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ABSTRACT The emerging development of cloud computing makes a trend that the cloud becomes a
outsourced agglomeration for storing big data that generally contains numerous information. To mine the
rich value involved in big data, the machine learning methodology is widespread employed due to its ability
to adapt to data changes. However, the data mining process may involve the privacy issues of the users, hence
they are reluctant to share their information. This is the reason why the outsourced data need to be dealt with
securely, where data encryption is considered to be the most straightforward method to keep the privacy of
data, but machine learning on the data in ciphertext domain is more complicated than the plaintext, since
the relationship structure between data is no longer maintained, in such a way that we focus on the machine
learning over encrypted big data. In this work, we study locally weighted linear regression (LWLR), a widely
used classic machine learning algorithm in real-world, such as predict and find the best-fit curve through
numerous data points. To tackle the privacy concerns in utilizing the LWLR algorithm, we present a system
for privacy-preserving locally weighted linear regression, where the system not only protects the privacy of
users but also encrypts the best-fit curve. Therefore, we use Paillier homomorphic encryption as the building
modular to encrypt data and then apply the stochastic gradient descent in encrypted domain. After given a
security analysis, we study how to let Paillier encryption deal with real numbers and implement the system
in Python language with a couple of experiments on real-world data sets to evaluate the effectiveness, and
show that it outperforms the state-of-the-art and occurs negligible errors compared with performing locally
weighted linear regression in the clear.

INDEX TERMS Locally weighted linear regression, privacy-preserving, paillier homomorphic encryption,
stochastic gradient descent.

I. INTRODUCTION
The rapid development of cloud computing technology
makes an appealing trend that data owners are more and more
willing to outsource their numerous big data to cloud-based
servers [1], [2], many applications collect large amounts of
data from different data owners. In such a way that, users
are released from complicated data managements. To mine
the rich value contained in the outsourcing stored big data in
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cloud [3], the machine learning methodology is widely used
due to its typically improvement on efficiency and accuracy
over time thanks to the ever-increasing amounts of processed
data. Nevertheless, some intermediate calculating results of a
machine learning training process may be leaked to the cloud,
hence the privacy concerns are raised when to use machine
learning into the field of big data processing.

For example, the machine learning algorithms are widely
used in E-health application. The patients, as data owners,
prefer to upload personal medical record data to the E-health
cloud and the health-care service provider (e.g., hospital) may
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use some machine learning methods aiming to make some
predictions for medical diagnosis systems. Although this
brings usage advances for the health-care service provider,
the privacy concern immediately raise, since the patients’ per-
sonal information usually contain a number of personal pri-
vacy information, such as age, gender, family address, social
security number and so on. There are also other examples of
machine learning that reveal user privacy, such as common
advertising attacks, user phone number leaks, and so on [4],
[5]. This motivates the occurrence of privacy-preserving
machine learning.

In order to prevent the emergence of the privacy problem,
it is natural for users to encrypt their data before sending
them to evaluator to preserve confidentiality [6]. However,
encryption makes the evaluator side data mining and machine
learning be very thorny. Moreover, the machine learning
progress in evaluator side may meet privacy threats as the
involved private data belong to different users, and they don’t
trust each other. Even so, users are reluctant to give up the
benefits and convenience of outsourcing data. So data are
both outsourced and encrypted in the cloud, machine learning
algorithms become challenging [2].

So it is important to design and develop the privacy-
preserving machine learning protocol. To preserve the data
privacy in machine learning process, some cryptographic
technologies are employed. One approach is utilizing secure
multi-party computation (SMC) [7] technology, where data
is divided among multiple servers using secret sharing. How-
ever, the SMC protocl requires users to stay online to par-
ticipate in the subsequent computations, which brings about
heavy computation and communication costs to the user
side. Another usually used method bases on Yao’s garbled
circuit [8] along with homomorphic encryption [9], which
can finally get the learning model by encrypting, designing
gates and calculating obfuscation values without exposing
any user’s data. Nikolaenko et al. [10] still adopts Yao’s
garbled circuit to solve the computational problems in the
learning model, but the computational efficiency is extremely
low since complex circuits should be designed well that needs
expensive communication costs and a large amount of time
consumption.

However, using garbled circuits [10] to implement the
calculation and processing between encrypted data is very
inefficient, and designing garbled circuits also requires many
circuit gates. In contrast, we only use stochastic gradi-
ent descent to solve the encryption learning model, and
the communication overhead is greatly reduced. A table
of theoretical efficiency comparisons is in the first ques-
tion. And compared with the fully homomorphic encryp-
tion scheme [9], the Paillier encryption scheme is additive
homomorphism, in comparison, the execution efficiency is
much faster. From the efficiency comparison table of the
first question, it is obvious that our homomorphic scheme
is more effective than the garbled circuit scheme, and
our scheme is more secure than the differential privacy
scheme.

Generally, the system model we mentioned above is
an outsourced model as shown in Figure. 1. Users send
their encrypted private data to a semi-honest evaluator, and
don’t want to reveal any plaintext of their private data
to evulator or CSP [3]. To this end, we need a secure
machine learning algorithm to enable evaluator to per-
form privacy-preserving operations over these encrypted
data, which is owned by different users [11]. We try to
design machine learning algorithms under this outsourced
model. Because locally weighted linear regression is widely
used algorithm. We implement LWLR for the outsourced
model.

A. OUR CONTRIBUTIONS
In this paper, we propose a new efficient privacy-preserving
locally weighted linear regression scheme, in which we run
the stochastic gradient descent method over encrypted data
by Paillier encryption in order to get learning model without
leaking data privacy. Specifically, the contributions of this
work can be summarized as follows:

1) Privacy Preserving. All data uploaded by users, even
the intermediate results calculated using these data, are
encrypted, and no user privacy is leaked to the cloud.
Even the learning models calculated at the end are
encrypted, and users need to decrypt them before they
can be used. Fundamentally address user data privacy
concerns.

2) Functionality Maintenance. We provide a security
analysis and conduct a couple of experiments to illus-
trate practicality, and hence make evaluations on the
system under real UCI datasets. The experimental
results show that we not only provide the privacy guar-
antee for the data, but also realize the optimal curve by
using the encrypted data to perform stochastic gradient
descent, which still only incurs negligible error rates
compared with running locally weighted linear regres-
sion in the clear.

3) Security Ensurance.
i) User-Evaluator Security: the evaluator is unable to
learn any plaintext o any user’s data in our protocol.
ii) Evaluator-CSP Security: CSP is unable to learn any
plaintext o any user’s data in our protocol.
iii) User-User Security: No user is able to learn any
privacy information of other user’s data.

4) Practical Running Efficiency. A theoretical compar-
ision is taken bewteen our protocol and Nikolaenko
et al.’s [6], which consists of three parts: CSP compu-
tation, evaluator computation and communication cost.
The results show that our solution reduces the compu-
tation time from both the CSP side and the evaluator
side, meanwhile, no need to design complex garbled
circuit, hence it quitely reduces the time required for
computing gates of the circuit. Therefore, the introduce
protocol enjoys better efficiency in the real environ-
ment vai a theoretical analysis.
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II. PROBLEM STATEMENT
A. SYSTEM MODEL
The studied system consists of three entities as shown in
Figure. 1: data users, an evaluator and a cloud service provider
(CSP). Data users provide data information (Exi, yi), where
Exi is a d-dimensional vector that come from real numbers
(i.e., Exi ∈ Rd ), which contain the privacy information of user,
such as age, family address, social security number and so
on; while yi is the information to be predicted by the learning
model (e.g. the probability of suffering from A disease),
which is also composed of real numbers (i.e., yi ∈ R). CSP
is a crypto service provider that generates public/private keys
and sends the public key to users, and initialize the system by
setting upmachine learning parameters. Evaluator is a service
center who acts as a cloud-based data service role and runs
calculate machine learning algorithm with provided data by
users.

B. DESIGN GOALS
Our designed system aim to achieve the following four goals:

1) The system allows users to get rid of complex comput-
ing processes and to always stay offline during regres-
sion process.

2) The system allows users to efficiently store intermedi-
ate calculation results, users no longer need to consider
how to get a learning model when to outsource data.

3) The system is able to ensure the privacy of users with-
out revealing any users’ private information or interme-
diate results.

4) The system considers the private key leakage problem
as the public and private keys are generated by rep-
utable CSP.

C. THREAT MODEL
The designed system aims to compute JθK in a private-
preserving manner, that is keeping any user’s information and
intermediate results private to evaluator and CSP.

In the system, both the evaluator and the CSP are assumed
to be honest-but-curious and does not collude each other, that
is honestly running the defined protocols to run the locally
weighted linear regression algorithm but may infer informa-
tion of each user. We remark that in the actual deployment
of our system, there is only one evaluator or CSP is actually
honest-but-curious as same as the existing work [12]. In this
way, the user’s privacy information cannot be inferred which
is the inherent requirement of the system security. Moreover,
the evaluator is not necessarily assumed to be a malicious
party, since its actual goal is to get the computed value θ
and privacy information of user rather than corrupting the
computation to produce an incorrect result.

As for communication channel,we assume that the com-
munication channel is open. Users only communicate with
evaluator for sending encrypted data, users are able to capture
or analyse the data transmitted in the channels, but data
are encrypted. Users are also honest but curious, but they

just provide their encrypted privacy information to evaluator,
there is no collaboration bewteen users. However, they also
attempt to get other users’ privacy information.

III. BACKGROUND KNOWLEDGE
A. LOCALLY WEIGHTED LINEAR REGRESSION
Locally weighted linear regression algorithm is a classic
algorithm that used in the field of statistical and machine
learning [13], whose expected goal is to find the learning
model θ . Specifically, its loss function F(θ ) is based on linear
regression and with a weight as:

F(θ ) =
n∑
i=1

wi(yi − θTxi)2, (1)

where W is the weight and let the weight be a decreasing
function about the distance between the predicted points X .
Hence, the Gaussian kernel function:

W (i) = exp
(
−
(xi − x)2

2k2

)
, (2)

is employed to achieve locality for w, where x is the query
point, xi is the i-th training data point and k is a parameter that
to be adjusted. It controls the attenuation rate of the distance
between the training point and the query point.

Since the exponential functions cannot be operated in
homomorphic cryptosystem, this work uses Taylor’s formula
to expand the exponential functions into polynomial inspired
by [14], [15].

B. STOCHASTIC GRADIENT DESCENT (SGD)
For the loss function of locally weighted linear regression,
the value of the function is expected to be minimized. Thus,
stochastic gradient descent (SGD), a widely used approach
to train learning model in machine learning aggregation,
is considered to be an effective approximation algorithm to
solve the local minimum of a function.

In SGD algorithm, θ is an initialized vector which can be
all random numbers or all 0 value, where it is updated in each
iteration as:

θj := θj − α
∂L(θ )
∂θ

,

where L(·) is the loss function of a machine learning algo-
rithm in each iteration, where the samples (xi, yi) are used
to update the randomly selected coefficient θj, and α is the
learning rate that determines the step length to move down in
each iteration, it is easy to miss the lowest point for α when it
increases quickly, while the moving speed may be slow when
α is quite small, hence it takes multiple iterations to reach the
lowest point.

Based on the definition of SGD, the stochastic gradi-
ent descent formula of locally weighted linear regression
behaves:

θj := θj − α

n∑
i=1

(yi − (xiθi))wixi, (3)
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FIGURE 1. System model.

where computing the predicted output y∗i = xi · θi is con-
sidered as forward propagation, while computing the change
α · wi · (y∗i − yi)xi is regarded as backward propagation.

C. PAILLIER HOMOMORPHIC ENCRYPTION
Paillier homomorphic encryption system is a probabilistic
public key encryption notion. The Paillier encryption consists
the following three algorithms:

— Key Generation. Randomly select two independent
large prime numbers p and q and a random integer g← Z∗

N 2 .
Compute N = pq and sets (N , g) as the public key pk;
compute λ = lcm(p−1)(q−1) and µ = (L(gλ mod N 2))−1
where L(x) = x−1

N and sets (λ,µ) as the secret key sk .
— Encryption. The encryption algorithm E input a mes-

sage m ∈ ZN and picks a random number r ∈ Z∗
N 2 , generates

the ciphertext c = E(m, r)→ gm · rN mod N 2.
— Decryption. The decryption algorithm D decrypts the

ciphertext c as m← D(c) = L(cλ mod N 2) · µ mod N .
We note that the Paillier encryption cryptosystem supports

the following homomorphic operations:
1) Homomorphic Addiction.

D
(
E(m1) · E(m2) mod N 2

)
= m1 + m2.

2) Homomorphic Multiplication.

D
(
E(m1)m2 mod N 2

)
= m1 · m2.

IV. SUB-ROUTINES FOR OUR PROTOCOLS
Before presenting our protocol in Section V, in this section,
we introduce two generic protocols that are be used as
sub-routines for our privacy-preserving locally weighted
linear regression scheme. Since the Paillier homomorphic
encryption can only operate on positive integers, while the
processed data involved in processing the regression algo-
rithm are real numbers, hence we have to extend the original
Paillier encryption to deal with negatives and decimals. There
are the issues that must be addressed in the implementation
process.

A. ENCRYPTED MULTIPLICATION PROTOCOL
An objective between the evaluator who has a private input
(E(m1),E(m2)) and the CSP who hold the secret key is to
efficiently compute E(m1 ·m2) while reveal nothing aboutm1
and m2 to evaluator or CSP. The Basic Secure Multiplication
Protocal (BSMP) [16] makes this possible, whose basic idea
follows the following observation:

m1 · m2= (m1 + r1) · (m2 + r2)− m1 · r2 − m2 · r1 − r1 · r2.

The step-by-step details for Encrypted Multiplication Pro-
tocol are shown in Algorithm 1. Firstly, the evaluator gener-
ates two random numbers r1, r2 and calculates c1 = E(m1 +

r1) = E(m1) · E(r1), and the same as m2 to get c2. Then CSP
decrypts c1 and c2 to calculate h = (m1 + r1) · (m2 + r2)
and sends E(h) to the evaluator. As the fixed-point form is
used to process all the regression data that may cause some
fractional parts to be discarded and thus cause some errors,
which we will formally analyze the accuracy of fixed number
in the experiment section.

B. EUCLIDEAN DISTANCE
Under the two encrypted vectors (E(X ′),E(X )) held by the
evaluator, the computed Euclidean Distance E(

∣∣X ′ − X ∣∣2)
between X ′ and X , where X ′ and X are both d-dimensional
vectors, reveals nothing about X and X ′ to the evaluator or
the CSP. The basic idea of Euclidean Distance follows the
following observation:∣∣X ′ − X ∣∣ = d∑

i=1

(x ′i − xi)
2.

The overall routines in Euclidean Distance are shown in
Algorithm 2. Firstly, the Evaluator calculates E(X ′i − Xi) for
1 ≤ i ≤ d . Then the evaluator and the CSP use Encrypted
Multiplication protocol to calculate E(X ′ − X ) in together.

C. TAYLOR POLYNOMIAL
The Taylor polynomial [17] is a formula that uses a function
to describe the value of a point at a certain point. Note that
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Algorithm 1 EM(E(m1),E(m2))→ E(m1 · m2)
Require: The evaluator has a private input E(m1) and E(m2)

and the CSP has sk .
Ensure: The evaluator obtains the value of E(m1 · m2).

— (i) Evaluator:
1: Generates two random numbers r1, r2 ∈ ZN
2: Computes c1 = E(m1 + r1) = E(m1) · E(r1)
3: Computes c2 = E(m2 + r2) = E(m2) · E(r2)
4: Sends c1 and c2 to the CSP

— (ii) CSP:
5: Receives c1 and c2 from evaluator
6: Computes h1 = (m1 + r1) = D(c1)
7: Computes h2 = (m2 + r2) = D(c2)
8: Computes h = (m1+r1)·(m2+r2) mod N = h1 ·h2 mod
N

9: Encrypts h to h′← E(h) and sends h′ to the evaluator
— (iii) Evaluator:

10: Receives h′ from the CSP
11: Computes s← h′ · E(m1)N−r2
12: Computes s′← s · E(m2)N−r1
13: Computes E(m1 · m2)← s′ · E(r1 · r2)N−1

Algorithm 2 ED(E(X ′),E(X ))→ E(
∣∣X ′ − X ∣∣2)

Require: Evaluator has E(X ′) and E(X ), CSP has sk .
Ensure: Evaluator should get E(

∣∣X ′ − X ∣∣2) with the help of
CSP.

— (i) Evaluator:
1: for 1 ≤ i ≤ d do
2: E(x ′i − xi) = E(x ′i ) · E(xi)

N−1

3: end for
— (ii) Evaluator and CSP:

4: for 1 ≤ i ≤ d do
5: Computes E((x ′i − xi)

2) using EM protocol
6: end for

— (iii) Evaluator:
7: Computes E(

∣∣X ′ − X ∣∣2) =∏d
i=1 E((x

′
i − xi)

2)

if the function is sufficiently smooth, the Taylor polyno-
mial can use these derivative values as coefficients to con-
struct a polynomial to approximate the value of the function
in the neighborhood of this point. Since the homomorphic
encryption system cannot perform the encryption operation
on the exponential function, the weighted formula Eq.(2) is
expanded by the Taylor polynomial to change into a poly-
nomial operation, so that the exponential function can be
operated by the homomorphic encryption system. It is mainly
developed according to Eq.(4):

ex = 1+
1
1!
x +

1
2!
x2 +

1
3!
x3 +

1
4!
x4 +

1
5!
x5 + o(x5). (4)

The relationship between the number of polynomials and
the accuracy is studied in Section VI. The overall routine
in Taylor polynomial are shown in Algorithm 4, where m is
the number of Taylor polynomial in terms of the exponential

function. As we use Taylor formula to expand the exponential
function into polynomial operation that may cause an error,
which we will analyze the accuracy of Taylor formula in the
experiment section.

Algorithm 3 Taylor polynomial(E(x)→ E(ex))
Require: Evaluator has E(x), CSP has sk .
Ensure: Evaluator should get approximate value of E(ex)

with the help of CSP.
— (i) Evaluator:

1: for 1 ≤ i ≤ m do
2: Generates m Taylor coefficients: ri = 1

i!
3: Encrypts all Taylor coefficients: E(ri)
4: end for

— (ii) Evaluator and CSP:
5: Computes u1 = E(r1) · E(x) using EM protocol
6: Computes a2 = E(x) · E(x) using EM protocol
7: for 2 ≤ i ≤m do
8: ui = E(ri) · ai using EM protocol
9: ai+1 = E(x) · ai using EM protocol
10: end for
11: Computes E(ex) =

∏m
i=1 ui

V. OUR PROPOSED PROTOCOLS
This section presents a privacy-preserving locally weighted
linear regression system, where we use Pallier encryption
scheme to tackle the privacy concern since it is an addic-
tively homomorphic encryption with more highly efficiency
than somewhat homomorphic encryption [18]. In the system,
users sends the encrypted data to the evaluator, the evaluator
calculates learning model in together with CSP. Assume the
nunber of users in the system is n, the E(·) is the encryption
fuction of Paillier encryption, xtri and ytri are the attributes
of training set, xte and yte are the attributes of testing set. The
λ is a coefficient of calculating weights, which corresponds
to the Eq. (2) and θ is the learning model that we need to
get.

Firstly, data owners generate and send the encrypted data to
evaluator, the evaluator calculates the corresponding weight
w according to Eq. (2) using all the data of the training set
for each piece of user data in the test set. Secondly, based
on the weight calculated, the loss model is minimized by
the stochastic gradient descent according to Eq. (1), in this
way, the evaluator and CSP can collaboratively run locally
weighted linear regression algorithm through a secure inter-
action protocol. Finally, under getting the learning model θ ,
the evaluator sends back the encrypted learning model to data
owners.

A. OBTAINING WEIGHTS
Themain details in the stage of obtaining weights are given in
Algorithm 4. Generally speaking, users initially encrypt their
private information xtri, ytri, xte and yte then send them to
the evaluator, where xtri is the x attribute of the training set,
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ytri is the y attribute of the training set, xte is the x attribute
of the testing set and yte is the y attribute of the testing set.
Upon receiving E(xtri), E(ytri), E(xte) and E(yte) from users,
the evaluator takes private input as (E(xtri),E(xte)) along
with the secret key sk of CSP to jointly run the Euclidean
Distance protocol for 1 ≤ i ≤ n, which is used to calculate di
that is the squared Euclidean distance between E(xtri) and
E(xte). Then evaluator and CSP involve in the Encrypted
Multiplication protocol together to obtain ui, which corre-
sponds to the Eq. (2). And λ = −1/2k2 is a coefficient where
k is a parameter that needs to be adjusted, after obtain ui, they
finally jointly involve in the Taylor polynomial protocol to get
E(wi).

Throughout the process of obtaining weight, our system
does not disclose any private information of users to the
evaluator and CSP. Moreover, the intermediate results of
calculatingweights are also not leaked since ther are still dealt
with in encryption.

Algorithm 4 OW(E(Xtr),E(Ytr),E(xte),E(yte)→ E(W ))
Require: Evaluator has E(Xtr),E(Ytr),E(xte) and E(yte),

CSP has sk .
Ensure: Evaluator should get E(W ) with the help of CSP.

— (i) Users:
1: for 1 ≤ i ≤ n do
2: Encrypts xtri and ytri to get E(xtri) and E(ytri)
3: Sends E(xtri) and E(ytri) to evaluator
4: end for
5: Sends E(xte) and E(yte) to evaluator

— (ii) Evaluator:
6: Computes λ = − 1

2k2
7: Encryptes λ to get E(λ)

— (iii) Evaluator and CSP:
8: for 1 ≤ i ≤ n do
9: Computes di = ED protocol(E(xtri),E(xte))
10: Computes ui = EM protocol(E(λ), di)
11: E(wi) = Taylor polynomial(ui)
12: end for

B. CALCULATING LEARNING MODEL
The described obtaining weights protocol calculates the
weights between all trained data and test data, but we still
need to calculate the learningmodel θ with weights. Themain
details involved in the calculating learning model protocol is
introudced in Algorithm 5.

In general, CSP firstly initializes θ0 as 0s and then
encryptes θ0 and α, where α is the learning rate that deter-
mines the step size to move down in each iteration. And the
CSP sends the encrypted E(θ0) and E(α) to the evaluator.
Secondly, the evaluator and CSP jointly calculate the product
of E(θ0(i)) and E(xtri) as hi, for 1 ≤ i ≤ n. Then the
evaluator computes the difference between the true value of
the i-th data and the predicted value, as ki = ytri− xtri · θ0(i).
Since it is a locally weighted algorithm where the difference
ki is also multiplied by the weight wi as ui, and si is the

backward propagation of Eq. (3). We add all the si together
by a homomorphic multiplication, and the sum of all the
si is mj as

∂L(θ )
∂(θ ) . For 0 ≤ j ≤ Num wher Num is the

number of stochastic gradient descent iterations, fj means
the product of mj and α, and it is also used in the learning
rate to multiply backward propagation. Finally, we compute
E(θj+1) = E(θj) · E(α ·

∂L(θ )
∂(θ ) )

N−1 to implement Eq. (3).

Algorithm 5 CLM(E(Xtr),E(Ytr),E(W )→ E(θ ))
Require: Evaluator has E(Xtr),E(Ytr) and E(W ), CSP has

sk .
Ensure: Evaluator should get E(θ ) with the help of CSP.

— (i) CSP:
1: Sets θ0 to 0s
2: Encrypts θ0 and α, sends E(θ0) and E(α) to evaluator

— (ii) Evaluator and CSP:
3: for 0 ≤ j ≤ Num do
4: for 1 ≤ i ≤ n do
5: hi = EM Protocol (E(θ0(i)),E(xtri))
6: ki = E(ytri) · hiN−1 mod N
7: ui = EM Protocol(ki,E(wi))
8: si = EM Protocol(ui,E(xtri))
9: end for
10: mj =

∏n
i=1 si

11: fj = Encrypted Multiplication Protocol(mj,E(α))
12: E(θj+1) = E(θj) · fjN−1

13: end for

C. SECURITY ANALYSIS
In this section, we give a security analysis on the proposed
protocol. As can be concluded from the process of calculating
the learning model, no sensitive information of any user are
revealed to the evalutor or CSP, as well as the intermediate
process part. As no collusion are assumed between the evalu-
ator and CSP, the security analysis are taken from both the
evaluator side and the CSP side. We assume that adopted
homomorphic encrypted schemes are secure.

1) USER-EVALUATOR SECURITY
Lemma 1: The evaluator is unable to learn any plaintext o

any user’s data in our protocol.
Proof 1: To prove this lemma, we first show that

user-evaluator security holds for the third phase of our
model. In uploading encrypted data phase, the evaluator’s
responsibility is data storage. Users use the semantically
secure Paillier cryptosystem to encrypted the data and then
send to the evaluator, therefore the evaluator is unable
to obtain any sensitive information of the user from the
ciphertext.

In privacy-preserving LWLR operation, the evaluator plays
a role in receiving, transferring, and computing intermediate
variables in our protocol. Obviously, the ciphertext is applied
into the locally weighted linear regression algorithm for a
limited number of operations, moreover, only uses the secure
Encrypted Multiplication Protocol or Euclidean Distance
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protocol along with CSP to calculate the encrypted learning
model θ . Note that, any intermediate results are encrypted
throughout process, hence no any private information are
leaked, as well as no information are leaked from calculating
the learning model θ by the evaluator since they are still
encrypted.

2) EVALUATOR-CSP SECURITY
Lemma 2: CSP is unable to learn any plaintext o any user’s

data in our protocol.
Proof 2: To prove this lemma, we first show that

evaluator-CSP security holds for the secure interaction pro-
tocol in our model. Although it generates public and private
keys but it cannot directly access the encrypted sensitive
information submitted by the users. Furthermore it only
helps the evaluater to run the secure Encrypted Multiplica-
tion protocol and Euclidean Distance protocol, at the same
time, the received data from the evalutor are also encrypted
data by invovling some random numbers to blind intermedi-
ate results, hence even CSP successfully decrypts the data,
the intermediate result information are still not obtained by
it.

3) USER-USER SECURITY
Lemma 3: No user is able to learn any privacy information

of other user’s data.
Proof 3: Since users only communicate with evaluator,

they won’t directly communicate with each other. So user’s
privacy information may only be leaked through the com-
munication channel during the third phase in our proto-
col. Because the channel is open, and users can capture and
analyze data through it. However, users only send encrypted
data through communication channel to evaluator. So other
users are unable to learn any plaintext of transmission data
as encryption scheme is secure. Even if the user captures the
data, he cann’t determine which user’s data is.

Putting the above three lemmas together, we have the
following theorem.
Theorem 1: Privacy-preserving LWLR satisfies three

security properties: user-evaluator security, evaluator-CSP
security and user-user security.

VI. EXPERIMENTS
Experiment setup and Libraries. In this section, we con-
duct a couple of experiments on real datasets from the UCI
repository [19] to illustrate the practical efficiency, where
the protocol is compiled with Python 3.7 and implemented
on a PC with an Intel(R) Core(TM) i7-4510U CPU @2GHz
processor and 8GB RAM running Windows 10. And we use
Paillier encryption to encrypte data with a 1024-bit modulus
version, and use the math library and the random library
that come from with python to write the code of Paillier
cryptosystem. The pandas, sklearn and matplotlib libraries
are used to write the codes for the locally weighted linear
regression algorithm.

A. REPRESENTING REAL NUMBERS
As both the Paillier Cryptosystem and BSMP protocol can
only operate over positive integers, nevertheless, the designed
locally weighted linear regression algorithm need to deal with
real numbers, which are typically rescaled the same domain
(i.e., between−1 and 1). Hence, we should introduced a new
modular to connect negative numbers and real numbers.

1) DECIMALS
Firstly, there are two approaches for representing real num-
bers: floating point and fixed point. In our system, we use
fixed points to represent real numbers, since the element
operations over floating point representation are difficult to
implement in a data-agnostic way. And the fixed point rep-
resentation is proceeded as follow: [a] = ba · 2pc, where
p is a pre-defined system parameter and the number of bits
p of the fractional part can be picked. When the parameters
of different p are selected, the accuracy of the real number
represented by the fixed point is also different where b·c is a
round-down function. Here are listed some basic arithmetic
operations for fixed-point numbers:

1) Addition/Subtraction: [a± b] = [a]± [b];
2) Multiplication: [a · b] = [a] · [b]/2p.

For the multiplication of fixed-point numbers, the fixed-
point representation of [a · b] is extended to 22p. However in
the implementation, the expansion factor of the fixed-point
representation should be independent of any operation, thus
the expansion factor should be reduced to 2p after each
multiplication of the fixed-point representation. The overall
steps in FNMT (Fixed Number Multiplication Truncation)
are shown in Algorithm 6. That is, the evaluator selects a
random number r ∈ ZN with calculating E([a] · [b]+ r) and
sends it to the CSP. Under receiving it, the CSP decrypts it and
calculates b [a]·[b]+r2p c, also encrypts the result and sends it to
the evaluator. Finally, the evaluator gets the result of E([a ·b])
by calculating E(b [a]·[b]+r2p c − b

r
2p c).

Algorithm 6 FNMT (E([a] · [b])→ E([a · b]))
Require: Evaluator has E([a] · [b]), CSP has sk .
Ensure: Evaluator should get E([a · b]) with help of CSP.

— (i) Evaluator:
1: Picks random number r ∈ ZN
2: Calculates U = E([a] · [b] + r) = E([a] · [b]) · E(r),

sends U to CSP
— (ii) CSP:

3: Receives U from evaluator
4: Decryptes U , u = D(U )
5: h′ = b [a]·[b]+r2p c = b

u
2p c

6: Encryptes h′, sends E(h′) to evaluator
— (iii) Evaluator:

7: Receives E(h′) from CSP
8: Calculates b r2p c and encrypts s = E(b r2p c)
9: E([a · b]) = E(h′ − b r2p c) = E(h′) · sN−1
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2) NEGATIVES
For the negative number, in our system, the negative number
is described as a fixed point, and then use the standard two’s
complement to represent the negative number. For a plaintext
b, we denote it as a fixed-point form, i.e., [b] = bb·2pc, while
the fixed-point data type will be represented by σ bits, so the
binary complement of plaintext b is represented as b = 2σ +
[b] mod 2σ . And subsequent operations are performed on b.
When to calculate the final result, the evaluator calculates
the true representation of b by mod 2σ . That is: b(true) = b
mod 2σ .

B. FIXED NUMBER ACCURACY
As the decimal and negative numbers cannot be dealt with by
Paillier encryption system, hence we use the fixed-point form
to process all the regression data, which may cause some of
the fractional part to be discarded and some errors. Andmore,
we use θ∗ to represent the learning model of locally weighted
linear regression obtained in plaintext, and θ to represent
the learning model obtained through our privacy-preseving
scheme. Thus, we define the error rate of our protocol as:

Errθ∗ =

∣∣∣∣F(θ )− F(θ∗)F(θ∗)

∣∣∣∣ , (5)

where the Eq. (5) can well reflect the loss of accuracy of our
scheme, among them, we use matlab on a 64-bit commodity
server in plaintext with locally weighted linear regression
algorithm. Note that the experiments evaluate the average
error rate by selecting different parameter values.

FIGURE 2. (a) Average error rate as a function of number of bits used for
the fractional part of number representation. (b) Error rate as a function
of the performed iterations in stochastic gradient descent.

Through a broad experiments, Figure 2a illustrates the
relationship between bits for fractional part and average error
rates. To verify this, we choose 10 to 30 for bits of fractional
part, although the error is relatively large when to use 10 bits
to represent the fractional part: as the number of fractional
parts increases, the average error rate drops rapidly. When
to use 14 bits to represent the fractional part, the average
error rate reaches the smallest average error rate very quickly.
And Figure 2b illustrates the relationship between the number
of iterations of stochastic gradient descent and average error
rates. To verify this, we choose 500 to 9000 for the number
of iterations, although the average error rate is relatively large
when the number of iterations is less than 1000, and when the
number of iterations is greater than 1000, the average error

rate decreases as the number of iterations increases rapidly.
When the number of iterations exceeds 6500, the average
error rate increases since the number of iterations of the
stochastic gradient decent is too large, resulting in over-fitting
of the learning model and an increase in error rate.

C. TAYLOR FORMULA ACCURACY
Since locally weighted linear regression algorithm needs to
calculate the encrypted exponential function ex when calcu-
lating the weight, the Paillier encryption system cannot deal
with the exponential function. As a result, we use Taylor
formula to expand the exponential function into polynomial
operation, which may cause an error incurred. Thus, we use
ex to denote the normal exponential function and Taylor(x)
to denote the Taylor expansion polynomial of ex and define
the error rate of our protocol as:

Errex =

∣∣∣∣Taylor(x)− exex

∣∣∣∣ , (6)

where the Eq. (6) calculates the error rate between the Taylor
expansion and the real exponential function ex .

FIGURE 3. The average Taylor error rates as a function of the number of
Taylor’s terms.

Deriving Fig.3 by calculating Eq. (6) in matlab, it illus-
trates the relationship between the number of Taylor’s terms
and Taylor error rates, to verify this, we choose 1 to 10 for
Taylor’s number of terms. Although the error of Taylor expan-
sion is larger when the number of Taylor expansion terms
is smaller, but as the number of items expand, the Taylor
error rate drops rapidly and steadily. As can be concluded:
when expanding the exponential function to item 6, the Taylor
error rate reaches the almost smallest average error rate very
quickly; when expanding the exponential function to item 8,
the average Taylor error rate decreases to 10−4.

D. EFFICIENCY
The protocol is conducted on real datasets retrieved from
UCI, where the UCI database is a database for machine
learning proposed by the University of California Irvine who
currently has 335 data sets and commonly used as a standard
test databas. In TABLE 1, a theoretical comparision is taken
bewteen our protocol and Nikolaenko et al.’s, which consists
of three parts: CSP computation, evaluator computation and
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TABLE 1. The differences of theoretical analysis between our protocol
and Nikolaenko et al.’s [10].

communication cost. CSP communication refers to the time
efficiency of the CSP during the entire calculation process;
Evaluator communication is the time efficiency of the evalu-
ator throughout the calculation process; communication cost
refers to the time efficiency consumed by the interaction
between CSP and evaluator to complete machine learning
algorithm. Among them, ζCSP denotes the designed garbled
circuit by CSP and the |ζCSP| denotes the numbers of gates
used in the garbled circuit by CSP. The results show that our
solution reduces the computation time from both the CSP side
and the evaluator side, meanwhile, no need to design complex
garbled circuit, hence it quitely reduces the time required
for computing gates of the circuit. Therefore, the introduce
protocol enjoys better efficiency in the real environment vai
a theoretical analysis.

Before the application or company outsources the data,
they have to run the locally weighted linear regression algo-
rithm with the user’s plaintext data, the efficiency is O(nd2),
but they use the user’s plaintext data to train the learning
model, which requires them to consume a lot of calculation
Storage space for intermediate data. In order to improve
efficiency and save space, the companywill encrypt the user’s
data and upload it to the cloud server. In this case, the com-
pany only needs to encrypt the user’s private information.
The efficiency becomes O(nd), which greatly reduces the
company’s computing efficiency. The work of training the
learning model only needs to be completed on the cloud
server. At this time, the computing efficiency of the cloud
server is O(nd2).

TABLE 2. Experimental results using UCI datasets.

TABLE 2 lists the results of our protocol running with
actual data sets, in which there are 7 real-world datasets that
are used for evaluating our protocol. Assume summarizing
the number of entries to be n, the number of features to be d
and the number of bits to represent the fixed numbers. The
purpose of this table is aimed to provide the overall time
evaluation on the evaluator and the CSP, which starts from the
initial stage of the computation by CSP and final stage of the
execution by the evaluator. At the same time, TABLE 2 also

provides the encryption costs of all users, where ‘‘EncryT’’
means the encryption time-consuming of all users and
‘‘Time’’ means the overall time between CSP and evaluator.

Since locally weighted linear regression employes all train-
ing sets to calculate weights for each set of test data, even if
the algorithm used to run the machine learning in plaintext
takes longer than the normal regression algorithm. Among
them, the smallest data set ‘‘challenger’’ has only five fea-
tures, thus the encryption time required for it achieves as short
as 0.55 minutes, the overall time costs of the evaluator and
CSP are almost 0.2 hours. The slowest overall execution time
between CSP and evaluator is the ‘‘communities’’ data set
that requires about 130 hours, among them, the encryption
time take 69 minutes for 1994 entries and 20 features are
invovled. However, we can see the efficiency of the protocol
is quite acceptable for most actual users.

VII. RELATED WORK
Earlier work on privacy-preserving machine learning mainly
focused on k-means [20], [21], KNN, SVM classifica-
tion [22], [23] and decision trees [24], [25]. As linear regres-
sion becomes more and more widespread in practical appli-
cations, the privacy-preserving problem of linear regression
has received enthusiastic attention, but the former employed
traditional methods were difficult to divide the databases
horizontally or vertically.

On one hand, the used method in horizontally partitioning
databases is secret sharing methodology [26], where users
share their sensitive information into multiple servers. The
multiple servers follow a distributed protocol to cooperatively
run machine learning algorithms together, i.e., BGW [27]. On
the other hand, the commonmethod for vertically partitioning
of databases is homomorphic encryption. Nikolaenko et. al.,
realized the privacy-preserving linear regression by verti-
cally dividing the databases and combining LHE and garbled
circuits, and Gascon et. al., [28] extends its conclusions to
horizontally divided databases. As a result, both of them use
a garbled circuit and take resources to design the gate of the
circuit. Moreover, Hu et. al., [29] gives a solution on the
privacy-preserving linear regression problem via Gaussian
elimination and Jacobi iteration and then transform the linear
regression problem into solving linear equations.

There are also many privacy-preserving machine learning
protocols that use hybrid approaches, such as combining
secret sharing with garbled circuits to learn the deci-
sion tree model [25]. Meanwhile, the use of differential
privacy [30], [31] to implement privacy-preserving machine
learning is also widely studied [22], [32]. Nevertheless,
the principle of differential privacy needs to add noises to
the data or to update function (e.g., [14]), in such a way that,
the server can fully access to the user’s plaintext data that is
not expected due to privacy concerns.

Compared with the garbled circuit and the fully homo-
morphic protocol, our protocol is significantly more efficient
and requires less communication overhead. The theoretical
analysis can be seen in SECTION VI, SUBSECTION E
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Efficiency. Compared with the differential privacy scheme,
our scheme is more secure. For specific proof, see
SECTION V, SUBSECTION C Security Analysis.

However, the previous privacy-preserving linear regression
protocols only addresses the problems of linear system, on the
contrary, our protocol uses the stochastic gradient descent
method to concern about the privacy-preserving problem
of machine learning. We note that this method can also
be extended to non-linear systems, such as logistic regres-
sion [33] and neural networks.

VIII. CONCLUSION
In this paper, we proposed a novel privacy-preserving locally
weighted linear regression scheme without leaking anything
else about the users’ data. By using Taylor formula to
extend exponential function based on Paillier encryption
methodology, we employed stochastic gradient descent to
compute locally weighted linear regression over encrypted
data and gave a formal security analysis. Finally, we imple-
mented the scheme through extensive experiments, where the
experimental results indicate that our protocol outperforms
the state-of-the art protocol in both computation efficiency
and communication cost. Most importantly, our protocol can
be used as a modular to address the privacy concerns of data
mining.
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