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ABSTRACT Salient object detection (SOD) aims to identify and locate the most attractive regions in an
image, which has been widely used in various vision tasks. Recent years, with the development of RGBD
sensor technology, depth information of scenes becomes available for image understanding. In this paper,
we systematically investigate and evaluate on how to integrate depth cues in a pre-trained deep network and
learn informative features for SOD. First, we propose a CNN-based cross-modal transfer learning, which
learn knowledge from sufficient labeled RGB salient object datasets and guide the depth domain feature
extraction. Then we design a feature fusion module to fuse the complementary features in a hierarchical
manner. At last, the final saliency map is obtained by integrating multi-scale information step by step.
Extensive experiments on five popular RGBD benchmark datasets demonstrate that our proposed approach
achieves significant improvements and outperforms the state-of-the-art methods.

INDEX TERMS RGBD, salient object detection, complementary feature extraction, hierarchical fusion.

I. INTRODUCTION
SOD aims at capturing the most visually distinctive objects
and informative regions, which attract human more attention
in a scene. Many computer vision applications may benefit
from understanding where humans interest in an image, such
as object detection [1], [2], content-aware image editing [3],
image compression [4], [5], image retrieval [6] and image
synthesis [7].

Saliency detection usually involved into top-down and
bottom-up algorithms. Top-down approaches are task-driven
which normally is a combination of insights from neuro-
sciences, biology and computer vision. While bottom-up
approaches are stimuli-driven, which by aggregating
low-level image features, such as color, edge and shape,
to detect salient regions in a scene. Based on above two
frameworks, various RGB-domain SOD methods have been
proposed and achieved remarkable performance. However,
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they may fail to detect salient object in some complex
scenes, such as the similar color distribution of objects and
backgrounds or varying illuminations. Recently, low-cost
RGBD sensors (Microsoft Kinect [8] or Intel RealSense) have
become very popular to capture both color images and depth
maps for a scene at the same time. Depth cues contain many
correctly object structures, which have shown its efficiency
for salient object segmentation [9]–[11]. However, the issue
of how to effectively utilize the depth and RGB information
remains to be solved.

There are many methods focus on designing handcrafted
features from RGBD data with domain-specific knowl-
edge [12]–[14]. Normally, RGB and depth features are inte-
grated in a heuristic way, which fail to take full advantage
of complementary information to describe complex correla-
tions. Furthermore, the handcrafting process is highly depen-
dent on prior knowledge of existing datasets, and resulting
features may be intuitive but do not work well enough for
other case. Recently, convolutional neural network (CNN)
based image feature extraction has attracted many attentions
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FIGURE 1. Different network structures for deep feature fusion. (a) Late fusion. (b) Early fusion. (c) Ad-multi-fusion. (d) Hierarchical fusion.

of researchers. An obvious advantage of this method is that
can establish an effective hierarchical representation of the
input data, which integrates RGB features in a convolutional
way. Also, many deep learning models have been adopted
for dealing RGBD data [15]–[20] and achieved pretty well
performance.

Many works show that the performance of CNN-based
SOD is closely related on the number of layers and the volume
of labeled training datasets. Recently, owing to the emergence
of extensive annotate datasets, such as MSRA10K, DUTS
and ECSSD, many efficient models have been proposed,
which can give satisfactory results for RGB salient object
detection. While for RGBD image processing, it is imprac-
tical to build RGBD benchmarks to match the scale and
variety of existing RGB datasets. Some methods [21], [22],
utilized the knowledge learned from large-scale RGBdatasets
to guide the RGBD training stage, have achieved a great
success. These works generally follow encoder-decoder
architecture that focus on the cross-modal feature extraction
and complementary feature integration. As shown in Fig.1,
we illustrate four fusion models in which fuse RGB and
depth information on different stage. In Fig.1(a), RGB
and depth data are processed independently during the
encoding-decoding stage, then simply fuse the outputs of
each stream to get final saliency map. The early fusion
structure is illustrated in Fig.1(b), which encodes RGB and

depth channel separately and then integrates the feature maps
of both channels before decoding. Finally, the fused feature
vector can be decoded to get the saliency map. Fig.1(c) shows
the Ad-multi-fusion module, proposed by [22], in which
RGBD four channel feeds in a network and encodes as a
concatenated multi-scale feature vector, the de-convolutional
layers then decode spatial features using the feature maps of
the previous layer to get more details of salient regions. The
above methods combine RGB and depth modalities on a sin-
gle scale, which may not be sufficient to obtain enough useful
information from the complementarymodality. Fig.1(d) gives
a hierarchical fusion strategy, during the encoding stage,
the RGB and depth information are extracted in a hierarchi-
cally manner. While in the decoding stage, both RGB and
depth channel feature maps in the same scale are fused and
fed into the decoder, and then progressively decodes layer by
layer to get the saliency map. In this manner, we can locate
more salient objects with large receptive fields and maintain
more context information from the upper layer to the lower
layer.

In this paper, we propose a new pre-trained guide hier-
archical fusion network (PGHF) for RGBD salient object
detection. The PGHF consist of two VGG16 based feature
extraction branches and a hierarchical fusion CNN branch
(HF-CNN). Firstly, both RGB and depth information are
jointly extracted by two VGG 16 feature extraction branches.
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Two networks share the same weights, which pre-trained
on a large-scale RGB dataset as the initial parameter of the
feature extraction layer. Then, the HF-CNN is used to fuse
the multi-modal features in a hierarchical manner and pro-
duce multi-scale coarse saliency maps progressively. At last,
based on multi-scale coarse saliency maps, we achieve final
estimation of salient objects.

The contributions of our work are summarized as follows:
1) We built a novel network, i.e., PGHF, which is specif-

ically designed to learn complementary RGBD features and
can detect salient regions more accurately under the guidance
of pre-trained RGB model.

2) We propose a hierarchical fusion architecture, which
can leverage semantic relations and multi-scale information
between different layers. Algorithm outputs more detailed
object boundaries and keeps different scale salient objects to
be spatially consistent.

3) Extensive experimental results on five popular RGB-D
saliency benchmarks demonstrate that the proposed approach
outperforms the state-of-the-art methods in terms of both
regional and boundary evaluation measures.

II. RELATED WORK
A. RGB SALIENCY DETECTION
Over the past decades, many saliency object detection
approaches for RGB image have been developed. Early
methods detect salient objects based on some pre-designed
features. Achantay et al. [23] presented a frequency-tuned
approach utilize low level manual features of color and
luminance to computing saliency in images. Cuong and
Chandler [24] employed lightness distance, color distance,
contrast, sharpness and edge strength, which estimate the
validity of each feature map based on local measure of cluster
density with image-adaptive technique. Cheng et al. [25]
proposed saliency extraction algorithm based on regional
contrast, which simultaneously evaluates global contrast dif-
ferences and spatial coherence. Niu et al. [26] developed
superpixel and background connectivity prior to achieve
salient object segmentation. These methods have achieved
massive development on saliency detection. However, they
are limited to hand-crafted saliency cues, which make them
the low representation capability of high-level relations and
the high generalization errors. Inspired by the success-
ful application of deep convolutional networks in various
computer vision tasks for high-quality representations, these
network structures are also adopted to RGB saliency detec-
tion with more informative representations. Li and Yu [27]
designed deep CNNs with multiple fully connected lay-
ers to extract multi-scale features further boost the perfor-
mance for salient object detection. Yi et al. [28] presented a
top-down structure with horizontal connections for construct-
ing high-level semantic feature maps of various scales. Liu
and Han [29] introduced a hierarchical architecture which
supervise the multi-scale coarse saliency maps with different
scales ground truth maps to refine the details of saliency map
hierarchically and progressively. Zhuge et al. [30] provided

stage-wise refinement frameworks to gradually enhance the
boundary information. These methods make remarkable suc-
cess. However, it is still difficult to distinguish salient object
from complex image scenes.

B. RGBD SALIENCY DETECTION
Recently RGBD sensors not only provide RGB information
but also record the corresponding depth information. Depth
has been shown to be one of the practical cues for predicting
saliency. Ciptadi et al. [31] extracted layout and shape fea-
tures from the depth cues to improve the ability of salient
object detection. Fan et al. [32] combined depth weighted
color contrast and spatial compactness to generate saliency
object maps. Ren et al. [33] exploited depth global priors
to estimated saliency maps. Ju et al. [12] proposed a depth-
aware method for saliency detection using an anisotropic
center-surround difference measure. Feng et al. [13] defined
depth background enclosure to detect salient objects in
RGB-D images. Zhu et al. [34] utilized center-dark channel
prior of depth maps to innovate the salient object detection.
Qu et al. [35] proposed a CNN to automatically learn the low-
level saliency depth cues and combine the Laplacian propa-
gation framework with the convolutional neural network to
produce spatially consistent saliency map. Han et al. [36]
pointed out the difference between RGB and depth data, and
designed a cross-modal transfer learning CNN architecture
to better extract the modal-specific features depth cues. Chen
and Li [37] presented a hierarchical fusion module for depth
fusion, which using cross-modal residual function and jointly
supervision to learn the complementary features from the
paired modality dataset. In [38], Zhao et al. introduced a
contrast-enhanced net for depth images and built a fluid
pyramid integration module to make better use of multi-scale
cross-modal features. However, due to the limited labeled
training datasets, it may be difficult to learn effective feature
representations from RGBD date via the CNNs. In order
to solve these problems, Zhu et al. [21] designed a prior-
model guided depth-enhanced network (PDNet) for salient
object detection. They utilized a subnet to extract depth cues
and then incorporates depth-based features into the primary
RGB network. Finally, they employed a large RGB dataset to
pre-train the master network and achieved significant accu-
racy improvement. Huang et al. [22] designed a CNN with
multiple layer fusion (CMLF), which encodes RGBD four
channel as a concatenated multi-scale feature vector, and then
decode spatial features using the feature maps of the previous
layer to get more details of salient regions. For dealing with
the problem of insufficient datasets, they use zero maps to
replace the depth map during the pretraining process for
facilitating the prediction of RGBD.

III. THE PROPOSED METHOD
Our proposed model PGHF follows the encoder-decoder
architecture as shown in Fig. 2. The encoder part consists
of two complementary feature extraction branches VGGRGB
and VGGDepth for cross-modal feature extraction. As for
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FIGURE 2. The architecture of our proposed PGHF model consists of three deep networks. Both left and right sides of our model are feature extractors
named as VGGRGB and VGGDepth respectively. The middle column is a fusing branch, which hierarchically integrates the complementary features and
outputs multi-scale saliency maps progressively.

the decoder, we employ a hierarchical fusing CNN branch
(HF-CNN) to fuse multi-scale features and finalize the
salient map estimating. In the following subsections, we will
describe the details of the complete architecture and possi-
ble advantage of extracting useful information for saliency
prediction.

A. COMPLEMENTARY FEATURE EXTRACTION
As shown in Fig. 2, VGGRGB and VGGDepth are based on
the VGG-16 model which has 13 convolutional layers (kernel
size = 3 × 3, stride = 1) and 4 maxpooling layers (pooling
size = 2× 2, stride = 2). Given input RGB image XRGB and
its corresponding depth image XDepth, we adopt the convolu-
tional layers of VGGRGB and VGGDepth to extract five differ-
ent scales complementary feature maps as the representations
of the input image pair. For notation simplicity, we refer to
the VGG as a function g(X , θ), which take X as input and θ
as parameters. The complementary feature extraction process

is denoted as

[gRGBl , gDepthl ] = [gl(XRGB; θws), gl(XDepth; θws)],

l = 1, 2, 3, 4, 5 (1)

where gRGBl and gDepthl are the l-layer feature representation
of images XRGB and XDepth, respectively. [·, ·] is the con-
catenation operator. θws is the parameter of the convolutional
layers in VGGRGB. In our framework, the weights of both
VGGDepth and VGGRGB are set same as pre-trained network
and then be trained simultaneously.

B. HIERARCHICAL FUSION MODULE
We use the HF-CNN to integrate the multi-level complemen-
tary features of image pairs in a hierarchical manner. The
hierarchical fusing function is defined by

fl(X ) =

{
h([gRGBl , gDepthl ]; θf ), l = 5

h([gRGBl + gDepthl , fl+1(X )]; θf ), l < 5
(2)
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FIGURE 3. An illustration of hierarchical feature fusion in the third layer
of HF-CNN.

where h denotes the feature fusion operator, θf is the param-
eter of the fusion branch. From the Eq. (2), we can see that
the integration scheme is vary in different layers. In the last
layer, we use only gRGB5 and gDepth5 as the input of the fifth
layer fusion module. While for other layers, both the outputs
of the previous fusion layer fl+1(X ) and the sum of feature
vectors, extracted by VGGRGB and VGGDepth, are taken into
consideration.

For each decoder layer, we also output the coarse salient
maps for final fusion. We upsample the fusion feature map
fl(X ) using a Bilinear interpolation and then apply a convolu-
tion network with a 3×3×1 kernel to get the corresponding
coarse salient map Sm,l :

Sm,l = Conv(U0(fl(X ); ol)), l = 4, 3, 2, 1 (3)

where U0 denotes upsample operator, 2l is the kernel with
stride of 2l . As an example, we give the fusion details of the
third layer of hierarchical fusion module, shown in Fig.3.

Thenwe stack four scale coarse saliencymaps together and
convert the concatenated map into the final salient map with
the following activation function:

S = σ ([S1, S2, S3, S4]) (4)

where σ (·) denotes the sigmoid activation function.

C. TRAIN
Given a set of samples C = {Xn,Gn}Nn=1 with N training
pairs, where Xn = {XRGB,XDepth} are the input image pairs
andGn is the corresponding binary ground-truth image, gin =
1 presents pixel i of image n is a saliency pixel, gin = 0
denotes the background pixel. We use G+ and G− to denote
pixel sets of salient region and background in the ground truth
image, respectively.

For training, all the parameters are learnable via min-
imizing a loss function, which is computed as the errors
between the final RGBD saliency maps and ground-truth
images. To obtain high quality regional segmentation and
clear boundaries, a hybrid loss is defined as:

`bcd = argminµ`bc + λ`dc (5)

where µ and λ are used to balance two loss functions
and make two tasks achieve best performance. `bc and `dc
denotes Binary Cross-Entropy (BCE) loss [40] and Dice-
score loss [41], the specific descriptions are in follows.

BCE loss measures both structural and global difference
between the predicted saliency map and the ground truth. The
loss is defined as:

`bc=−
∑
i∈G+

logP(gi=1|X; θ)−
∑
i∈G−

logP(gi=0|X; θ ) (6)

where θ = [θws, θf ] is the parameter in the entire network.
P(gi = 1|X; θ ) ∈ [0, 1] indicates the predicted probability
that pixel i to be a salient:

P(gi = 1|X; θ ) =
esi

e1−si + esi
(7)

where si is the output of network.
Dice-score loss was first proposed for supervision medical

image segmentation. It can alleviate the problem of class
imbalance and local spatial inconsistency, which is defined
as:

`cd =

2
∑
i∈G+

P(gi = 1|X; θ )

|G+| +
∑
i∈G

P(gi = 1|X; θ )
(8)

where |G+| denote the salient pixel numbers.
In the training phase, we pre-trained VGG16 network

with 20553 labeled RGB images come from MSRA10K
and DUTS-TR. Within the pre-training stage, only R, G, B
three channels data are available and we train the VGGRGB
by minimizing the loss function and obtained the network
parameters w. For the PGHF training, w is used as the initial
parameter of both VGGRGB and VGGDepth, then we can fine
tune the network parameterswwith the supervision of RGBD
salient object dataset. In this way, the representations learned
from RGB data is transferred to the RGBD field.

IV. EXPERIMENTS
A. DATASETS
Five popular RGBD datasets NJUD2K [12], NLPR [42],
SSB1000 [11], LFSD [43] and RGBD135 [44] are
used for our experimental comparison. NJUD2K consists
of 2003 stereo-scopic images, which are collected from the
Internet, 3D movies, and photographs taken with a stereo-
scopic camera. NLPR contains 1000 image pairs, which
were captured by Kinect from indoor and outdoor scenes.
SSB1000 comprises of 1000 pairs of binocular images from
the available Web links. LFSD includes 100 images with
depth information, which were taken via the Lytro light field
camera [45], and their corresponding hand-labeled ground
truth images. RGBD135 is composed of 135 indoor images,
which collected by Microsoft Kinect of seven indoor scenes.

Following [38], the training set contains 2050 samples,
which are consists of 1400 images from the NJU2K and
650 images from the NLPR. The validation set includes
150 samples, which combined with 100 images from NJU2K
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TABLE 1. The results for component analysis on NJUD2K.

and 50 images from NLPR. And validate all comparison
models on the rest images. All of the samples are randomly
selected.

B. IMPLEMETATION DETAILS
We implement our method using Keras 2.2.4 on a PC with
E5-2630 CPU and Nvidia Tesla GPU (with 16G memory).
The initial learning rate is set to 0.0002, weight decay,
momentum and batch size are set as 0.0005, 0.9 and 4.
Training process converges after 25 epochs. The inference
time for each 224× 224 image pair is merely 0.042s.

C. EVALUATION METRICS
Four widely used metrics, including structural measure [46]
(S-measure), mean F-measure [47] (meanF), maximum
F-measure (maxF) and mean absolute error [48] (MAE), are
used to evaluate the proposed method.

S-measure focuses on evaluating the similarity structure
between the predicted saliency map and binary ground-truth,
formulated as:

S = α ∗ So + (1− α) ∗ Sr (9)

where α ∈ [0, 1] is the balance parameter and be empirically
set to 0.5. So and Sr is the object-aware and region-aware
structural similarity between generated saliency map and the
corresponding ground truth map.

F-measure is a harmonic mean of average precision and
average recall, defined as:

Fβ =
(1+ β2)Precision ∗ Recall
β2 ∗ Precision+ Recall

(10)

As suggested by [47], β2 is set to be 0.3 for emphasizing the
importance of precision. Following [49], we provide the max
F-measure and mean F-measure by using different thresholds
ranging from 0 to 255.

MAE represents the average pixel-wise absolute difference
between an estimated saliency map and its corresponding
ground truth. computed as:

MAE =
1
T
|si − gi| (11)

where T denotes the total number of pixels.

D. ABLATION STUDIES
In this section, we evaluate the performance of some parts
in the proposed model. Table 1 gives salient object detec-
tion results of the architecture with different input channel,

TABLE 2. The results of PGHF model training with different losses on
NJUD2K.

with/no weight sharing and four fusion schemes. Due to the
limitation of space, we only show the results on NJUD2K
dataset. As show in table 1, we use three different input data,
which are RGB, Depth, and RGB + Depth. All of models
given in this table are pre-trained with RGB SOD datasets.
As for dealing with RGBD input, parameters of VGG-depth
can be set with two ways: one is random, another is ws.
ws means weight sharing, i.e. the network parameters of
both VGG for RGB and depth feature extraction are same.
The four fusion schemes Late-fusion, Early-fusion, Ad-muti-
fusion and HF are illustrated in Fig.1.

1) EFFECT OF COMPLEMENTARY INPUTS
To investigate the impact of different inputs, we set up
three date types: RGB, Depth and RGB + Depth. For only
RGB(Depth) input, our model do not fuse different channel
input information, which became a simple multi-level feature
model. As the results shown in Table 1, we observe that
only with the RGB(Depth), our model achieves 0.809(0.735),
0.796(0.695), 0.808(0.709) and 0.086 (0.132) in terms of the
S-measure, meanF, maxF and S-measure metrics. Compared
rows 1st and 3rd, we find that the additional depth infor-
mation can upgrade the performance on all metrics, such
as about 5.1% of S-measure, around 3.1% of meanF, near
4.6% of maxF, as well as around 10.5% decrease in MAE.
It indicates the complementary effects of RGB and Depth
are very expressive. Depth information enhances the spatial
similarity of saliencymaps, improves the accuracy of saliency
object detection.

2) EFFECT OF SHARE WEIGHTS
As described in section III, we learn RGB salient object
representations from massive labeled RGB images, and
then use the same convolution layer weights to extract
depth feature. As shown in Table 1, comparing the
6th and 7th rows, we could see that the performance
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FIGURE 4. Visualization of typical saliency maps with different component. (a) RGB. (b) Depth. (c) Ground truth. (d) VGGRGB. (e) VGGDepth. (f) VGG +

Late-fusion. (g) VGG + Early -fusion. (h) VGG + Ad-muti-fusion. (i) VGG + HF. (j) VGG +ws+ HF (PGHF).

TABLE 3. Quantitative comparison with 6 methods on five popular RGB-D saliency benchmarks.

of the model has been greatly improved with weights
sharing.

3) EFFECT OF HIERARCHICAL FUSION MODULE
We report the quantitative comparison results of different
fusion modules in 3rd-6th rows of the Table 1. Compare

with other fusion strategies, the hierarchical fusion module
achieves optimal performance on F-measure and MAE. The
main reason is that the proposed fusion module can main-
tain more context information from the upper layer to the
lower layer. Visual examples for different fusion strategies
are display in Fig. 4 (f)-(i). We can observe that hierarchical
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FIGURE 5. Visualization results by using various saliency detection methods. (a) RGB. (b) Depth. (c) Ground truth. (d) Ours. (e)CPFP. (f) PCF. (g) PDNet.
(h) CTMF. (i) DF. (j) CDCP.

fusion module has the stronger ability to capture spatial and
semantic information. This structure effectively suppresses
the noises of redundant local detail and significantly improves
edge performance.

4) EFFECT OF HYBRID LOSS
We give the result of PGHF model training with different
losses on NJUD2K datasets, please see the Table 2. We find
that Binary Cross-Entropy loss `bc get better S-measure than
Dice-score loss `cd , which may infer `bc is more sensitive
to salient structure than `cd . While for another three metrics
(meanF, maxF and MAE), the model training with `cd shows
the better performance than `bc, which may owing to `cd
pay more attention on the unbalanced proportion of pixels
in the salient object region and background area. The hybrid
loss achieved further improvement on four metrics as
expected.

E. COMPARISON WITH THE STATE-OF-THE-ART
MENTHODS
We compare our proposed method with 6 state-of-the-
art methods, including CDCP [34], DF [35], CTMF [36],

PDNet [21], PCF [37] and CPFP [38]. Among them, CDCP
is traditional methods which is based on handcrafted features.
DF and CTMF are Early-fusion and Late-fusion models,
respectively. PDNet is the first pre-trained network for RGBD
SODwhich learn frommassive RGB datasets. PCF and CPFP
are two well-known hierarchical fusion models. For fair
comparison, the division of datasets and partial comparative
experimental data refer to CPFP. Table 3 reports quantitative
results of six methods and our proposed method on five
popular RGBD datasets. We can see that our method brings
better performance than other state-of-the-art methods.

To further verify the advantages of our proposed method,
we also summarize several challenging situations in salient
object detection, visual comparisons are showed in Fig. 5,
including small object (the 1st row), multiple object (the 5th

row), transparent object (the 6th row), salient object with
complex edge (the 2nd and 3rd rows), salient object with
center bias (the 2nd row), uneven brightness (the 4th row), low
contrast (the 7th row) and complex scene (the 8th row). For
small salient object, our method can depict clear boundaries
and obtain almost the same shape of the small object. When
the objects have center bias or complex edge, our proposed
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method also produce clearer boundaries than the other meth-
ods. In the situation of transparent objects and low con-
trast, most of the above-mentioned approaches fail to present
salient object well, but we can obtain the accurate salient
regions and coherent edge. We also sample some images that
contain multiple salient objects, our proposed method can
completely distinguish all salient objects. Although the CPFP
and PCF methods treat RGB and depth cues differently for
multi-scale fusion, the fine details of the salient objects are
lost severely due to the limitation of labeled RGBD datasets.
Taking all the circumstances into account, our model not only
locate the salient object from a global view, but also obtains
fine local detail information of the object boundaries.

V. CONCLUSION
In this paper, we propose a new pre-trained guide hierarchical
fusion network for RGBD salient object detection. We utilize
representations learned from a large-scale RGB dataset to
boost the learning ability of the model under insufficient
labeled RGBD training data. Also, we design a hierarchical
feature fusion module to fuse the complementary features
layer by layer. Within this framework, sufficient multi-modal
complementary information interactions greatly improve the
network performance for salient object detect especially for
contour localization. Comprehensive evaluations on five pub-
lically available benchmark datasets and comparisons with
other state-of-the-arts demonstrated the effectiveness of the
proposed approach.
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