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ABSTRACT High dimensionality problem in spectra datasets is a significant challenge to researchers and 

requires the design of effective methods that can extract the optimal variable subset that can improve the 

accuracy of predictions or classifications. In this study, a hybrid variable selection method, based on the 

incremental number of variables using bootstrapping soft shrinkage method (BOSS) and interval random 

variable selection (IRVS) method is proposed and named BOSS-IRVS. The BOSS method is used to 

determine the informative intervals, while the IRVS method is used to search for informative variables in 

the informative interval determined by BOSS method. The proposed BOSS-IRVS method was tested using 

seven different public accessible near-infrared (NIR) spectroscopic datasets of corn, diesel fuel, soy, wheat 

protein, and hemoglobin types. The performance of the proposed method was compared with that of two 

outstanding variable selection methods i.e. BOSS and hybrid variable selection strategy based on 

continuous shrinkage of variable space (VCPA-IRIV). The experimental results showed clearly that the 

proposed method BOSS-IRVS outperforms VCPA-IRIV and BOSS methods in all tested datasets and 

improved the percentage of the prediction accuracy, by 15.4 and 15.3 for corn moisture,13.4 and 49.8 for 

corn oil, 41.5 and 50.6 for corn protein, 12.6 and 5.6 for soy moisture, 0.6 and 6.3 for total diesel fuel, 19.9 

and 14.3 for wheat protein, and 5.8 and 20.3 for hemoglobin. 

INDEX TERMS Hybrid variable selection, model population analysis, weighted bootstrap sampling, 

partial least squares, and near infrared spectroscopy.

I. INTRODUCTION 

In recent years, near-infrared (NIR) spectroscopy has 

gained wide acceptance in different fields such as 

agriculture and the petrochemical and pharmaceutical 

industries by virtue of its advantages in recording spectra 

for solid and liquid samples. NIR spectra typically consist 

of broad, weak, non-specific, and overlapped bands and 

some irrelevant variables [1]. These unrelated  variables 

could lead to wrong or inefficient prediction results. To 

overcome this problem, a process of multivariate analysis 

for NIR spectroscopy should be followed as shown in 

Figure 1. The first step is to have NIR samples as X and the 
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properties of interest as y. Then a pre-processing technique 

is used to remove physical phenomena in the spectra [2]. 

Next, the important variables are extracted using a variable 

section method. Finally, a multivariate calibration model is 

used to build the relationship between the selected variables 

and the properties of interest to predict the values of the 

interesting properties. Variable selection is a critical step in 

multivariate calibration of NIR spectroscopy. This is 

because the variable selection step reduces the curse of 

dimensionality, which results in speeding-up the operating 

model, providing a better interpretation of a model by 

selecting the informative variables, and improving the 

prediction performance by eliminating uninformative 

variables [3]. 

Deng et al. proposed a new and effective single variable 

selection method named BOSS [4]. This method showed a 

significant improvement of prediction accuracy on three 

NIR spectroscopic datasets and outperforms partial least 

square (PLS), Monte Carlo uninformative variable 

elimination (MCUVE), competitive adaptive reweighted 

sampling (CARS) and genetic algorithm coupled with 

partial least square (GA-PLS). The advantages of the BOSS 

method can be summarized in three aspects—first, the use 

of soft shrinkage, which lowers the risk of eliminating 

essential variables. Second, a fair comparison of variables 

compensates for the influence of collinearity on the 

regression coefficients because of the use of weighted 

bootstrap sampling (WBS). Third, the use of model 

population analysis (MPA), which extracts the information 

from a large population of sub-models instead of one model 

to obtain more reliable results by considering the combined 

effects among variables [4]. Despite these advantages, the 

BOSS has drawbacks which can be summed up into three 

aspects as well. First, the BOSS ignores the high correlation 

among consecutive variables. Second and due to the use of 

bootstrap sampling that is inappropriate for the dependent 

data, the BOSS selects fewer variables, which causes 

missing some informative wavelengths. Third, it cannot 

avoid over-fitting problem BOSS uses RC, which is 

susceptible to noises [5], [6]. 

Most recently, three different methods have been developed 

and out-performed BOSS method. The first method is a 

modification of the bootstrapping soft shrinkage approach 

named new computational method stabilized bootstrapping 

soft shrinkage approach (SBOSS) [5], in which variables 

are selected by the index of stability of regression 

coefficients instead of regression coefficients absolute 

value. Second, fisher optimal subspace shrinkage (FOSS) 

[6] that splits variables into some intervals by the 

information from regression coefficients PLS model, then 

the weighted block bootstrap sampling (WBBS) is used to 

select intervals, and the mean of the absolute values of 

regression coefficients of the corresponding interval 

determines the weights of sub-intervals. Third, significant 

multivariate competitive population analysis (SMCPA) that 

combines the ideas of substantial multivariate correlation 

(SMC) and MPA, and employs WBS is an improved 

version of bootstrap sampling with different weights on 

sampling objects and exponential decline function (EDF) 

competition method used to force the elimination of 

uninformative or redundancy variables [7]. For corn and 

wheat protein datasets, both methods select informative 

intervals including the BOSS. However, the BOSS was 

unstable, and only a few variables are selected compared 

with other high-performance methods that were more 

accurate and selected more variables in these crucial 

intervals. 

In terms of the selection of spectra intervals, all models 

except FOSS (i.e. BOSS, SBOSS, and SMCPA) have not 

considered this method, although it can provide a 

reasonable interpretation. Thus, using this method in the 

proposed model is expected to improve the accuracy as the 

vibrational spectral band relating to the chemical group 

generally has a width of 4–200 c𝑚−1 [6]. Besides, none of 

these approaches, including FOSS, searches for optimal 

combinations in specific informative intervals. 

Therefore, in this study, a new hybrid model is proposed 

based on the BOSS method. However, the proposed hybrid 

model works by incrementing the number of variables 

being selected rather than decreasing them. To the best of 

the authors’ knowledge, there is no such hybrid model in 

the literature based on increasing the number of variables, 

but there are many developed hybrid models based on 

reducing the number of variables such as a hybrid VCPA-

IRIV model [9], competitive adaptive reweighted sampling-

successive projections algorithm (CARS-SPA) [10], and a 

combination strategy of random forest and backpropagation 

network (RF-BPN) [11]. The mentioned methods have their 

own merits and unique characteristics. The decreased-

number-based variable selection methods attempt to utilize 

the features of other methods by making an effective 

combination. However, the overall performance can be 

reduced significantly if the preliminary method does not 

successfully select the key variables [12]. The proposed 

hybrid method follows the same concept by taking the 

advantage of the  BOSS method that successfully proved to 

select important intervals: however the BOSS method 

selects fewer variables and does not select optimal 

combinations, so we used IRVS to add more variables in 

these intervals to have an excellent performance. Besides, 

we focus on the importance of interval as proved to be more 

robust and more interpretable, so we develop our model 

that increases the numbers in those informative intervals. 

The disadvantage of the increased number of variable 

selection methods that we don’t know what is the optimal 

number of variables that need to be increased. Therefore, 

there is a need to tune the parameter to decide the optimal 

number. 

The novelty in this research is the following: 

1-There is no previous hybrid variable selection method in 

NIR spectroscopy based on increasing the number of 

variables. However, most of the studies use a hybrid model 

to eliminate variables. This paper introduces a new hybrid 

method based on the incremental approach. 
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2- The number of datasets used in the evaluation of the 

proposed hybrid model (i.e. 7 NIR datasets) is considerably 

large, which led to a proper evaluation. The used NIR 

datasets are corn datasets with moisture, oil and protein 

properties, hemoglobin, diesel fuel with total aromatics 

properties, soy with moisture properties, and wheat protein 

datasets. 

3- Investigating the proposed hybrid methods with two 

high-performance model include hybrid VCPA-IRIV and 

BOSS. 

4- Providing a comprehensive review of different variable 

selection methods in terms of the ability to select 

informative intervals and the performance of the models 

and numbers of the chosen variable.   

The remainder of this paper is divided into the following 

sections. Related studies are described in Section II, 

followed by a detailed description of the proposed hybrid 

method in Section III. The datasets used in this study are 

described in Section IV. The experimental work and 

obtained results are presented in Section V. Finally, the 

conclusion of this study is presented in Section VI. 
II. RELATED WORKS 

During the last several decades, a large number of various 

mathematical strategies for variable selection have been 

employed in NIR spectroscopy.  

Li-Li Wang has classified the single variable selection 

methods and interval variable selection methods into a 

different classification [13]. The only variable selection 

methods have been classified into classic stepwise methods, 

variable raking-based strategy, penalty-based strategy, 

MPA, heuristic algorithm-based strategy, and some other 

methods include successive projection algorithm (SPA) and 

uninformative variable elimination (UVE). On the other 

hand, the interval selection method is classified into; (1) 

classic methods including interval PLS (iPLS) and its 

variants, (2) moving windows PLS (MWPLS), and its 

variants; (3) penalty-based methods include elastic net 

combined with partial least squares regression (EN-PLSR), 

iterative rank PLS regression coefficient screening (EN-

IRRCS) and group PLS (gPLS); (4) sampling-based 

methods include iPLS-Bootstrap and Bootstrap variable 

importance in projection (Bootstrap-VIP); (5) correlation-

based method include sure independence screening and 

interval PLS (SIS-iPLS); finally, (6) projection-based 

methods include interval successive projections algorithm 

(iSPA). 

The MPA method has been widely used as it shows a 

promising prediction ability. The MPA has been classified 

into single variable model population analysis and interval 

model population analysis. The former includes random 

frog (RF) [14], iteratively retains informative variables 

(IRIV) [15], variable iterative space shrinkage approach 

(VISSA) [16], iteratively variable subset optimization 

(IVSO) [17], CARS [18], stability competitive adaptive 

reweighted sampling (SCARS) [19], sampling error profile 

analysis LASSO (SEPA-LASSO) [20], BOSS [4] and 

SBOSS [5]; while the latter includes interval random frog 

(iRF) [21], interval variable iterative space shrinkage 

approach (iVISSA) [22], interval combination optimization 

(ICO) [23] and fisher optimal subspace shrinkage (FOSS) 

[6]. 

Moreover, selecting the variables on near-infrared 

spectroscopy by utilizing models that hybridize two or 

more different techniques was recommended in [12]. In 

particular, the UVE method was used in [24] to filters the 

noise variables: then the SPA method was used to achieve 

an excellent selection. It is known as the UVE-SPA-MLR 

hybrid model. Another hybrid model called iPLS-mIPW 

combined two methods, i.e., iPLS with mIPW [25].  In 

iPLS-mIPW, the informative intervals were obtained using 

the iPLS method initially. Then further variables selection 

was performed using mIPW. Additionally, to select critical 

wavelengths in NIR spectra, the random forest was 

hybridized with the BP network by Chen et al. [11]. In the 

proposed model, some informative wavelengths initially 

selected using random forest. Then a new comprehensive 

variable group is produced, using BP network, with 

minimum errors. Recently, a VCPA-based hybrid model 

was proposed by Yun et al. [9]. In this model, VCPA was 

hybridized with the genetic algorithm (GA) and IRIV 

separately. Firstly, VCPA was used to continuously shrink 

and optimize the variable space from big to small. After 

that, additional optimization was performed, on the 

variables remained by VCPA, using IRIV and GA.  

Table 1 shows the comparison between previous methods 

in terms of selecting informative intervals and the 

performance of the methods and the number of the variable 

selected. 

III.PROPOSED MODEL 

In this section, a description of the proposed hybrid method 

named bootstrapping soft shrinkage approach and interval 

random variable selection (BOSS-IRVS) is provided in 

detail. It combines both the choice of informative intervals 

using the BOSS method, as illustrated in Section A, and an 

interval variable selection method, as shown in Section B. 

Then, a brief description of the compared methods and the 

model validation is given in Section C and D, respectively. 

Besides, Figure 2 shows an illustration of the proposed 

model. 
A. Informative intervals selection using BOSS methods 

The BOSS approach is designed to choose informative 

intervals, and that happens with the existence of 

collinearity. In a suitable shrinkage manner, data from 

regression coefficients are used by this approach [26]–[29]. 

Two types of sampling methods are used, including 

Bootstrap sampling (BSS) and Weighted Bootstrap (WBS).  

The purpose of the sampling method is to produce a 

random combination of variables and to construct sub-

models of the system. Thus, two methods are coupled and 

used, including MPA [25] and PLS regression [29], to 

extract the information from the sub-models. The BOSS 

method has five main steps to select the informative 

intervals illustrated as follows. 
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Step 1: BSS is used to produce K subsets on a variable 

space. The variables chosen for BSS are extracted from 

each dataset, and the redundant variables are excluded.  

Thus, only the unique variables have remained. The 

replacement number, in BSS, is identical to the total 

number of variables P. Therefore, the number of variables 

chosen is roughly 0.632 𝑃 in each subset. Here, all 

variables must be treated equally so that they can be picked 

into subsets with the same probability, i.e., equal weights 

(w) are set for all variables.  

Step 2: The subsets obtained are used to construct K PLS 

sub-models. Then, the prediction error is calculated based 

on RMSEV, and a percentage of the lowest RMSEV 

models is selected, representing the best models (e.g., 10 

percent). 

Step 3: Regression coefficients (RC) are computed and 

adjusted to the absolute value of all elements on the 

regression vector and normalize each regression vector to 

unit length for any extracted model. Subsequently, equation 

(1) is used to obtain new weights for variables by summing 

up the normalized regression vector. 

𝑤𝑖 = ∑ 𝑏𝑖,𝐴
𝐾

𝐴=1
                                (1) 

where wi  is the new weight for ith variable, K denotes the 

number of sub-models and bi,𝐴 represents the absolute 

normalized regression coefficient value for the ith variable 

in the Ath sub-model. 

Step 4: The WBS generates new subsets using WBS 

according to the variables’ new weights. As in BSS, the 

variables chosen are extracted in each dataset to construct 

the sub-models, and the redundant variables are excluded. 

The average number of variables calculated in Step 3 is 

used to determine the number of replacements in WBS. 

Therefore, in the new subsets, the number of variables is 

0.632 times of those previously determined [4]. The aim 

behind this step is to guarantee that the variables with larger 

absolute values of regression coefficients are likely to be 

selected in the best sub-models. 

Step 5: Repeat Step 2-4 until a number of variables in the 

new subsets are 1, then return the optimal subset, which has 

the lowest RMSEV. 

Step 6: Repeat the BOSS method twenty times to select 

informative intervals. 

 
B. Selection of informative variables in informative 
intervals 

After applying the BOSS method to NIR datasets to select 

informative intervals by Algorithm 1, the output of this 

algorithm will act as the input for Algorithm 2. The later 

algorithm will select informative variables in the 

informative intervals. The selection of informative variables 

is affected by three parameters that need to be tuned 

carefully. These parameters are: 

(i) The number of populations (np):  

To select an adequate number of populations, three cases of 

50, 100, 500 populations were investigated. For example, 

50 populations combine 50 individuals in which each 

individual combines the variables selected in Algorithm 1 

and the interval random variables method, which search for 

informative variables in informative intervals. Five hundred 

populations were chosen as the optimized number of 

populations based on 20 replicated results shown in Figure 

3. Therefore, 500 population was set in this work. From 

Figure 3 (a), it should be noted that when the 50 

generations have been used, the value of RMSEC varies 

from 3.1 to 3.9, which is an indication of underfitting, as 

shown in Figure 3. (b). However, with 500 generations, 

both values of RMSEC and RMSEP are dropped to the 

lowest level, which avoids overfitting and gives the best 

performance compared with 50 and 100 populations.  

(ii) The way of selecting random variables: 

The first choice is to choose random variables gradually or 

to select random variables at one time. Selection of random 

variables gradually means to select specific random 

variables in each run while selecting random variables at 

one time means to select all the random variables in only 

one run. Every random variable has small random interval 

from the big interval selected by BOSS. Figure 4 proves 

that the gradual selection of random variables is the optimal 

approach, which avoids overfitting. From the same figure, it 

can be seen that selecting random variables at one time 

leads to low RMSEC and high RMSEP, while gradual 

selection leads to low RMSEP. 

(iii) The number of informative variables selected (nv):  

To select an adequate number of added informative 

variables, three cases of 3, 6, 9 variables were investigated. 

Among the three numbers tested shown in Figure 5, it can 

be realized that the three variables have the worst RMSEC 

value, while the nine variables have the best values. 

However, with nine variables being selected, the RMSEP is 

high. As a compromise, the 6 number of variables is chosen 

as it produces the lowest RMSEP value and an acceptable 

RMSEC value. 

The pseudocode of the proposed algorithm is presented in 

Algorithm 2. In the beginning, five hundred random 

populations are generated. Each individual in the 

population combines input variables and three random 

variables from the informative intervals. The input is the 

variables selected in Algorithm 1. For each individual, 

RMSEC value is calculated, and the individual with the 

lowest RMSEC value is selected. These steps are repeated 

until ny random variables have been selected. For each 

round, the input is updated by adding the three variables 

chosen from the previous round. 
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TABLE 1. Comparison between previous methods in terms of selecting informative intervals and the performance of the methods and numbers of the 
variable selected 

Response Methods References 

The average 
no of 

selected 
variables 

Remarks Performance 

Corn 
moisture 

MCUVE [4] 12.3 ± 1.7 Select a larger number of variables, select informative 
intervals, and selects variables in the uninformative region  

BOSS and GA-PLS 
outperformed PLS, 
MCUVE and CARS  

CARS 5.1 ± 2.5 Select informative intervals, select a lower number of 
variables, lack of concentration around informative intervals 
compared than BOSS 

GA-PLS 7.1 ± 3.2 Select informative intervals 

LASSO [30] 37 Select informative intervals and select uninformative 
variables  
select a larger number of variables 

SPPA-LASSO 
outperformed PLS, 
PCR, LASSO, MWPLS, 
OHPL, MC-UVE and 
SCARS 

MWPLS 119 Fail to select informative intervals, select uninformative 
variables and select a larger number of variables 

OHPL 57 Select informative intervals and the select a larger number of 
variables 

SCARS 5 Select the informative intervals and select a lower number of 
variables 

SEPA-
LASSO 

7 Select the informative intervals and select a lower number of 
variables 

IVSO [17] 2.3±0.8 Select the informative intervals and select a lower number of 
variables 

IVSO outperformed 
PLS, CARS, and MC-
UVE 

IRIV [31] 7.7 ± 3.6 Select informative intervals GA-PLS 
outperformed IRIV. 
IRIV outperformed 
CARS and MC-UVE 

siPLS [22] 40 Select informative intervals and the interval widths were not 
optimized 
Select a larger number of variables 

iVISSA outperformed 
PLS, siPLS, MW-PLS, 
CARS, GA-PLS and 
iRF. iRF 35.1± 5.5 Select informative intervals, select uninformative intervals 

and  
select a larger number of variables 

iVISSA 14.2± 3.7 Select informative intervals 
select a larger number of variables 

Corn 
oil 

MCUVE [4] 87.4 ± 41.6 Select a larger number of variables, select informative 
intervals 
selects some uninformative variables  

BOSS outperformed 
PLS, MCUVE, CARS, 
and GA-PLS 

CARS 16.0 ± 4.8 Select informative intervals, lower number of variables and 
select uninformative intervals 

GA-PLS 79.2 ± 31.2 Select a larger number of variables, select informative 
intervals, and select uninformative intervals and select a 
larger number of variables 

GA-iPLS [9] 59.4 ± 6.8 Select informative intervals and select uninformative intervals VCPA-GA 
outperformed VCPA-
IRIV, CARS, GA-iPLS 
and VIP-GA 

VIP-GA 25.2 ± 7.8 Select informative intervals and select uninformative intervals 

VCPA-GA 32.9 ± 11.4 Select the informative intervals and has a good different 
variable combination in the informative intervals compared 
than GA-iPLS 

FOSS [6] 45.3± 10.2 Select an informative region and has a good concentration FOSS outperformed 
PLS, MW-PLS, iRF, 
iVISSA and BOSS 

Corn 
protein 

MCUVE [4] 
 

112.2 ± 16.8 Select a larger number of variables, select informative 
variables, and select intervals between 1900 and 2000 which 
lower the performance 

BOSS outperformed 
PLS, MCUVE, CARS, 
and GA-PLS 

CARS 20.2±8.5 Select informative intervals and select intervals around 2300 
which lower the performance. 
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GA-PLS 51.6 ± 20.7 Select a larger number of variables and select informative 
intervals and select intervals around 2300 which lower the 
performance 

VISSA [23] 172 Select variables across all spectra and select a larger number 
of variables 

ICO outperformed 
PLS, VISSA, iVISSA, 
VISSA-iPLS and GA-
iPLS 

iVISSA 241 Select variables across all spectra and select a larger number 
of variables 

VISSA-iPLS 105 Select informative intervals,  
select some more variables around 1670-1710nm and 2192-
2224nm which lower the performance. 
and select larger number of variables 

GA-iPLS 70 Select informative intervals 

ICO 69 Select informative intervals 

SBOSS [5] 25±7 Select informative intervals and has a good concentration 
than BOSS 

SBOSS outperformed 
SCARS, BOSS, CARS, 
GA-PLS, and MCUVE 

Soy 
moisture 

MCUVE [4] 32.8±21.4 Select two informative intervals, 
Select other variables in other intervals and select larger 
number of variables 

BOSS outperformed 
PLS, MCUVE, CARS, 
and GA-PLS 

CARS 6.4±4.6 Select two informative intervals 
Select other variables in other intervals 

GA-PLS 18.3±6.0 Select two informative intervals, 
and Select other variables in other intervals 
 

siPLS [22] 21 Select two informative intervals, and select the wavelengths 
around 1520 nm  

iVISSA outperformed 
PLS, siPLS, MW-PLS, 
CARS, GA-PLS and iRF 

iRF 29.4±6.4 Select two informative intervals and select around 2480 to 
2500 nm 
 

iVISSA 25.5±0.9 Select two informative intervals and select around 2480 to 
2500 nm 
 

MW-PLS 48 Select two informative and select around 2400 nm 
and select larger number of variables 

Total 
Diesel 
Fuel 

 

MCUVE [4] 107.4±54 Select variables between 1450 and 1550 and between 1200 
and 1300 and between 800 and 1200 

BOSS outperformed 
MCUVE, CARS, and 
GA-PLS 

CARS 28.8±10.3 Select variables between 1450 and 1550 and between 1200 
and 1300 and between 950 and 110 

GA-PLS 87.9±44 Select variables between 1450 and 1550 and between 1200 
and 1300 and between 950 and 110 

Wheat 
protein 

MC-UVE [17] 10.6 ± 1.3 Select informative intervals and select many variables in other 
intervals 

IVSO outperformed 
PLS, CARS, and MC-
UVE 

CARS 9.8 ± 2.8 Select informative intervals 
Selects many variables in uninformative intervals 

IVSO 14.8 ± 3.0 Select informative variables around 1144-1296nm  

GA-PLS-LRC [32] 19±5 Select informative variables around region 1100–1340 nm GA-PLS-LRC 
outperformed GA-
PLS 

VCPA [7] 8.9±1 Select informative variables around 1150–1350 nm SMCPA 
outperformed VCPA, 
CARS, and BOSS 

SMCPA 6.7±0.7 Select informative variables around 1150–1350 nm and has 
good selection of variables in informative intervals 
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Figure 2. illustration of the BOSS-IRVS model 
 

 

Algorithm2:  Search for informative variables in 

informative intervals 

25: Input: Variable selected by BOSS 

26: Output:  Select informative variables in informative 

intervals 

27: 𝑟 = 0 // r is the # of random variables selected  

28: While (𝑟 ≠nv) 

29: Begin 

30: Determine the intervals selected by BOSS in 

Algorithm1 

31: Generate 500 random population (np) 

32: Individual = Input + three random variables from 

intervals 

selected by BOSS 

33: Calculate RMSEC of each individual  

34: Select the individual that has the lowest RMSEC  

35: Input = the individual that has lowest RMSEC 

36: 𝑟 = 𝑟 + 3 

37: End while  

 
 
 
 
 
 

Algorithm1: Selection of informative intervals using 

BOSS 

 

1: Input data: X [N, P], y [N+1] 

2: Set the maximum number of iterations (NI), bootstrap 

resample size (N), number of variables (P), and number 

of subsets (K). 

3: Set a sampling method for BSS. 

4: Generate K subsets using BSS: all the variables are with 

equal weights (w). 

5: Assign equal weights (w) for the generated variables. 

6: Set RMSEV to zeros. 

7: retained_variables=P. 

8: j=1 

9: While (j<=100 OR retained_sebsets > 1) 

begin 

10: Build KPLS sub-models using the subsets obtained. 

11: Calculate RMSEV of the sub-models. 

12: Extract best models with the lowest RMSEV. 

13: Calculate regression coefficients for each extracted 

model.  

14: Change all the elements in the regression vectorRV to 

absolute value. 

15: Normalize each RV to have unit length.  

16: Sum up the normalized RV to obtain new Ws for 

variables using equation (1). 

17: Apply WBS according to the new Ws for variables to 

generate new subsets.  

18: Extract the unique variables to build up the sub-models. 

19: Calculate the average (avg) of the extracted variables. 

20: Determine the number of replacements in WBS using 

avg.  

21: Compute and retain the variables with the most 

considerableabsolute value of regression coefficients 

end while 

22: Apply 5-fold cross-validation  

to analyze the N variable subsets statistically. 

23: Choose the Variable subset with minimum RMSEV as 

the optimal variable subset. 

24. Run the BOSS twenty times to select 

informativeintervals. 

 

 
Figure 1. The process of multivariate analysis for near infrared spectroscopy 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3023681, IEEE Access

 

VOLUME XX, 2017 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C. An outline of the Hybrid VCPA-IRIV compared  
methods 

The VCPA-based hybrid variable selection technique was 

recently proposed by Yun et al. The concept of continuous 

shrinkage of variable space is the fundamental idea of the 

original VCPA method. The proposed hybrid VCPA 

method has two main phases. In the first phase, a modified 

VCPA was used to shrink the variable space continuously 

from big to small and optimizes it. For further optimization, 

the IRIV method was applied in the second phase.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. MODEL VALIDATION 

With 5-fold cross-validation and test sets, the predictive 

ability of the models is assessed by the root mean squared 

error of training (RMSEC), the root mean squared error of 

cross-validation (RMSEV), the root mean squared error of 

prediction (RMSEP), the coefficient of determination of 

training (𝑄2_𝐶), the coefficient of determination of cross-

validation (𝑄2𝑐𝑣) and the coefficient of determination of 

test set (𝑄2_𝑇). 

𝑅𝑀𝑆𝐸𝐶 = √∑ (𝑦𝑖−�̂�)
2𝑁𝑡𝑟𝑎𝑖𝑛

𝐼=1

𝑁𝑡𝑟𝑎𝑖𝑛
                      (2) 

𝑄𝐶
2 =

∑ (𝑦𝑖−�̂�)2𝑁𝑡𝑟𝑎𝑖𝑛
𝐼=1

∑ (𝑦𝑖−�̅�𝑖)2𝑁𝑡𝑟𝑎𝑖𝑛
𝐼=1

                     (3) 

where 𝑦𝑖 ,�̂�, and �̅�𝑖 are the experimental, predicted, and  the 

average of predicted properties, respectively. 𝑁𝑡𝑟𝑎𝑖𝑛 is the 

number of calibration samples in the training set. The 

RMSEP and RMSEV are computed similarly as RMSEC, 

while 𝑄2_𝑇and 𝑄2𝐶𝑉 are computed as and 𝑄2_𝐶,  but with 

different 𝑁𝑡𝑟𝑎𝑖𝑛 values that are changed with the testing 

sample for RMSEP and  𝑄2_𝑇 only. 

IV. DATASETS  

In this study, seven NIR datasets have been used to evaluate 

the BOSS-IRVS, which are datasets of diesel, soy, wheat 

protein, corn, and hemoglobin. The important details of 

these datasets are summarized below. 
A. Corn datasets 
From http:/www.eigenvector.com/data/Corn/index.html, 

four NIR corn datasets were collected.  In each dataset, 

there are 80 corn samples measured by m5 NIR 

spectrometers. Also, there are 700 wavelength points of 2 

nm intervals in the range of 1100-2498 nm for each 

spectrum. The properties of interest were used are oil, 

protein, and the content of moisture. The samples were 

 
 
Figure 3. Boxplot of 20 times for investigating the effect of number 
of populations on moisture corn dataset (a) RMSEC (b) RMSEP 

 

 
 
A- One-time selection method  
B- Gradual selection method 
 
Figure 4. Boxplot of 20 times for investigating the effect of 
selecting six random variables by one-time and gradual 
selection method on moisture corn dataset, where (a) is RMSEC 
and (b) is RMSEP results. 

 
 
Figure 5. Boxplot of 20 times for investigating the effect of 
selected 3 variables,6 variables, 9 variables on moisture corn 
dataset (a) RMSEC (b) RMSEP 
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divided, in each of the 80 corn samples, equally into a 60 

training set and a 20 independent test set. 
B. Diesel fuels dataset 

This dataset has been downloaded from the website 

http:/www.eigenvector.com/data/SWRI/index.html. The 

range of wavelength points is between 750-1550 nm at 

intervals of 2 nm for each spectrum, including 401 points. 

Only one property of interest is considered, which is the 

total aromatics, while the remaining properties are 

removed. The 20 high-leverage samples and one of the two 

random samples were used for each dataset to create the 

training set. The other group was used as an independent 

test set, leading in total dataset sample partitions 138 and 

118 for training and testing, respectively. 
C. Soy datasets 
Spectrometer NIR was used to measure the samples of soy 

flour [33]. There are 175 wavelengths in each spectrum, 

with 8 nm in the range of 1104 and 2496 nm. The moisture 

content was considered as properties of interest. According 

to the reference [33], each dataset contains 54 samples, split 

between the training set (40 samples) and the test set (14 

samples). 
D. Wheat dataset 
This NIR dataset [34] contains 100 wheat samples. The 

spectrum was reported at intervals of 2 nm from 1100 to 

2500 nm with a spectrum of 701 points. The property of 

interest y is the protein value. Owning the problem of ‘large 

p, small n’ [35][36], an acceptable window size compresses 

the original spectrum into a limit of 200 frames [37]. This 

dataset is reduced to 175 variables by limiting window size 

to 4, and each of the original four variables is averaged. Out 

of 100 samples, 80 was used for training and 20 for testing. 
E. Hemoglobin dataset 
Using the IDRC shootout 2010 software, Karl Norris [38] 

has produced this dataset that has been used by Mohd 

Nazrul Idrus [39]. With the spectrometer of NIR Systems 

6500, the blood samples have been analyzed. The blood 

hemoglobin reference was measured by a high-volume 

hematology analyzer. All spectra have 700 variables of 2 

nm interval in the range between 1100 and 2498 nm. To 

evaluate the model, the dataset is divided into 173 sets and 

194 unseen data sets, respectively, for training, and blind 

testing to measure the model’s predictive accuracy. 

V. Results and Discussions 

To assess the performance of the BOSS-IRVS, some high-

performance wavelength selection methods, including 

BOSS and VCPA-IRIV, are used for comparison. All codes 

were applied in Matlab. The datasets are centered. In this 

study, the calibration set is used for building the model and 

performing the variable selection. The independent test set 

is then used to validate the calibration model. Several 

evaluation metrics, such as the RMSEV, 𝑄2_𝑐𝑣, RMSEC, 

𝑄2_𝐶, RMSEP, and 𝑄2_𝑇, are used to measure the 

performance of the introduced model. At the same time, the 

maximum number of latent variables (mnLV) and the 

number of selected variables (nVAR) are also calculated. 

Each method is repeated 20 times to ensure the 

reproducibility and stability of the evaluation. The 

parameter setting for VCPA-IRIV are as follows: α = 20 

which is the mean number of each BMS sampling, 

EDF_run = 50 which is the number of exponentially 

decreasing function (EDF) run, BMS_run = 1000 which is 

the number of BMS run, σ = 0.1 which is the ratio of the 

best minus worst models of Ksub-models, L = 100 which is 

the number of the left variables in the final run of EDF, 

A_max = 10 which is the maximal principle component to 

extract for PLS,  fold = 5 which is the group number of 

cross-validation, and method = center which is the 

pretreatment method. In respect to the last three setting 

parameters, BOSS has similar settings as VCPA-IRIV. 

Last, the number of bootstrap used in BOSS, 

num_bootstrap is set to 1000. 

 
A. Corn dataset 
The results of variable selection methods, i.e. VCPA-IRIV, 

BOSS and BOSS-IRVS, on moisture, oil, and protein 

properties of corn datasets are summarized in Table 2. The 

results show that, on the three datasets, the BOSS-IRVS 

outperformed the prediction ability of the BOSS and the 

hybrid model of VCPA-IRIV. In detail, using BOSS-IRVS, 

the values of RMSEP for moisture datasets are improved 

from 3.2328e-04 to 2.8804e-04 when three variables are 

added and to 2.7360e-4 when six variables are added. For 

the oil dataset, the values of RMSEP are improved from 

0.0347 to 0.0197, and 0.0174 with three variables and six 

variables are added, respectively. For the protein dataset, 

the values of RMSEP are improved from 0.0322 to 0.0192 

and 0.0159 when three variables and six variables are 

added, respectively. In terms of the VCPA-IRIV model. 

The RMSEP values are 3.2341e-04, 0.0201, and 0.0272 for 

moisture, oil, and protein respectively; while for BOSS-

IRVS model, they are 2.7360e-04, 0.0174, and 0.0159. 

The variables selected by different selection methods on 

moisture datasets are shown in Figure 6. The wavelengths 

chosen by BOSS, VCPA-IRIV, and BOSS-IRVS models 

are located in two intervals and selected the two 

wavelengths of 1908 nm and 2108 nm. These two 

wavelengths are regarded as the key wavelength by Li et al. 

[20], [9], which correspond to the water absorption and the 

combination of O-H bonds according to the literature [22]. 

The number of the variable selected by the BOSS is 3.8, 

which indicates that the BOSS algorithm misses important 

variables and ignores the high correlation among 

consecutive variables. The BOSS-IRVS improved the 

BOSS prediction ability by adding six important variables. 

The VCPA-IRIV selects 5.5 variables which are the same 

as the BOSS-IRIV model when three variables are added. 

However, the variables selected by the BOSS-IRVS model 

give better performance compared to the variables selected 

by VCPA-IRIV and the reason is that the variable 

combinations of the BOSS-IRVS are better than the 

variable combinations of VCPA-IRIV. For oil dataset, 

From the Figure 7, it can be observed that VCPA-IRIV, 

BOSS and BOSS-IRVS methods select informative spectra 
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intervals near 1700 nm (region 1) and 2300 nm (region 2), 

which correspond to the second and first overtones of the 

C-H stretching mode and the combination of C-H 

vibrations [8]. The VCP-IRIV shows a good concentration 

on the two intervals compared with the BOSS method, 

which the variables selected by BOSS is unstable since it 

uses bootstrap sampling. The BOSS-IRVS combines the 

variables selected by the BOSS and added six variables in 

the informative intervals selected by BOSS, which lead to 

outperforming VCPA-IRIV model. The BOSS has the 

lowest variables selected then both VCPA-IRIV and BOSS-

IRVS models have the same number of the variable 

selected. For the protein dataset, From Figure 8, we could 

observe that VCPA-IRIV, BOSS, and the BOSS-IRVS 

methods select the combination of several groups that are 

chemical meaningful for data analysis of spectrum [5]. All 

the methods selected the intervals around 1680, 1800 and 

2180 nm. It can be noticed that these selected intervals 

cover a wide range linking to the complicated structure of 

the protein, e.g. C-H, O-H and N-H bond with different 

vibration pattern, complex microenvironment of the three 

bonds, and the interaction of them [4]. The lowest number 

is selected by BOSS followed by the BOSS-IRVS model 

with three added variables, and then both the VCPA-IRIV 

and the BOSS-IRVS with six added variables have nearly 

the same variables selected. The BOSS-IRVS selects 

important variables near to intervals 1800 and 2180, which 

outperformed the BOSS and VCPA-IRIV.  

Furthermore, from Figure 6, it can be seen that the 

proposed model had high stability variables since it focuses 

on specific important intervals. In more detail, all variables 

selected by BOSS in the first step of the proposed model 

are considered informative variables. Then, the selected 

BOSS variables are used as input for the IRVS algorithm, 

which means that the IRVS algorithm chooses the same 

variables selected by BOSS and adds the six selected 

incremental variables to them. The process is repeated 20 

times until the optimal incremental number of variables is 

reached. As a result, the variables selected in the first step 

will always have the highest frequency of 20.  

From Table1, with respect to moisture dataset, there are 

many methods that succeed to select informative intervals 

include CARS, MCUVE, OHPL, SCARS, SPEA-LASSO, 

BOSS and VCPA-IRIV. However, some methods have 

lower performance compared to other methods due to 

various reasons. For instance, select uninformative 

variables in other intervals such as in iRF and LASSO 

methods, or low concentrate when choosing variables in 

informative intervals such as in CARS. Furthermore, 

although the methods succeeded to select important 

intervals, it chooses many variables, including 

uninformative variables such as in OHPL. Moreover, the 

combinations of variables are different, which the reason 

why some methods outperformed other methods that select 

the same informative intervals, such as SPEA-LASSO 

outperformed SCARS. Our hybrid method succeeded to 

select a lower number and good concentration in the 

informative intervals by select informative variables in 

informative intervals. For the oil dataset, some methods 

succeed to select informative intervals but select 

uninformative variables such as CARS, GA-PLS and VIP-

GA. GA-pills and VCPA-IRIV succeed to select 

 

 
FIGURE 6. The frequency of selected variables within 20 times on the Corn Moisture dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed method 
selected three variables (D) proposed methodsselected six variables 
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informative variables; however VCPA-IRIV chooses the 

optimal number of variables and has a good combination of 

variables which outperformed GA-iPLS. FOSS method has 

a good performance by succeeding to concentrate in 

informative intervals and choose informative variables in 

theses informative intervals. Our hybrid method succeeded 

to select a lower number of variables and select informative 

variables in informative intervals. For the protein dataset, 

CARS and GA-PLS select important intervals; however, 

they also select uninformative intervals. The selection of 

uninformative intervals reduces the performance of both 

CARS and GA-PLS. VISSA and iVISSA methods have low 

performance because they select variables around all 

spectra. ICO method outperformed CARS, MC-UVE, 

VISSA and iVISSA because of the low number of variables 

and succeeded to select variables in informative intervals. A 

recent paper called SBOSS outperformed SCARS, BOSS, 

CARS, GA-PLS, and MCUVE. The SBOSS has a low 

variable with a good selection of variables in the 

informative interval. 

TABLE 2. Results for the Corn datasets. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error of 
calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of 
calibration; Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_Tcoefficient of determination of test set 
 

Response  Metrics VCPA-IRIV BOSS 

BOSS-IRVS 

with three variables 

added 

BOSS-IRVS 

with six variables 

added 

Moisture 

mnLV 8 10 6 9 

nVAR 5.5±2.1 3.8±3.1 6 9 

RMSEC 2.6775e-04±0.0000 2.7252e-04±0.0000 2.5836e-04±0.0000 2.4625e-04±0.0000 

RMSEV 2.9333e-04±0.0000 2.9253e-04±0.0000 - - 

RMSEP 3.2341e-04±0.0000 3.2328e-04±0.0000 2.8804e-04±0.0000 2.7360e-04±0.0000 

Q2_C 1.0000±0.0000 1.0000±0.0000 1.000±0.0000 1.000±0.0000 

Q2_CV 1.0000±0.0000 1.0000±0.0000   -  -  

Q2_T 1.0000±0.0000 1.0000±0.0000 1.000±0.0000 1.000±0.0000 

Oil 

mnLV 10 10 10 10 

nVAR 20.7±5.5 13.5±3.8 20 23 

RMSEC 0.0121±0.0017 0.0242±0.0082 0.0135±2.9847e-04 0.0122±1.8141e-04 

RMSEV 0.0151±0.0023 0.0296±0.0095 - - 

RMSEP 0.0201±0.0031 0.0347±0.0116 0.0197±0.0014 0.0174±0.0012 

Q2_C 0.9957±0.0011 0.9811±0.0132 0.9947±2.3637e-04 0.9957±1.2837e-04 

Q2_CV 0.9932±0.0021 0.9720 0.0187 - - 

Q2_T 0.9766±0.0065 0.9240±0.0511 0.9777± 0.0032 0.9826±0.0024 

Protein 

mnLV 10 10 10 10 

nVAR 29.4±5.8 17.4±3.0 26 29 

RMSEC 0.0136±0.0074 0.0200± 0.0018 0.0110±2.4524e-04 0.0096±1.0164e-04 

RMSEV 0.0187±0.0103 0.0251± 0.0017 - - 

RMSEP 0.0272±0.0150 0.0322± 0.0039 0.0192 ± 0.0014 0.0159±0.0014 

Q2_C 0.9990±9.5875e-04 0.9984±2.9310e-04 0.9995±2.2038e-05 0.9996±7.9670e-06 

Q2_CV 0.9982±0.0019 0.9974±3.5558e-04 - - 

Q2_T 0.9961±0.0043 0.9957±0.0010 0.9985±2.2209e-04 0.9990±1.8491e-04 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

FIGURE 7. The frequency of selected variables within 20 times on the Corn oil dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed method 
selected three variables (d) proposed method selected 6 variables. 
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TABLE 3. Results for the Soy moisture dataset. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error 
of calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of 
calibration; Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set 

Metrics  VCPA-IRIV BOSS 
BOSS-IRVS 

with three variables added 

BOSS-IRVS 

with six variables added 

mnLV 4 5 5 5 

nVAR 4.7±1.6 5±0.7 8 11 

RMSEC 0.7067±0.0071 0.6344±0.0196 0.5775±0.0142 0.5804±0.0121 

RMSEV 0.7306±0.0049 0.6972±0.0162 - - 

RMSEP 0.9854± 0.0412 0.9126±0.0336 0.8701±0.0408 0.8610±0.0405 

Q2_C 0.9341±0.0013 0.9468±0.0033 0.9560±0.0021 0.9555±0.0018 

Q2_CV 0.9296±9.5079e-04 0.9358±0.0030 - - 

Q2_T 0.9091±0.0078 0.9126±0.0336 0.9291±0.0066 0.9306±0.0065 
 

B. Soy moisture dataset 
The results of variable selection methods on soy datasets 

are shown in Table 3. A clear ranking of the VCPA-IRIV, 

BOSS, and the BOSS-IRVS models are as follows. The 

BOSS-IRVS are followed by BOSS and VCPA-IRIV. The 

RMSEP for the BOSS-IRVS method with six added 

 
FIGURE 8. The frequency of selected variables within 20 times on the Corn protein dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed method 
selected three variables (D) proposed method selected six variables. 

 
FIGURE 9. The frequency of selected variables within 20 times on the soy dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed method 
selected three variables (D) proposed method selected six variables. 
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variables, the BOSS-IRVS with three added variables, 

BOSS and VCPA-IRIV are 0.8610, 0.8701, 0.9126, and 

0.9854, respectively. Moreover, the proposed BOSS-IRVS 

showed the best Q2_T with 0.9306 compared with 0.9126 

and 0.9091 for BOSS and VCPA-RIV, respectively. Figure 

9 shows that all the methods select two informative 

intervals around 1900 nm and 2100 nm, which are selected 

commonly by four methods. They correspond to the water 

absorption and the combination of O-H bonds [22]. The 

VCPA-IRIV selects some variables around 1550 and 2450, 

and the BOSS method selects intervals around 2450. The 

BOSS-IRVS method selects variables around 2100 which 

improves the accuracy of the model. Table 3 and Table1 

show the performance of BOSS-IRVS method and other 

variable selection methods on the soy moisture dataset. 

Most of these methods select informative intervals; 

however, some methods select other intervals, such as 

CARS, MC-UVE, and GA-PLS. Also, some methods select 

more variables such as MC-UVE, siPLS, MW-PLS, and 

iRF which show low accuracy compared with a low number 

of variables such as BOSS and VCPA-IRIV and the BOSS-

IRVS methods. The proposed hybrid models select a good 

combination and an optimal number of variables that 

achieved higher accuracy. 
C. Total diesel fuels dataset 

The results of variable selection methods on total diesel fuel 

datasets are displayed in Table 4 and Figure 10. It shows a 

clear ranking of prediction ability for all the methods; the 

BOSS-IRVS with six variables added, the VCPA-IRIV 

method, BOSS-IRVS with three variables added, and the 

BOSS method. The values of RMSEP are 0.5965 for the 

BOSS-IRVS with six added variables, 0.6004 for VCPA-

IRV, 0.6026 for BOSS-IRVS with three added variables, 

and 0.6366 for BOSS. Wavelengths that have been selected 

by all methods are concentrate in the region of 1000–1100 

nm, 1200–1300 nm, and 1450–1550 nm which indicate the 

importance of these intervals. Moreover, the VCPA-IRIV 

and BOSS have selected variables around different intervals 

include intervals between 800 and 900 and between 1300 

and 1400. BOSS-IRVS models have selected their variables 

around these informative intervals which improve the 

BOSS method significantly. From Table 3 and Table 1, it 

can be seen that MC-UVE, GA-PLS have a higher number 

of variables compared to BOSS, CARS, VCPA-IRIV, and 

proposed hybrid model. The methods that have a low 

number of variables have a good performance.

 
TABLE 4 Results for the total diesel fuel properties dataset. nVAR: number of variables; mnLVs:max number of latent variables; RMSEC: root mean-
square error of calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of 
determination of calibration; Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set 

Metrics VCPA-IRIV BOSS 
BOSS-IRVS 

with three variables added 

BOSS-IRVS 

with six variables 

added 

mnLV 9 9 9 9 

nVAR 35±5 27.7±8.2 30 33 

RMSEC 0.4830± 0.0099 0.4829±0.0074 0.4697± 0.0011 0.4624±7.8510e-04 

RMSEV 0.5210±0.0110 0.5341±0.0063 - - 

RMSEP 0.6004±0.0075 0.6366±0.0137 0.6026±0.0025 0.5965±0.0039 

Q2_C 0.9946±2.2305e-04 0.9946±1.6777e-04 0.9949±2.3538e-05 0.9950±1.6897e-05 

Q2_CV 0.9937±2.6812e-04 0.9934±1.5671e-04 - - 

Q2_T 0.9901±2.4777e-04 0.9889±4.7175e-04 0.9901±8.1650e-05 0.9903±1.2722e-04 

 
FIGURE 10. The frequency of selected variables within 20 times on the total diesel fuel properties dataset: (A) VCPA-IRIV, (B) BOSS, 
(C) proposed method selected three variables (D) proposed method selected six variables. 
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D. wheat protein dataset 

From Table 5 and Figure 11, BOSS-IRVS can be seen 

clearly achieving better results compared with VCPA-IRIV 

and BOSS. The values of RMSEP and Q2_Tof the BOSS-

IRVS are, respectively, 0.1789 and 0.9119 compared to 

0.2089 and 0.8779 for BOSS, and 0.2235 and 0.8602 for 

VCPA-IRIV. The BOSS-IRVS with three added variables 

outperforms the BOSS-IRVS with six added variables 

which the reason for overfitting. The value of RMSEC for 

BOSS-IRVS with six added variables has low RMSEC and 

high RMSEP compared with the BOSS-IRVS with three 

added variables. 

The variables around 1104-1400nm can be selected by all 

methods which indicate the importance of this region which 

corresponds to the first overtone of the O-H stretch bond 

vibration [7]. The VCPA-IRIV select other variables in 

intervals around 1800 and between 2200 and 2400. The 

BOSS and the BOSS-IRVS concentrated on this region 

which shows better performance than VCPA-IRIV. The 

proposed method combines the variables select by BOSS 

and add only three variables selected on the important 

intervals and showed a significant improvement of the 

prediction accuracy—the lowest variables selected by 

BOSS followed by VCPA-IRIV and BOSS-IRVS method. 

Table 5 and Table 1 showed the proposed hybrid method 

and previous different variable selection methods on the 

wheat protein dataset. We analyzed that, MC-UVE and 

CARS method select informative variable; however, it 

selects another variable in uninformative intervals. IVSO 

and GA-PLS-LRC method select informative intervals and 

concentrate their variables in these informative variables 

which lead to a good performance. IVSO outperformed 

PLS, CARS and MC-UVE while GA-PLS-LRC 

outperformed GA-PLS. A recent paper called SMCPA 

showed a good concentration with a low number of 

variables and outperformed BOSS, VCPA, and CARS. Our 

proposed hybrid method proved that adding three 

informative variables in informative intervals could 

improve the result significantly. 
E. hemoglobin dataset 

From Table 6, it is clear that the BOSS-IRVS can achieve 

better results compared with VCPA-IRIV and BOSS in 

terms of RMSEP and Q2_T. The values of the RMSEP are 

0.4114, 0.4270, 0.4368, and 0.5167 for BOSS-IRVS when 

six added variables, the BOSS-IRVS when three added 

variables, VCPA-IRIV and BOSS respectively. The values 

of Q2_Test are 0.9788, 0.9772, 0.9760, and 0.9663 for 

BOSS-IRVS for six added variables, BOSS-IRVS for three 

added variables, VCPA-IRIV, and BOSS methods 

respectively. Figure 12 showed that the intervals between 

1600 and 1800, and between 2200 and 2400 are select by 

all methods. VCPA-IRIV and BOSS selected between 1200 

and 1400. The BOSS-IRVS method added six variables 

only in intervals between 1600 and 1800 and between 2200 

and 2400. The selection of these variables improved the 

result of the BOSS method significantly and outperformed 

VCPA-IRIV. All three methods select two intervals 

indicating the importance of these intervals. In addition, the 

BOSS-IRVS select fewer variables compared to VCPA-

IRIV. However, the BOSS-IRVS outperformed the VCPA-

IRV, the percentage of improvement for the hemoglobin 

dataset is 5.8 for VCPA-IRIV. Besides, when only six 

variables added to the BOSS, the result improved 

significantly to 20.3 %. 

 

 
  

 
 
FIGURE 11. The frequency of selected variables within 20 times on the wheat protein dataset: (A) VCPA-IRIV (B) BOSS, (C) proposed 
method selected three variables (D) proposed method selected six variables. 
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TABLE 5. Results for the wheat protein dataset. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error 
of calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of 
calibration; Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set 
 

Metrics  VCPA-IRIV BOSS 
BOSS-IRVS 

with three variables added 

BOSS-IRVS 

with six variables added 

mnLV 10 10 10 10 

nVAR 11.9± 2.9 9±1.3 13 16 

RMSEC 0.2815±0.0106 0.2789±0.0050 0.2697±0.0022 0.2496±4.6216e-04 

RMSEV 0.3146±0.0122 0.3071±0.0045 - - 

RMSEP 0.2235±0.0314 0.2089±0.0285 0.1789±0.0050 0.1868±0.0048 

Q2_C 0.9447±0.0042 0.9457±0.0019 0.9493±8.3443e-04 0.9566± 1.6081e-04 

Q2_CV 0.9309±0.0053 0.9342±0.0019 - - 

Q2_T 0.8602± 0.0403 0.8779±0.0363 0.9119±0.0048 0.9041± 0.0050 

 
TABLE 6. Results for hemoglobin dataset. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error of 
calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of 
calibration; Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set.

Metrics  VCPA-IRIV BOSS 
BOSS-IRVS 

with three variables added 
BOSS-IRVS 

with six variables added 

mnLV 10 10 10 10 

nVAR 28.5±6.7 20.2±5.6 17 20 

RMSEC 0.2128±0.0144 0.2668±0.0053 0.2530±0.0014 0.2446±0.0015 

RMSEV 0.2278±0.0142 0.2876±0.0059 - - 

RMSEP 0.4368±0.0364 0.5167±0.0474 0.4270±0.0072 0.4114±0.0045 

Q2_C 0.9844±0.0022 0.9755±9.6038e-04 0.9780±2.3960e-04 0.9794±2.4671e-04 

Q2_CV 0.9821±0.0023 0.9715±0.0012 - - 

Q2_T 0.9760±0.0040 0.9663±0.0059 0.9772±7.6934e-04 0.9788±4.6791e-04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS AND FUTURE WORKS 

To conclude, a new hybrid strategy for variable selection 

has been proposed (BOSS-IRVS) in this study. The hybrid 

strategy takes full advantage of BOSS as proved to select 

informative intervals and uses interval random variables 

selection to search informative variables in the informative 

interval selected by BOSS. It solves the problem of BOSS’s 

tendency to select fewer variables, and also improve the 

predictive accuracy. Seven NIR datasets were used to 

investigate the improvement of this hybrid strategy. The 

results show that the hybrid strategy significantly improved 

the model’s prediction performance when compared with 

two high-performance methods (BOSS and VCPA-IRIV). It 

is worth pointing out that the proposed hybrid strategy is 

general and can be coupled with some other optimization or 

 

 
FIGURE 12. The frequency of selected variables within 20 times on the hemoglobin dataset: (A) VCPA-IRIV (B) BOSS, (C) proposed 
method selected three variables (D) proposed method selected six variables. 
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variable selection methods for further optimization. 

Although it was employed on the kind of NIR dataset in 

this study, it could be applied to other kinds of high 

dimensional data, such as genomics, proteomics, 

metabolomics, QSAR, and others. In future work, we will 

consider applying our proposed model in high performance 

variable selection method such as FOSS, SOBSS and 

SMCPA. Besides, we will consider the computational cost 

in the performance evaluation. 
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