Nao

[5] HRI-specific speech recognition training Deep neural network and Hidden
Markov model

PR2

[36] Activity recognition system Long-term recurrent convolutional networks Pepper

[34] 2019 Generate demonstrations via a virtual reality system Deep neural network Virtual reality system
and Sony Play Station
3 controller

[37] Infer and correct a collaborator’s task understanding
during joint task execution

Partially observable Markov decision process coupled
with a family of hidden Markov models

Rethink Robotics
Sawyer

[38] Dyadic storytelling interactions and emotion
recognition (attentiveness)

Bayesian Theory of Mind

[45] Learning a robot short-term memory representation
of interaction history between shopkeeper and
customer

Gated recurrent unit (GRU) neural network architecture

[39] Grounding unknown synonymous object and action
names

Bayesian learning model Toyota Human Support
Robot (HSR)

[52••] Comparison between three ML in an autonomous
drive domain

Model-based reinforcement learning
Theory of Mind
Model-free based reinforcement learning

[29] Automated rationale generation Recurrent neural networks

[26] Goal communication, favourizing user anticipation Inverse reinforcement learning

[63] Training personalized policies for teaching Model-free affective reinforcement learning Tega

[67] Teaching a robot to learn toy names and the
locations

Reinforcement learning Kasper

[42] Robot approaching behaviour to groups of humans Proximal policy optimization Pepper

[35] Adaptively decide a monitoring distance and an
approaching direction to improve user activity
recognition performance

Reinforcement learning Pepper

[6] Online emotion recognition Random forest Pepper

[44] 2020 Predict shopkeeper reactions from customer Attention network
Interaction network

[51•] Rethink the Boltzmann model Limiting errors due to similar selections (LESS) 7-DoF robotic arm
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perspective can be found in a recent full-day workshop [17].
For example, the Theory of Mind (ToM) model is used by
both human and robot in order to understand each other in an
autonomous car driving on the highway scenario [18].
Moreover, Bekele et al. [19] introduced the MAResNet sys-
tem, as well as an analytic pipeline that provides a blueprint
which is very useful in making the operations of deep learning
techniques comprehensible to human operators. Hastie et al.
[20] provide the Offshore Robotics for Certification of Assets
(ORCA) interface which will be later on applied to both black-
box (e.g. convolutional neural network) and grey box (e.g.
Bayesian network) reasoning to provide explanations of the
robot perception and robot planning and action including the
causal structure of the plan that is being carried out.

An interesting study by Mohammad et al. [21] focused on
back imitation familiarization before learning from demon-
stration sessions shows that people prefer a robot that they
previously imitated in terms of imitation skill, naturalness,
and motion human-likeness compared with the robot that they
did not imitate. Another study by Zanatto et al. [22] suggests
that humans can strategically imitate robots while playing an
economic investment game with a robot banker. Furthermore,
it is reported by Dragan et al. [23] that while familiarization
with a robot will lead to a better understanding of its behav-
iour, predictable and natural motion is still necessary to pro-
mote this familiarization. Thus, the goal of producing predict-
able and legible motion is an important trend that can be iden-
tified in relation with EB. In Busch et al. [24], model-free
reinforcement learning is used to learn legible motion in
human-robot joint tasks. In Kwon et al. [25], the authors study
the expression of incapability to reach a motion goal as an
optimization problem. The proposed approach can automati-
cally generate trajectories that approximate the motion that
would have been performed in other conditions, and data sug-
gests that it better communicates the intent of the robot com-
pared with previous approaches. Furthermore, Huang et al.
[26] propose that the robot models how people infer the ob-
jectives from observed behaviour, and Basu et al. suggest that
it can optimize its objective function based on comparative
queries [27].While there is more than one way to learn behav-
iours, Rosenthal-von der Pütten et al. [28] implement multiple
different ones on a humanoid robot based on user feedback to
play a card game, and results suggest that a simpler human-
like learning behaviour can reach a sufficient performance
level with acceptable evaluations, rather than a complex and
more human-like learning behaviour.

Still, the control policies resulting from machine learning
can be difficult to understand, even from domain experts.
Producing explanations to learned behaviour is studied by
the larger field of explainable AI. For instance, Ehsan et al.
[29] propose an automated method to explain the behaviour of
an agent playing the Frogger videogame based on an encoder-
decoder network that learns from a corpus of natural language

explanations. Similarly, inverse reinforcement learning is used
to generate natural language instructions in a navigation task
[30]. For collaborative robots, Hayes et al. [31••] propose
multiple algorithms to synthesize policy explanations that
are applicable to various types of robot controllers, including
some based on RL and deep RL. The fact that it generalizes to
multiple types of controllers suggests that it would apply to a
large range of interactive applications.

Machine Learning in HRI

Machine learningmethods are often used to analyse data gath-
ered from human-human to improve HRI. Therefore, the goal
is to learn models from human-human interactions, apply
them to HRI, and obtain more human-like and hopefully nat-
ural robot behaviours. For instance, human social activities
such as handshake, hug, help walking, help standing-up, fight,
push, talk, and draw attention were recognized from a contin-
uous stream of RGB-D data, combining temporal segmenta-
tion and classification, as well as a model for learning the
proximity-based, on Gaussian mixture models (GMM), priors
of the social activities [32]. In Rossi et al. [33], head pose from
RGB-D data was used to estimate users’ focus of attention via
a discriminative random regression forest algorithm.

Three successively harder tasks, e.g. the cleanup task, the
handover task, and the block-stacking, were investigated in
Jackson et al. [34] to validate a system which uses a virtual
reality system display and a Sony PlayStation DualShock 3
wireless controller. It was suggested that the use of such sys-
tem generated superior demonstrations for a deep neural net-
work without introducing a correspondence problem. In
Raggioli et al. [35], RL is used to improve user activity rec-
ognition performance adaptively, while in Sorostinean et al.
[36], RL addresses activity recognition for a robot that moni-
tors elderly people by applying the long-term convolutional
network approach.

A complex collaborative puzzle game, in which a frame-
work based on a partially observableMarkov decision process
(POMDP) coupled with a family of hidden Markov models
(HMM) to infer and correct a collaborator’s task understand-
ing during joint task execution, is presented in Tabrez et al.
[37].

Bayesian ToM was used to model dyadic storytelling in-
teractions in Lee et al. [38], in which the storytellers are
modeled as a POMDP planning problem and the listeners
are modeled as a dynamic Bayesian network with a myopic
policy. The Bayesian learning model is used in a multimodal
framework for grounding unknown synonymous object and
action names as reported in Roesler et al. [39]. The model is
learned through the robot visual perception and propriocep-
tion during its interaction with a human tutor. Online learning
of repeated stochastic games has also been suggested [40] as
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an efficient method to learn to collaborate with people through
cheap talk [41]. In Gao et al. [42], proximal policy optimiza-
tion (PPO) was used to learn robot approaching behaviour,
while in Vitiello et al. [43], the robot proxemics is adapted
with a neuro-fuzzy-Bayesian system.

An interesting application of ML methods is to predict
shopkeeper reactions from customer actions and interaction
context [44]. The proposed system utilizes neural networks
to first learn, through an attention network, which customer
actions are important to respond to and then learn via an
Interaction network how the shopkeeper should respond to
those important customer actions. In a similar application,
Doering et al. [45] went further and exceeded the capabilities
of a previous approach by Nanavati et al. [46], by having a
robot learn a short-term memory representation of interaction
history within a simulated camera shop scenario. The interest
in having a short-term memory can be more realistic as the
shopkeeper interacts with customers only for short periods of
time. Previously, in a scenario where a robot had to meet
strangers, support vector machines (SVM) were used tomodel
a polite approach behaviour [46]. An online probabilistic
model which learns both when and how to assist iteratively
was tested by users of a smart wheelchair platform with paired
haptic controllers [47]. Another framework tested on a smart
wheelchair is reported by Kim et al. [48]. The latter frame-
work is composed of a feature extraction module, an inverse
RLmodule, and a socially human-like adaptive path planning,
represented through a cost function that respects social vari-
ables, in dynamic environments.

Krening et al. [49] investigated how to create intelligent
agents by using interactive ML methods such as the
Newtonian action advice and the critique-driven policy shap-
ing which can easily be taught by non-specialized individuals
in training. Along with traditional ML performance metrics
such as cumulative reward, the previous study Krening et al.
used the human factor metrics such as frustration and results
suggest that the action advice performed better than the cri-
tique one.

Until recently, a lot of studies which modeled the human
behaviour utilized the Boltzmann noisily rational decision
model [50]. This decision model makes the assumption that
people approximately optimize a reward function and choose
trajectories in proportion to their exponentiated reward. Even
if the Boltzmann model has been successful in a variety of
robotics domains, Bobu et al. [51•] reformulated the
Boltzmann model and proposed another one called limiting
errors due to similar selections which supposes that human
trajectories lie in a continuous space rather than the supposi-
tion made by the Boltzmann model. The study reported an
inference improvement while using the new proposed deci-
sion model.

A quite interesting debate in HRI is whether a robot should
be built on an explicit model or it should learn a policy

directly. Choudhury et al. [52••] did not have interest in
responding to this precise research question, but instead report
a first comparison between three HRI paradigms: two based
on explicit modelling (model-based RL and ToM) and one on
model-free-based RL in an autonomous driving domain.
Among the reported results, it was found that model-free
methods require several orders of magnitude more data and
that the ToM one is robust to small changes, but with large
enough differences, the model-based methods can vastly sur-
pass the ToM method.

Another appealing idea is to combine ML algorithms, as
done, for example, by Moro et al. [53], where a robotic learn-
ing architecture was developed based on learning from dem-
onstration (LfD) and RL to effectively teach personalized be-
haviours to a social assistive robot such as Casper. To teach
robot motion using LfD, multiple ML approaches have been
proposed, notably incremental kinesthetic teaching [54, 55]
and HMM to learn affordances [56]. Kinesthetic teaching is
also compared with other approaches such as teleoperation in
Fischer et al. [57]. Furthermore, to learn from observations
instead of physical guiding, a Gaussian process latent variable
model has been proposed [58]. In Mohseni-Kabir et al. [59],
the use of bidirectional communication between a robot and a
human is introduced to interactively learn hierarchical tasks
from demonstrations.

Beyond emotion recognition, a Bayesian network is intro-
duced in Leyzberg et al. [60] for skill assessment of students to
personalize the behaviour of a robot tutor. Similarly, Gordon
et al. [61] use automatic facial expression recognition to per-
sonalize the motivation strategies of a social robot learning
companion. In Gao et al. [62], a tutor robot utilizes RL and
helps people solve grid-based logic puzzles called nonograms.
Furthermore, Park et al. [63] propose a model-free RL ap-
proach to produce a personalized policy shaping the behaviour
of a tutoring robot. Results suggest that a personalized policy
improves engagement of the child and the outcome of the
lessons in a literacy education setting. In a similar educational
scenario, decision trees, neural networks, and clustering algo-
rithms are used to learn from social interactions [64]. Other
machine learning approaches have also been used in learning
by teaching scenarios with children, notably principal compo-
nent analysis (PCA) [65], and inverse optimal control [66] to
model handwriting and RL to learn toy’s names and locations
[67].

Table 1 reports all studies investigated in this paper which
are based on ML methods. As expected, ML methods were
widely used in socially assistive and collaborative robots, with
increasing complexity as time passes. Indeed, in the last
2 years, more advanced ML and computationally intensive
methods were used, notably deep learning. Finally, recent
studies which compare the performances of multiple ML
methods on the same scenario open the door for the idea of
using “hybrid” ML methods, e.g. the use of multiple ML
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methods, such as model-based RL, ToM, and model-free-
based RL, which can be “activated” in the scenario in which
a better performance was observed.

Discussion

We provided an overview on studies which investigated ML
method-based SP and EB reported since 2014 in the ACM/
IEEE International Conference on Human-Robot Interaction,
ACM Transactions on Human-Robot Interaction, and the
International Journal of Social Robotics. Even with a relative-
ly small number of analysed references, this study covers
some important aspects for future HRI research, such as stud-
ies which try to bring some light in what which SP methods
are the most effective and how to obtain robots with EB while
using both classic and new ML methods. However, in the
following, some limitations that were encountered and that
we believe are worth discussing are presented for each of the
SP, EB, and ML methods’ directions.

Social Perception

There is a serious issue that can occur when performing online
learning of emotions, namely the fact that humans usually
have a non-immediate reaction time to robot “facial” expres-
sions. Still, Boucenna et al. [7] propose to solve this thanks to
the detection of the statistical contingency in order to obtain
statistically correct results.

Another possible problem while investigating facial recog-
nition in real-time situation can be related to the fact that some
people are less expressive than others, cases in which the robot
will certainly have some difficulties in recognizing facial ex-
pressions. Moreover, it seems to be difficult to recognize the
sadness emotion through both facial recognition [7] and touch
[11]. This can be linked to a lack of context and maybe this
raise the necessity on having a fusion of multiple ways in
which emotions can be recognized, as it is the case in
Devillers et al. [9] where a fusion of multiple speech systems
is discussed. However, the multiple fusion reported in
Devillers et al. [9] is a complex process and the obtain perfor-
mance was only of 38.7%, which clearly shows the difficulty
in working on spontaneous emotional data, especially with
subjects with particular voices, such as elderly people and
children.

Explainable Behaviours

While the influences of culture on expectation and responses
to robot have been studied in HRI [68], it is less common in
EB-specific studies. For example in Johnson et al. [69], all
participants were from the Netherlands, thereby increasing
the chances of representing a common culture. This same

limitation can apply to the study reported in Obaid et al.
[70]. Indeed, it can be of great advantage to the research com-
munity if the mentioned future work in EB that the synthetized
explanations or legible motions can be understood by people
coming from a wide range of cultural and social backgrounds.

Machine Learning

The work reported in Bobu et al. [51•] improved the
Boltzmann learning model in order to learn more accurate
human models. Still, feature misspecifications can be a possi-
ble limitation of the new method due to the reliance on a pre-
specified set of robot features for similarity selection. Even if
the results reported in Soh et al. [47] were very positive from
the part of the participants, a validation of the model with the
targeted population and in real-world situations needs to be
performed in order to obtain accurate feedback. As the work
proposed in Roesler et al. [39] seems to be the first to inves-
tigate grounding unknown synonymous object and action
names, it can be interesting to go further and be able to update
the learning parameters in case of new objects and actions.

Conclusion

The studies published since 2014 revealed that a large amount
of research was done in the studies of social assistive robots
and collaborative robots involving SP and EB based on ML
methods. Still, as many of the user studies are performed in a
laboratory environment and with participants which are not
the targeted users for the robotic systems, a lot of effort need to
be put in order to have models validated in real world with
non-trained and/or non-specialist users.

From an application point of view, a trend towards increas-
ing complexity and computational requirements was definite-
ly found in the ML methods that were applied since 2014.
Furthermore, as it was reported in this Table 1, the investigat-
ed studies report a great use of classical ML methods since
2014 and some recent studies (from the last 3 years) combine
different approaches in order to explore the advantage and
good performance of each in order to cover as many different
data sets as possible. Still, from a methodology perspective,
classical ML methods are being rethought and new methods
are emerging which make more human-like assumptions. As
reported in the investigated studies, different ML methods
were used over the years and some limitations of these
methods were found. These limitations can only open other
research venues such as the use of different approaches while
performing HRI. Hence, being able to take only the advan-
tages of each approach may only lead to further improvement.

Studies involving SP and EB responded to appealing ques-
tions for the HRIs, such as humans are capable of imitating a
robotic system and the imitation and interaction with the robot
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are more naturally performed when the human was already
familiarized with the robot. As human SP is complex, and
little is known about the “real” models used by humans to
perceive them, it is important to keep in mind that first, robots
should utilize simple models which can explain human behav-
iour rather than complex ones which can make humans over-
estimate the robot’s capabilities. Finally, as people have the
ability to switch between their behaviours and perception ap-
proaches, it can be a good practice to imitate this adaptability
and use multiple models or techniques to make robots better
perceive their environments and react in a more human-like
way, leading towards more natural HRI.
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