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ABSTRACT With the advent of the information age, the amount of multimedia data has exploded. That
makes fast and efficient retrieval in multimodal data become an urgent requirement. Among many retrieval
methods, the hashing method is widely used in multimodal data retrieval due to its low storage cost, fast and
effective characteristics. This review clarifies the definition of multimodal retrieval requirements and some
related concepts, then introduces some representative hashing methods, mainly supervised methods that
make full use of label information, especially the latest deep hashingmethods. The principle and performance
of these methods are compared and analyzed. At the same time, some remaining problems and improvement
space would be discussed. This review will help researchers better understand the research status and future
research directions in this field.

INDEX TERMS Multimedia, multimodal retrieval, hashing method, deep learning, reviews.

I. INTRODUCTION
With the advent of the information age and the rapid develop-
ment of the Internet, multimedia data has explosive growth in
various modalities such as text, image, audio, and video. Tra-
ditional single-modal data retrieval, such as image retrieval
and text retrieval, has been unable to adapt to the reality of the
gradual diversification of multimedia data. Multimodal data
has the characteristics of low-level expressive heterogeneity
and high-level semantic homogeneity, that is, the same thing
has different expressions. A more diverse form of expression
can help people understand the things themselves better.
When searching for something, people often want to accu-
rately find more search results with different expressions.
Based on this, the fast and efficient retrieval of data in differ-
ent modalities is particularly necessary. Multimodal retrieval
is essentially a data similarity retrieval. In a certain sense,
it belongs to the Nearest Neighbor (NN) [1] retrieval prob-
lem, that is, given a query data and a database, after the
operation, it returns the data most similar to the query data.
Because multimedia data is massive and high-dimensional,
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multimodal retrieval requires huge storage space and a long
time. There is a semantic gap in the information representa-
tion of different modalities, which makes accurate retrieval
difficult. To achieve more efficient retrieval, it is necessary
to sacrifice a certain accuracy. In real-life scenarios, if the
similarity is high enough to satisfy the retrieval require-
ments, then the most similar results returned from the dataset
are sometimes unnecessary. The hashing method based on
Approximate Nearest Neighbor (ANN) [2] is widely used
because it is fast and efficient while costing low storage.

The hashing method saves storage and speeds up retrieval
by mapping raw features to binary encoding (Hamming)
space [3]. At the same time, the similarity of the data
should be maintained in the mapping process (the data
with high similarity in the original space is mapped to the
Hamming space, and the distance between the hash codes
is small, and vice versa). Hashing methods are divided
into data-independent methods and data-dependent methods.
Considering the retrieval effect and ubiquity, this article
mainly introduces the latter. The key to this type of method
is to use training data to learn the most suitable hash func-
tion. The learning of the hash function is mainly divided
into two steps: dimensionality reduction and quantization.
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FIGURE 1. Principle of hashing methods for multimodal retrieval.

Dimensionality reduction refers to mapping information in
the original space to a low-dimensional spatial representation.
Quantification refers to the linear or non-linear transforma-
tion of the original features to binary segment the feature
space to obtain hash codes. The information of different
modalities indicates that there is a certain degree of the
semantic gap, and the main problem that hashing methods for
multimodal retrieval need to solve is to minimize it as much
as possible. One common solution is to learn a uniform hash
code to make it more consistent. The other is to minimize the
coding distance and increase its compactness.

Hash retrieval is a research hotspot in recent years, and
various excellent methods and improvements are constantly
being proposed. In order to better demonstrate the verti-
cal development of research, we will briefly describe the
early data-independent methods and single-modal meth-
ods. Later we will focus on some representative super-
vised data-dependent multimodal methods. Besides, some
of the latest deep hashing methods using deep learning [4],
attention-aware [5] mechanisms, and the use of adversarial
networks [6] will be introduced.Wewill compare and analyze
the advantages and disadvantages of variousmethods, sort out
the development process, point out the existing problems, and
make some conjectures and predictions about future research
trends.

II. RELATED CONCEPTS
A. HAMMING DISTANCE SORTING
Hamming distance refers to the number of characters in
different equal length strings [7]. For any two binary vectors
a, b ∈ (0, 1)j of the same length, the Hamming distance
between them can be calculated by an exclusive OR opera-
tion, namely:

dh(a, b) =
j∑

i=1

xor(ai, bi) (1)

TheHamming distance sortingmethod can be used to approx-
imate nearest neighbor searching task. Firstly, the Hamming

distance between the query item code and the dataset code is
calculated; then the query results are sorted in an incremental
form, and the first k data with the smallest Hamming distance
from the query item is obtained as the search result. Since the
Hamming distance sorting operation is very fast, it can meet
the needs of the fast retrieval of the hashing method.

B. HASH TABLE RETRIEVAL
The hash code is used as the key value to establish a hash
table [8], and then the approximate nearest neighbor search of
the data is performed according to the hash code of the query
item data, and the search time is constant level. However,
in the process of hash table retrieval, due to the diversity of
data, once the hash code of the query item does not match
any hash table of the data to be retrieved, it could cause
the retrieval task failed. Therefore, we need to calculate the
Hamming distance between the query item hash code and the
key value of the data hash table and use the hash table with a
smaller Hamming distance as the candidate searching range
to improve the success rate of the retrieval.

C. SIMILARITY MEASURES
In addition to the Hamming distance mentioned above, some
other similarity measures are used to measure the similarity
of data in the process of constructing the hashing algorithm
model. Commonly used are Minkowski distance [9] and
cosine distance [10].

1) MINKOWSKI DISTANCE
The Minkowski distance is used to measure the similarity
between two real vectors, which can be calculated by the
Lp norm [11]. For any two real-dimensional vectors a =
(a1, a2, . . . , aj) and b = (b1, b2, . . . , bj) of the same dimen-
sion, their Minkowski distance is defined as:

Lp(a, b) =

 j∑
i=1

|ai − bi|p

1/p

(2)

The value of p is not unique. When p is 1, the formula 2
becomes

L1(a, b) =
j∑

i=1

|ai − bi| (3)

At this time, the absolute distance of the two vectors is
calculated, that is, the Manhattan distance [12]. When p is 2,
the formula 2 becomes

L2(a, b) =

 j∑
i=1

|ai − bi|2

1/2

(4)

At this time is calculated from the Euclidean distance of the
two vectors.When p is taken as∞, the formula 2 becomes

L∞(a, b) = max
∞∑
i=1

|ai − bi| (5)
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At this time is calculated from the Chebyshev distance [13]
of the two vectors. The Minkowski distance of two vectors is
positively correlated to their similarity.

2) COSINE DISTANCE
The cosine distance measures the similarity between two
vectors by calculating themagnitude of the cosine of the angle
between the two real vectors. For any two real-numbered
vectors a = (a1, a2, . . . , aj) and b = (b1, b2, . . . , bj) of the
same dimension, their cosine distance can be calculated as
follows:

dcos(a, b) = 1−
aT b
|a| · |b|

(6)

The cosine distance of two vectors is positively correlated to
their similarity.

D. PERFORMANCE EVALUATION CRITERIA
There are generally four performance evaluation criteria for
retrieval performance in hashing methods:

1) PRECISION (P)
It refers to the ratio of the number of nearest neighbor samples
in the returned query results to the total number of returned
samples, reflecting the retrieval signal-to-noise ratio of the
method. The formula for calculating the accuracy rate is:

precision =
T

T + N
(7)

where T is the number of nearest neighbor samples related to
the query item data in the returned query result, and N is the
number of samples in the returned query result that are not
related to the query item data. The precision rate is positively
correlated to the retrieval performance of a method.

2) RECALL (R)
It refers to the ratio of the number of nearest neighbors in the
returned query to the number of samples related to the query
data in the dataset, reflecting the success rate of the retrieval
process. The formula for calculating the recall rate is:

recall =
T

T + F
(8)

where F is the number of data samples associated with the
query item data in the dataset but not retrieved. The recall
rate is positively correlated to the retrieval performance of a
method.

3) PRECISION-RECALL CURVE
In a hashing method, the precision rate and recall rate are
mutually constrained. The precision rate and recall rate of
the same method are negatively correlated [14]. Therefore,
we can use the precision rate and recall rate as the horizontal
and vertical coordinates to draw the precision-recall curve to
further measure the performance of the retrieval method.

4) AVERAGE PRECISION (AP)
It is obtained by calculating the integral of the precision-recall
curve on the abscissa. In the precision-recall curve, the preci-
sion rate is a function of the recall rate, recorded as P = f (R).
The average accuracy is calculated by integrating the preci-
sion rate against the x-axis when the recall rate changes from
0 to 1:

AP =
∫ 1

0
PdR =

∫ 1

0
f (R)dR (9)

In practical applications, the data points of the precision-recall
curve are often discrete, so we often use the sequence sum-
mation method to calculate the average precision:

AP =
1
Lq

n∑
k=1

P(k)1R(k) (10)

where n is the number of all samples in the dataset, k is the
number of samples returned during the retrieval process, Lq is
the number of samples in the dataset related to the query item
data, which is the total number of data samples. P(k) is the
precision rate of the first k samples returned by the retrieval
process.1R(k) is the value of the recall rate when the number
of samples varies from k − 1 to k . The average precision is
equivalent to the average of the query accuracy in a single
query data.

5) MEAN AVERAGE PRECISION (MAP)
It is the mean of the average precision of all query data. The
calculation method is as follows:

mAP =

M∑
i=1

AP(qi)

M
(11)

where qi is the query sample and M is the total number of
query data.

E. ELEMENT-WISE SIGN FUNCTION
When mapping raw multimedia data into a common space,
an element-wise sign function:

sign(x) =


1, x > 0
0, x = 0
−1, x < 0

(12)

is often used. It can well normalize the characteristic infor-
mation into an uniformed hash code, and improve retrieval
efficiency. However, after this process, the information con-
tained in the hash code will become sparse, and the loss of
some related information is inevitable.

III. METHODOLOGIES
A. DATA-INDEPENDENT METHODS
The hash function design of the data-independent hashing
method is independent of the data, and the hash function
is generally generated by means of random mapping. The
most typical representative method is the Locality-Sensitive
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TABLE 1. A brief catalogue of representative hashing methods. For data-dependent methods, U means unsupervised methods, S means semi-supervised
methods, F means fully supervised methods.

Hashing (LSH) [15]. The principle of locality-sensitive hash-
ing is to map samples with high similarity in the original
space to the same hash bucket with higher probability, which
ensures that the hash codes of the neighbor samples in the
original space can be as close as possible after hash map-
ping. The probability that any two samples fall into the same
hash bucket is determined by the similarity measure of the
two samples to satisfy the locality-sensitive in the mapping
process.

The randommapping matrix is independent of the data and
is determined by the probability distribution. Since the sim-
ilarity of neighbor samples is preserved during the mapping
process, locality-sensitive hashing is somehow reliable. How-
ever, in large-scale data retrieval, because of the hash collision
problem, a longer hash code is needed to ensure the precision
of the retrieval, which brings additional time and computa-
tional overhead, and leads to a decrease in the recall rate.
There are many improvements, such as p-stable Locality-
Sensitive Hashing (pLSH) [16], which complements the hash
function family of LSH; Shift Invariant Kernel Hashing
(SIKH) [17], the principle is to use the translation-invariant
kernel to project the data from original space into the
kernel space to maintain data similarity; LSH Forest [18]
optimizes the need to construct multiple hash tables to
reduce the hash collision problem in the random mapping
process.

B. SINGLE-MODAL METHODS
Since data-independentmethods cannot fully utilize the infor-
mation of given data, it is difficult to obtain good retrieval
performance. Hence, many data-dependent methods have
been proposed. Earlier methods focused on a single modal-
ity, but this is the basis for the development of subsequent
research.Wewill briefly introduce some typical single-modal
methods.

1) SPECTRAL HASHING (SH) [19]
This method is an important starting point, which clarifies
many basic requirements in this field. It requires data that
is neighbors in the original space to remain neighbors after
hash mapping, and the hash code must satisfy balance and
independence which ensures that the hash code obtained by
the mapping is compact and rich in information. The entire
hashing process is an NP-hard problem [59]. The author
first discretizes the data and then uses the spectral analysis
method to optimize the data under the assumption that the
data is evenly distributed. Finally, the angular frequency is
calculated in the principal component analysis (PCA) [60]
direction using the sinusoidal function to divide the data. The
spectral hashing method belongs to the orthogonal mapping
method, so the quality of the hash code is not high when the
variance of the mapping is low. Moreover, in practical appli-
cations, the uniform distribution of data is still too idealistic.

2) ANCHOR GRAPH HASHING (AGH) [25]
It is a graph-based hashing method whose principle is similar
to the spectral hashing, but it does not require the precondition
of uniform data distribution. The method first selects the
points in the dataset (generally using the K-means cluster-
ing [61]) as an anchor point to approximate the similarity
matrix, and converts the similarity between any two data
sample points into a sample-anchor relationship. The anchor
graph hashing method is based on graph analysis and has
strong scalability. It also uses a double hash function to
generate a multidimensional hash code to solve the problem
of uneven information content in the feature vector generated
by the original data.

3) ISOTROPIC HASHING (ISOHASH) [26]
It performs a selection operation on the data space such that
the data variance of each dimension is the same. First, use the
principal component analysis(PCA) to reduce the dimension
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of the data, then calculate a rotation matrix. Through these
operations, the variance of each dimension of the data is the
same, and the amount of information corresponding to the
hash code is the same, which solves the problem of code
quality in SH and AGH. Besides, the iterative quantization
method can be used to optimize the Gaussian distribution data
that satisfies isotropic [62].

4) SEMI-SUPERVISED SPECTRAL HASHING (SSH) [20] &
Semi-supervised Sequential Projection Hashing (S3PLH) [21]
The semi-supervised hashing method don’t rely on external
interactions, instead of using the model assumptions on the
data distribution to mark unlabeled samples to improve over-
all performance.

SSH and S3PLH are both special cases of extending Spec-
tral Hashing (SH) to semi-supervised. They use partial data
labels as supervisory information to know if some samples
are neighbors (neighbor samples have the same label). In the
construction of the hash function, the former mainly uses the
similarity matrix, and the latter also adds linear projection
and mean thresholding. They all use relaxation processing
to ensure the independence and balance of the hash bits.
Of course, the retrieval performance of the latter is better than
the former.

5) OTHER SINGLE-MODAL METHODS
There are some methods similar to Spectral Hash-
ing (SH), e.g. Similarity Preserving Entropy-based Coding
(SPEC) [22], Multi-label Least-Squares Hashing(MLSH)
[23], and Iterative Quantization (ITQ) [24].

There are quite a few single-modal methods that apply
the idea of linear classification. For example, Minimal Loss
Hashing (MLH) [27] uses a hinge-like loss [63] function as
a penalty term to process sample points that are particularly
close in distance (called positive samples) and particularly
far sample points (called negative samples). It is based on
the basic principle of structured SVM [64], and the retrieval
performance is still good, but it has the disadvantage of the
high complexity of of model training, and it is difficult to
apply to large-scale datasets. In addition, Linear Discriminant
Analysis Hashing (LDAhash) [28] and Supervised Discrete
Hashing (SDH) [29] are also based on similar ideas which
convert the hash learning problem into a linear classification
problem.

Another common single-modal methods trend is kernel-
based. Representatives are Binary Reconstructive Embed-
ding (BRE) [30], Supervised Hashing with Kernels (KSH)
[31], Kernel Hyper-plane Learning Semi-supervised Hashing
(KHLSSH) [32], and Semantic Confidence Semi-supervised
Hashing (SCSSH) [33].

C. MULTI/CROSS-MODAL METHODS
1) CROSS-VIEW HASHING (CVH) [34] & INTER-MEDIA
HASHING (IMH) [35]
The Cross-View Hashing is an extension of the spectral hash-
ing. The basic idea is to learn the hash function byminimizing

the weighted average Hamming distance of different modal-
ities and use the generalized eigenvalue solution method to
obtain the minimum value. CVH can be applied to the data
retrieval of multiple modalities, but the differences between
modalities are not fully considered, hence the retrieval per-
formance is limited. CVH is an unsupervised method. It uses
graphs to describe the similarity between modalities. It can
also use the label information to solve the similarity matrix
and convert it into a supervised method.

The basic idea of the Inter-Media Hashing is similar
to CVH, but it fully considers the associations and differ-
ences between modalities and emphasizes maintaining the
inter-modal and intra-modal similarity of samples that are
nearest neighbors to each other. However, IMH needs to
calculate the similarity map of a large number of samples,
hence its retrieval effect is guaranteed at the expense of time
complexity, which is not suitable for application to large-scale
datasets.

2) LINEAR CROSS-MODAL HASHING (LCMH) [36]
As a typical representative of the linear method, LCMH
inherits some of the ideas of AGH [25]. By using the scalable
k-means algorithm, the distance between the data point and
the center point is calculated to maintain the similarity inside
the data modalities; by minimizing the distance to the same
object from different modalities in public space to ensure the
similarity between themodalities. The advantage of LCMH is
that time complexity is linear, which can increase efficiency
for large-scale data retrieval.

3) COLLECTIVE MATRIX FACTORIZATION HASHING
(CMFH) [42] & LATENT SEMANTIC SPARSE HASHING
(LSSH) [43]
CMFH excels in the unsupervised hashing methods.
It assumes that the hash codes of all modalities data are
consistent whenmapped to the commonHamming space, and
the collective matrix factorization [65] method is used to help
construct the hash function model. This method is optimized
using a loop iteration. This method integrates the data of
different modalities and seeks the common representation
of the consistency of each modality, which can improve the
retrieval effect.

The Latent Semantic Sparse Hashing (LSSH) is an exten-
sion of CMFH. It also narrows the semantic gap between
modalities by learning uniform hash codes for semantically
similar data. In particular, It uses the sparse coding [66]
method to obtain high-level significant feature information,
and uses thematrix decomposition to learn the latent semantic
information. The resulting information is then mapped into a
federated public space. By combining the potential semantic
information of different modalities, the retrieval performance
is greatly improved.

4) MULTI-GRAPH HASHING (MGH) [44] & SEMI-SUPERVISED
SEMANTIC FACTORIZATION HASHING (S3FH) [45]
MGH is a semi-supervised method, which is based on
the hashing with the graph structure by constructing the
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neighborhood graph on the training data and can be extended
to multiple modalities. Construct the semantic similarity
matrix by using the label, and combine them to make com-
plementary hash function learning by sequential.

The MGH simply combines the multi-modal graph and
the semantic similarity matrix, resulting in a large amount
of noise in the hash code, which does not preserve the
semantic association between the modalities well. The
S3FH improves the semantic labels and constitutes a joint
framework consisting of three parts: Semantic factoriza-
tion, Multi-graph semi-supervised learning, and Multi-modal
correlation.

• Semantic factorization refers to a given prediction label
matrix, which can be decomposed into a hash code by
matrix decomposition. This part effectively preserves
the semantic relevance of labels. In the S3FH, there is no
orthogonal constraint in the semantic factor decomposi-
tion process, so the quantization loss of the hash code is
very low, and the semantic information in all dimensions
is balanced.

• Multi-graph semi-supervised learning uses the anchor
graph method [67] to calculate the multi-graph matrix
of each modality more efficiently. By properly merging
the modalities, the more accurate prediction of the label
matrix, the more semantic-related information of hash
code is retained.

• Multi-modal correlation refers to learning a hash func-
tion for each modality and mapping them into a unified
Hamming space.

The S3FH uses a joint framework, and each part can interact,
making the method perform better than the previous works.

5) CROSS-MODAL SIMILARITY-SENSITIVE HASHING
(CMSSH) [37] & CO-REGULARIZED HASHING (CRH) [38]
CMSSH was proposed in 2010 and is almost the first super-
vised cross-modal method in recent years. It first gener-
ates some positive and negative data pairs according to the
similarity of the samples, then constructs two sets of linear
hash functions as weak classifiers. Each hash code training
is a binary classification process. The hash code learning
is performed by the Boosting method [68], and the weak
classifiers are combined into strong classifiers. The hash
learning processing corresponds to a non-convex problem,
which needs to be subjected to relaxation processing and
then obtained by eigenvalue decomposition to obtain the hash
codes.

CMSSH does not consider the similarity within the data
modalities. Co-Regularized Hashing (CRH) has improved the
CMSSH and added a loss function within the modalities.
This method learns a single-bit hash function by solving the
difference of convex functions and then learns multiple bits
by sequential learning. This allows the deviation introduced
by the hash function to be minimized sequentially. It uses
a smooth clip inverse variance bias function to connect the
similarities between the inter-modal relationships and the

projections that form the hash code. In addition, the CRH
method defines a loss term between modalities for a large
edge hash function, projects the data away from zero to imple-
ment generalization, and effectively maintains the differences
between modalities.

6) SEMANTIC CORRELATION MAXIMIZATION (SCM) [39]
SCM is a supervised method, which means that it makes
full use of category tag information. This method learns the
representation of the public space based on the label informa-
tion, that is, the labels are used to map samples of different
categories far away, and the mapping of samples of the same
category is as close as possible. It uses semantic tag vectors
to calculate the semantic similarity between data samples.
A linear transformation is performed on the similarity matrix
to facilitate calculation, and a new semantic similarity matrix
is obtained. The SCM uses the Spectral Relaxation [19]
method to construct the hash code, discarding the sign(·)
term in the objective function, and by adding orthogonal
constraints, each bit of the hash code satisfies the balance and
is uncorrelated. SCM uses the orthogonal projection method
based on eigenvalue decomposition to perform hash function
learning, which has low time complexity, but at the same
time causes large quantization loss and affects the retrieval
performance.

7) SEMANTIC TOPIC MULTIMODAL HASHING (STMH) [40]
This method explicitly uses the implicit information of each
modality. Specifically, the hidden text topic is explored by
clustering the text data to better generate the hash code. The
semantic information of image data is explored by matrix
decomposition, and a norm is introduced to enhance the
robustness of matrix decomposition. If different modal data
have the same semantics, then a common semantic space,
such as a text topic, can be described using corresponding
image semantic information. STMH well maintains the dis-
crete nature of hash codes. Each bit of the hash code indicates
whether the text or picture contains the corresponding subject
or concept. By maintaining the discrete nature of the hash
code, It is more suitable for the hash learning mode, and also
achieves better retrieval performance.

8) SEMANTICS-PRESERVING HASHING (SEPH) [41]
SePH uses the semantic correlation matrix of the sample data
as the supervised information, converts it to the learned binary
code into a probability distribution, and learns the hash code
by minimizing the KL-divergence of the two probability dis-
tributions. In the process of hash code learning, kernel logistic
regression [69] is used as a nonlinear projection method to
map data features into binary codes. For any test set sample
data of different modalities, SePH ensures that a uniform hash
code can be obtained by predicting the probability of each
modal hash code. The model of this method is complicated
and requires a longer training time, but at the same time, it can
obtain higher retrieval accuracy.
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TABLE 2. Notations.

FIGURE 2. Framework of DCMH.

D. DEEP HASHING METHODS
In recent years, deep learning has performed well in many
fields. The deep features extracted by deep learning method
contain richer semantic information and have a stronger abil-
ity to express the original data. Therefore, the combination
of deep learning and hashing methods applied to multimodal
retrieval can significantly improve the retrieval efficiency.
Based on this idea, many excellent methods have been pro-
posed in recent years. Here we will introduce a few recent
representative deep hashing methods. Besides, many new
methods [50]–[53] are not described in detail, but also worthy
of reference.

Since the following narration will involve some compli-
cated formula expressions, we first make some notations of
the symbols and expressions that will appear frequently (but
not all), see Table 2.

1) DEEP CROSS-MODAL HASHING (DCMH) [46]
This method integrates feature learning and hash learning
into an end-to-end framework involving two modal data of
images and texts with excellent retrieval performance. The
basic framework of DCMH is shown in Figure 2.

The DCMH framework is an end-to-end design, which
means that each part can provide feedback to another part dur-
ing the learning process. For the extraction of image modal
data features, the network structure of CNN-F [70] is adopted,
which consists of 5 convolutional layers and 3 fully con-
nected layers. The first seven layers use Rectified Linear Unit
(ReLU) [71] as the activation function, and the last fully con-
nected layer used identity function as the activation function.
For text modal data, it is vectorized using the bag-of-word
(BoW) and then passed as input to a deep neural network with
three fully connected layers. The activation function of the
first two layers is ReLU. The last fully-connected layer uses
the identity function.

The objective function of DCMH is:

min
B,B(x),B(y),θx ,θy

J = −
n∑

i,j=1

(Sij2
xy
ij − log(1+ e2

xy
ij ))

+γ (
∥∥Bx − F∥∥2F + ∥∥By − G∥∥2F )

+η(‖F · 1‖2F + ‖G · 1‖
2
F )

s.t. Bx = By = B ∈ {−1,+1}c×n (13)

where 2xy
ij =

1
2F

T
∗iG∗j.

• The first term in formula 13 is the negative log likelihood
of the cross-modal similarities. By optimizing this term,
the similarity between image and text features under the
supervisory information can be preserved. The likeli-
hood function is defined as:

p(Sij|F∗i,G∗j) =

{
σ (2xy

ij ), Sij = 1

1− σ (2xy
ij ), Sij = 0

(14)

where 2xy
ij =

1
2F

T
∗iG∗j, σ (2

xy
ij ) =

1

1+ e−2
xy
ij
.

• The second item ensures that when the image and
text data are converted into hash codes, the original
cross-modal similarity is preserved as much as possible,
and corresponding to the correct supervision informa-
tion which can reduce the quantization loss.

• The third item ensures the balance of the hash code
and maximizes the valid information contained in each
binary code.

The restriction Bx = By = B in formula 13 is applicable to
training data, and the meaning is to share a common hash
representation of different modal data to improve training
efficiency. DCMH uses alternating learning strategies to opti-
mize θx , θy, and B during the training process (fixing two
and optimizing the other). For any sample point that is not in
the training set, DCMH only needs to obtain data in a single
modality, then it can retrieve its othermodal data through hash
codes.

However, although DCMH was a groundbreaking deep
hashing method with excellent performance, it didn’t deal
well with the intra-modal correlation of data and the further
association between hash codes and features of different
modalities.
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2) PAIRWISE RELATIONSHIP DEEP HASHING (PRDH) [47]
The framework of PRDH is very similar to DCMH, which is
an improvement of the latter. Its main innovation is integrat-
ing different types of pairwise constraints to better reflect the
hash code similarity from inter-modal and intra-modal data.
In addition, the method introduces additional decorrelation
constraints, which enhanced the independence between the
bits of the hash code.

The loss function during the training process consists of
the following four items:
• inter-modal pairwise embedding loss:

J1 = − log p(Sij|F∗i,G∗j)

= −

∑
Sij∈S

log p(Sij|F∗i,G∗j)

= −

∑
Sij∈S

(
Sij2

xy
ij − log(1+ e2

xy
ij )
)

(15)

where 2xy
ij =

1
2F

T
∗iG∗j. By optimizing this loss item,

the Hamming distance between similar instances would
be reduced, and the Hamming distance between dissim-
ilar instances would be expanded.

• intra-modal pairwise embedding loss:
For image modality:

J2 = −
∑
Sij∈S

(
Sij2x

ij − log(1+ e2
x
ij )
)

(16)

where 2x
ij =

1
2F

T
∗iF∗j.

For text modality:

J3 = −
∑
Sij∈S

(
Sij2

y
ij − log(1+ e2

y
ij )
)

(17)

where 2y
ij =

1
2G

T
∗iG∗j. By optimizing this loss item

can improve the validity of the hash code information
and provide its own instance identification capability
within the modality, thereby improving the cross-modal
retrieval performance.

• decorrelation loss:

J4 =
1
2

(∥∥Cx∥∥2
F −

∥∥diag (Cx)∥∥2
F

)
+
1
2

(∥∥Cy∥∥2
F −

∥∥diag (Cy)∥∥2
F

)
(18)

where Cx
=

1
T

T∑
n=1

(Fin − µi)(Fjn − µj) and

Cy
=

1
T

T∑
n=1

(Gin − µi)(Gjn − µj) is the covari-

ance matrix between two different hash code bits
from image/text modalities, i, j ∈ {1, 2 . . . c}, µ∗ =
1
T

T∑
n=1

F∗n/
1
T

T∑
n=1

G∗n is the instance mean of feature

over the batch, and T is the batch size. By optimiz-
ing this loss item can reduces the redundancy-related
information between the hash code bits and enhances

the hash code independence to maximize its information
representation efficiency.

• regularization loss:

R = ‖B− F‖2F + ‖B− G‖
2
F + ‖F · 1‖

2
F + ‖G · 1‖

2
F

(19)

where B is the unified hash code for the two modalities.
Optimizing this item can reduce the quantization loss
and ensure the balance of the hash code.

The overall loss function is:

J=J1+J2 + J3+λJ4 + γR s.t. B ∈ {−1,+1}c×n (20)

Compared with DCMH, PRDH mainly increases the loss
optimization within the modal of the training process and
the decorrelation loss optimization of the hash code itself,
which greatly improves the data utilization and achieves bet-
ter retrieval performance.

3) SELF-SUPERVISED ADVERSARIAL HASHING (SSAH) [48]
This method introduces mechanisms such as self-supervised
semantic generation and adversarial learning, and has made
breakthrough progress in retrieval performance.The frame-
work of SSAH is shown in Figure 3.There are two innovations
for SSAH:

a: SELF-SUPERVISED SEMANTIC GENERATION
SSAH uses multi-label annotation to better bridge the
fine-grained semantic similarity between different modali-
ties. A fully connected deep neural network called LabNet
is designed to extract features from multi-label informa-
tion, thus transforming label information into self-supervised
semantic information. The final objective function of LabNet
is:

min
Bl ,θ l ,̂L

J l = αJ1 + γ J2 + ηJ3 + βJ4

= −α
∑n

i,j=1
(Sij2l

ij − log(1+ e
2l
ij ))

−γ
∑n

i,j=1
(Sij2h

ij − log(1+ e
2h
ij ))

+η

∥∥∥H l
− Bl

∥∥∥2
F
+ β

∥∥L̂− L∥∥2F
s.t.Bl ∈ {−1, 1}c×n (21)

where 2l
ij=

1
2
L∗iTL∗j,2h

ij =
1
2
H l
∗i
T
H l
∗j,H

l is the predicted

hash code of category labels, L̂ is the predicted category
labels. J1 is used to maintain the similarity of semantic fea-
tures. J2 ensure that instances with similar label have similar
hash codes. J3 is the approximate loss for the binarization of
the learned hash codes. J4 is the classification loss between
the original category labels and the predicted category labels.

b: ADVERSARIAL LEARNING
Under the influence of LabNet, semantic correlation can be
maintained between differentmodalities. However, the incon-
sistent distribution of different modalities is not conducive
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FIGURE 3. Framework of SSAH.

to the construction of the unified hash code. In order to
eliminate the modality gap to achieve more efficient retrieval,
SSAH designed two discriminators of image and text for
adversarial learning. The discriminators have classified the
input semantic features into class 0 or 1.

The introduction of adversarial learning makes the hash
codes of different modalities more closely related to the
original data. However, the instability in adversarial network
training may also have a greater impact on the overall hash
learning process. Operations such as gradient descent and
normalization that are commonly used in deep hashing will
bring additional noise, and the adversarial network is very
sensitive to noise. In addition, SSAH uses adversarial learn-
ing to train the 0-1 discriminator. For the sparse modal data
features (e.g. bag-of-words vectors), it is difficult to ensure
that the optimization effect is globally effective and continu-
ously effective.

In general, compared with the previous method, SSAH
has a breakthrough innovation and also provides a possible
direction for future research. However, the stability of the
training process needs to be improved.

4) ATTENTION-AWARE DEEP ADVERSARIAL HASHING
(ADAH) [49]
ADAH has a similar framework to SSAH, and it uses adver-
sarial learning. In addition, another important innovation of it
is the introduction of attention-aware mechanisms as shown
in figure 4. The implementation is to further process the
extracted image/text features (convolution for image fea-
tures, fully connected for text features), and the softmax is
used for rough classification, then use a threshold function
to generate a binary mask. The original feature is multi-
plied to the binary mask in elements-wise to divide into
attention-aware and inattention-aware features (correspond-
ing to image regions/text segments).

The introduction of the attention-awaremechanismsmeans
that ADAH seeks internal correlation from different modal
data itself. This is also an improvement direction that is worth
continuing to explore, especially for the current situation that

FIGURE 4. Attention-aware mechanisms.

multimedia data is becoming more and more abundant both
number and content. It has great application potential.

However, excessively using the attention-aware mecha-
nisms on the data features may ignore too much effective
information and affect the retrieval authenticity, while the
overly specific processing will reduce the generality of the
method. In the future, the use of the attention-aware mech-
anisms in deep hashing will be further explored in terms of
authenticity and generality.

IV. EVALUATION BENCHMARKS
A. DATASETS
There are many benchmark public datasets to evaulate the
performance of hashing methods for multimodal retrieval.
The common is the image-text dataset, e.g. Wikipedia [72],
MIRFLICKR-25k [73], NUS-WIDE [74], IAPR-TC12 [75],
MS COCO [76].

• Wikipedia’s data comes from articles and pictures
crawled from the Wikipedia website. The commonly
used version is 2,866 image-text pairs after sorting,
which are divided into 10 categories. The text data is
usually word segmentation from the articles.

• MIRFLICKR-25k contains 25,000 image-text pairs
grabbed from Flickr website, which is divided into
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TABLE 3. A commonly used statistics of different datasets.

24 categories. Generally, instances with no less than
20 tags will be selected for a total of 20,015.

• NUS-WIDE contains 269,648 annotated web pictures.
Each picture is associated with one or more text tags
belonging to 81 semantic concepts. Selecting the most
frequent 21 concepts can get 195,834 instances of
image-text pairs. In some methods, the selection cri-
teria are different. For example, PRDH [47] selects
10 concepts with a total of 186,577, and SSAH [48] got
190,421 instances by removing the pictures with empty
tags after word frequency statistics processing.

• IAPR-TC12 contains 20,000 image-text pairs annotated
with 255 labels.

• MS COCO contains 82,783 image-text pairs for train-
ing, 40,504 for validation, and 40,775 for testing
(2014 release). SSAH [48] selects 80,000 image-text
pairs for training and 40,000 for validation. 5,000 image-
text pairs are randomly selected from the test set, form-
ing a total of 85,000 instances of image-text pairs with
80 labels.

Generally, a small number of instances of the dataset will
be used for testing (queries), then 4-5 times the number of test
instances will be used for training, and the part except the test
part will be used for retrieval. A commonly used training/ test
numbers statistics is shown in Table 3. Because the number
of datasets is different, the same method perform differently
on different datasets.

There are many ways to extract the features of the orig-
inal data in the datasets mentioned above. For image data,
traditional hand-crafted method e.g. GIST [77], SIFT [78],
Bag-of-Visual-Words (BoVW) and deep learning methods
e.g. CNN-F [70], VGG19 [79] are commonly used. For text
data, Bag-of-Words (BoW), Word2Vec [80], Doc2Vec [81]
are commonly used.

B. PUBLISHED EXPERIMENTAL RESULTS
The time span of hashing methods introduced in this paper
is large. There are inconsistent environments and baselines in
the implementation of the early and late methods. Therefore,
some methods (mostly deep hashing methods) in the later
stage are selected to compare the experimental performance.
The mean Average Precision (mAP) is often used to evalu-
ate the performance of hashing methods. Taking image and
text query as an example, the experimental result is that the
mAP of different query cases, also include the comparison of
different hash code bit lengths.

The experimental results in Table 4-8 is derived from the
published papers. It will help to consult the retrieval perfor-
mance of some representative published methods in public
datasets and facilitate the subsequent research as evaluation
benchmarks. Since the experimental settings are not the same,
there is no reference for superiority and inferiority. Different
datasets have different performances in retrieval tasks due
to their data volume and data complexity. In addition, it is
also affected by experimental factors such as training hyper-
parameters.

Normally, the performance evaluation of a hashing method
also needs to include hyperparameter sensitivity experiments,
key module ablation experiments and training time compar-
isons. Since the focus of this article is on the improvement of
retrieval accuracy by different methods, it is not shown and
discussed here which would be left in future work.

V. DISCUSSION
A. QUALITATIVE COMPARISON
1) MODALITY EXTENSION
Hashing methods for single-modal, cross-modal and
multi-modal retrieval have their own characteristics, scope,
advantages and disadvantages. In general, single-modal
method is the basis for transition to cross-modal and
multi-modal method. From the single image or text retrieval
to the image and text pair retrieval has added more modalities
into the task, and the versatility is gradually enhanced. See
Table 9 for details. The expansion of modalities has brought
about an increase in the differentiation of feature forms,
the semantic gap has also widened, and the compatibility
requirements of public spaces involved in retrieval have
increased. This leads to an increase in the difficulty of opti-
mizing the algorithm, and it takes more hardware and time
to achieve the ideal retrieval performance. In future research,
how to balance the common and unique parts of the algorithm
to optimize the entire training process more efficiently should
be the focus of consideration.

2) SUPERVISION MODE
The data-dependent method is divided into three categories:
unsupervised, semi-supervised, and supervised according to
the use of data supervision information. Each of the three
types of methods has its scope of application, advantages,
and disadvantages. In general, unsupervised methods are
more suitable for small-scale, data-distributed retrieval tasks;
semi-supervised method could perform well in absence of
label information; supervised methods often achieve better
search performance because of the full use of label infor-
mation. Besides, the latest self-supervised (label information
directly participates in hash code generation) methods are a
hot trend in the future because of the flexible use of supervi-
sion information, and the organic participation of labels in
data feature extraction and hash learning.See Table 10 for
details. Hash retrieval is essentially a statistical task. There-
fore, whether it is the early traditional hashing method or the
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TABLE 4. mAP of different hashing methods on Wikipedia. The total number of instances is 2,866 with 2,173 for training and 693 for testing. Image data
is represented as 128-D Bag-of-Visual-Words (BoVW) vectors, and text data as 10-D topic vectors. ‘‘i → t’’ denotes the case where the query is image and
the database is text, and ‘‘t → i’’ denotes the case where the query is text and the database is image (the same below). The results are directly cited from
SePH [41].

TABLE 5. mAP of different hashing methods on MIRFlickr-25k. The total number of instances is 20,015 with 10,000 for training and 2,000 for testing.
Image data is represented as VGG19 features, and text data as 1,386-D Bag-of-Words (BoW) vectors. The results are directly cited from ADAH [49].

TABLE 6. mAP of different hashing methods on NUS-WIDE. The total number of instances is 195,834 with 10,500 for training and 2,100 for testing. Image
data is represented as VGG19 features, and text data as 1,000-D Bag-of-Words (BoW) vectors. The results are directly cited from ADAH [49].

current deep hashing method, the full use of tag informa-
tion has important significance. However, blindly pursuing
retrieval performance under supervised conditions will lead
to poor robustness of the algorithm in the face of incomplete
data composition in reality. Therefore, in future research,
we need to fully consider the performance of the algorithm
in data with different labeling degrees.

3) DEEP LEARNING
The use of deep learning methods for data feature extraction
and hash learning has a huge impact on retrieval performance.

The general trend is that the deep learning method is sig-
nificantly better than the traditional method in all respects,
because the former is data-dependent, and its improvement
in performance depends on a large increase in data scale.
However, it also brings greater hardware costs in storage
and calculation. See Table 11 for details. Under the retrieval
task of a large data scale, the deep hashing method performs
well. However, it doesn’t mean that the traditional methods
should be deprecated. In fact, the deep hashing method only
combines part of the idea of deep learning. In terms of feature
extraction, the black box processing characteristics of deep
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TABLE 7. mAP of different hashing methods on IAPR TC-12. The total number of instances is 20,000 with 10,000 for training and 2,000 for testing. Image
data is represented as VGG19 features, and text data as 2,912-D Bag-of-Words (BoW) vectors. The results are directly cited from ADAH [49].

TABLE 8. mAP of different hashing methods on MS COCO. The total number of instances is 85,000 with 10,000 for training and 5,000 for testing. Image
data is represented as VGG19 features, and text data as 2,000-D Bag-of-Words (BoW) vectors. The results are directly cited from SSAH [48].

TABLE 9. Comparison of hashing methods in different modal types (e.g. image and text query).

TABLE 10. Comparison of hashing methods in different supervision mode.

TABLE 11. Comparison of traditional hashing and deep hashing methods.

learning may lead to the omission of key information of
some raw data. The optimization process of deep learning
methods also depends on a lot of manual fine-tuning. In future

research, when improving the deep hashing method, it is
necessary to consider the refinement and effectiveness of the
feature extraction process. An automatic machine learning
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mechanism can also be introduced to participate in the opti-
mization.

B. POSSIBLE DEVELOPMENT TRENDS
The existing hashing methods had excellent performance,
but due to the continuous development of technology and
the growing demand for reality, it still highlights their short-
comings and reveals the possibility of improvement. Future
research deserves attention in the following directions:

• The combination of deep learning and hashing method
can be better than previous works, such as combining the
adversarial networks [48], [49] and other modules [54],
which is worth further exploration.

• There are huge opportunities for improvement in the
optimization process of hash learning. Some existing
methods [55], [56] can provide some reference.

• Making full use of the supervised information can
improve the retrieval performance, but since the data
supervised information in the real world is often missing
or incorrect, how to ensure a certain retrieval perfor-
mance in this case will be a hot research direction.

• In the existing methods, the scope of application is
often in images and texts query. Only a few research
works [57], [58] has focused on audio and video modal-
ities. In the future, we can consider extending generality
into a larger range of multimodal data.

VI. CONCLUSION
This paper gives a review of hashing methods for multimodal
retrieval, introduces many representative methods and com-
pares them. Some of them are early methods, but still instruc-
tive in this research field. Their potential for improvement
is worthy of attention. Some are relatively recent methods,
have outstanding performance, and lead the current research
hotspots, but at the same time, there are still many unresolved
problems.

It is noteworthy that the authors focus on clarifying the
development process, identifying problems to explore the
future direction of improvement rather than listing meth-
ods, so there is no detailed description of all the methods.
We believe this review will contribute to the development of
this research area.
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