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Abstract
This article focuses on developing a system for high-quality synthesized and converted
speech by addressing three fundamental principles. Although the noise-like component in
the state-of-the-art parametric vocoders (for example, STRAIGHT) is often not accurate
enough, a novel analytical approach for modeling unvoiced excitations using a temporal
envelope is proposed. Discrete All Pole, Frequency Domain Linear Prediction, Low Pass
Filter, and True envelopes are firstly studied and applied to the noise excitation signal in
our continuous vocoder. Second, we build a deep learning model based text–to–speech
(TTS) which converts written text into human-like speech with a feed-forward and
several sequence-to-sequence models (long short-term memory, gated recurrent unit,
and hybrid model). Third, a new voice conversion system is proposed using a continuous
fundamental frequency to provide accurate time-aligned voiced segments. The results
have been evaluated in terms of objective measures and subjective listening tests.
Experimental results showed that the proposed models achieved the highest speaker
similarity and better quality compared with the other conventional methods.
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1 Introduction

Speech synthesis can be defined as the ability to produce human speech by a machine
like computer. Statistical parametric speech synthesis (SPSS) using waveform
parametrisation has recently attracted much interest caused by the advancement of
Hidden Markov Model (HMM) [62] and deep neural network (DNN) [63] based text-
to-speech (TTS). Such a statistical framework that can be guided by an analysis/synthesis
system (which is also called vocoder) is used to generate human voice from mathemat-
ical models of the vocal tract. Although there are several different types of vocoders
(e.g., see [43] for comparison) that use analysis/synthesis, they follow the same main
strategy. During the analysis phase, vocoder parameters are extracted from the speech
waveform which represent the excitation speech signal and filter transfer function
(spectral envelope). On the other hand, in the synthesis phase, the vocoded parameters
are interpolated over the current frame across the synthesis filter to reconstruct the
speech signal. Since the design of a vocoder depends on speech characteristics, the
quality of synthesized speech may still be unsatisfactory. Thus, in this research, we
aim to develop a more flexible and innovative vocoder-based speech synthesis.

In voiced sounds, it is necessary to determine the rate of vibration of the vocal cords, called
fundamental frequency (F0 or pitch). Note that F0 values are continuous in the voiced parts
and discontinuous in the unvoiced parts. Therefore, modeling these parts accurately will be
complicated. Multi-Space Probability Distribution (MSPD) was suggested in [57] and fre-
quently accepted, but not optimal [24] due to the discontinuities between voiced and unvoiced
segments. Among other methods used to solve this problem, continuous F0 (contF0) was
proposed in [25] based on HMM, which means that contF0 observations are also expected to
be in unvoiced parts. Moreover, a simple contF0 estimation algorithm was found in [19] to be
more productive, more accurate, and less complicated in achieving natural synthesized speech.
Maximum Voiced Frequency (MVF) is another time-varying parameter that leads to a high
quality of synthetic speech [12]. Unlike voicing decisions in traditional vocoders with discon-
tinuous F0, MVF can be employed as a boundary between the periodic and aperiodic bands in
the frequency domain.

An advantageous approach to reconstruct the features of voiced frames is that of the time-
domain envelope, which previously introduced in speech intelligibility [13]. There are several
different techniques proposed and adequately addressed in the literature to achieve a more
accurate representation of temporal envelopes [3, 42, 46, 49, 51], each with their strengths and
weakness. In SPSS, the envelope-based approach is successfully used to improve the quality of
a source model [5, 11, 33]; however, their parameters may need further adjustment and
customization in vocoding. Therefore, this paper studies a new method, which does not require
any further tuning adjustment.

Over the years, vocoders have mostly motivated on modeling the different kinds of
speech utterances within the same model. For example, coexistence of periodic and
aperiodic components is proposed in [12], and a uniform phase used to represent voiced
and unvoiced speech segments [8]. The most commonly used vocoder STRAIGHT [27]
was proposed as an efficient model-based SPSS to achieve near-natural speech synthesis.
In the analysis phase, STRAIGHT decomposes the speech signal into fundamental
frequency, band-aperiodicity, and spectrogram parameters. On the other hand, in the
synthesis phase, STRAIGHT uses a mixed approach between voiced and unvoiced
excitations in a speech signal. However, it is computationally intensive and hard to meet
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the real-time requirement. Although some vocoder-based methods have been recently
developed and applied to produce high-quality speech synthesis, the noise component is
still not correctly modelled even in the most sophisticated STRAIGHT vocoder. Some
experiments have attempted to overcome this problem by using, such as noise-masking
approach [8] or amplitude time envelope of aperiodic components [15]. Therefore, the
first goal in this paper is to shape the higher frequency components of the excitation by
approximating the residual temporal envelope to provide a high accurate approximation
to the actual speech signal.

In recent times, deep learning and neural networks have become the most common types of
acoustic models used in SPSS for obtaining high-level data representations [37], that a
significant improvement in speech quality can be achieved. In this approach, feed-forward
deep neural networks (FF-DNNs) that exploit many layers of nonlinear information processing
are introduced to deal with the high-dimensional acoustic parameters [10], multi-task learning
[59], and replace the decision tree used in HMM systems [63]. Even though FF-DNNs were
successfully applied to the acoustic modeling of speech synthesis, the high learning cost with
multiple hidden layers is still a critical bottleneck [61]. Furthermore, sequence modeling with
arbitrary length in the FF-DNNs architecture is also ignored. To deal with these limitations,
recurrent neural networks (RNNs) have an advantage in sequence-to-sequence modeling and
capturing long-term dependencies [4]. The long short-term memory (LSTM) [21], bi-
directional LSTM [17], and gated recurrent unit (GRU) [31] are commonly used recurrent
neurons in different research fields (e.g., image and speech processing).

Consequently, the second goal of this paper is to build a deep learning-based acoustic
model for speech synthesis using feedforward and recurrent neural network as an alternative to
HMMs. Here, the objective is two-fold: (a) to overcome the limitation of HMMs which
typically create over-smoothing and muffled synthesized speech, (b) to ensure that all contin-
uous parameters used by the proposed vocoder were obtained during training that could
synthesize very high-quality speech.

The main objective of voice conversion (VC) is to transform the characteristics of the
source speaker into that of the target speaker. It has great potential in the development of
various speech tasks, for instance, speaking assistance [38] and speech enhancement [55].
Numerous statistical approaches have been employed for mapping the source features (e.g.
F0) to the target domain. Gaussian mixture model (GMM) [52] is a typical form of VC that
requires a source-target alignment for training the conversion models. Many other
methods have also been proposed and achieved improvements in speech conversion; for
example, non-negative matrix factorization [60], restricted Boltzmann [40], auto-encoders
[47], and maximum likelihood [54]. However, the phenomenon of the over-smoothing and
the discontinuity issues of F0 made the converted speech sounds muffled, which degrades
the similarity performance. In recent times, deep learning is one of the most significant
advances in voice conversion and getting quite a lot of attention from researchers. Deep
belief networks [39], generative adversarial networks [26], bidirectional long short-term
memory [53] have been recently proposed to preserve the sound quality. Nevertheless, the
similarity of the converted voices is still degraded in terms of subjective quality due to
model complexity and computational expense. Moreover, modeling of discontinuous
fundamental frequency in speech conversion is problematic because the voiced and
unvoiced speech regions of the source speaker are typically not appropriately aligned with
the target speaker. To overcome these limitations, a new model is developed to achieve
more natural converted speech.

Multimedia Tools and Applications



2 Proposed speech model

2.1 Vocoder description: An overview

To construct our statistical proposed approaches, a continuous vocoder [6] has been used and
evaluated. It aims to overcome the discontinuity issues in the speech features and the
complexity of state-of-the-art vocoders. In the analysis part, the continuous F0 (contF0) [19]
is firstly calculated that can track rapid changes without any voiced-unvoiced decision. In
order to obtain the boundaries of the glottal period in the voiced regions, a glottal closure
instant (GCI) algorithm [11] is employed, and then using a principle component analysis
(PCA) approach to build a residual speech signal. MVF [12] is a second vocoded parameter
used to separate the frequency bands into two components: periodic (low-frequency) and
aperiodic (high-frequency). Finally, Mel-Generalized Cepstral analysis (24–order MGC) [56]
was used to extract speech spectral information (with gamma = − 1/3, alpha = 0.42, and
frameshift = 5 ms).

Drugman and Dutoit [11] have proved that the PCA based residual gives subjectively
higher quality than pulse-noise excitation. Consequently, PCA residuals overlap-added pitch
synchronously based on the contF0 in the synthesis part of the continuous vocoder. Next, the
voiced excitation is lowpass filtered at the frequency provided by the MVF contour, whereas
the white noise is selected at high frequencies. The overlap-add method is then used to
synthesize the same speech signal using the Mel generalized-log spectrum approximation
(MGLSA) filter [22].

2.2 Noise modeling

It was argued in [7], that the noise component of the excitation source is not accurately
modeled in parametric vocoders (e.g., STRAIGHT). Also, some other vocoders lack the
voiced component at higher frequencies [6]. Recently, we developed temporal envelopes
(Amplitude, Hilbert, Triangular, and True) to model the noise excitation component [2]. These
envelopes are neither perfect nor without their constraints, but they have been previously
proven to be useful for their intended use. Therefore, we should continue our investigation of
further approaches to propose a more reliable one for the continuous vocoder, as shown in
Fig. 1.

2.2.1 True envelope

The True Envelope (TE) approach is a form of cepstral smoothing log amplitude spectra [45,
58]. It starts with estimating the cepstrum of the residual frame and then updating it recursively
by the maximum between the spectrum of the frame signal and the current cepstral represen-
tation. In this study, the cepstrum c(n) can be computed as the inverse Fourier transform of the
log magnitude spectrum S(k) of a speech signal frame v(n)

c nð Þ ¼ ∑
N−1

k¼0
S kð Þ:e j 2π

Nð Þkn ð1Þ

S kð Þ ¼ log V kð Þj j ð2Þ
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where V(k) is N-point discrete Fourier transform of a v(n) and can be estimated as

V kð Þ ¼ ∑
N−1

n¼0
v nð Þ:e− j 2π

Nð Þnk ð3Þ

Afterwards, the algorithm iteratively updates M(k) with the maximum of the S(k) and the
Fourier transform of the cepstrum Ci(k), that is the cepstral representation of the spectral
envelope at iteration i.

C kð Þ ¼ ∑
N−1

n¼0
c nð Þ:e− j 2π

Nð Þnk ð4Þ

Mi kð Þ ¼ max Si−1 kð Þ;Ci−1 kð Þð Þ ð5Þ
The TE with a weighting factor wf would improve the temporal envelope (in practice, wf = 10).
As shown in Fig. 2, TE envelope T(n) is obtained here by

Fig. 1 Workflow of the proposed method
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T nð Þ ¼ ∑
N−1

k¼0
wf :M kð Þ:e j 2π

Nð Þkn ð6Þ

Although the performance of the TE was confirmed previously, TE creates oscillations each
time the change in S(k) is fast. This can be shown in Fig. 3b.

2.2.2 Discrete all-pole

Discrete all-pole envelope (DAP) is one of the most useful methods used in parametric modelling,
which provide an accurate estimation of time envelope. It was proposed in [14] when only a
discrete set of spectral peak points is given and used Itakura-Saito (IS) distortion measure that
evaluates a matching error EIS around peaks of spectral densities by iteratively minimizing

EIS ¼ 1

N
∑
N

k¼1

P f kð ÞbP f kð Þ
−ln

P f kð ÞbP f kð Þ
−1 ð7Þ

whereP(fk) is the power spectrum of the voiced signal defined atN frequency points fm for f = 1, 2,

…,N, bP(fk) is the power spectrum of all pole envelope. Hence, DAP envelope can be estimated at
iteration m by

akþ1 ¼ ak 1−δð Þ þ δR−1hk ð8Þ
where ak is predictor coefficients k,δ is a scalar determining the convergence speed, R is the
autocorrelation of the discrete signal spectrum, and h is the time-reversed impulse response of the
discrete frequency sampled all-pole model A

h −nð Þ ¼ 1

N
∑
N

k¼1

1

A f kð Þe j2π f kn ð9Þ

By setting the δ to 0.5 in this paper, we can get a fast convergence rate and an error decrease
every iteration. Figure 3c shows the effects of applying DAP envelope on the residual signal.

2.2.3 Frequency domain linear prediction

Another time envelope can be applied to the speech signal is the FDLP (frequency domain
linear prediction), which is reliable for time-adaptive behaviour. The idea behind this tech-
nique is to use frequency-domain dual of time-domain to extract the envelope by using linear

Fig. 2 True envelope estimation process
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prediction. It was formerly proved in [20] and developed in [45]. In our implementation, the
complex analytic signal c[n] of a discrete-time voiced frame x[n] is firstly calculated through
the concept of Hilbert transform H[∙]

c n½ � ¼ x n½ � þ jH x n½ �½ � ð10Þ

a) Original PCA residual
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Fig. 3 Example of the temporal envelopes performance. “unvoiced_frame” is the excitation signal consisting of
white noise, whereas “resid_pca” is the first eigenvector resulting from the PCA compression on the voiced
excitation frame
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Next, its squared magnitude is transformed by a discrete cosine transform (DCT) to provide
frequency-domain representation that is real-valued. Then, a set of Hanning overlapping
windows are applied to the DCT components. After applying linear prediction, the FDLP
envelope can be obtained finally by taking the inverse Fourier transform to the spectral
autocorrelation coefficients ak

A nð Þ ¼ G

∑P
k¼0ake− j2πkn

�� ��2 ð11Þ

where p is the FDLP model order, and G denotes the gain of the model. In our experiment, we
use a model with a0 = 1 to predict the current sample and setting G = 1 to provide better speech
synthesis performance. FDLP envelope performance can be seen in Fig. 3d.

2.2.4 Low pass filtering

A further effective and most straightforward technique of calculating such an envelope is
based on a notion of low pass filtering (LPF). The LPF envelope can be easily constructed in
this paper by squaring, smoothing, and then taking the square root to the local energy of the
voiced signal x[n]

A nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LPF x n½ �2�� ��q

ð12Þ

Since low cutoff frequencies probably create an envelope with ripples, we obtain much better
results through a high cutoff frequency (i.e., 4–8 kHz). Consequently, this technique brings out
important information in the time that almost matches the peaks of the residual speech signal
(see Fig. 3e).

2.3 Acoustic modelling within TTS

The core parts of the continuous vocoder when employed in neural network appear in Fig. 4.
Textual and phonetic transcriptions are transformed to a sequence of linguistic features as
input, and deep learning is used to predict acoustic features for reconstructing speech.
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Fig. 4 A schematic diagram of the proposed system for text-to-speech
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2.3.1 Deep feed-forward neural network

Our baseline system [6] was successfully used with HMM-based TTS. However, HMMs often
generate over-smoothing, and muffled synthesized speech. Recently, neural approaches have
achieved significant improvements to replace the decision tree applied in HMM-based speech
[63]. Deep neural networks (DNNs) have also shown their capability to model the high
dimension of the resulting acoustic parameters [10] and to perform multi-task learning [59].
From these points, we propose a training scheme for multilayered perceptron, which tries to
use the modified version of the continuous vocoder in DNN-TTS for further improving its
quality. The DNN-TTS used in this work is a feed-forward multilayered architecture with six
layers of hidden units, each consisting of 1024 units.

2.3.2 Recurrent neural network

Recurrent neural networks (RNNs) are another acoustic model architecture which can process
sequence-to-sequence learning models. RNNs have the ability to map and store feature
sequences of acoustic events, which is essential for RNN-TTS systems to enhance prediction
outputs adequately. Although the proposed vocoder based DNN-TTS outperformed the
baseline based HMM (see Subsection 4.3.1), Zen and Senior [61] comprehensively listed
several drawbacks of the DNNs based speech synthesis, for example, lack of knowledge to
predict variances and ignoring the sequential nature of speech. To cope with these issues, we
study the use of sequence-to-sequence modeling with RNN based TTS. Four neural network
topologies (long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), gated recurrent
network (GRU), and a new hybrid RNN unit) were successfully examined and applied in TTS
using the proposed vocoder.

& Long short-term memory

As it was introduced in [21] and applied for speech synthesis [64], LSTM is a class of RNN
architecture that can hold long term memories with three gated units (input, forget, and output)
to use speech data in the recurrent computations.

& Bidirectional LSTM

In a unidirectional RNN (Uni-RNN), only contextual information from past time instances is
received, while a bidirectional RNN (Bi-RNN) can read past and future contexts by handling
data in mutual directions [50]. Bi-RNN can achieve this by splitting hidden layers into forward
and backward states sequence. Combining Bi-RNN with LSTM yields a bidirectional-LSTM
(Bi-LSTM) that can access to long-range context [17].

& Gated recurrent unit

A simplified version of the LSTM is called the gated recurrent unit (GRU) architecture,
which recently reached better performance than LSTM [31]. GRU has only update and
reset gates to modulate the flow of data without having separate memory cells. Therefore,
the total size of GRU parameters is less than that of LSTM, which lets to converge faster
and prevent overfitting.
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& Hybrid model

The advantage of RNNs is that they are capable of using the previous context. In particular, the
RNN based Bi-LSTM acoustic model has been confirmed to give a state-of-the-art perfor-
mance on speech synthesis tasks [1, 17]. There are two significant drawbacks to use fully Bi-
LSTM hidden layers. Firstly, the speed of training becomes very slow due to iterative
multiplications over time, that leads to network paralysis problems. The second problem is
that the training process can be tricky and sometimes expensive task due to gradient vanishing
and exploding [4].

In an attempt to overcome these limitations, we propose a modification to the fully Bi-
LSTM layers by using Bi-LSTM for lower layers and conventional Uni-RNN for upper layers
to reduce complexity and to make the training easier while all the contextual information from
past and future have been already saved in the memory. Consequently, reducing memory
requirements and the potential of being suitable for real-time applications are the main
advantages of using this topology.

2.4 Speech conversion model

In [9, 30], voice conversion models based on neural networks give better performance than the
GMM. Here, feed-forward DNN is applied to model the transformation of the parameters from
a source to a target speaker with parallel corpora as displayed in Fig. 5. It includes three main
parts: parameterization, alignment-training, and conversion-synthesis. The analysis function of
the developed vocoder is used to extract the three continuous parameters from the source and
target voices. A training phase based on FF-DNN is also used to build the conversion part.

The conversion function aims to map the training parameters of the source speaker X

¼ xif gIi¼1 to the corresponding one of the target speaker Y ¼ y j
n o J

j¼1
. Since these vectors

differ in the duration, the Dynamic Time Warping (DTW) algorithm [41, 48] is used to align
both feature vectors X and Y. DTW is a nonlinear mapping function used to minimize the total
distance D(X, Y) between frames of the source and target speakers. Next, a training phase
based on FF-DNN is used to predict the time-aligned target features from the characteristic of
the source speaker. Lastly, the converted contF0, MVF, and MGC are passed through the
synthesis function of the Continuous vocoder to get the final converted speech waveform.

Con�nuous 
Parameteriza�on

Con�nuous 
Parameteriza�on

FF-DNN

DTW

contF0

MVF

MGC

contF0

MVF

MGC
Source data Target data

Conversion 
func�on

Con�nuous 
Parameteriza�on

contF0

MVF

MGC

Test u�erance

Converted contF0

Converted MVF

Converted MGC

Con�nuous 
Synthesis

Converted speech

Fig. 5 Flowchart of the proposed VC algorithm
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3 Experimental conditions

3.1 Datasets

The speech data is selected from a database having recordings of natural TTS synthesis. This
means that three male (denoted as AWB for Scottish, BDL for American, and JMK for
Canadian) English speakers with two female (denoted as SLT and CLB for US) English
speakers are chosen from CMU-ARCTIC [29], each one consisting of 1132 recorded
sentences. In all experiments, 90% of speech waveform files are used for training, whereas
the rest (more than 100 sentences) were applied for testing with the baseline and proposed
vocoders. The sampling rate of the speech database is 16 kHz.

3.2 Training topology

The general DNN/RNN model-based TTS and VC systems used in this research were applied
in the open-source Merlin framework [64]. Next, constructive changes are presented to be able
to adapt our continuous vocoder. A high-performance NVidia Titan X graphics processing
units (GPU) was used for training the network. We trained an FF-DNN with several different
sequence-to-sequence architectures, as follows:

& FF-DNN: 6 feed-forward hidden layers; Each layer has 1024 hyperbolic tangent units.
& LSTM: 3 feed-forward hidden lower layers, followed by a single LSTM hidden top layer.

Each layer has 1024 hyperbolic tangent units.
& Bi-LSTM: It has the same architecture as LSTM, but it tends to replace only the top

hidden layer with a Bi-LSTM layer.
& GRU: It has the same architecture as LSTM, but it tends to replace only the top hidden

layer with a GRU layer.
& Hybrid: 2 Bi-LSTM hidden lower layers followed by another 2 standard RNN top layers,

each of which has 1024 units.

In VC experiments, intra-gender and cross-gender pairs have been conducted. Thus, the total
number of combinations is 12 pairs.

4 Experimental evaluations

To reach our aims and to prove the validity of the proposed models, objective and perceptual
tests were performed.

4.1 Objective metrics for TTS

4.1.1 Phase distortion deviation

It was shown in [7] that the glottal source information could be extracted using the phase
distortion. As we modeled the noise excitation component with temporal envelope, phase
distortion deviation (PDD) has been computed for the vocoded samples of the proposed and
baseline models. Initially, PDD was determined by using Fisher’s standard deviation [18].
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Nevertheless, [7] shows two more issues in variance and source shape in the voiced speech
segments. Thus, by taking away from these limitations, PDD and its mean (PDM) can be
estimated in this experiment at 5 ms frameshift by

PDD ¼ σi fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2log

1

N
∑
n∈C

e j PDn fð Þ−μn fð Þð Þ
���� ����

s
ð13Þ

PDM ¼ μi fð Þ ¼ ∠
1

N
∑
n∈C

e jPDn fð Þ
� �

ð14Þ

where C ¼ i− N−1
2 ;…; iþ N−1

2

� �
, N is the frame number, PD is the phase difference between

two consecutive frequencies, and we indicate the phase by ∠.
In this experiment, the phase distortion values below the MVF contour have been

attenuated (zeroed out) in order to measure only the noisiness in the high-frequency
regions. For this, we plotted in Fig. 6 the PDD of one original (natural) sample with four
vocoded (synthesized) variants. It can be clearly seen that the ‘FDLP’ vocoding sample
has noticeably different noisy components compared to the original sentence (the colour
differences between 1 s and 2 s). In contrast, the proposed approach with ‘LPF’ envelope
has PDD values closer to that of the original speech and superior to the baseline envelope
(e.g., the colour differences between 0.5–1.5 s).

In addition, we calculated the distribution of the PDD measure and Mann-Whitney-
Wilcoxon ranksum tests for numerous sentences. In doing so, the phase distortion means for
the male and female speakers categorized by the five variants is presented in Fig. 7. In view of
that, the PDD values of the ‘baseline’ system are close to natural speech. The system with
‘LPF’ envelope is matched to the natural speech. The ‘DAP’ and ‘FDLP’ envelopes result in
different PDD values, but in general, they are further away from the natural speech for the
female speaker. We must now conclude, therefore, that the True and LPF envelopes are
suitable for noise modeling in our continuous vocoder.

Besides our contribution in [2], this further supports the claim that by applying one of
the above temporal envelope estimation methods and parameterizing the noise component
in the continuous vocoder, the system produces better results than using the vocoder
without envelopes.

4.1.2 RMS – Log spectral distance

In our recent studies [2, 6], 24–order mel-generalized cepstral coefficients [56] were used to
represent the spectral model in the continuous vocoder. Besides, some advanced spectral
approaches possibly can improve the quality of synthetic speech. Therefore, Cheaptrick
algorithm [34] using 60-order MGC representation will be used to achieve the desired speech
spectral quality in the TTS and VC systems.

Several performance indices have been proposed for evaluating spectral algorithms. Since
we are dealing with speech synthesis based TTS and one major task is the refinement of the
spectral envelopes in our continuous vocoder, we will concentrate on distance measures.
Spectral distortion is among the most popular ones and plays an essential role in the
assessment of the speech quality, which is designed to compute the distance between two
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Fig. 7 Values of the Mean PDD by sentence type

Fig. 6 Phase Distortion Deviation of vocoded speech samples (sentence: “Jerry was so secure in his nook that he
did not roll away.” from speaker AWB). The warmer the color, the bigger the PDD value and the noisier the
corresponding time-frequency region
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power spectra. Therefore, the root mean square (RMS) log spectral distance (LSD) metric is
proposed here to carry out the evaluation in this study by

LSDRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

k¼1
mean logP f kð Þ−logbP f kð Þ

h i2s
ð15Þ

where P(f) is the spectral power magnitudes of the original speech, while bP(fk) is the spectral
power magnitudes of the synthesized speech. The optimal value of LSDRMS is zero, which
indicates a matching frequency content. The values expressed in Table 1 refer to the average
LSDRMS that was calculated for 20 sentences selected randomly from two categories of SLT
and AWB speakers. The analysis of these results confirms that the LSDRMS for the CheapTrick
algorithm is better than the standard one used in the baseline vocoder. Moreover, Fig. 8 showed
three spectrograms of frequency versus time. In the middle spectrogram, the LSDRMS of the
signal is equal to 1.6, while the bottom spectrogram has a lower LSDRMS equal to 0.89 that is
closer to the top speech spectrogram (natural speech). Consequently, our proposed vocoder
introduces a smaller distortion to the sound quality and approaches a correct spectral criterion.

4.1.3 Comparison of the WORLD and continuous vocoders

The WORLD vocoder was chosen for comparison with our optimized vocoder for the reason
that it also used a CheapTrick spectral algorithm. Initially, the WORLD vocoder was proposed
in [36]. Similarly to the continuous vocoder, the WORLD vocoder is based on source-filter
separation, i.e. models the spectral envelope and excitation separately (with F0 and
aperiodicity).

It can be noted from Table 2 that the proposed vocoder takes an only 1–dimensional
parameter for forming two excitations, while the WORLD system is using a 5-dimensional
band aperiodicity.

Moreover, the F0 modeling capability and the voiced/unvoiced (V/UV) transitions were
examined between continuous and WORLD vocoders. Even though the WORLD vocoder can
give better quality when applied in TTS, it can make V/UV decision errors. For example,
setting voiced that should be unvoiced or setting unvoiced that should be voiced, and
occasionally contains errors at transition boundaries (V/UV or UV/V). For that reason, the
V/UV error was 5.35% for the WORLD synthesizer in case of the female speaker. This is not
the case with the continuous vocoder, which is using a continuous F0 algorithm, and the
continuous Maximum Voiced Frequency parameter models the voicing feature. Therefore, V/
UV errors do not happen in our system. In view of that, F0 contour of a synthesized speech
sample using the DIO (Distributed Inline-filter Operation) algorithm [35] and the contF0 are
shown in Fig. 9.

Table 1 Average log spectral distance for the spectral estimation

Spectral algorithm LSDRMS (dB)

SLT AWB

Standard MGC 1.47 0.94
CheapTrick MGC 0.91 0.89
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4.1.4 Comparison of the deep learning architectures using empirical measures

To obtain a clear picture of how these four recurrent networks perform against the DNN, five
metrics have been used to assess their performance:

1. MCD (dB): 60-dimensional mel-cepstral distortion coefficients.
2. MVF (Hz): Root mean squared error to measure the performance of the maximum voiced

frequency.
3. F0 (Hz): Root mean squared error to measure the performance of the fundamental

frequency.
4. Overall validation error: A validation loss between valid and train sets from last epoch

(iteration).
5. CORR: The correlation measures the degree to which reference and generated contF0

data are close to each other (linearly related).

Fig. 8 Comparison of speech spectrograms. The sentence is “He turned sharply, and faced Gregson across the
table.”, from speaker SLT

Table 2 Parameters of applied vocoders

Vocoder Parameter per frame Excitation

Continuous F0: 1 +MVF: 1 +MGC: 60 Mixed
WORLD F0: 1 + Band aperiodicity: 5 +MGC: 60 Mixed
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For all experimental metrics, the computation is done frame-by-frame, and a smaller value
shows better performance except for the CORR measure where +1 is better. Overall
validation error throughout the training decreases with epochs, which indicates a conver-
gence. The test results for the proposed recurrent models are listed in Table 3. Compared
to the FF-DNN, the Bi-LSTM reduces all four experimental measures, and obtain similar
performance for the male and female speakers. Although the Hybrid system is not better
than Bi-LSTM, it slightly drops the validation error in case of AWB speaker from 1.632 in
Bi-LSTM to 1.627. Besides, the Hybrid system does not outperform the baseline model.
This indicates that increasing the number of recurrent units in the hidden layers are not
helpful. We also see that using GRU system has no positive effect on the objective metrics.
In summary, these empirical outcomes prove that using Bi-LSTM methods to train the
parameters of the developed vocoder enhances the synthesis performance and superior to
the feed-forward DNN and other recurrent topologies.

Fig. 9 F0 trajectories of a synthesized speech signal using the DIO algorithm (red), and continuous algorithm
(blue) for continuous and WORLD vocoders respectively

Table 3 Objective measures for all training systems based on vocoded samples using proposed Continuous
vocoder for SLT and AWB speakers

Systems MCD (dB) MVF (Hz) F0 (Hz) CORR Validation error

SLT AWB SLT AWB SLT AWB SLT AWB SLT AWB

FF-DNN 4.923 4.592 0.044 0.046 17.569 22.792 0.727 0.803 1.543 1.652
LSTM 4.825 4.589 0.046 0.047 17.377 23.226 0.732 0.793 1.526 1.638
GRU 4.879 4.649 0.046 0.047 17.458 23.337 0.731 0.791 1.529 1.643
Bi-LSTM 4.717 4.503 0.042 0.044 17.109 22.191 0.746 0.809 1.517 1.632
Hybrid 5.064 4.516 0.046 0.044 18.232 22.522 0.704 0.805 1.547 1.627

Bold font indicates the best values
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4.2 Objective metrics for VC

In this work, our developed model has been compared with three high-quality systems recently
suggested for VC: WORLD [36], MagPhase [16], and Sprocket [28]. We ran our model over
48 experiments, and two important metrics are considered for testing and validating the
performance of the suggested system. These are Frequency-weighted segmental signal-to-
noise ratio (fwSNRseg) [32] and Log-Likelihood Ratio (LLR) [44]. fwSNRseg defined as

fwSNRseg ¼ 1

N
∑
N

j¼1

∑K
i¼1Wi; j � log

X2
i; j

X2
i; j–Y

2
i: j

∑K
i¼1Wi; j

0BBB@
1CCCA ð16Þ

where X, Y are magnitude spectra of the target and converted speech signals respectively, and
W is a weight vector. Whereas LLR determine the distance between two signals, which takes
the form

LLR ¼ 1

N
∑
N

i¼1
log

aTy;i Rx;i ay;i

aTx;i Rx;i ax;i

 !
ð17Þ

where ax, ay, are respectively the linear prediction coefficients of the target and converted
signals, and the autocorrelation matrix of the target speech signal is Rx.

A calculation is performed frame-by-frame, and the scores were averaged over 20 synthe-
sized samples for each conversion pair as shown in Table 4. It can be shown firstly that the
proposed model is significantly preferred over other methods in female-to-male speech and
female-to-female conversions (i.e. SLT-to-BDL or CLB-to-SLT). Moreover, fwSNRseg mea-
sure tended to have the highest scores with the developed vocoder in male-to-female conver-
sions (i.e. BDL-to-SLT, BDL-to-CLB, and JMK-to-CLB). While in male-to-male voice
conversion (i.e. JMK-to-BDL), the proposed system yields the second-highest score.

Further, we compared the continuous parameters between the source, target, and converted
speech sentences as displayed in Fig. 10. It may be noticed that both converted and target

Table 4 Average performance scores

Model WORLD MagPhase Sprocket Proposed

fwSNRseg LLR fwSNRseg LLR fwSNRseg LLR fwSNRseg LLR

BDL→ JMK 2.19 1.57 3.21 1.37 2.20 1.48 2.47 1.50
BDL→ SLT 1.12 1.72 1.25 1.69 1.04 1.49 2.33 1.57
BDL→CLB 0.79 1.83 1.65 1.72 0.37 1.69 1.66 1.74
JMK→BDL 1.31 1.76 2.49 1.56 1.73 1.63 2.15 1.57
JMK→ SLT 0.55 1.74 1.93 1.56 0.11 1.64 1.54 1.65
JMK→CLB 1.45 1.74 1.75 1.66 0.69 1.60 1.81 1.67
SLT→BDL 1.65 1.71 1.60 1.70 1.80 1.51 2.95 1.49
SLT→ JMK 2.16 1.61 2.71 1.42 0.713 1.56 2.59 1.39
SLT→CLB 1.51 1.75 2.89 1.59 2.32 1.56 2.51 1.50
CLB→BDL 0.97 1.81 1.60 1.70 0.95 1.72 1.92 1.60
CLB→ JMK 2.50 1.49 2.74 1.40 0.98 1.46 3.00 1.30
CLB→ SLT 0.98 1.70 2.17 1.53 1.96 1.54 2.12 1.47

Bold font indicates the best values
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spectral envelopes are mostly similar in Fig. 10a than the source one. Similarly, in Fig. 10b, the
converted contF0 contour almost give the same shape of the target contour, which can produce
high-quality F0 predictions. It can also be seen in Fig. 10c that the converted parameter of the
MVF is more similar to the target than to the source. Overall, these experiments demonstrate
that the proposed model with continuous vocoder is competitive for the voice conversion task.

4.3 Subjective evaluations

Here, we perform three listening tests based on TTS and VC systems, the samples of which
can be found online.1

4.3.1 Listening test #1: DNN-TTS

First, in order to evaluate the differences in DNN-TTS synthesized samples using the above
vocoders, we ran an online MUSHRA (MUlti-Stimulus test with Hidden Reference and
Anchor) perceptual test [23]. We evaluated natural utterances with the synthesized ones from
the baseline, WORLD, proposed, HMM-TTS [6], and an anchor system (pulse-noise excitation
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Fig. 10 Example of the natural source, natural target, and converted continuous contours using the proposed
approach

1 http://smartlab.tmit.bme.hu/vocoder2019
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vocoder). Fifteen sentences from a female speaker were chosen randomly, which means that
ninety wave files were put in the MUSHRA test (6 models × 15 sentences). Listeners had to
judge the naturalness of each utterance compared to the natural sentence, from 0 (extremely
unnatural) to 100 (extremely natural). The sentences appeared in a randomized order.

Nine applicants were requested to complete the listening test (seven males, two females).
The assessment took twenty minutes to fill, on average. Figure 11 shows the results of this test
based on DNN-TTS. Accordingly, the DNN-TTS with the continuous vocoder significantly
outperformed the baseline method based on HMM-TTS, whereas its naturalness is slightly
worse than the WORLD vocoder.

4.3.2 Listening test #2: RNN-TTS

In the second listening assessment, we evaluated natural sentences against the synthesized
sentences from the baseline (FF-DNN), proposed (Bi-LSTM, Hybrid), and an HMM-TTS
(anchor system) using a simple pulse-noise excitation vocoder. As we noticed insignificant
differences in quality between LSTM and GRU samples and to make the test easier to the
subjects, we only included samples from Hybrid and Bi-LSTM systems. We assessed ten
sentences randomly selected from speaker AWB, and ten sentences from speaker SLT.

Fig. 11 Scores of the MUSHRA listening test #1. Error bars display the bootstrapped 95% confidence intervals
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Fig. 12 Scores of the MUSHRA listening test #2. Error bars display the bootstrapped 95% confidence intervals
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Another 13 participants with an engineering background (6 males, 7 females) were invited
to conduct the online perceptual test which took 23 min to fill. Figure 12 shows the results of
the MUSHRA scores. For speaker AWB, both recurrent networks outperformed the FF-DNN
system, and the Bi-LSTM and Hybrid networks are not significantly different from each other
(Mann-Whitney-Wilcoxon ranksum test, p < 0.05). For speaker SLT, we found that the Bi-
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Fig. 13 MUSHRA scores for the similarity question. Higher value means better overall quality. Errorbars show
the bootstrapped 95% confidence intervals
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LSTM method gives the highest naturalness scores, and this difference is statistically signif-
icant between the Bi-LSTM and Hybrid systems.

4.3.3 Listening test #3: VC

In this section, we design a MUSHRA-like listening test to assess the similarity of the
converted voice to a natural target one. The number of participants in this test is 20 (11 males
and 9 females), in which they evaluated 72 utterances (6 types × 12 sentences selected
randomly). The time length of the MUSHRA test is roughly 10 min, and the samples can be
found online.2 The similarity ratings of the MUSHRA test are displayed in Fig. 13.

The results show that the overall accuracy of the proposed system in the similarity test is
better than others developed earlier. This means the suggested VC model executed by the
continuous vocoder has effectively converted the source voice to the preferred voice on both
gender cases. However, VC based onWORLD vocoder has a higher score only in the JMK-to-
SLT case; whereas Sprocket also has higher scores only in the JMK-to-BDL and CLB-to-SLT
cases. Finally, to sum up the results obtained from this test, the proposed system is recom-
mended as the best conversion technique, while the WORLD system is a second good option.

5 Conclusion

This article suggested firstly a new method for modelling unvoiced sounds in a continuous
vocoder by estimating a proper time envelope. Three different envelopes (DAP, FDLP, and
LPF) were created, tested, and compared to the baseline vocoder. From the objective measure-
ments using Phase Distortion Deviation (PDD), we found that the True and LPF envelopes give
better results when applied in the continuous vocoder (they are almost matching the original
utterances in terms of PDD) than other envelopes. Secondly, we build a deep learning model
based TTS to increase the quality of synthesized speech and train all continuous parameters
used by the vocoder. The motivation behind this experiment arose from our examination that
the state-of-the-art WORLD vocoder frequently has V/UV errors and boundary errors because
of its fundamental frequency algorithm. Moreover, the DNN-TTS based proposed vocoder was
rated as better than an earlier HMM-TTS approach in a MUSHRA listening test. A further goal
reported in this study was to focus on the recurrent neural networks based on the continuous
vocoder. LSTM, Bi-LSTM, GRU, and Hybrid models are applied to train our parameters, and
experimental results proved that our suggested recurrent Bi-LSTM model could increase the
naturalness of the synthesized speech significantly. Finally, a new statistical voice conversion
approach was proposed based on deep learning. The strengths and weaknesses of the proposed
method were examined using a variety of measurement techniques. From the objective and
subjective tests, the proposed system based on VCwas mostly superior to the other approaches.

Consequently, the benefit of the continuous vocoder is straightforward, flexible, having only
two 1-dimensional parameters, and its synthesis algorithm is computationally feasible for real-time
implementation. Besides, the continuous vocoder does not have a voiced/unvoiced decision, which
means that the alignment error between voiced and unvoiced segments will always be avoided in
VC compared to the conventional techniques. For future work, the authors plan to investigate the
non-parallel many-to-many voice conversion based on convolution neural networks.

2 http://smartlab.tmit.bme.hu/vocoder2019
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