
Received December 27, 2019, accepted January 10, 2020, date of publication January 20, 2020, date of current version February 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2967793

Key-Aggregate Searchable Encryption, Revisited:
Formal Foundations for Cloud Applications, and
Their Implementation
MASAHIRO KAMIMURA 1, NAOTO YANAI 1, (Member, IEEE),
SHINGO OKAMURA 2, (Member, IEEE), AND
JASON PAUL CRUZ 1, (Member, IEEE)
1Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
2National Institute of Technology, Nara College, Nara 639-1080, Japan

Corresponding author: Naoto Yanai (yanai@ist.osaka-u.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science KAKENHI Number 18K18049, in part by the
Innovation Platform for Society 5.0 at MEXT, and Secom Science and Technology Foundation.

ABSTRACT In the use of a cloud storage, sharing of data with efficient access control is an important
requirement in addition to data security and privacy. Cui et al. (IEEE Trans. on Comp. 2016) proposed key-
aggregate searchable encryption (KASE), which allows a data owner to issue an aggregate key that enables a
user to search in an authorized subset of encrypted files by generating an encrypted keyword called trapdoor.
While the idea of KASE is elegant, to the best of our knowledge, its security has never been discussed
formally. In this paper, we discuss the security of KASE formally and propose provably secure schemes.
We first introduce our provably secure scheme, named first construction, with respect to encrypted files and
aggregate keys in a single-server setting. In comparison with the scheme of Cui et al., the first construction is
secure without increased computational costs. Then, we introduce another provably secure scheme, named
main construction, with respect to trapdoors in a two-server setting. The main construction guarantees the
privacy of a search, encrypted files, and aggregate keys. Considering 5,000 encrypted keywords, the first
construction can finish search within three seconds and the main construction can finish search within
six seconds.

INDEX TERMS Key-aggregate searchable encryption, searchable encryption, data sharing, provable
security.

I. INTRODUCTION
A. BACKGROUND
A cloud storage service provides a solution for storing,
accessing, and sharing files over the Internet. However, such
a service may be vulnerable and stored data may be leaked
without the permission or knowledge of the data owners. To
prevent data leakage, data owners would want to encrypt their
files before uploading them to a cloud storage. However, sim-
ply encrypting files makes searching for specific files inef-
ficient because a user would need to download and decrypt
all files and then check which files are needed. Moreover,
to maximize the capabilities of the cloud and features of a
cloud storage, data owners should also be able to share their
files to intended users. Searchable encryption [1] allows

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

users to search over encrypted data with a chosen keyword
without decryption of the encrypted data. Searchable encryp-
tion is suitable for storage of data even in a vulnerable cloud
storage service. In particular, even if an adversary exploits
control of a cloud storage and leaks stored data, the stored
data remain safe and protected by encryption. In recent years,
several researchers [2]–[4] created schemes that authorize
other users to search over encrypted data, therefore allowing
data owners to share their encrypted data in the multi-user
setting.

On this background, this paper aims to introduce a scheme
that authorizes search over encrypted data, i.e., the searcha-
bility, efficiently. Suppose that a data owner who owns a set
of original data can issue a key that enables other users to
search in a subset of its encrypted data without decryption.
In such setting, the following features are desirable: (1) the
data owner issues only a single short key that is independent of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 24153

https://orcid.org/0000-0003-3182-5534
https://orcid.org/0000-0002-0817-6188
https://orcid.org/0000-0001-5602-6494
https://orcid.org/0000-0002-9935-1534


M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

FIGURE 1. Overview of key-aggregate searchable encryption (KASE).

both the number of encrypted data and the number of users the
encrypted data will be shared to, (2) and the encrypted data
can be shared with users without changing or reproducing
the encrypted data. These features can make the operations
of a cloud storage service efficient because the keys and
encrypted data become easier to manage for both a data
owner and users. We note that these features are not implied
in previous systems, namely, multi-user searchable encryp-
tion [5]–[8] and multi-key searchable encryption [2], [4],
which do not include efficient management as described
above. Therefore, achieving the features described above is
a non-trivial problem.

Cui et al. [9] proposed key-aggregate searchable encryp-
tion (KASE) for the underlying purpose. An overview of
KASE is shown in Figure 1. In KASE, a data owner issues
aggregate keys that allow data users to search over authorized
data only, i.e., data users generate trapdoors to search over
encrypted data. The data sizes of ciphertexts and aggregate
keys are independent of the number of data users the cipher-
texts will be shared to, and the data size of ciphertexts is
independent of the number of users. Therefore, KASE can
improve the efficiency of the operations of a cloud storage
service under the problem setting described above.

However, Cui et al. did not provide formal definitions
of the security of KASE and its security proofs. Moreover,
Kiayias et al. [3] introduced an attack against the scheme of
Cui et al. in which encrypted keywords in ciphertexts are dis-
tinguishable for an adversary. To the best of our knowledge,
no KASE scheme with formal security definitions and proofs
has been introduced, even in subsequent works [10], [11],
making it an open problem.

B. OUR CONTRIBUTIONS
In this paper, we propose KASE schemes with provable
security.1 To the best of our knowledge, our proposed
schemes are the first provably secure constructions. We also
define a syntax and its security formally. We note that con-
structing a provably secure KASE scheme is non-trivial.
As will be described in Section III-D in detail, KASE requires
a data owner to control the searchability via only a single short
key and without creating different ciphertexts of the same

keyword for different users. The algebraic structures that can
be used to construct a KASE scheme are limited by the use
of the single short key and keeping encrypted keywords.

In this paper, we introduce two provably secure KASE
schemes named first construction and main construction.
To create the schemes, we focus on the mathematical fea-
tures of the cryptographic primitives used in constructing
KASE and combine the existing instantiations of these cryp-
tographic primitives. As will be described in Section IV-A in
detail, some instantiations of broadcast encryption [12], [13]
and aggregate signatures [14] are generally combined as
foundations.

The first construction achieves keyword privacy, which
guarantees the confidentiality of encrypted keywords, and
aggregate key unforgeability, which authorizes the search-
ability of keywords from a data owner to users. In addi-
tion to keyword privacy and aggregate key unforgeability,
the main construction also achieves trapdoor privacy, which
guarantees the privacy of search for the users, by using secret
sharing [15].

The computational cost and the size of ciphertexts in the
first construction are identical to those of the scheme by
Cui et al. [9], but the first construction is provably secure.
We performed experiments by considering 5,000 keywords,
and the results show that our two constructions can encrypt
all keywords within one second, the first construction can
perform search within three seconds, and the main construc-
tion can perform search within six seconds. We leave the
construction of a generic scheme based on any instantiation of
the primitives we used as an open problem.We have also pub-
lished our source codes (https://github.com/naotoyanai/kase).

C. POTENTIAL APPLICATIONS
KASE has many potential applications and we consider that it
can generally be applied in systems that require the storage of
sensitive data that will be shared to multiple users. As specific
examples, we describe cloud-assisted content-sharing net-
works with cryptography [16] and privacy-preserving authen-
ticated communication in smart home environment [17]
below.

Content sharing networks are networks that are scalable
in terms of the number of users, storage size, and network
bandwidth. Cloud-assisted content sharing networks with
cryptography mainly aim to enable both a service provider
and users to control the privacy of data flexibly and scal-
ably. According to Wu et al. [16], cloud-assisted content
sharing networks with cryptography allows: (1) an individ-
ual to freely produce any number and any kind of online
media, such as texts, images, and videos; (2) an individ-
ual to grant any access to his/her media to anyone at any
time; (3) an individual to reveal a large number of attributes
(e.g., age, address, and gender), some of which can be
dynamic; and (4) an individual to share contents using var-
ious devices and bandwidths, and hence demand different
access privileges for the same media. Wu et al. proposed an
instanton of cloud-assisted content sharing networks with

24154 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

cryptography by utilizing attribute-based encryption [18].
However, attribute-based encryption does not provide the
searchability for ciphertexts, and hence the content of cipher-
texts cannot be searched without decryption. This limitation
is inefficient and may not be appealing to users because
users take a long time to decrypt all of the content of cipher-
texts. Moreover, attribute-based encryption requires a trusted
third-party to generate secret keys, creating a potential single
point of failure in the entire system. Furthermore, the number
of secret keys increases with the number of attributes, and
thus the size of a storage and management costs of the keys
also increase with the number of users and themanagement of
authorization for content sharing. In contrast, KASE provides
searchability of contents of ciphertexts and a fixed size of
keys for both a data owner and users, solving the prob-
lems of cloud-assisted content-sharing networks described
above. Therefore, KASE is desirable for use in cloud-assisted
content-sharing networks.

The example of service utilizing content sharing networks
is the movie contents sharing service. Consider for exam-
ple a scenario where customers (data users) want to watch
movies (contents) that are managed by a company (data
owner). The company gives each user a single aggregate
key depending on the customers’ interests. If a customer is
interested in ‘‘Documentary’’ and ‘‘Sci-Fi’’ genres, then the
company generates a single aggregate key with the indexes
of Documentary and Sci-Fi and gives this aggregate key to
the customer. Using this aggregate key, the customer can
search for Documentary and Sci-Fi movies on the company’s
encrypted contents and watch them. As a concrete example,
the service of Amazon Prime Video in Japan offers about
1,000 video contents for each genre, e.g., 955 documentary
movies and 303 Sci-Fimovies. Our experimental results show
that our KASE schemes can search thousands of data within
a few seconds, and therefore we imagine that our KASE
schemes can be used effectively in searching for movies
in the content sharing network example above. In general,
the number of keys increases as the number of genres the cus-
tomers are interested in increases. Nevertheless, in our KASE
schemes, the company only needs to give a single aggregate
key regardless of the number of genres, and therefore the
management of customers’ keys is easy and efficient.

The privacy-preserving authenticated communication in
smart home environment by Poh et al. [17] is an application
where a user can securely utilize smart devices that accu-
mulate private information, such as sleeping patterns and
medical information. Poh et al. realized such an application
in the single-user setting by integrating searchable encryp-
tion and authenticated key-establishment protocol. However,
smart devices are continuously becoming more popular, and
thus the use of smart devices in the multi-user setting should
be considered. For example, in a case with a large number
of users, e.g., employees in a workplace, each employee has
a separated data access per device. KASE can be used to
control access of each employee to devices and their data by
the use of a single key. Thus, a more efficient and attractive

usage of device management can be expected with the use
of KASE.

D. RELATED WORKS
Following the original KASE proposed by Cui et al. [9], many
KASE schemes have been proposed in [10], [11], [19], [20],
[21]. We note that the constructions of the schemes pro-
posed in [10], [11] are essentially the same as the con-
struction by Cui et al. and their security have never been
proven. Liu et al. [11] introduced the verifiability of search
results, and Li et al. [10] discussed situations with multi-
ple data owners. Yao et al. [19] proposed a lattice-based
KASE scheme, but they did not discuss its security proofs.
Wang et al. [20] proposed a scheme wherein an adversary
cannot generate a new aggregate key by combining some
aggregate keys, but they also did not prove the security of
their scheme. Meanwhile, Mukti et al. [21] proposed KASE
with multiple data owners and discussed its security for-
mally. Unfortunately, their definitions are incomplete and
their proofs are wrong. In particular, in their syntax, any
keyword can be searched for any documents, i.e., even in
unauthorized documents, as long as the keyword is included
as a part of ciphertexts. Moreover, in their proposed con-
struction, the bilinear maps are nested for the test algorithm,
which is an unworkable setting for bilinear maps. In addi-
tion, the distribution of the simulated secret keys and public
keys in their proofs is different from that of their proposed
algorithms.

As a special research alleviating the conditions of KASE,
Zhou et al. [22] proposed a searchable and secure scheme
in the situation where remote sensor devices encrypt data.
This scheme individually changes the key for aggregate key
issuance and the key for data encryption. However, this
feature raises an issue of increased key management for a
data owner. Patranabis et al. [23] also considered variants of
KASE, but their scheme has no search delegation to other
users. Therefore, the situation that KASE normally handles is
different, so it can be said that it is different from the problem
dealt with in this paper.

In a framework of conventional searchable encryption,
the multi-user setting [5]–[8], [24]–[27] and the multi-key
setting [2], [4], [28] have been known to control the search-
ability for each document. However, an efficient control of
the searchability, such as issuance of aggregate keys which
is one of the main problems in KASE, is out of the scope of
such settings.

Searchable attribute-based encryption (SABE) [29]–[33] is
an encryption scheme similar to KASE. SABE is a searchable
encryption scheme in which documents corresponding to
attributes are searchable for users who own secret keys of
the attributes. While SABE provides searchability along with
attributes for each document, the size of secret keys depends
on the number of attributes, i.e., the key size is linear. This
problem in SABE is a different problem from KASE.

As additional related works, key-aggregate crypto-
systems [34]–[36] outsource the decryption of data.

VOLUME 8, 2020 24155



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

Among them, Patranabis et al. [36] showed a provably secure
scheme. However, the searchability for ciphertexts is out
of the scope of these works. Since the searchability is not
implied generally, constructing a provably secure KASE
remains an open problem.

For further security analysis, recent works [37], [38]
have proposed several attacks against searchable encryption.
Zhang et al. [37] proposed the file injection attack against the
query privacy of single-keyword and conjunctive searchable
encryption schemes. In their attack, a server (adversary) can
extract information from the user’s queries with very few
injected files. Ning et al. [38] proposed the passive attacks
against symmetric searchable encryption schemes. Although
these attacks are out of the scope of provable security frame-
work, protecting KASE from these attacks is desirable in a
practical scenario. We plan to study these attacks as future
work.

1) PAPER ORGANIZATION
The rest of this paper is organized as follows. The mathemat-
ical background to understanding this work is described in
Section II, and then a definition of KASE and the technical
difficulty in constructing a KASE scheme is presented in
Section III. The main idea to overcome the difficulty and
the proposed KASE schemes are discussed in Section IV,
and then their security proofs are presented in Section V.
Implementation, evaluation, and analysis are discussed in
Section VI. Finally, the conclusion and future direction are
presented in Section VII.

II. PRELIMINARIES
In this section, we present the background on groups with
bilinear maps and their security assumptions.

A. BILINEAR MAPS
The proposed schemes are based on bilinear maps and bilin-
ear groups. In this paper, we recall the standard description
defined in [39]. Here, let G, H, and GT be groups with
the same prime order p. We then define bilinear groups
(G,H,GT ) and bilinear maps e : G×H→ GT as follows:

1) Bilinear groups (G,H,GT ) are two cyclic groups with
a prime order p.

2) g ∈ G and h ∈ H are generators of G and H,
respectively.

3) A bilinear map e : G × H → GT is a map with the
following properties:

a) Bilinearity. For any value u ∈ G, v ∈ H and a, b ∈
Z∗p, e(ua, vb) = e(u, v)ab holds.

b) Non-degeneracy. e(g, h) 6= 1 holds, where 1
means an identity element over GT .

c) Computability. For any value u ∈ G and h ∈ H,
e(u, v) can be calculated efficiently.

When G = H, bilinear groups are said to be symmet-
ric and denoted by (G,GT ) for the sake of convenience.

Likewise, G 6= H, bilinear groups are said to be asymmetric
and denoted by (G,H,GT ).

B. COMPLEXITY ASSUMPTIONS
In this section, we define security assumptions utilized in the
proposed schemes.

1) BDHE ASSUMPTION IN (G,GT )
The bilinear Diffie-Hellman exponentiation (BDHE) assump-
tion in (G,GT ) is an assumption introduced by
Boneh et al. [12].
Definition 1 ((ε, l)-BDHE Assumption in (G,GT )): We say

the l-BDHE problem in (G,GT ) with a security parameter
1k as, for a given (g, h, gα, gα

2
, . . . , gα

l
, gα

l+2
, . . . , gα

2l
,Z )

with uniformly random (g, h) ∈ G, α ∈ Z∗p and (G,GT ) as

input, determiningwhether Z ∈ GT is e(gα
l+1
, h) or a random

value R. We say that a polynomial time algorithmA can solve
the l-BDHE problem in (G,GT ) with an advantage ε if the
following relation holds:

|Pr[A(g, h, yg,α,l, e(g
αl+1 , h),G,GT ) = 0]

−Pr[A(g, h, yg,α,l,R,G,GT ) = 0]| ≥ ε,

where yg,α,l = (gα, gα
2
, . . . , gα

l
, gα

l+2
, . . . , gα

2l
). We say

the (ε, l)-BDHE assumption holds in (G,GT ) if there is no
polynomial-time algorithm that can solve the l-BDHE prob-
lem in (G,GT ) with ε.

2) DHE ASSUMPTION IN G
The Diffie-Hellman exponentiation (DHE) assumption in G
is an assumption introduced by Herranz et al. [40].
Definition 2 ((ε, l)-DHE Assumption in G): We say the

l-DHE problem with a security parameter 1k as, for a given
(g, gα, gα

2
, . . . , gα

l
, gα

l+2
, . . . , gα

2l
) with uniformly random

g ∈ G, α ∈ Z∗p and (G,GT ) as input, computing gα
l+1
.

We say that a polynomial time algorithm A can solve the
l-DHE problem in G with an advantage ε if the following
relation holds:

Pr[A(g, yg,α,l, g
αl+1 ,G,GT )] ≥ ε,

where yg,α,l = (gα, gα
2
, . . . , gα

l
, gα

l+2
, . . . , gα

2l
). We say

the (ε, l)-DHE assumption holds in G if there is no
polynomial-time algorithm that can solve the l-DHE problem
in G with ε.

3) XDH ASSUMPTION IN (G,H)
The external Diffie-Hellman (XDH) assumption in (G,H)
is an assumption introduced in [41], [42]. Note that, unlike
the BDHE assumption and the DHE assumption described
above, the XDH assumption holds on only asymmetric bilin-
ear groups (G,H,GT ).
Definition 3 (ε-XDH Assumption in (G,H)): We say the

XDH problem in (G,H) as, for a given (g, h, ga, gb,Z ) with
uniformly random g ∈ G, h ∈ H, (a, b) ∈ Z∗p and (G,H,GT )
as input, determining whether Z ∈ G is gab or is a random

24156 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

value R. We say that a polynomial time algorithmA can solve
XDH problem in (G,H) with advantage ε if the following
relation holds:

|Pr[A(g, h, ga, gb, gab,G,H,GT ) = 0]

−Pr[A(g, h, ga, gb,R,G,H,GT ) = 0]| ≥ ε.

We say ε-XDH assumption holds in (G,H) if there is no
polynomial-time algorithm that can solve the XDH problem
in (G,H) with ε.

III. KEY-AGGREGATE SEARCHABLE ENCRYPTION(KASE)
In this section, we describe the main problem statement
of key-aggregate searchable encryption (KASE) [9]. Then,
we newly define a syntax of algorithms and the security for
KASE. These definitions are our contributions.

A. PROBLEM STATEMENT
In key-aggregate searchable encryption (KASE) [9], a data
owner provides a ‘‘single-and-short’’ aggregate key that
enables a user to access documents for authorization of
search. Each user, which we call data user for the sake of
convenience, is given an aggregate key as secret information
and then generates a ‘‘single-and-short’’ trapdoor to search
for a keyword from the documents. In doing so, the following
requirements should be satisfied by KASE:
• Searchability: A user can generate trapdoors for any
keyword to search in encrypted documents.

• Compactness: The size of both aggregate keys and trap-
doors should be independent of the number of doc-
uments and number of users. In addition, the size
of encrypted keywords should be independent of the
number of users.

• Keyword Privacy: An adversary cannot extract informa-
tion about the original keywords from encrypted key-
words. That is, a person who does not have an aggregate
key corresponding to indexes of the documents cannot
get any information from the encrypted keyword.

• Aggregate Key Unforgeability: An adversary cannot
search for any keyword without authorization from a
data owner. That is, an adversary cannot perform key-
word search over the documents that are not related to
the known aggregate key and it cannot generate new
aggregate keys for other sets of documents from the
known keys.

These requirements are also shown in the original work
of KASE [9]. The compactness and the searchability are
functionality for KASE while the keyword privacy and the
aggregate key unforgeability are security for KASE.

As described above, the compactness must be satisfied
because the main motivation of KASE is to keep aggregate
keys and trapdoors short while providing the searchability.
We note that the size of encrypted keywords may depend
on the number of documents because the data size of the
encrypted keywords with respect to the number of users is
the out of the scope of the compactness. The keyword privacy

is a requirement that prevents an adversary from getting
information contained in encrypted keywords. Meanwhile,
aggregate key is a new notion required in KASE and has
not been discussed in general searchable encryption. How-
ever, because documents outside the scope of authorization
should be unsearchable, the aggregate key unforgeability
should be discussed. Even if the keyword privacy is satisfied,
there is a possibility that an adversary can search over docu-
ments that are outside the scope of authorization. Thus, both
the keyword privacy and the aggregate key unforgeability
should be discussed.

As another security requirement, the following should be
considered:

• Trapdoor Privacy: An adversary cannot determine a key-
word embedded in a given trapdoor. That is, even when a
user asks an untrusted cloud server to search, the server
cannot obtain the keyword except for the search results.

We note that the trapdoor privacy is an additional security
requirement, i.e., only a few schemes [3], [43], [44] satisfy
the trapdoor privacy even in the conventional searchable
encryption. However, satisfying the trapdoor privacy is an
important feature. When keywords embedded in trapdoors
are revealed, the original keywords can be analyzed from
encrypted keywords by looking up the search results. In other
words, if the trapdoor privacy is unsatisfied, then the keyword
privacy may be threatened. Thus, we consider that a KASE
scheme should satisfy all requirements described above.

To the best of our knowledge, no provably secure KASE
scheme or formal security definitions have been proposed.
Thus, in this paper, we define the requirements above
formally.

B. ALGORITHMS
The algorithms of KASE are defined as follows:

• params ← Setup(1λ, n): This algorithm is run by a
cloud service provider to set up the scheme. On input
of a security parameter 1λ and the maximum number
n of possible documents owned by a data owner, the
algorithm outputs a public parameter params.

• sk ← KeyGen(params): This algorithm is run by a data
owner to generate a secret key sk .

• ci,l ← Encrypt(params, sk, i,wl): This algorithm is run
by a data owner to encrypt a keyword which belongs to
the ith document and generate an encrypted keyword.
On input of the data owner’s secret key sk , a document
index i, and a keyword wl ∈ KS whereKS is a keyword
space, the algorithm outputs an encrypted keyword ci,l .

• kagg← Extract(params, sk, S): This algorithm is run by
a data owner to generate an aggregate key for delegating
the keyword search capability for a certain set of docu-
ments to other data users. On input of the data owner’s
secret key sk and a set S of indexes of documents, the
algorithm outputs an aggregate key kagg.

• Tr ← Trapdoor(params, kagg, S,wl): This algorithm is
run by a data user who performs the keyword search.

VOLUME 8, 2020 24157



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

On input of an aggregate key kagg and a keyword wl ,
the algorithm outputs a single trapdoor Tr .

• Tri ← Adjust(params, i, S,Tr, {f1,i}i∈[1,m1]): This algo-
rithm is run by a cloud server to adjust the given aggre-
gate trapdoor for each document. On input of a set S
of indexes of documents, the index i of the target docu-
ment, an aggregate trapdoor Tr , and auxiliary functions
{fi}i∈[1,m1](m1 ∈ N) possibly, the algorithm outputs each
trapdoor Tri for the ith target document in S.

• b ← Test(params,Tri, S, ci,l, {f2,i}i∈[1,m2]): This algo-
rithm is run by a cloud server to perform keyword
search over an encrypted keyword. On input of a trap-
door Tri, the document index i and auxiliary functions
{fi}i∈[1,m2](m2 ∈ N) possibly, the algorithm outputs true
or false to denote whether the ith document contains the
keyword wl .

We note that the syntax above represents a multi-server
setting that includes multiple cloud servers. The syntax can
contain multiple servers by setting auxiliary functions sepa-
rately for each cloud server in the Adjust and Test algorithms.
We define the correctness of the syntax of KASE as

follows:
Definition 4 (Correctness): For any document containing

the keyword wl with index i ∈ S, We say that a KASE
scheme satisfies the correctness if the following statement
holds: for all 1λ, n ∈ N, i ∈ [1, n],wl ∈ KS , when a
public parameter params ← Setup(1λ, n) and a secret key
sk ← KeyGen(params), ci,l ← Encrypt(params, sk, i,wl)
are used, Test(params,Tri, S, ci,l, {f2,i}i∈[1,m2]) = true
if Tr ← Trapdoor(params, kagg, S,wl) and Tri ←
Adjust(params, i, S,Tr, {f1,i}i∈[1,m1]).

The correctness defined above imposes the searchability
of KASE because the correctness guarantees that a data user
can search for any keyword without decryption. Moreover,
the syntax described above is identical to the abstraction of
the algorithms proposed in the original work of KASE [9]
except that the symmetric key setting instead of the public
key setting in [9].

We define the compactness of KASE as follows:
Definition 5 (Compactness): We say that KASE satisfies

the compactness if the sizes of both aggregate keys and
trapdoors are independent of the number n of encrypted
documents and the number m of data users, i.e., O(1) with
respect to n and m, and the size of encrypted keywords is
independent of m, i.e., O(n) with respect to n and m.

C. SECURITY DEFINITIONS
In this section, we define three security requirements for
KASE, namely, the keyword privacy, the aggregate key
unforgeability, and the trapdoor privacy. The security require-
ments are defined by the following game between an adver-
sary A and a challenger C. For each game, both C and A are
given (1λ, n) as input, A is allowed to get aggregate keys,
encrypted keywords, and trapdoors in the query phase by
accessing the key extraction oracle OExtract , the encryption

oracle OEncrypt , and the trapdoor oracle OTrapdoor , respec-
tively. In particular, A accesses each oracle as follows:
• OExtract : by taking S ⊆ [1, n] as input, return kagg ←
Extract(params, sk, S).

• OEncrypt : by taking i ∈ [1, n],wl ∈ KS as input, return
ci,l ← Encrypt(params, sk, i,wl).

• OTrapdoor : by taking S ⊆ [1, n],wl ∈ KS as input,
returnTr ← Trapdoor(params,Extract(params, sk, S),
S,wl).

Definition 6 ((ε, n)-Keyword Privacy): In this game,
an adversary A tries to distinguish a challenge keyword or
a random keyword from a challenge encrypted keyword.
• Init: A declares the index i∗ ∈ [1, n] of a challenge
document used in the guess phase and sends it to C.

• Setup: C generates params ← Setup(1λ, n) and sk ←
KeyGen(params), and sends params to A.

• Query: A can query to OExtract at most n − 1 times2

and can query to OEncrypt at arbitrary times. Here,
when A queries to OExtract , it imposes the constraint
S ⊆ [1, n] \ {i∗}.

• Guess:A declares a challenge keyword wl∗ and sends it
to C. C randomly chooses θ ∈ {0, 1}. If θ = 0, then C
sets wθ = wl∗ . Otherwise, i.e., θ = 1, C sets a random
keyword as wθ , where |w0| = |w1|. C sends ci∗,θ ←
Encrypt(params, sk, i∗,wθ ) to A. A then selects
θ ′ ∈ {0, 1}.

We say KASE satisfies the (ε, n)-keyword privacy if the fol-
lowing relation holds forA’s advantage with any probabilis-
tic polynomial time algorithm and 1λ with any sufficiently
large size:

Adv := |Pr[θ = θ ′]− 1/2| < ε

Definition 7 ((ε, n)-Aggregate Key Unforgeability): In this
game, an adversary A tries to forge a valid aggregate key
where A can search encrypted keywords with the aggregate
key.
• Setup: C randomly chooses i∗ ∈ [1, n]. C generates
params ← Setup(1λ, n) and sk ← KeyGen(params),
and then sends params, i∗ to A.

• Query: A can query to OExtract at most n − 1 times
and can query to OEncrypt at arbitrary times. Here,
when A queries to OExtract , it imposes the constraint
i∗ 6∈ S.

• Forge: A outputs S∗ ⊆ [1, n] and k∗agg, where S∗

includes i∗, i.e., i∗ ∈ S∗.
We say KASE satisfies the (ε, n)-aggregate key unforgeabil-

ity if the following relation holds forA’s advantage with any
probabilistic polynomial time algorithm, keyword wl and 1λ

with any sufficiently large size:

Adv : = Pr[Test(params,Adjust(params, i∗, S∗,

Trapdoor(params, k∗agg, S
∗,wl))) = Test(params,

2IfA can access toOExtract more than n times,A can generate trapdoors
for every index.A can trivially break any scheme without loss of generality.
The restriction is also necessary for the remaining definitions.

24158 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

Adjust(params, i∗, S∗,Trapdoor(params,Extract

(params, sk, S∗), S∗,wl)))] < ε

Definition 8 ((ε, n)-Trapdoor Privacy): In this game,
an adversary A tries to distinguish a challenge keyword or
a random keyword from the given challenge trapdoor.

• Init: A declares a set S∗ ⊆ [1, n] of indexes and a
challenge keyword wl∗ used in the guess phase, and
sends it to C.

• Setup: C generates params ← Setup(1λ, n) and sk ←
KeyGen(params), and then sends params to A.

• Query: A can query to OTrapdoor at most n− |S∗| times
and can query to OEncrypt at arbitrary times. Here,
when A queries to OEncrypt , it imposes the constraint
wl 6= wl∗ ∧ i 6∈ S∗.

• Guess: C randomly chooses θ ∈ {0, 1}. If θ = 0 then
C sets wθ = wl∗ . Otherwise, i.e., θ = 1, C sets a
random keyword as wθ , where |w0| = |w1| holds. C
sends Tr∗ ← Trapdoor(params, k∗agg, S

∗,wθ ) to A. A
then selects θ ′ ∈ {0, 1}.

We say KASE satisfies the (ε, n)-trapdoor privacy if the fol-
lowing relation holds forA’s advantage with any probabilis-
tic polynomial time algorithm and 1λ with any sufficiently
large size:

Adv := |Pr[θ = θ ′]− 1/2| < ε

D. TECHNICAL DIFFICULTY
Conventional searchable encryption [1], [45], [46] can be
thought of performing the same search functionality as
KASE, but the number of secret keys possessed to a data user
and the number of trapdoors are proportional to the number
of documents stored in cloud. Thus, the compactness cannot
be satisfied.

The intuition of KASE’s difficulty lies in the trade-off
between security and features. That is, there is a possibility
that security cannot be satisfied if the focus is only satisfying
the compactness. In the case of KASE, the algebraic structure
is limited because the sizes of aggregate key and trapdoor
need to be O(1) regardless of the number of documents and
the number of users. Therefore, potential configurations that
satisfy searchability are limited. Furthermore, for the trap-
door privacy, the aggregate key must already have a concrete
algebraic structure, and thus a trapdoor that uses only the
aggregate key necessarily hasmore restrictive algebraic struc-
tures. This makes the trapdoor privacy even more difficult to
satisfy. In fact, Kiayias et al. [3] showed the attack against
encrypted keywords and trapdoors in Cui et al.’s scheme. This
implies that it is difficult to construct a KASE scheme that
satisfies security and features at the same time. In addition,
note that Kiayias et al.’s attack scenario against Cui et al.’s
scheme can be included in this oracle definition, considering
the difference between the syntax of the secret key and the
public key.

IV. CONSTRUCTIONS
In this section, we propose two constructions, namely,
the first construction and the main construction, following
the security requirements described in Section III-C. The
first construction satisfies the keyword privacy and the aggre-
gate key unforgeability. The main construction satisfies the
trapdoor privacy in addition to the keyword privacy and the
aggregate key unforgeability.

A. IDEA
Our main idea of KASE is to combine broadcast encryption
(BE) [12], [13] and aggregate signatures (AS) [14]. BE is
an encryption scheme that allows a specified set of users to
decrypt ciphertext whereby a set of indexes corresponding
to the user index is embedded in ciphertexts. Intuitively,
the searchability can be realized by treating a decryption
algorithm of BE as a test algorithm of KASE. The keyword
privacy can then be satisfied by utilizing the ciphertext secu-
rity of BE. Furthermore, we construct an aggregate key in the
form of AS [14]. The signature size can be aggregated to a
fixed length regardless of the number of users, and hence the
compactness can be satisfied by keeping the construction of
AS in aggregate keys. This also implies that the aggregate key
unforgeability can be satisfied via the unforgeability of AS.

When we considered the idea of combining BE and AS,
we found that the BE proposed by Boneh et al. [12] and the
AS proposed by Boneh et al. [14] could be combined. Our
first construction is close to a simple combination and can
be constructed by a single server. However, trapdoor is out
of the scope of this construction, i.e., the trapdoor privacy is
unsatisfied.

For this reason, we also propose the main construction
that satisfies the trapdoor privacy. In our main construction,
we embed random values in trapdoors to make the trapdoors
probabilistic. In doing so, to satisfy the searchability with the
trapdoors, it is necessary to embed the same random values
in encrypted keywords on a cloud. However, if the random
values are sent to the cloud, the cloud can also extract the
original keywords from the given trapdoor. Thus, we further
utilize the idea of secret sharing for these random values. We
also prepare for two servers that do not collude with each
other. A data user distributes the random values embedded
in the trapdoors into two shares, and then sends the shares to
each server individually. By constructing the test algorithm
in a way such as n-out-of -n threshold decryption [47], [48],
the random values can be embedded in encrypted keywords
and public parameters without knowing the original random
values themselves. The approach described above allows
search over ciphertexts and satisfies the trapdoor privacy.

B. FIRST CONSTRUCTION
The algorithms for the first construction are as follows:

• params← Setup(1λ, n): GenerateB= (p,G,GT , e(·, ·))
as a bilinear map and bilinear groups, where p is an order

VOLUME 8, 2020 24159



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

such that G and 2λ < p < 2λ+1. Set n as the max-
imum number of documents. For i ∈ {1, 2, . . . , n, n +
2, . . . , 2n}, pick a random generator g ∈ G and a random
α ∈ Zp, and then compute gi = g(α

i)
∈ G. Select

a one-way hash function H : {0, 1}∗ → G. Finally,
output a public parameter params = (B,PubK ,H ),
where PubK = (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n.

• sk ← KeyGen(params): Pick a random β ∈ Zp and
output a secret key sk = β.

• ci,l ← Encrypt(params, sk, i,wl): Pick a random
ti,l ∈ Zp and output an encrypted keyword ci,l =
(c1,i,l, c2,i,l, c3,i,l) by computing the following:

c1,i,l = gti,l , c2,i,l = (gβ · gi)ti,l , c3,i,l =
e(H (wl), g)ti,l

e(g1, gn)ti,l
.

• kagg ← Extract(params, sk, S): For the given sub-
set S ⊆ [1, n] which contains the indexes of docu-
ments, output an aggregate key kagg by computing the
following:

kagg = 5j∈Sg
β

n+1−j.

• Tr ← Trapdoor(params, kagg, S,wl): For all docu-
ments relevant to the given aggregate key kagg, generate
a single trapdoor Tr for the keyword wl by computing
the following:

Tr = kagg · H (wl).

• Tri ← Adjust(params, i, S,Tr): For each document in
the given set S, output trapdoor Tri by computing the
following:

Tri = Tr ·5j∈S,j6=ign+1−j+i.

• b← Test(params,Tri, S, ci,l): For the ith document and
the keyword embedded in Tri, output true or false by
judging whether the following equation holds or not:

e(Tri, c1,i,l)
e(c2,i,l, pub)

=
? c3,i,l,

where pub = 5j∈Sgn+1−j.
Note: The first construction may seem to be the same

as the construction by the Cui et al. [9], but these con-
structions are rigorously different. In the encrypt algorithm
of Cui et al.’s scheme, each random number t embedded in

encrypted keywords is different for each document. However,
the same random number is embedded in encrypted key-
words with the same document index. For any document with
index i, all the encrypted keywords contain a common random
number ti, i.e., for any indexes i, j such that i 6= j, ti 6= tj holds.
By utilizing this feature, an adversary can extract the original
keyword wl to be encrypted from multiple encrypted key-
words. In contrast, the first construction embeds an individual
random number ti,l for not only each document but also for
the same document index. Thus, an adversary cannot extract
the original keyword wl even when the adversary obtains
multiple encrypted keywords.

The first construction described above satisfies the correct-
ness, i.e., the searchability, because equation (1), as shown at
the bottom of this page holds.

Furthermore, the sizes of an aggregate key and a trapdoor
are |G| independent of the number of indexes in S because
kagg = 5j∈Sg

β

n+1−j ∈ G and Tr = kagg ·H (wl) ∈ G. A search
over encrypted keywords can be executed without changing
the encrypted keywords themselves for any keyword. Hence,
the first construction satisfies the compactness.

We will show that the first construction satisfies the
keyword privacy and the aggregate key unforgeability in
Section V-A. The first construction does not satisfy the trap-
door privacy because trapdoors are deterministic with respect
to keywords. In other words, an adversary can extract key-
words from trapdoors when the keywords used-so-far are sent
again. In the next subsection, we will introduce the main
construction, which satisfies the trapdoor privacy, under a
two-server setting.

C. MAIN CONSTRUCTION
To construct a scheme that satisfies the trapdoor privacy,
random values should be embedded in trapdoors. Likewise,
the same random values should be embedded in the encrypted
keyword and public parameters to satisfy the correctness.

Intuitively, the approach to use random values in trapdoors
seems to require a data user to send the same random val-
ues to a cloud. However, if the data user sends the same
random value as those in trapdoors, the cloud can extract
kagg ·H (wl) from the given trapdoors and the random values.
Consequently, the trapdoor privacy is unsatisfied.

To overcome this limitation, instead of sending random
values to a cloud, we aim to send the random values in a

e(Tri, c1,i,l)
e(c2,i,l, pub)

=
e(5j∈Sg

β

n+1−j · H (wl) ·5j∈S,j6=ign+1−j+i, gti,l )

e((gβ · gi)ti,l ,5j∈Sgn+1−j)
=
e(5j∈Sg

β

n+1−j, g
ti,l ) · e(H (wl), gti,l ) · e(5j∈S,j6=ign+1−j+i, gti,l )

e(gβti,l ,5j∈Sgn+1−j) · e(g
ti,l
i ,5j∈Sgn+1−j)

=
e(5j∈Sgn+1−j, gβti,l ) · e(H (wl), gti,l ) · e(5j∈S,j6=ign+1−j+i, gti,l )

e(5j∈Sgn+1−j, gβti,l ) · e(5j∈Sgn+1−j+igti,l )
=
e(H (wl), gti,l ) · e(5j∈S,j6=ign+1−j+i, gti,l )

e(5j∈Sgn+1−j+i, gti,l )

=
e(H (wl), gti,l ) · e(5j∈Sgn+1−j+i, gti,l )
e(5j∈Sgn+1−j+i, gti,l ) · e(gn+1.gti,l )

=
e(H (wl), gti,l )
e(gn+1.gti,l )

=
e(H (wl), g)ti,l

e(g1.gn)ti,l
. (1)

24160 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

manner that nobody except for a data user itself can extract.
Simultaneously, embedding the random values in encrypted
keywords and a public parameter on the cloud without reveal-
ing the random values themselves. To do this, we construct
trapdoors by using secret sharing. Consider a data user that
distributes random values into two shares and then sends the
shares to two servers. By utilizing these shares, a cloud can
embed the random values in encrypted keywords and a public
parameter without knowing the random values themselves.

In the main construction that will be described below, two
servers Cmain and Caid are assumed to be semi-honest and
to not collude with each other without loss of generality.
Both servers store the same encrypted keywords.When a data
user generates a trapdoor, he/she also generates a random
value r and embeds r in the resulting trapdoor. The data
user then distributes r into two shares and sends either of
the shares to Cmain and Caid , respectively. After receiving the
trapdoor and the share, Cmain and Caid embed the received
share in the stored encrypted keyword and public parameter
provisionally. Then, these values are gathered on the Cmain
side. Cmain then combines the encrypted keywords and the
public parameter with the shares to recover r . That is, Cmain
can obtain the encrypted keywords and the public parameter
where the random r is embedded without knowing r itself.
Consequently, Cmain is able to search over encrypted key-
words and return the search results to the data user.

The main construction is described as follows. The asym-
metric bilinear map is used in the main construction to satisfy
the trapdoor privacy. Furthermore, in the Adjust and Test
algorithms, we instantiate a function f : Zp × G → G
and fT : Zp × GT → GT as auxiliary functions of the
input defined in Section III-B. f is a function that takes two
arbitrary inputs x ∈ Zp, g ∈ G and outputs gx ∈ G. fT is a
function that takes two arbitrary inputs x ∈ Zp, gT ∈ GT and
outputs gxT ∈ GT .

• params← Setup(1λ, n): Generate a bilinear map group
system B = (p,G,H,GT , e(·, ·)), where p is the
order of G,H and 2λ < p < 2λ+1. Set n as the
maximum possible number of documents that belong
to a data owner. Pick a generator g ∈ G, h ∈ H
and a random α ∈ Zp, and then compute gi =
g(α

i)
∈ G for i ∈ {1, 2, . . . , n, n + 2, . . . , 2n},

hi = h(α
i)
∈ H for i ∈ [1, n]. Select a one-way hash

function H : {0, 1}∗ → G. Finally, output a public
parameter params = (B,PubK ,H ), where PubK =
(g, g1, . . . , gn, gn+2, . . . , g2n, h, h1, . . . , hn) ∈ (G2n

×

Hn+1).
• sk ← KeyGen(params): Pick a random β ∈ Zp and
output a secret key sk = β.

• ci,l ← Encrypt(params, sk, i,wl): Pick a ran-
dom ti,l ∈ Zp and output an encrypted keyword
ci,l = (c1,i,l, c2,i,l, c3,i,l) by computing the following:

c1,i,l = hti,l ∈ H,
c2,i,l = (gβ · gi)ti,l ∈ G,

c3,i,l =
e(H (wl), h)ti,l

e(g1, hn)ti,l
∈ GT .

• kagg ← Extract(params, sk, S): For the given sub-
set S ⊆ [1, n] which contains the indexes of docu-
ments, output an aggregate key kagg by computing the
following:

kagg = 5j∈Sg
β

n+1−j ∈ G.

• Tr ← Trapdoor(params, kagg, S,wl): Randomly gen-
erate r ∈ Zp and calculate Tr = (kagg · H (wl))r ∈ G.
Then, r is broken into r = rmain + raid , and
Trmain = (Tr, rmain),Traid = raid .

• Tri← Adjust(params, i, S,Tr, f (rmain, pubi), f (raid ,
pubi)): Calculate pubi = 5j∈S,j6=ign+1−j+i ∈ G
on the two servers. Caid sends f (raid , pubi) =

pubraidi to Cmain. Next, Cmain calculates (f (rmain, pubi)) ·
(f (raid , pubi)) = pubrmaini ·pubraidi = pubri and calculates
Tri = Tr · pubri ∈ G.

• b← Test(params,Tri, S, ci,l, fT (rmain, c#2,i,l), fT (raid ,
c#2,i,l), fT (rmain, c3,i,l), fT (raid , c3,i,l)): Calculate pub =
5j∈Shn+1−j ∈ H and c#2,i,l = e(c2,i,l, pub) on the
two servers. Caid sends fT (raid , c#2,i,l) = e(c2,i,l, pub)raid

to Cmain. Next, Cmain calculates (fT (rmain, c#2,i,l)) ·
(fT (raid , c#2,i,l)) = e(c2,i,l, pub)rmain · e(c2,i,l, pub)raid =
e(c2,i,l, pub)r . In addition, Caid sends fT (raid , c3,i,l) =
craid3,i,l to Cmain. Then, Cmain calculates (fT (rmain, c3,i,l)) ·
(fT (raid , c3,i,l)) = crmain3,i,l · c

raid
3,i,l = cr3,i,l and outputs true

or false by judging whether the following equation holds

e(Tri, c1,i,l)
e(c2,i,l, pub)r

=
e(5j∈Sg

βr
n+1−j · H (wl)r ·5j∈S,j6=igrn+1−j+i, h

ti,l )

e((gβ · gi)ti,l ,5j∈Shrn+1−j)
=
e(5j∈Sg

βr
n+1−j, h

ti,l ) · e(H (wl)r , hti,l ) · e(5j∈S,j6=igrn+1−j+i, h
ti,l )

e(gβti,l ,5j∈Shrn+1−j) · e(g
ti,l
i ,5j∈Shrn+1−j)

=
e(5j∈Sgrn+1−j, h

βti,l ) · e(H (wl)r , hti,l ) · e(5j∈S,j6=igrn+1−j+i, h
ti,l )

e(5j∈Sgrn+1−j, h
βti,l ) · e(5j∈Sgrn+1−j+i, h

ti,l )
=
e(H (wl)r , hti,l ) · e(5j∈S,j6=igrn+1−j+i, h

ti,l )

e(5j∈Sgrn+1−j+i, h
ti,l )

=
e(H (wl)r , hti,l ) · e(5j∈Sgrn+1−j+i, h

ti,l )

e(5j∈Sgrn+1−j+i, h
ti,l ) · e(grn+1.h

ti,l )
=
e(H (wl)r , hti,l )
e(grn+1, h

ti,l )
=
e(H (wl), h)rti,l

e(g1.hn)rti,l
= cr3,i,l (2)

VOLUME 8, 2020 24161



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

or not:
e(Tri, c1,i,l)
e(c2,i,l, pub)r

=
? cr3,i,l .

The main construction satisfies the correctness, i.e., the
searchability, as shown in equation (2), as shown at the
bottom of the previous page.

Furthermore, similar to the first construction, the sizes
of an aggregate key and a trapdoor are |G| independent of
the number n of indexes in S. In addition, the data size of
encrypted keywords is independent of the number of users
because the algorithms do not change the encrypted keywords
themselves. Thus, the main construction also satisfies the
compactness.

We note that raid is known by only Caid and rmain is known
by only Cmain. In the trapdoor algorithm, a data user sends
Trmain to Cmain and Traid to Caid . Then, Caid sends pubraidi
in the adjust algorithm and craid3,i,l, e(c2,i,l, pub)

raid in the test
algorithm to Cmain. Caid does not send raid itself, and thus
Cmain does not know raid .

V. SECURITY PROOFS
In this section, we will show the security proofs of the first
construction and main construction. The security of the main
construction is proved in the two-server setting because it
uses two servers. The proof statement is consistent with the
security definitions because our definitions have captured
the multi-server setting by applying an auxiliary function
individually for each server.

A. PROOFS OF THE FIRST CONSTRUCTION
The first construction satisfies the (ε′, n)-keyword privacy
and the (ε′, n)-aggregate key unforgeability. In this section,
we prove these two securities.
Theorem 1 ((ε′, n)-Keyword Privacy): The first construc-

tion satisfies the (ε′, n)-keyword privacy under the (ε, n)-
BDHE Assumption, where ε ≥ ε′.

Proof: Suppose there exists an adversary A, whose
advantage is ε′, against the first construction. We then build
an algorithm B that solves the BDHE problem. Let C be a
challenger for the BDHE problem. Algorithm B proceeds as
follows.
• Init: A declares challenge document index i∗ ∈ [1, n]
and sends it to B.

• Setup: C sends (g, h, g1, g2, . . . , gn, gn+2, . . . , g2n,Z )
to B. B randomly generates sk = β and cal-
culates v′ = gβg−1i∗ . B sends params =

(g, g1, g2, . . . , gn, gn+2, . . . , g2n) to A.
• Query: When A queries for OExtract , B responds as
follows:
– If an aggregate key for i∗ ∈ S is queried, return ⊥.
– If an aggregate key for i∗ 6∈ S is queried, return
kagg = (5j∈Sg

β

n+1−j) · (5j∈Sgn+1−j+i∗ )−1 =

5j∈Sg
β−αi

∗

n+1−j. If j = i∗, (5j∈Sgn+1−j+i∗ )−1 can-
not be calculated, but it can be calculated because
of i∗ 6∈ S.

When A queries for OEncrypt , B randomly gener-
ates ti,l ∈ Z∗p, calculates the following ci,l =
(c1,i,l, c2,i,l, c3,i,l) and responds to A (c1,i,l =

gti,l , c2,i,l = (v′ · gi)ti,l , c3,i,l =
e(H (wl ),g)

ti,l

e(g1,gn)
ti,l ).

• Guess:A declares the challenge keyword wl∗ and sends
it to B. B calculates the challenge encrypted keyword
c1,i∗,θ = h, c2,i∗,θ = hβ , c3,i∗,θ =

e(H (wl∗ ),h)
Z .

Here, we define h = gt (t is a random value). Then,
when Z = e(gn+1, h), c1,i∗,θ = gt = h, c2,i∗,θ =
((gβg−1i∗ ) · gi∗ )t = gβt = hβ , c3,i∗,θ =

e(H (wl∗ ),g)
t

e(g1,gn)t
=

e(H (wl∗ ),h)
e(gn+1,h)

=
e(H (wl∗ ),h)

Z . Therefore, the calculation
results are identical to the results of the Encrypt
algorithm of the first construction. B sends ci∗,θ =
(c1,i∗,θ , c2,i∗,θ , c3,i∗,θ ) to A. A chooses θ ′ ∈ {0, 1} and
sends it to B. Then, B sends θ ′ to C as a guess of θ .

In the guess phase, if Z is a random value, then Pr[θ =
θ ′] = 1/2. On the other hand, if Z = e(gn+1, h), then
|Pr[θ = θ ′] − 1/2| > ε′. This indicates that B has an
advantage over ε′ for solving the (ε, n)-BDHEproblem. Thus,
if the (ε, n)-BDHE assumption holds, the first construction
satisfies the (ε′, n)-keyword privacy.
Theorem 2 ((ε′, n)-Aggregate key Unforgeability): The

first construction satisfies the (ε′, n)-aggregate key unforge-
ability under the (ε, n)-DHE Assumption, where ε = ε′.

Proof: Suppose there exists as adversary A, whose
advantage is ε′, against the first construction. We then build
an algorithm B that solves the DHE problem. Let C be a
challenger for the DHE problem. Algorithm B proceeds as
follows.
• Setup: C sends (g, gα, gα

2
, . . . , gα

n
, gα

n+2
, . . . , gα

2n
)

to B. B randomly generates sk = β and cal-
culates v′ = gβg−1i∗ . B sends params =

(g, g1, g2, . . . , gn, gn+2, . . . , g2n) to A.
• Query: When A queries for OExtract , B responds as
follows:
– If an aggregate key for i∗ ∈ S is queried, return ⊥.
– If an aggregate key for i∗ 6∈ S is queried, return
kagg = (5j∈Sg

β

n+1−j) · (5j∈Sgn+1−j+i∗ )−1 =

5j∈Sg
β−αi

∗

n+1−j. Here, if j = i∗, then (5j∈Sgn+1−j+i∗ )−1

cannot be calculated, but it can be calculated
because of i∗ 6∈ S.

When A queries for OEncrypt , B randomly generates
ti,l ∈ Z∗p, calculates ci,l = (c1,i,l, c2,i,l, c3,i,l) and
responds to A (c1,i,l = gti,l , c2,i,l = (v′ · gi)ti,l ,
c3,i,l =

e(H (wl ),g)
ti,l

e(g1,gn)
ti,l ).

• Forge: A outputs S∗, k∗agg and sends them to B.
– If i∗ 6∈ S∗, abort
– If i∗ ∈ S∗, k∗agg = (5j∈S,j6=i∗gn+1−j)β−α

i∗
·

(gn+1−i∗ )β−α
i∗
. By using this k∗agg, B calculates (3),

as shown at the bottom of the next page, and outputs
results.

The result in the above (ε′, n)-aggregate key unforgeability
game is identical to the answer of the (ε, n)-DHE problem.

24162 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

That is, the advantage of the (ε′, n)-aggregate key unforge-
ability game is equal to the advantage of the (ε, n)-DHE
problem. Thus, if the (ε, n)-DHE assumption holds, the first
construction satisfies the (ε′, n)-aggregate key unforgeability.

B. PROOFS OF THE MAIN CONSTRUCTION
In this section, we prove that the main construction satisfies
the (ε′, n)-trapdoor privacy. Note that the (ε′, n)-keyword
privacy and the (ε′, n)-aggregate key unforgeability can be
proved similarly to the proofs for the first construction
except for the use security assumptions in asymmetric bilin-
ear groups (see the Appendix for details). As described in
the previous section, the main construction is based on two
servers. In our security proof, a challenge ciphertext and a
challenge trapdoor for both Cmain and Caid are simulated by a
reduction algorithm.
Theorem 3 ((ε′, n)-Trapdoor Privacy): Let a hash func-

tion H be modeled as a random oracle. The main construc-
tion satisfies the (ε′, n)-trapdoor privacy under the ε-XDH
assumption, where ε ≥ ε′.

Proof: Suppose there exists as adversary A, whose
advantage is ε′, against the main construction. We then build
an algorithm B that solves the XDH problem. Let C be a
challenger for the XDH problem. Algorithm B proceeds as
follows.

• Init: A declares challenge document index set S∗ ⊆ U
and challenge keyword wl∗ and sends them to B.

• Setup: C sends (g, h, ga, gb,Z ) to B. B randomly gen-
erates α, ω, r ′main ∈ Z∗p and calculates gi = gα

i
(i ∈

{1, 2, . . . , n, n + 2, . . . , 2n}), hi = hα
i
(i ∈ [1, n +

1]). ω is used to generate both a response from the
random oracle H and the challenge trapdoor. Simul-
taneously, r ′main corresponds to rmain of the challenge
trapdoor. In this proof, the random value r of chal-
lenge trapdoor is mapped to the challenge a of ga.
In doing so, calculating r ′aid = a − r ′main is necessary
in accordance with the Trapdoor algorithm. However,
since B does not know a, B cannot calculate r ′aid itself.
Then, instead of calculating r ′aid as behavior for Caid in
the challenge phase, B calculates the value including
r ′aid as Caid . Specifically, B calculates ga · g−r

′
main =

ga−r
′
main = gr

′
aid and generates the value including gr

′
aid

as the behavior of Caid . This implicitly means that,
in themain construction, Caid , who receives raid , embeds
raid in e(c2,i,l, pub), pubi and c3,i,l in the Adjust and
Test algorithms. To execute the Adjust and Test algo-
rithms correctly for the challenge trapdoor, Caid is also

considered to use the following values:

pub∗ = 5j∈S∗hn+1−j,

pub∗i = 5j∈S∗,j6=i(gr
′
aid )α

n+1−j+i
(i ∈ S∗).

Next, B calculates the following values:

c′#2,i,l = (Z · gbr
′
main ) · (gr

′
aid )α

i
(i ∈ S∗),

Ai = e(c′#2,i,l, pub
∗),

B =
e((gr

′
aid )ω, h)

e(gr
′
aid , hn+1)

= (
e(gω, h)
e(g1, hn)

)r
′
aid .

These values are used to calculate encrypted keywords,
which satisfy the correctness for the challenge trapdoor.
B sends params = (g, g1, g2, . . . , gn, gn+2, . . . , g2n, h,
h1, h2, . . . , hn) to A. Here, B does not know sk = b
because it is a part of the secret of the challenge.

• Hash: When A queries for random oracle model,
B responds as follows. Note that B has a hash list
L(wl, yl). In the initial state, L is an empty set.

– If wl is in L, return the corresponding yl stored in L.
– If wl is not in L, setting yl as follows, add (wl, yl)

to L and return yl .

∗ If wl = wl∗ , let yl = gω.
∗ If wl 6= wl∗ , choose x ∈ Z∗p uniformly randomly

and let yl = gx .

• Query: If A queries for OEncrypt , B returns as follows:

– If A queries for a keyword which satisfies
wl = wl∗ ∨ i ∈ S∗, return ⊥.

– If A queries for a keyword which satisfies
wl 6= wl∗ ∧ i 6∈ S∗, randomly generate ti,l ∈ Z∗p
and return ci,l = (c1,i,l, c2,i,l, c3,i,l) (c1,i,l =
hti,l , c2,i,l = (gb · gi)ti,l , c3,i,l =

e(H (wl ),h)
ti,l

e(g1,hn)
ti,l )

If A queries for OTrapdoor , B randomly generates r ∈
Z∗p and calculates Tr = (5j∈S (gb)α

n+1−j
· H (wl))r =

(5j∈Sgbn+1−j · H (wl))r . Then, B randomly generates
rmain ∈ Z∗p and calculates raid = r − rmain. B returns
(Tr, rmain) to A.

• Guess: B calculates the challenge trapdoor as Tr∗ =
5j∈S∗Zα

n+1−j
· (ga)ω. At this time, if Z = gab, Tr =

5j∈S∗ (gab)α
n+1−j
· (ga)ω = (5j∈S∗gbn+1−j · g

ω)a holds.
From the simulation of the hash phase, H (wl∗ ) = gω

holds, and therefore Tr = (5j∈S∗gbn+1−j·H (wl∗ ))a holds.
Therefore, Tr has the same distribution as that calculated
by the Trapdoor algorithm in the main construction.
B sends Tr∗ and r ′main to A. A then chooses θ ′ ∈ {0, 1}

(5j∈S∗,j6=i∗gn+1−j)β · (5j∈S∗,j6=i∗gn+1−j+i∗ )−1 · (gn+1−i∗ )β

k∗agg

=
(5j∈S∗,j6=i∗gn+1−j)β · (5j∈S∗,j6=i∗gn+1−j+i∗ )−1 · (gn+1−i∗ )β

(5j∈S∗,j6=i∗gn+1−j)β · (5j∈S∗,j6=i∗gn+1−j)−α
i∗
· (gn+1−i∗ )β · (gn+1−i∗ )−α

i∗
= (gn+1−i∗ )α

i∗

= gα
n+1−i∗+i∗

= gα
n+1

(3)

VOLUME 8, 2020 24163



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

and returns it to B. Finally, B returns the received θ ′ to
C as a guess of θ .

Note that if Z = gab, not only the trapdoor generated in
the query phase but also the challenge trapdoor satisfies the
correctness.

In the guess phase, if Z is a random value, then Pr[θ =
θ ′] = 1/2. On the other hand, if Z = gab, then |Pr[θ =
θ ′] − 1/2| = Adv > ε′. This indicates that B has an
advantage over ε′ for solving the ε-XDHproblem. Thus, if the
ε-XDH assumption holds, the main construction satisfies the
(ε′, n)-trapdoor privacy.

VI. DISCUSSION
In this section, we discuss the performance of our proposed
schemes. We first implement the proposed schemes to mea-
sure their actual performance. Next, we theoretically compare
the computational cost and the storage cost of the proposed
schemes with those of related works. We also compare the
security features of our schemes with those of related works.

A. IMPLEMENTATION AND PERFORMANCE
We implement the first construction and the main construc-
tion to evaluate the performance of each algorithm. Our ref-
erence implementations are available on GitHub (https:
//github.com/naotoyanai/kase). The implemen-
tation environment and performance evaluation are as
follows:

1) IMPLEMENTATION ENVIRONMENT
In our implementation, we use the mcl library version 0.94,3

which is a C++ library for pairing computation. We also use
the BLS12-381 curves. The curves are asymmetric bilinear
maps, and hence the parameters in the first construction are
dually generated for each input group of the bilinear maps.
We also evaluate each cryptographic operation in the C++
platform with Mac OS named Mojave. In our environment,
CPU is 1.4 GHz Intel Core i5-4260U and memory is 4 GB
1600MHzDDR3.We note that the communication latency to
interact between Cmain and Caid in the main construction is not
measured because the communication process between Cmain
and Caid is not implemented due to the lack of communication
function in the mcl library.

2) PERFORMANCE EVALUATION
The results of the performance evaluation of our schemes
are shown in Figures 2–7. Among the KASE algorithms,
the Setup, Encrypt, and Extract algorithms are common to the
first construction and the main construction because the mcl
library supports asymmetric bilinear maps. Thus, the eval-
uation of these algorithms, i.e., Figures 2–4, contains only
the first construction. The results shown in Figures 2–4 are
common also for those in the main construction. On the other
hand, the results of the Adjust and Test algorithms listed

3mcl library: https://github.com/herumi/mcl

FIGURE 2. Time cost of setup.

FIGURE 3. Time cost of encrypt.

FIGURE 4. Time cost of extract.

in Figures 6 and 7 do not include the communication latency
between the two servers in the main construction.

The execution time of the Setup algorithm is linear with
respect to the maximum number of documents belonging to
a single owner. When the number of documents increases
to 5,000, the Setup algorithm only needs one millisecond of
execution time and therefore remains reasonable.

The execution time of the Encrypt algorithm is linear with
respect to the number of keywords. The execution time of
the Encrypt algorithm is larger than those of other algorithms
because of the use of bilinear maps with heavy calculations.
Nevertheless, when the number of keywords increases to
5,000, the execution time of the Encrypt algorithm finishes
within one second and is therefore still practical.

24164 VOLUME 8, 2020

https://github.com/naotoyanai/kase
https://github.com/naotoyanai/kase
 https://github.com/herumi/mcl


M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

FIGURE 5. Time cost of trapdoor.

FIGURE 6. Time cost of adjust.

FIGURE 7. Time cost of test.

The execution time of the Extract algorithm is linear with
respect to the number of shared documents. When the num-
ber of documents increases to 5,000, the Extract algorithm
needs only 0.07 milliseconds of execution time. The Extract
algorithm can be performed faster than the other algorithms.

The execution time of the Trapdoor algorithm is constant
with respect to the number of documents, i.e., 0.07 millisec-
onds in the first construction and 0.2 milliseconds in the main
construction. The difference in the execution time depends on
the number of scalar multiplications. In particular, the first
construction does not utilize scalar multiplication, whereas
the main construction utilizes a single scalar multiplication.

Since the data sizes of rmain and raid are small because of
integers, the entire execution time can be minimized even
when the communication latency is included.

The execution time of the Adjust algorithm is linear with
respect to the number of documents. When the number of
documents increases to 5,000, theAdjust algorithm takes only
0.06 milliseconds in the first construction and only 0.18 mil-
liseconds in the main construction. Similar to the Extract
algorithm, the Adjust algorithm in the first construction can
be performed faster than the other algorithms. In the main
construction, the Adjust algorithm includes scalar multiplica-
tions and hence the computation is slightly heavy. However,
we note that the computations for Cmain and Caid can be
done in parallel to improve the performance. Although we
did not implement the parallelization, this could improve the
performance twice faster.

The execution time of the Test algorithm is linear with
respect to the number of encrypted keywords. When the
number of keywords increases to 5,000, the algorithm takes
three seconds in the first construction and six seconds in the
main construction. Similar to the Encrypt algorithm, the high
cost is caused by the use of bilinear maps, which is a bottle-
neck in all algorithms that use it. However, the search process
can be fully parallelized because it is individual for each
encrypted keyword. Thus, the performance can be improved
by parallelization, e.g., by the use of the OpenMP library.4

Finally, search for any keyword is a summation of the exe-
cution times of the Trapdoor, Adjust, and Test algorithms. For
instance, a search in 5,000 encrypted keywords is executed
within about three seconds in the first construction and about
six seconds in the main construction.

B. COMPUTATIONAL AND STORAGE COST ANALYSIS
In this section, we compare the computational cost and the
storage cost of our schemeswith other schemes [9], [11], [22]
of KASE. The results are shown in Tables 1 and 2.
Li et al. [11] proposed two constructions, i.e., the single-
owner setting and themulti-owner setting. Therefore, we only
compare our schemes in the single-owner setting because our
schemes have a single-owner setting.

The computational cost and the storage size for the first
construction are less-than-or-equal to those of the schemes
by Cui et al. [9] and by Li et al. [11] in spite of achieving the
provable security, which is an open problem in these works.

Even in the main construction, the computational cost
for the Encrypt algorithm is identical to that of the scheme
by Cui et al. [9], and the computational cost for the Trap-
door algorithm is smaller than that of the scheme by
Zhou et al. [22]. Although the computational costs for the
Adjust and Test algorithms are greater than those of other
schemes, the number of scalar multiplications in G and
exponentiations in GT , whose computations are heavy,
are constant with respect to the number of documents.

4OpenMP library: https://www.openmp.org/wp-content/
uploads/cspec20.pdf

VOLUME 8, 2020 24165

 https://www.openmp.org/wp-content/uploads/cspec20.pdf
 https://www.openmp.org/wp-content/uploads/cspec20.pdf


M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

TABLE 1. The computational cost of KASE: The operation time of hash operations, scalar multiplication, point addition, exclusive or in GT , exponentiation
in GT , multiplication in GT , and pairing operation are identified as Th, Tsm, Ta, Tx , Texp, Tmul , and Tp, respectively. Li et al. [11] uses a Bloom filter to
verify whether the keyword really exists in the document set. The time taken for the operation is represented as Tbf . The random generation and integer
addition are ignored. The time of Adjust + Test refers to the computational cost that takes file per one index.

TABLE 2. The storage cost of KASE: |G|, |GT | refers to the size of G,GT .

TABLE 3. The Security of KASE: Checkmark means achievement of the provable security.

Thus, the computational cost of the main construction can
be considered to be practical. Moreover, for the storage cost,
in spite of two additional components in Zp, the storage size
is fairly identical to that of the scheme by Zhou et al. In par-
ticular, an element in G is constructed by two integers on an
elliptic curve, i.e., x-coordinate and y-coordinate, whose bit
lengths are the same as the bit length of an element in Zp.
Thus, the entire bit length of 2Zp is equal to that of G. The
main construction can achieve a similar storage size as other
schemes.

As will be discussed in detail in the next subsection,
the performance of the proposed schemes described above
has been achieved as well as the provable security, which is
the open problem in existing works.

C. SECURITY
In this section, we discuss the security required in KASE. The
results are shown in Table 3.

In Table 3, the schemes byCui et al. [9] and by Li et al. [11]
do not satisfy the keyword privacy, the aggregate key
unforgeability, and the trapdoor privacy. On the other hand,
the scheme by Zhou et al. [22], the first construction, and
the main construction satisfy the keyword privacy. Although
Cui et al. and Li et al. have discussed the keyword privacy
informally, their discussions do not include the provable secu-
rity with reduction algorithms.

Although the scheme by Zhou et al. satisfies the keyword
privacy and the trapdoor privacy, it does not satisfy the com-
pactness. Zhou et al.’s scheme assumes a special situation
where a remote sensor device encrypts its sensing data. This
requires each sensor device to have an extra key for encryp-
tion, and the number of keys increases linearly with respect
to the number of sensors when viewed across the system.
Thus, the compactness cannot be satisfied. We also note that
the scheme by Zhou et al. deals with a problem different

from ours. Moreover, the aggregate key unforgeability has
not been discussed explicitly in other works.

VII. CONCLUSION
In this paper, we proposed provably secure KASE scheme
and defined the security of KASE formally. To the best of
our knowledge, this is the first paper to provide a formal
security discussion of KASE. Our main idea was to com-
bine broadcast encryption and aggregate signatures, and we
proposed the scheme called first construction by combining
the broadcast encryption scheme by Boneh et al. and the
aggregate signature scheme by Boneh et al. The security is
provably secure with respect to the keyword privacy under
the BDHE-assumption and the aggregate key unforgeabil-
ity under the DHE assumption. Furthermore, by construct-
ing trapdoors that utilize random numbers distributed via
secret sharing, we proposed another scheme called main con-
struction that satisfies the trapdoor privacy. We then imple-
mented the proposed schemes and showed that both schemes
could encrypt 5,000 keywords within one second. Moreover,
a search in the 5,000 keywords can be executed within about
three seconds in the first construction and about six seconds
in the main construction. These results show that the pro-
posed schemes are practical while achieving provably secu-
rity. As futurework, we plan to propose a generic construction
through any broadcast encryption and any aggregate signa-
tures because the proposed schemes in this paper are based
on the specific constructions described above. We also plan
to optimize implementation, e.g., parallelization of processes,
to improve the performance of the proposed schemes. Fur-
thermore, to guarantee stronger security of KASE, we plan
to study file injection attacks [37] and passive attacks [38]
against our schemes as further security analysis, which is not
contained in the provable security.

24166 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

ACKNOWLEDGMENT
The authors would like to thank members of the study group
‘‘Shin-Akarui-Angou-Benkyou-Kai" for the valuable discus-
sions and helpful comments.

APPENDIX. PROOFS OF MAIN CONSTRUCTION
A. COMPLEXITY ASSUMPTIONS
First, we define the l-(D-)BDHE assumption [49]. This is an
assumption in asymmetric bilinear groups.
Definition 9 ((ε, l)-(D-)BDHE Assumption in (G,H,GT )):

We say the l-(D-)BDHE problem in (G,H,GT ) with a
security parameter 1k as, for a given (g, gα, gα

2
, . . . , gα

l
,

gα
l+2
, . . . , gα

2l
, h, hs, α, s ∈ Z∗p and (G,H,GT ) as input,

determining whether Z ∈ GT is e(gα
l+1
, hs) or a random

value R. We say that a polynomial time algorithmA can solve
the l-(D-)BDHE problem in (G,H,GT ) with an advantage ε
if the following relation holds:

|Pr[A(g, h, hs, yg,h,α,l, e(gl+1, h
s)) = 0]

−Pr[A(g, h, hs, yg,h,α,l,R) = 0]| ≥ ε,

where yg,h,α,l = (g1, . . . , gl, gl+2, . . . , g2l). We say the
l-(D-)BDHE assumption holds in (G,H,GT ) if there is no
polynomial-time algorithm that can solve the l-(D-)BDHE
problem in (G,H,GT ) with ε.

The difference of the assumption described above from the
assumption is only the input, i.e., h ∈ G for the l-BDHE
assumption and gs for the l-(D-)BDHE assumption. Namely,
the notation of the input is different.

Next, we define l-BDHE assumption and l-DHE assump-
tion in asymmetric bilinear groups.We use these assumptions
for the security proofs of the main construction. We note
that the l-BDHE assumption in asymmetric bilinear groups is
naturally extended from the l-(D-)BDHE assumption. In par-
ticular, in the following assumptions, when G = H and
g = h, the l-BDHE assumption in (G,H,GT ) is identical
to the l-(D-)BDHE assumption in this section and the l-DHE
assumption in (G,H,GT ) is identical to the l-DHE assump-
tion in Section II-B.
Definition 10 ((ε, l)-BDHE Assumption in (G,H,GT )):

We say the l-BDHE problem in (G,H,GT ) with a secu-
rity parameter 1k as, for a given (g, gs, gα, gα

2
, . . . , gα

l
,

gα
l+2
, . . . , gα

2l
, h, hs, hα, hα

2
, . . . , hα

l
,Z ) with uniformly

random g ∈ G, h ∈ H, α, s ∈ Z∗p and (G,H,GT ) as input,

determining whether Z ∈ GT is e(gα
l+1
, hs) or a random

value R. We say that a polynomial time algorithmA can solve
the l-BDHE problem in (G,H,GT )with an advantage ε if the
following relation holds:

|Pr[A(g, gs, h, hs, yg,h,α,l, e(gl+1, h
s)) = 0]

−Pr[A(g, gs, h, hs, yg,h,α,l,R) = 0]| ≥ ε,

where yg,h,α,l = (g1, . . . , gl, gl+2, . . . , g2l, h1, . . . , hl).
We say the l-BDHE assumption holds in (G,H,GT ) if there
is no polynomial-time algorithm that can solve the l-BDHE
problem in (G,H,GT ) with ε.

Definition 11 ((ε, l)-DHE Assumption in (G,H)): We say
the l-DHE problem in (G,H) with a security parameter
1k as, for a given (g, gα, gα

2
, . . . , gα

l
, gα

l+2
, . . . , gα

2l
, h,

hα, hα
2
, . . . , hα

l
) with uniformly random g ∈ G, h ∈ H, α ∈

Z∗p and (G,H,GT ) as input, computing gα
l+1
. We say that a

polynomial time algorithm A can solve the l-DHE problem
in (G,H) with an advantage ε if the following relation holds:

Pr[A(g, yg,h,α,l, g
αl+1 )] ≥ ε,

where yg,h,α,l = (gα, gα
2
, . . . , gα

l
, gα

l+2
, . . . , gα

2l
,

hα, hα
2
, . . . , hα

l
). We say the l-DHE assumption holds in

(G,H) if there is no polynomial-time algorithm that can solve
the l-DHE problem in (G,H) with ε.

B. PROOF FOR KEYWORD PRIVACY
In this section, we show that the main construction satisfies
the keyword privacy.
Theorem 4 ((ε′, n)-Keyword Privacy): The main con-

struction satisfies the (ε′, n)-keyword privacy under the
(ε, n)-BDHE assumption in (G,H,GT ), where ε ≥ ε′.
Proof. Suppose there exists as adversary A, whose advan-

tage is ε′, against the main construction. We then build an
algorithm B that solves the BDHE problem in (G,H,GT ).
Let C be a challenger for the BDHE problem in (G,H,GT ).
Algorithm B proceeds as follows.
• Init: A declares a challenge document index i∗ ∈ [1, n]
and sends it to B.

• Setup: C sends (g, gs, g1, g2, . . . , gn, gn+2, . . . , g2n, h,
hs, h1, h2, . . . , hn, hn+2, . . . , h2n,Z ) to B. B ran-
domly generates sk = β and calculates v′ =
gβg−1i∗ . B sends params = (g, g1, g2, . . . , gn,
gn+2, . . . , g2n, h, h1, h2, . . . , hn) to A.

• Query: When A queries for OExtract , B responds as
follows:
– If an aggregate key for i∗ ∈ S is queried, return ⊥.
– If an aggregate key for i∗ 6∈ S is queried, return
kagg = (5j∈Sg

β

n+1−j) · (5j∈Sgn+1−j+i∗ )−1 =

5j∈Sg
β−αi

∗

n+1−j. Note that, for i
∗
6∈ S, (5j∈Sgn+1−j+i∗ )−1

can be calculated.
When A queries for OEncrypt , B randomly gener-
ates ti,l ∈ Z∗p, calculates the following ci,l =
(c1,i,l, c2,i,l, c3,i,l), and responds to A (c1,i,l =

hti,l , c2,i,l = (v′ · gi)ti,l , c3,i,l =
e(H (wl ),h)

ti,l

e(g1,hn)
ti,l ).

• Guess:A declares the challenge keyword wl∗ and sends
it to B. B calculates the challenge encrypted keyword
c1,i∗,θ = hs, c2,i∗,θ = (gs)β , c3,i∗,θ =

e(H (wl∗ ),h
s)

Z .
Then, when Z = e(gn+1, hs), c1,i∗,θ = hs, c2,i∗,θ =
((gβg−1i∗ ) · gi∗ )s = gβs = (gs)β , c3,i∗,θ =

e(H (wl∗ ),h)
s

e(g1,hn)s
=

e(H (wl∗ ),h
s)

e(gn+1,hs)
=

e(H (wl∗ ),h
s)

Z . Therefore, the calculation
results are identical to the Encrypt algorithm of the main
construction. B sends ci∗,θ = (c1,i∗,θ , c2,i∗,θ , c3,i∗,θ )
to A. A chooses θ ′ ∈ {0, 1} and sends it to B. Then,
B sends θ ′ to C as a guess of θ .

VOLUME 8, 2020 24167



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

In the guess phase, if Z is a random value, then Pr[θ = θ ′] =
1/2. On the other hand, if Z = e(gn+1, hs), |Pr[θ = θ ′] −
1/2| > ε′. This indicates that B has an advantage over ε′

for solving the (ε, n)-BDHE problem in (G,H,GT ). Thus,
if the (ε, n)-BDHE assumption holds in (G,H,GT ), the main
construction satisfies the (ε′, n)-keyword privacy.

C. PROOF FOR AGGREGATE KEY UNFORGEABILITY
In this section, we show that the main construction satisfies
the aggregate key unforgeability.
Theorem 5 ((ε′, n)-Aggregate key Unforgeability): The

main construction satisfies the (ε′, n)-aggregate key unforge-
ability under the (ε, n)-DHE Assumption in (G,H), where
ε = ε′.

Proof: Suppose there exists as adversary A, whose
advantage is ε′, against the main construction. We then build
an algorithm B that solves the DHE problem. Let C be a
challenger for the DHE problem. Algorithm B proceeds as
follows.
• Setup: C sends (g, g1, g2, . . . , gn, gn+2, . . . , g2n, h, h1,
h2, . . . , hn, hn+2, . . . , h2n) to B. B randomly generates
sk = β and calculates v′ = gβg−1i∗ . B sends params =
(g, g1, g2, . . . , gn, gn+2, . . . , g2n, h, h1, h2, . . . , hn) to
A.

• Query: When A queries for OExtract , B responds as
follows:
– If an aggregate key for i∗ ∈ S is queried, return ⊥.
– If an aggregate key for i∗ 6∈ S is queried, return
kagg = (5j∈Sg

β

n+1−j) · (5j∈Sgn+1−j+i∗ )−1 =

5j∈Sg
β−αi

∗

n+1−j. Here, for i
∗
6∈ S, (5j∈Sgn+1−j+i∗ )−1

can be calculated.
When A queries for OEncrypt , B randomly generates
ti,l ∈ Z∗p, calculates ci,l = (c1,i,l, c2,i,l, c3,i,l) and
responds to A (c1,i,l = hti,l , c2,i,l = (v′ · gi)ti,l ,
c3,i,l =

e(H (wl ),h)
ti,l

e(g1,hn)
ti,l ).

• Forge: A outputs S∗, k∗agg and sends them to B.
– If i∗ 6∈ S∗, abort
– If i∗ ∈ S∗, k∗agg = (5j∈S,j6=i∗gn+1−j)β−α

i∗
·

(gn+1−i∗ )β−α
i∗
. By using this k∗agg, B calcu-

lates (5j∈S∗,j6=i∗gn+1−j)β ·(5j∈S∗,j6=i∗gn+1−j+i∗ )−1 ·
(gn+1−i∗ )β/k∗agg = gα+1 and outputs results.

The result in the above (ε′, n)-aggregate key unforgeability
game is identical to the answer of the (ε, n)-DHE problem
in (G,H). That is, the advantage of the aggregate key unforge-
ability game is equal to the advantage of the (ε, n)-DHE
problem in (G,H). Thus, if the (ε, n)-DHE assumption
holds, the main construction satisfies the (ε′, n)-aggregate
key unforgeability.

REFERENCES
[1] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches

on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy S&P, Nov. 2002,
pp. 44–55.

[2] R. A. Popa and N. Zeldovich, ‘‘Multi-key searchable encryption,’’ IACR
Cryptol. ePrint Arch., vol. 2013, p. 508, Aug. 2013.

[3] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, ‘‘Efficient
encrypted keyword search for multi-user data sharing,’’ in Proc. Eur. Symp.
Res. Comput. Secur. Cham, Switzerland: Springer, 2016, pp. 173–195.

[4] A. Hamlin, A. Shelat, M. Weiss, and D. Wichs, ‘‘Multi-key searchable
encryption, revisited,’’ in Proc. IACR Int. Workshop Public Key Cryptogr.
Cham, Switzerland: Springer, 2018, pp. 95–124.

[5] F. Bao, R. H. Deng, X. Ding, and Y. Yang, ‘‘Private query on encrypted data
in multi-user settings,’’ in Proc. Int. Conf. Inf. Secur. Pract. Exper. Berlin,
Germany: Springer, 2008, pp. 71–85.

[6] Y. H. Hwang and P. J. Lee, ‘‘Public key encryption with conjunctive
keyword search and its extension to a multi-user system,’’ in Proc. Int.
Conf. Pairing-Based Cryptogr. Berlin, Germany: Springer, 2007, pp. 2–22.

[7] C. V. Rompay, R. Molva, and M. Önen, ‘‘Multi-user searchable encryption
in the cloud,’’ in Proc. Int. Inf. Secur. Conf. Berlin, Germany: Springer,
2015, pp. 299–316.

[8] F. Zhao, T. Nishide, and K. Sakurai, ‘‘Multi-user keyword search scheme
for secure data sharingwith fine-grained access control,’’ inProc. Int. Conf.
Inf. Secur. Cryptol. Berlin, Germany: Springer, 2011, pp. 406–418.

[9] B. Cui, Z. Liu, and L. Wang, ‘‘Key-aggregate searchable encryption
(KASE) for group data sharing via cloud storage,’’ IEEE Trans. Comput.,
vol. 65, no. 8, pp. 2374–2385, Aug. 2016.

[10] T. Li, Z. Liu, C. Jia, Z. Fu, and J. Li, ‘‘Key-aggregate searchable encryption
under multi-owner setting for group data sharing in the cloud,’’ Int. J. Web
Grid Services, vol. 14, no. 1, pp. 21–43, 2018.

[11] T. Li, Z. Liu, P. Li, C. Jia, Z. L. Jiang, and J. Li, ‘‘Verifiable searchable
encryption with aggregate keys for data sharing in outsourcing storage,’’
in Proc. Australas. Conf. Inf. Secur. Privacy. Berlin, Germany: Springer,
2016, pp. 153–169.

[12] D. Boneh, C. Gentry, and B.Waters, ‘‘Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 2005, pp. 258–275.

[13] A. Fiat and M. Naor, ‘‘Broadcast encryption,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 1993, pp. 480–491.

[14] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, ‘‘Aggregate and verifiably
encrypted signatures from bilinear maps,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, 2003, pp. 416–432.

[15] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[16] Y. Wu, Z. Wei, and R. Deng, ‘‘Attribute-based access to scalable media
in cloud-assisted content sharing networks,’’ IEEE Trans. Multimedia,
vol. 15, no. 4, pp. 778–788, Jun. 2013.

[17] G. S. Poh, P. Gope, and J. Ning, ‘‘PrivHome: Privacy-preserving authenti-
cated communication in smart home environment,’’ IEEE Trans. Depend.
Sec. Comput., to be published.

[18] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-policy attribute-
based encryption,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[19] Y. Yao, Z. Zhai, J. Liu, and Z. Li, ‘‘Lattice-based key-aggregate
(searchable) encryption in cloud storage,’’ IEEE Access, vol. 7,
pp. 164544–164555, 2019.

[20] H. Wang, X. Dong, Z. Cao, D. Li, and N. Cao, ‘‘Secure key-aggregation
authorized searchable encryption,’’ Sci. China Inf. Sci., vol. 62, no. 3, 2019,
Art. no. 39111.

[21] M. Padhya and D. C. Jinwala, ‘‘MULKASE: A novel approach for key-
aggregate searchable encryption formulti-owner data,’’ in Proc. Frontiers
Inf. Technol. Electron. Eng., 2018, pp. 1–32.

[22] R. Zhou, X. Zhang, X. Du, X. Wang, G. Yang, and M. Guizani, ‘‘File-
centric multi-key aggregate keyword searchable encryption for indus-
trial Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 14, no. 8,
pp. 3648–3658, Aug. 2018.

[23] S. Patranabis and D. Mukhopadhyay, ‘‘Key-aggregate searchable encryp-
tion with constant-size trapdoors for fine-grained access control in the
cloud,’’ IACR Cryptol. ePrint Arch., vol. 2017, p. 318, Apr. 2017.

[24] J. Zhang, C. Song, Z. Wang, T. Yang, and W. Ma, ‘‘Efficient and provable
security searchable asymmetric encryption in the cloud,’’ IEEE Access,
vol. 6, pp. 68384–68393, 2018.

[25] D. N. Wu, Q. Q. Gan, and X. M. Wang, ‘‘Verifiable public key encryption
with keyword search based on homomorphic encryption in multi-user
setting,’’ IEEE Access, vol. 6, pp. 42445–42453, 2018.

[26] J. Ye, J. Wang, J. Zhao, J. Shen, and K.-C. Li, ‘‘Fine-grained search-
able encryption in multi-user setting,’’ Soft Comput., vol. 21, no. 20,
pp. 6201–6212, Oct. 2017.

24168 VOLUME 8, 2020



M. Kamimura et al.: KASE Revisited: Formal Foundations for Cloud Applications, and Their Implementation

[27] Q. Wang, Y. Zhu, and X. Luo, ‘‘Multi-user searchable encryption with
coarser-grained access control without key sharing,’’ in Proc. Int. Conf.
Cloud Comput. Big Data, Nov. 2014, pp. 119–125.

[28] G.Wang, C. Liu, Y. Dong, P. Han, H. Pan, and B. Fang, ‘‘IDCrypt: Amulti-
user searchable symmetric encryption scheme for cloud applications,’’
IEEE Access, vol. 6, pp. 2908–2921, 2018.

[29] K. Liang and W. Susilo, ‘‘Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,’’ IEEE Trans. Inf. Forensics
Security, vol. 10, no. 9, pp. 1981–1992, Sep. 2015.

[30] Q. Zheng, S. Xu, and G. Ateniese, ‘‘VABKS: Verifiable attribute-
based keyword search over outsourced encrypted data,’’ in Proc. IEEE
INFOCOM-IEEE Conf. Comput. Commun., Apr. 2014, pp. 522–530.

[31] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Li, S. Liao, and K. Li, ‘‘CP-ABSE:
A ciphertext-policy attribute-based searchable encryption scheme,’’ IEEE
Access, vol. 7, pp. 5682–5694, 2019.

[32] A. Alrawais, A. Alhothaily, C. Hu, X. Xing, and X. Cheng, ‘‘An attribute-
based encryption scheme to secure fog communications,’’ IEEE Access,
vol. 5, pp. 9131–9138, 2017.

[33] S. Wang, D. Zhang, Y. Zhang, and L. Liu, ‘‘Efficiently revocable and
searchable attribute-based encryption scheme for mobile cloud storage,’’
IEEE Access, vol. 6, pp. 30444–30457, 2018.

[34] C. Guo, N. Luo, M. Z. A. Bhuiyan, Y. Jie, Y. Chen, B. Feng, and
M. Alam, ‘‘Key-aggregate authentication cryptosystem for data shar-
ing in dynamic cloud storage,’’ Future Gener. Comput. Syst., vol. 84,
pp. 190–199, Jul. 2018.

[35] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng, ‘‘Key-
aggregate cryptosystem for scalable data sharing in cloud storage,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 468–477, Feb. 2014.

[36] S. Patranabis, Y. Shrivastava, and D. Mukhopadhyay, ‘‘Provably secure
key-aggregate cryptosystems with broadcast aggregate keys for online data
sharing on the cloud,’’ IEEE Trans. Comput., vol. 66, no. 5, pp. 891–904,
May 2017.

[37] Y. Zhang, J. Katz, and C. Papamanthou, ‘‘All your queries are belong to
us: The power of file-injection attacks on searchable encryption,’’ in Proc.
25th USENIX Secur. Symp. (USENIX Secur.), 2016, pp. 707–720.

[38] J. Ning, J. Xu, K. Liang, F. Zhang, and E.-C. Chang, ‘‘Passive attacks
against searchable encryption,’’ IEEE Trans. Inf. Forensics Security,
vol. 14, no. 3, pp. 789–802, Mar. 2019.

[39] A. Joux, ‘‘A one round protocol for tripartite Diffie–Hellman,’’ in Proc.
Int. Algorithmic Number Theory Symp. Berlin, Germany: Springer, 2000,
pp. 385–393.

[40] J. Herranz, F. Laguillaumie, B. Libert, and C. Ràfols, ‘‘Short attribute based
signatures for threshold predicates,’’ in Proc. Cryptographers’ Track RSA
Conf. Berlin, Germany: Springer, 2012, pp. 51–67.

[41] G. Ateniese, J. Camenisch, and B. De Medeiros, ‘‘Untraceable RFID tags
via insubvertible encryption,’’ in Proc. 12th ACMConf. Comput. Commun.
Secur.-CCS, 2005, pp. 92–101.

[42] L. Ballard, M. Green, B. D. Medeiros, and F. Monrose, ‘‘Correlation-
resistant storage via keyword-searchable encryption,’’ IACR Cryptol.
ePrint Arch., vol. 2005, p. 417, Nov. 2005.

[43] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[44] A. Arriaga, Q. Tang, and P. Ryan, ‘‘Trapdoor privacy in asymmetric
searchable encryption schemes,’’ in Proc. Int. Conf. Cryptol. Afr. Cham,
Switzerland: Springer, 2014, pp. 31–50.

[45] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable sym-
metric encryption: Improved definitions and efficient constructions,’’
J. Comput. Secur., vol. 19, no. 5, pp. 895–934, Nov. 2011.

[46] S. Kamara and C. Papamanthou, ‘‘Parallel and dynamic searchable sym-
metric encryption,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Berlin, Germany: Springer, 2013, pp. 258–274.

[47] Y. G. Desmedt, ‘‘Threshold cryptography,’’ Eur. Trans. Telecommun.,
vol. 5, no. 4, pp. 449–458, 1994.

[48] D. Boneh, X. Boyen, and S. Halevi, ‘‘Chosen ciphertext secure public key
threshold encryption without random oracles,’’ in Proc. Cryptographers’
Track RSA Conf. Berlin, Germany: Springer, 2006, pp. 226–243.

[49] X. Boyen, ‘‘The uber-assumption family,’’ in Proc. Int. Conf. Pairing-
Based Cryptogr. Berlin, Germany: Springer, 2008, pp. 39–56.

MASAHIRO KAMIMURA received the B.Eng.
degree in engineering science from Osaka Univer-
sity, Japan, in 2018. He is currently pursuing the
M.S. degree with the Graduate School of Infor-
mation Science and Technology, OsakaUniversity,
Japan. His research interest includes information
security.

NAOTO YANAI (Member, IEEE) received the
B.Eng. degree from the National Institution of
Academic Degrees and University Evaluation,
Japan, in 2009, the M.S.Eng. from the Graduate
School of Systems and Information Engineering,
University of Tsukuba, Japan, in 2011, and the
Dr.E. degree from the Graduate School of Sys-
tems and Information Engineering, University of
Tsukuba, in 2014. He is currently an Assistant Pro-
fessor with Osaka University, Japan. His research

areas are cryptography and information security.

SHINGO OKAMURA (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in information
science and technology from Osaka University,
in 2000, 2002, and 2005, respectively. Since 2005,
he has worked for Osaka University. In 2008,
he joined the National Institute of Technology,
Nara College, where he is currently an Associate
Professor. His research interests include crypto-
graphic protocols and cyber security. He is a mem-
ber of the IEICE, IEEJ, ACM, and IACR.

JASON PAUL CRUZ (Member, IEEE) received
the B.S. degree in electronics and communica-
tions engineering and the M.S. degree in elec-
tronics engineering from the Ateneo de Manila
University, Quezon City, Philippines, in 2009 and
2011, respectively, and the Ph.D. degree in engi-
neering from the Graduate School of Information
Science, Nara Institute of Science and Technol-
ogy, Nara, Japan, in 2017. He is currently a Spe-
cially Appointed Assistant Professor with Osaka

University, Osaka, Japan. His current research interests include role-based
access control, blockchain technology, hash functions and algorithms,
privacy-preserving cryptography, and Android programming.

VOLUME 8, 2020 24169


