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ABSTRACT The PSNR-oriented super-resolution (SR) methods pursue high reconstruction accuracy,
but tend to produce over-smoothed results and lose plenty of high-frequency details. The GAN-based SR
methods aim to generate more photo-realistic images, but the hallucinatory details are often accompanied
with unsatisfying artifacts and noise. To address these problems, we propose a guided dual super-resolution
network (GDSR), which exploits the advantages of both the PSNR-oriented and the GAN-based methods
to achieve a good trade-off between reconstruction accuracy and perceptual quality. Specifically, our
network contains two branches, where one is trained to extract global information and the other to
focus on detail information. In this way, our network simultaneously generates SR images with high
accuracy and satisfactory visual quality. To obtain more high-frequency features, we use the global features
extracted from the low-frequency branch to guide the training of the high-frequency branch. Besides,
our method utilizes a mask network to adaptively recover the final super-resolved image. Extensive
experiments on several standard benchmarks show that our proposed method achieves better performance
compared with state-of-the-art methods. The source code and the results of our GDSR are available at
https://github.com/wenchen4321/GDSR.

INDEX TERMS Convolutional neural network, Dual Network, Generative adversarial network, Single
Image Super-Resolution.

I. INTRODUCTION

A IMING to recover a high-resolution (HR) image from
a single given low-resolution (LR) image, single im-

age super-resolution (SISR) has received critical attention
in computer vision researches. SISR can be used in vari-5

ous fields, such as security and surveillance [1], [2], medi-
cal imaging [3], [4], remote sensing image [5], and object
recognition [6]–[9]. However, because there exist multiple
solutions for the same low-resolution image, SISR is an ill-
posed inverse problem. Most SR methods learn the mapping10

between LR and HR images for generating high-quality
super-resolved images.

In recent years, deep convolutional neural network (CNN)
based methods [10], [11] have consistently achieved signif-
icant improvements over traditional methods in reconstruct-15

ing high-quality SR images. Various network architectures
are proposed to improve the SR performance, commonly
taking the Peak Signal-to-Noise Ratio (PSNR) and/or the

Set14: zebra

(a) (b)

(c) (d)

FIGURE 1. The 4× SR visual comparisons of ‘zebra’ in Set14. (a) the HR image; (b)
GAN-based method (ESRGAN); (c) PSNR-oriented method (RCAN); (d) Our network
(GDSR).

Structural Similarity Index (SSIM) [12] as measurements and
evaluation indexes. These methods assume that higher PSNR 20

value implies better quality and less distortion. They usually
adopt the optimization function of minimizing the mean
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squared error (MSE) between the recovered SR image and
the ground truth to maximize PSNR. However, they lack the
ability to capture high-frequency features. The high PSNR25

estimates are typically over-smoothed and conflict with hu-
man visual perceptual observation. As shown in Fig. 1, the
PSNR-oriented method RCAN [13] has high reconstruction
accuracy but generates over-smoothed edges.

To improve the visual quality of SR images, several30

perceptual-driven methods have been proposed to produce
visually satisfying results. Generative adversarial networks
(GANs) [14] have been applied in SR because of its capabil-
ity to generate realistic images. Despite their great success,
most GAN-based SR methods pay too much attention to35

the high-frequency information in the super-resolved images.
Although the generated images can recover more details,
sometimes they are noisy and bring unpleasing artifacts.
As shown in Fig. 1, the image generated from the GAN-
based method ESRGAN [15] is noisy. The process of SR is40

sometimes treated as a pre-processing step for other high-
level computer vision tasks such as object recognition and
image classification. The noise and artifacts generated by
GAN-based SR methods would be detrimental to high-level
computer vision tasks.45

In general, the existing dual branch SISR methods, such
as DualCNN [16] and Dual-way SR [17], learn the global
information and the details from two branches with different
network structures. They are still PSNR-oriented methods
and produce over-smoothed results as they use a single or the50

same loss function for both branches. We will design a model
with two branches of the same network structure. However,
we supervise two branches to learn different information
using different loss functions, where one branch is related
to the PSNR-oriented method and the other is related to the55

GAN-based method. In this way, better performance than
PSNR-oriented dual-branch methods can be achieved.

The PSNR-oriented methods produce high accuracy SR
results with over-smoothed edges, while the GAN-based
methods generate SR images with better perceptual quality60

but sometimes with noise and artifacts. Either of them could
not balance the accuracy and the perceptual quality. Inspired
by the dual skipping network [18], which is used for coarse-
to-fine object categorization, we propose a guided dual SR
network (GDSR) to achieve a good trade-off between per-65

ceptual quality and reconstruction accuracy. Our method re-
constructs images with high visual quality and less deformed
textures in a left-right asymmetric network. Specifically, our
network has two branches: the high-frequency branch (HFB)
and the low-frequency branch (LFB). Trained with the GAN70

adversarial loss, the HFB aims to extract high-frequency
features and make the SR image contain more detail infor-
mation. The LFB is trained with the MSE loss to extract
global information. Similar to the dual skipping network,
we adopt a top-down global guidance mechanism to guide75

the HFB. In brief, the guidance feeds the high-level global
information from the LFB to the corresponding lower-level
feature processing modules of the HFB. Furthermore, we use

a mask network to produce an attention mask for weighting
the outputs of the LFB and the HFB, adaptively recovering 80

the final super-resolved image. As shown in Fig. 1, the
SR image generated by our GDSR is more accurate and
faithful to the ground truth. It achieves better visual SR result
compared with state-of-the-art methods.

The contributions of this paper are summarized as follows: 85

• We propose a left-right asymmetric super-resolution
network by integrating GAN-based and PNSR-oriented
methods to improve the SR image quality. Our GDSR
network can generate SR images with higher perceptual
quality and less distortion. 90

• We employ the top-down global guidance to deliver
the high-level global features from the low-frequency
branch to the high-frequency branch for generating de-
tail information.

• Extensive experiments show that our approach achieves 95

state-of-the-art performance on several benchmarks,
demonstrating the effectiveness of our network.

II. RELATED WORK
A. SINGLE IMAGE SUPER-RESOLUTION
Since deep learning algorithms have shown superior perfor- 100

mance, we mainly focus on deep learning algorithms for the
SISR problem.

SRCNN [19] is the first successful attempt towards super-
resolution using only three convolutional layers. This effort
can be considered as the pioneering work in the CNN-based 105

SR field and inspires numerous later works. Replacing the
bicubic upsampling operation with an efficient sub-pixel con-
volution, FSRCNN [20] and ESPCN [21] improve the speed
and image quality, which achieve real-time performance.
Various advanced upsampling structures have been proposed 110

in recent years, such as deconvolutional layer [22], [23] and
EUSR [24]. VDSR [25] and DRCN [26] increase the network
depth and achieve better performance, supporting the argu-
ment that deeper networks can provide better contextualiza-
tion. EDSR [27] introduces a very deep and wide network 115

by modifying the ResNet [28] architecture. LapSRN [29]
employs a pyramidal framework to progressively predict
the residual images up to a factor of 8×. ZSSR [30] uses
an unsupervised method to learn the mapping between LR
and HR images. SRMDNF [31] tackles multiple degradation 120

problems in a single network by treating degradation maps
of images as inputs. Densely connected networks have been
proposed to improve SR performance. RDN [32] combines
residual skip connections with dense connections, showing
good resilience against the degradation process and recover- 125

ing enhanced SR images. RCAN [13] is a recently proposed
deep ResNet network with the channel attention mechanism
and achieves state-of-the-art PSNR performance.

The aforementioned methods mainly use MSE loss as the
optimization function to obtain high PSNR and SSIM values. 130

However, these PSNR-oriented methods usually generate
heavily over-smoothed edges. The generated images lose var-
ious high-frequency details and have bad perceptual quality.
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FIGURE 2. The overall architecture of our proposed method. It contains three subnets: the low-frequency branch (LFB), the mask network and the high-frequency branch (HFB),
respectively. They share the same shallow feature extraction module, namely the shared module (SM). Each subnet is stacked with the basic blocks: RRDBs. The top-down guide
delivers the global information from a high abstraction level of the LFB to a lower abstraction level of the HFB. The mask network generates an attention mask to combine the feature
maps from the LFB and the HFB right before the last convolution layer of reconstruction.

To improve the visual quality of SR results, perceptual-driven
approaches have been proposed. SRGAN [33] firstly intro-135

duces the GAN framework into the SR problem and produces
visually pleasing results. SRGAN combines a perceptual loss
and an adversarial loss to improve the reality of the generated
images. But visually implausible artifacts can still be found
in some generated images. EnhanceNet [34] combines a140

pixel-wise loss in the image space, a perceptual loss in the
feature space, an adversarial loss, and a texture matching
loss [35] to produce more realistic and better perceptual-
quality outputs. Built upon SRGAN, ESRGAN [15] removes
batch normalization layers and introduces a basic and ef-145

fective block: Residual-in-Residual Dense Block (RRDB).
Moreover, ESRGAN also employs an enhanced discrimina-
tor called Relativistic average GAN (RaGAN) [36]. Note-
worthily, ESRGAN won the first place in the 2018 PIRM
Challenge on Perceptual Image Super-Resolution [37], which150

evaluates the image perceptual quality using the perceptual
index (PI). The SR models trained with the MSE loss tend
to produce over-smoothed results while that trained in an
adversarial manner generate realistic details but bring some
unpleasant noise. By simply utilizing linear network inter-155

polation of the results generated from PNSR-oriented and
GAN-based models, DNI [38] balances the MSE and GAN
effects of SR results. But the interpolation parameter α is
selected manually. It is too costly to generate continuous
interpolation results from interpolating the PSNR-oriented160

model and the GAN-based method with parameter α in [0, 1].
EEGAN [39] proposes a GAN-based edge-enhancement net-
work that has two subnetworks: a GAN-based ultradense sub-

network and a CNN-based edge-enhancement subnetwork.
However, EEGAN is specifically designed for satellite image 165

SR reconstruction, where the CNN-based edge-enhancement
subnetwork is for extracting the special features of the edges
from satellite images. RankSRGAN [40] introduces a ranker
to optimize the perceptual metric directly, which only pursues
lower PI value and brings blurring artifacts to the hallucinated 170

details.

Some SISR methods use two branches to capture more in-
formation to achieve better performance. DualCNN [16] is a
PSNR-oriented network, which uses the different numbers of
convolution layers to extract the structure information and the 175

details. SRDPN [41] replaces the residual blocks of EDSR
with DPN [42] blocks to achieve improved performance.
DSRN [43] introduces a dual-state recurrent network to
incorporate information from both the LR and the HR spaces.
Dual-way SR [17] exploits a complex network EDSR as its 180

complex branch and the bicubic interpolation as its plain
branch to capture the global and the detail information. The
above dual-path methods design different network structures
for different branches to capture more information, but all
the branches of these methods are trained with the same loss 185

function. They are still PSNR-oriented methods and cannot
solve the problem of generating over-smoothed results. We
use dual branches to learn different information based on
different loss functions, rather than using different network
structures. Our network leverages the advantages of both the 190

PSNR-oriented and the GAN-based methods to supervise
the network and capture the high-frequency and the low-
frequency features. The proposed training strategies facilitate
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reconstructing accurate and realistic super-resolution images.

B. DUAL SKIPPING NETWORK195

The study on hemispheric specialization shows that visual
analysis takes place in a predominately and default coarse-
to-fine sequence. Instead of processing spatial frequency
information equally, the recent biological experiments reveal
that the left hemisphere (LH) and the right hemisphere (RH)200

are predominantly involved in the high and low spatial fre-
quency processing, respectively. Inspired by the research of
the primate visual cortex, the dual skipping network [18]
shows promising results on coarse-to-fine object categoriza-
tion. The dual skipping network is a left-right asymmetric205

layer skippable network which has two branches referring to
LH and RH, respectively. One branch is used for fine-grained
level classification which simulates the LH mechanism of
processing spatial high-frequency information. The other
branch is used for coarse-level classification which simu-210

lates the RH mechanism of processing spatial low-frequency
information. So the dual skipping network can simultane-
ously work on coarse and fine-grained classification tasks.
Moreover, motivated by a similar mechanism in the brain,
the dual skipping network introduces a "Guide" referring215

to top-down facilitation of recognition. The guide feeds the
high-level information from the coarse branch to relatively
lower-level visual processing modules of the fine-grained
branch. In our network, inspired by the study on hemispheric
specialization and dual skipping network, we design the high-220

frequency branch to simulate the LH processing mechanism,
and the asymmetric low-frequency branch to process the RH
mechanism. Moreover, we also design a mask network to
simulate the function of the cerebellum, which is involved
in balance and motor control.225

III. PROPOSED METHOD

This section introduces the proposed method in detail. Our
GDSR network aims to improve the perceptual quality and
reconstruction accuracy of SR images via a left-right asym-
metric network architecture. As shown in Fig. 2, the GDSR230

consists of three key components: 1) a left-right asymmetric
SR network, 2) a global guidance mechanism, and 3) a
mask network. The left-right asymmetric network architec-
ture mainly consists of two branches: the high-frequency
branch (HFB) and the low-frequency branch (LFB). The235

guidance delivers the global feature maps from the LFB to
the low-level module of the HFB, helping the HFB generate
more high-frequency details. The mask network adaptively
reconstructs the final output from the LFB and the HFB to
improve the perceptual quality and reconstruction accuracy240

of the SR image. We first describe our left-right asymmetric
SR network architecture, then detail our guidance mechanism
and mask network in the later subsections.
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FIGURE 3. The basic block in our network: Residual-in-Residual Dense Block
(RRDB). The RRDB has a global residual connection, while each dense block has a
local residual connection and dense connections inside the block.

A. LEFT-RIGHT ASYMMETRIC NETWORK
ARCHITECTURE 245

Our left-right asymmetric SR network aims to achieve a bet-
ter trade-off between reconstruction accuracy and perceptual
quality, which contains two complementary branches. The
HFB is used to recover detail information, while the LFB
is for reconstructing global information. ESRGAN [15] in- 250

troduces a novel effective basic block: Residual-in-Residual
Dense Block (RRDB), as depicted in Fig. 3, to generate
high-quality images. The excellent experiment results prove
the strong ability of RRDB to extract multi-level feature
information, and we also utilize the RRDB as our basic block. 255

1) Shared Module
Generally, the shallow parts of the three subnets always ex-
tract the shallow features, such as edges and corners. Hence,
we design a shared module (SM) for these three subnets at 260

the head of our framework. We first use a convolution layer
to process the same LR input image of the subnets, attaining
the feature map F0 of the input:

F0 = HLR(ILR), (1)

whereHLR represents convolution operation. Then we use S
RRDBs in the shared module to obtain shallow features from 265

the input feature map F0, so we can have:

FSF = HSM (F0), (2)

where HSM denotes our shared module. The SM is shared
by the low-frequency branch, the high-frequency branch and
the mask network, which can extract feature maps efficiently
and reduce the parameters. 270

2) Low-Frequency Branch
To reconstruct relatively high-accuracy SR images, we use
a low-frequency branch (LFB) to extract the global features.
The LFB is trained by the MSE loss, including deep level
feature extraction module, upsampling module and recon- 275

struction module with a feed-forward pipeline. We adopt L
RRDBs in the deep feature extraction module to obtain more
global feature maps, while the upsampling module upscales
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the feature maps and the reconstruction module outputs the
super-resolved feature maps by a convolution layer.280

3) High-Frequency Branch

To produce more photo-realistic SR images, we utilize the
HFB to generate more high-level feature maps. The HFB
is trained by the GAN framework having a generator and
a discriminator. The network structure of the generator is285

similar to the LFB, where H RRDBs are stacked, followed
by a convolution layer, an upsampling layer and another
convolution layer for reconstruction. The discriminator is
a classification network to distinguish the real HR image
and the artificially super-resolved image. Similar to ESR-290

GAN [15], we apply the Relativistic average Discriminator
(RaD) [36] as our HFB discriminator. The probability output
of RaD being closer to 1 means the real image xr being
more realistic than the fake one xf . The loss function of the
discriminator is defined as follows:295

LRaD =− Exr
[log(DRa(xr, xf ))]

− Exf
[log(1−DRa(xf , xr))],

(3)

where DRa(·) is the RaD formulated as DRa(xr, xf ) =
σ(C(xr) − Exf

[C(xf )]), C(·) means the discriminator out-
put, Exf

[·] represents the operation of taking average for all
fake data in the mini-batch, and σ(·) is the sigmoid function.

Following [15], our generator consists of three losses: the300

L1, the perceptual loss Lpercep, and the adversarial loss.

Following [27], [29], [32], [44], we use L1 loss function to
constrain the content of a generated SR image to be close to
the HR image. The L1 loss is defined in Eq. 4:

L1 =
1

Wr ×Hr × C
(4)

×
Wr∑
w=1

Hr∑
h=1

C∑
c=1

‖ FGθ (ILRi )(w, h, c)− IHRi (w, h, c) ‖1,

where FGθ (·) represents the function of the generator, θ is the
parameters of the generator and Ii means the i-th image. This
function treats every position in the image equally.

The perceptual loss [45] aims to measure the perceptual305

similarity between the SR image and the corresponding HR
image, which minimizes the distance between two high-
level features extracted from a pre-trained network before the
activation layers. Both the SR and HR images are taken as
the input to the pre-trained VGG19 and the VGG19-54 layer310

features are extracted. The perceptual loss is defined as:

Lpercep =‖ FV GGθ (G(ILRi ))− FV GGθ (IHRi ) ‖1, (5)

where FV GGθ (·) is the features from the 4-th convolution
layer before the 5-th maxpooling layer in the pre-trained
VGG19 network and Ii is the i-th image, G(·) is the function
of the generator.315

The adversarial loss for the generator is in a symmetrical

form against the discriminator:

LRaG =− Exr [log(1−DRa(xr, xf ))]

− Exf
[log(DRa(xf , xr))].

(6)

B. GLOBAL GUIDANCE MECHANISM
Inspired by the LSF-based top-down facilitation of recogni-
tion in the visual cortex [18], we deem that the LFB can guide 320

the HFB to recover more detail information with the global
context features of the input. As shown in Fig. 2, the output
feature maps of the l-th RRDB in the LFB is used to guide
the subsequent feature extraction of the h-th RRDB in the
HFB. Specifically, the output feature maps are concatenated 325

into the input feature maps of the h-th RRDB in the HFB.
The injection of feedback information from the global level
can be beneficial for the fine-grained reconstruction. We
have demonstrated the effectiveness of the guidance in our
experiments. 330

C. MASK NETWORK
To make the final reconstructed SR image focus on high-
frequency details, we have embedded an attention mecha-
nism in our framework. As presented in Fig. 2, we design
a mask network to produce an attention mask for adaptively 335

reconstructing the final output image, achieving a better
trade-off between reconstruction accuracy and perceptual
quality. Similar to the LFB, the mask network is stacked
by M RRDBs after the shared module. Then we use the
upsampling layer to upscale the attention feature map. The 340

feature map is then processed by the sigmoid function to a
probability matrix which enables the dual SR framework to
yield superior results. Unlike other works that fuse the SR
output of each branch to the final output [17], [46], we merge
the feature maps in the process of SR image reconstruction 345

which is before the final reconstruction convolution layer.
The feature maps extracted from the mask network module

is defined as:
WM = Hmask(FSF ), (7)

where Hmask denotes mask network. FSF is the output of
shared module. The mask A can be formulated as: 350

A = σ(WM ), (8)

We use the attention mask A to fuse the feature maps of
the low-frequency branch and the high-frequency branch as
follow:

Iy = (1−A) · flow(FSF ) +A · fhigh(FSF ), (9)

where fhigh(FSF ) represents the reconstructed feature map
from the HFB, flow(FSF ) represents the reconstructed fea- 355

ture map from the LFB, and A denotes the attention mask
indicating to what extent each pixel of the fhigh(FSF ) con-
tributes to the final output image. In this way, the mask
network can learn the weight of each pixel of the feature map,
leading to reconstruct the SR image with higher visual quality 360

and less deformed textures. Furthermore, the mask network
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adaptively reconstructs the final output merged from the LFB
and the HFB with the last convolution layer.

IV. EXPERIMENTS
In this section, we first describe our network training set-365

tings, then present the quantitative and visual results of the
proposed network compared with state-of-the-art methods on
benchmark datasets. To study the effects of the guidance and
the dual branches in the proposed network, we conduct some
ablation study experiments by removing these components370

and compare their differences, respectively.

TABLE 1. The numbers of RRDB and training loss functions for different modules in
our GDSR.

Name Number of RRDB training loss
Shared Module 2 −

Low-Frequency Branch 15 MSE
Mask network 5 −

High-Frequency Branch 15 V GG+GAN + L1

Final Output − L1

A. TRAINING DETAILS
DIV2K dataset [47] contains 800, 100 and 100 images of
2K-resolution for training, validation, and testing, respec-
tively. Following [15], [27], [32], we use 800 training im-375

ages from the DIV2K dataset as the training set. At test-
ing stage, we also use five standard benchmark datasets:
Set5 [48], Set14 [49], BSD100 [50], Urban100 [51], and
Manga109 [52]. The LR images are obtained by bicubic
downsampling (BI) from the original high-resolution images.380

According to the work of Blau et al. [53], the perceptual
quality of super-resolved images is not always improved with
the increase of PSNR/SSIM values. We adopt the perceptual
index (PI) [37] and root means square error (RMSE) as our
quantitative measurements, where PI measures the perceptual385

quality of the super-resolved image and RMSE measures the
reconstruction loss between the HR image and the SR image.
Lower values of both PI and RMSE represent better quality.

The training loss functions of our network are as shown in
Table 1. The training process is divided into two stages. First,390

we use MSE loss to pre-train a PSNR-oriented model with all
branches. We then employ the trained PSNR-oriented model
as an initialization for the network of the HFB. Second,
we train the HFB in an adversarial manner. Meanwhile, we
continue to use the L1 loss to update the LFB and the mask395

network branch until the model converges.
At the training stage, the inputs are augmented by rotating

and flipping. Our network is optimized with ADAM opti-
mizer [54], whose hyper-parameters β1 and β2 are set to
β1 = 0.9 and β2 = 0.999. We randomly crop HR images400

to 128 × 128 patches. Following [21], [27], [29], [32], [55],
[56], the initial learning rate is set to 1 × 10−4 and then
decreases to half every 2 × 105 iterations. The number of
RRDBs for different modules in GDSR is set as shown in
Table 1. We set the block number in the global guidance405
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FIGURE 4. The trade-off of RMSE and PI on the Urban100 benchmark dataset of our
method and state-of-the-art methods for 4× super-resolution. Among all the methods,
our GDSR is the closest to the origin of the coordinates, achieving a good balance
between the accuracy and perceptual quality of the SR images.

mechanism as l = 10 and h = 5. We implement our model
with the PyTorch framework [57] on two NVIDIA GeForce
RTX 2080Ti GPUs.

B. QUANTITATIVE COMPARISONS
As shown in Fig. 4, the methods on the top-left region 410

are MSE-based, which have lower RMSE loss but higher
PI value. They have high reconstruction accuracy but poor
visual quality with over-smoothed edges. On the contrary,
the methods on the bottom-right region are GAN-based,
including SRGAN [33], EnhanceNet [34], ESRGAN [15], 415

RankSRGAN [40] and our method, which have lower PI
value. Although the previous GAN-based methods obtain
more photo-realistic images than the MSE-based methods,
they have higher RMSE loss, resulting in more deformed
textures in the SR images. Our GDSR attains the lowest 420

RMSE loss and comparatively lower PI value among all
the GAN-based methods, and it can produce SR images of
better perceptual quality and relatively higher reconstruction
accuracy.

To further show the performance of our method more 425

clearly, we compare the results of DNI [38] with our GDSR
on the measurement index LPIPS [58]. LPIPS calculates
the perceptual similarity of the images, which is recently
a common measurement index to evaluate image quality in
the Super-Resolution field. The evaluation result of LPIPS 430

is more close to human perception, which provides a good
trade-off between perception and distortion. We choose the
MSE-based method SRResNet [33] and the GAN-based
method RankSRGAN [40] to interpolate with different in-
terpolation parameter α, which is set to 0.2, 0.4, 0.6, 0.8. 435

As shown in Table. 3, the LPIPS of our method GDSR in
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TABLE 2. Quantitative results for 4× super-resolution. The best results are highlighted.

Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PI PSNR SSIM PI PSNR SSIM PI PSNR SSIM PI PSNR SSIM PI

ESRGAN 30.47 0.8518 3.32 26.29 0.6984 2.74 25.32 0.6505 2.39 24.36 0.7330 3.61 28.44 0.8599 3.19
GDSR(ours) 30.93 0.8641 3.48 27.56 0.7723 2.72 26.02 0.6782 2.29 25.11 0.7557 3.38 28.95 0.8734 3.09

TABLE 3. The quantitative comparisons of DNI between SRResNet and RankSRGAN,
and GDSR model on the Urban100 benchmark dataset and Manga109 benchmark
dataset. The best results are highlighted.

Method Urban100 Manga109
PSNR LPIPS PSNR LPIPS

SRResNet 26.15 0.224 30.50 0.108
DNI_02 25.33 0.207 28.00 0.099
DNI_04 24.70 0.187 26.69 0.090
DNI_06 24.62 0.163 26.62 0.074
DNI_08 24.76 0.144 27.85 0.065
RankSRGAN 24.49 0.139 27.89 0.075
GDSR 25.11 0.126 28.95 0.061

the two benchmark datasets Urban100 and Manga109 are
lowest, which means that the image quality of our method
is much better than that of simple interpolation between
the PSNR-oriented model and the GAN-based model. It can440

be seen that the PSNR of our method is higher than that
of RankSRGAN and other DNI models in the benchmark
dataset Manga109, which means that our method has less
distortion. In fact, our mask network can choose optimal
mask parameters automatically to achieve good perception-445

distortion trade-off.
Furthermore, more quantitative comparison results of the

performance of the proposed method with the perceptual
SR methods ESRGAN [15] are listed in Table 2. The eval-
uation metrics include PSNR, SSIM, and PI [37]. Table 2450

shows their performance on five test datasets: Set5, Set14,
BSD100, Urban100, Manga109. Note that lower PI value
indicates better visual quality, while higher PSNR/SSIM val-
ues mean higher reconstruction accuracy. When comparing
our method with ESRGAN, we find that GDSR achieves455

the best PI performance on most datasets except Set5. Fur-
thermore, the improvement of perceptual scores comes at
the price of PSNR. Note that in all test sets, GDSR obtains
the highest PSNR/SSIM values comparing with ESRGAN.
Our proposed method achieves a lower PI value and higher460

PSNR/SSIM values, which means it has the better visual
quality and higher reconstruction accuracy.

C. QUALITATIVE RESULTS
We compare our GDSR on some public benchmark
datasets with the MSE-based methods: SRResNet [33],465

EDSR [27], D-DBPN [59], and the GAN-based approaches:
SRGAN [33], EnhanceNet [34], ESRGAN [15], RankSR-
GAN [40].

We show some visual examples, where we observe that
our method could generate more realistic textures without470

introducing additional artifacts. As shown in Fig. 5, our

proposed network outperforms other methods by a large
margin in visual quality. Our network can generate images
with more fine-grained textures and high-frequency details
without deformation. For example, for the image ‘img_002’ 475

of Urban100, the edges from MSE-based methods are over-
smoothed. EnhanceNet and ESRGAN generate the streaks
with noise. The margins of cropped parts of SRGAN and
RankSRGAN are blurry. Our GDSR can produce clear and
natural stripes of the window frame without noise. The 480

cropped parts of the image ‘img_044’ in Urban100 are full
of stripes. All the compared MSE-based methods suffer from
blurry artifacts, failing to recover the structure and the gap
of the stripes. The result of EnhanceNet is full of noisy and
ESRGAN generates noise and wrong textures. The streaks of 485

SRGAN, RankSRGAN are indistinct and blurred, while our
GDSR can recover them correctly, producing more pleasing
results and being faithful to the HR image. These repre-
sentative comparisons demonstrate the strong ability of our
GDSR for producing more photo-realistic and high-quality 490

SR images.
We also found that our method can generate more detail

lines without artifacts in bright-color background. As shown
in Fig. 5, we can find that the Window frames in ‘img_013’
of Urban100 of SRGAN and ESRGAN are difficult to dis- 495

tinguish. EnhanceNet and RankSRGAN generate ‘img_013’
of Urban100 with too many noise. Our method GDSR can
recover the lines of window frames without artifacts, which
overcomes the above disadvantages of GAN-based methods.

Furthermore, we show the visual example of the DNI [38] 500

and GDSR model in Fig. 7. We can see that the picture
of DNI becomes more and more photo-realistic with the
increase of α value, but those photo-realistic images are
accompanied by unsatisfying artifacts and noise. The image
generated by our model is more photo-realistic with less 505

noise.

D. RESULTS WITH REAL-WORLD DATASET
We further compare our model with some others on real-
world images to test the robustness of our model. We use
the Nikon dataset from RealSR [60] to test, which is a testing 510

dataset commonly used in real-world Super-Resolution filed.
Several evaluation metrics exist for real-world images, such
as SSEQ [61], LPIPS [58], and DIBR-Synthesized Image
Quality Metric [62]. We choose SSEQ and LPIPS as our
evaluation metrics where the open-source codes found online 515

are utilized. SSEQ calculates the spatial-spectral entropy of
image blocks to obtain the relationship between the image
pixels. LPIPS calculates the perceptual similarity of the im-
ages. Lower values of both SSEQ and LPIPS represent better
quality. From Table. 4, we can find that our GDSR performs 520
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Urban100 (4×):
img_002

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

Urban100 (4×):
img_009

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

Urban100 (4×):
img_032

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

Urban100 (4×):
img_044

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

FIGURE 5. Visual comparison for 4× SR with BI model on Urban100 dataset.

best in compared models.

TABLE 4. The quantitative comparisons of SRResNet, ESRGAN, and GDSR model in
RealSR Nikon test dataset. The best results are highlighted.

Method Nikon
SSEQ LPIPS

SRResNet 54.600 0.448
ESRGAN 45.989 0.417
GDSR 44.824 0.412

E. ABLATION STUDY
To study the effects of the structure in the proposed method,
we conduct ablation experiments by removing the compo-
nents and testing the differences. We remove the global guid-525

ance to verify its influences. Then we train a single branch
in an adversarial manner without global guidance and mask
network to verify the effect of our proposed dual branches.
We also compare the differences of the final reconstruction
outputs of the HFB and the dual branches in the same 530

network. The visual comparisons are illustrated in Fig. 8 and
Fig. 9. Detailed discussions are provided below.

1) Removing the Guidance

We first remove the top-down guidance in our network. An
obvious performance decrease can be observed in Fig. 8. 535

For image ‘KarappoHighschool’ in Manga109, the model
without guidance introduces some unnatural noise and blurry
edges, while GDSR can generate clear SR image. The HFB
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Urban100 (4×):
img_013

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

Urban100 (4×):
img_038

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

BSD100(4×):
img_057

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

Manga109(4×):
YumeiroCooking

(a) HR (b) Bicubic (c) SSResNet (d) EDSR (e) D-DBPN

(f) EnhanceNet (g) SRGAN (h) ESRGAN (i) RankSRGAN (j) GDSR(ours)

FIGURE 6. Visual comparison for 4× SR with BI model on Urban100, BSD100, and Manga109 datasets.

Urban100 (4×):
img_027

(a) HR (b) SSResNet (c) DNI_02 (d) DNI_04

(e) DNI_06 (f) DNI_08 (g) RankSRGAN (h) GDSR(ours)

FIGURE 7. Visual comparison for 4× SR between DNI and GDSR model on Urban100 dataset.
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Manga109 (4×)
KarappoHighschool (a) HR (b) w/o guide HFB (c) w/o guide GDSR (d) GDSR (ours)

FIGURE 8. The visual results of the ablation study of GDSR with the guide. Without the guidance mechanism, the network tends to generate over-smoothed textures, presenting
bad visual quality.

Urban100 (4×):
img_025 (a) HR (b) ESRGAN_17 (c) HFB (d) GDSR (ours)

FIGURE 9. The visual results of ESRGAN_17, HFB, and GDSR. Our GDSR recovers more correct structures of the cropped part.

without the global guidance from the LFB introduces blur-
ring artifacts. The characters in the cropped image generated540

by GDSR are clearer and more recognizable due to the
benefit of top-down guidance. We also perform the experi-
ment that replaces concatenation by addition of the output
feature maps from the LFB to the HFB but we observe no
differences.545

2) Compared with Single Branch
Firstly, we train the single branch in the adversarial manner,
which can be treated as ESRGAN with 17 RRDBs. Then,
We generate the SR images from the HFB in the origi-
nal network by adding the final reconstruction convolution550

layer. The experimental visual comparison results are shown
in Fig. 9. We can see that GDSR outperforms the single
branch ESRGAN_17 by a large margin. The single branch
ESRGAN_17 tends to introduce unpleasant and unnatural
artifacts. The HFB with the global guidance from the LFB555

can alleviate the artifacts but the lines of eaves in img_025
have additional textures. By employing the mask network to
adaptively reconstruct the final output from the LFB and the
HFB, our GDSR can alleviate heavy artifacts and noise to
generate more correct and clearer stripes. The visual analysis560

indicates that our dual branches structure plays an important
role in our GDSR to achieve a better trade-off between
perceptual quality and reconstruction accuracy in SR images.

We also give the quantitative results of ESRGAN_17,
HFB, and GDSR. As shown in Table 5, comparing with565

ESRGAN_17, the HFB gains higher PSNR and SSIM values
than the ESRGAN_17. Our GDSR has achieved the highest
PSNR and SSIM, demonstrating that our GDSR benefits

Set14: barbara (a)GT (b)GDSR

FIGURE 10. The 4× SR visual result of ‘barbara’ in Set14.

from the two-branch design and reconstructs more accurate
SR images. 570

TABLE 5. The quantitative comparisons of ESRGAN_17, HFB, and GDSR model in
test datasets. The best results are highlighted.

Method Set5 Set14
PSNR SSIM PSNR SSIM

ESRGAN_17 30.17 0.8490 27.11 0.7573
HFB 30.38 0.8489 27.04 0.7568
GDSR 30.93 0.8641 27.56 0.7723

V. LIMITATIONS AND FUTURE WORK
As SISR is a serious ill-posed problem, it is unavoidable that
our method has some limitations. One interesting failure on
an image in the Set14 dataset is shown in Fig. 10, where the
model blurs the complicated stripes visible in the HR image 575

as smooth areas. The reason for the results is that the model
does not have enough features to learn, which usually occurs
between pairs of LR and HR images. The complicated stripes
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gradually disappear in the LR image as the size of the LR
image reduces.580

The model is already competitive in terms of visual results.
Future work will focus on reducing the depth of the network
and applying shrinking methods to speed up the model. We
also want to add a temporal consistency term to use the model
for video super-resolution.585

VI. CONCLUSION
In this paper, we proposed a novel left-right asymmetric
network for image SR to achieve a better trade-off between
reconstruction accuracy and perceptual quality. We used
two different training strategies to train the low-frequency590

branch (LFB) and the high-frequency branch (HFB), aligning
with the goal to make complementary branches. The LFB
is trained with MSE loss to pursue accuracy and the HFB
is trained with the GAN adversarial loss to extract high-
frequency features. Furthermore, we proposed a top-down595

guidance mechanism to guide the high-frequency feature
extraction in the HFB. The high-level feature from the LFB
helps the HFB to extract more high-frequency texture in-
formation. To take full advantage of both high-frequency
and low-frequency features, we used a mask network to600

adaptively reconstruct the final output image. Our GDSR can
reconstruct accurate and realistic super-resolution images,
benefiting from the complementary branches to extract the
high-frequency features and the low-frequency features, the
guidance mechanism to guide the high-frequency feature ex-605

traction, and the mask network to fuse the features from two
branches. Extensive benchmark evaluations demonstrated the
effectiveness of our proposed network, which achieved supe-
riority over state-of-the-art methods.
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