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Abstract—Ubiquitous computing has potentials to harness the
flexibility of distributed computing systems including cloud,
edge, and internet of things devices. Mobile edge computing
(MEC) benefits time-critical applications by providing low la-
tency connections. However, most of the resource-constrained
edge devices are not computationally feasible to host deep
learning (DL) solutions. Further, these edge devices if deployed
under denser deployments result in topological dependencies
which if not taken into consideration adversely affect the MEC
performance. To bring more intelligence to the edge under
topological dependencies, compared to optimization heuristics,
this work proposes a novel collaborative distributed DL ap-
proach. The proposed approach exploits topological dependencies
of the edge using a resource-optimized graph neural network
(GNN) version with an accelerated inference. By exploiting
edge collaborative learning using stochastic gradient (SGD), the
proposed approach called CGNN-edge ensures fast convergence
and high accuracy. Collaborative learning of the deployed CGNN-
edge incurs extra communication overhead and latency. To cope,
this work proposes compressed collaborative learning based on
momentum correction called cCGNN-edge with better scalability
while preserving accuracy. Performance evaluation under IEEE
802.11ax-high-density wireless local area networks deployment
demonstrates that both the schemes outperform cloud-based
GNN inference in response time, satisfaction of latency require-
ments, and communication overhead.

Index Terms—deep learning in edge computing, deep learn-
ing in cloud computing, edge inference, edge with topological
dependencies, intelligent edge, intelligent cloud computing.

I. INTRODUCTION

CLOUD-ASSISTED service provision for delay-sensitive
applications cannot satisfy the latency constraints of

time-sensitive applications where requests are served through
the Internet backhaul. This remote cloud-assisted service pro-
visioning also experiences uncertainties in latency, which can
violate the latency requirements of delay-sensitive applica-
tions. with the advent of edge computing, delay-sensitive
applications are set to witness actual realization, e.g., au-
tonomous vehicles [1] and traffic management [2]. However, to
meet the stringent latency requirements of these applications,
the fast inference should be provided on the edge. Never-
theless, edge devices are resource-constrained with limited
processing capability and memory.
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The availability of high power computational resources,
e.g., GPUs have made deep learning-enabled solutions in
high demand in diverse fields including computer vision,
medical diagnostic, and networks. However, despite much
progress on adapting these solutions, offloading latency sensi-
tive application requests to remote clouds induces substantial
communication overhead and latency, which is beyond the
tolerance of time-critical applications.

Mobile edge computing is an emerging paradigm to circum-
vent longer delays by localizing the computation/processing
to the close proximity of end devices [3], [4], [5]. The edge
nodes, e.g., access points (APs) can serve the computation
requests of latency-critical mobile and Internet of Things (IoT)
applications. These edge nodes provide improved quality of
service (QoS) without incurring the uncontrollable internet
delay to remote cloud computing infrastructures. In MEC, the
configuration of edge hosts should be adjusted dynamically
according to the network conditions both in the short and long
run [6].

Deep learning, as one of the popular paradigms of arti-
ficial intelligence, can be integrated into a mobile edge to
cater to stringent application requirements by enabling fast
inference. [7], [8]. A deep learning model is characterized by
multiple layers, each with a varying number of neurons for
feature extraction to predict the output with high accuracy.
Due to high memory and computation requirements of these
models, cloud-based deployments with sufficient resources are
more conventional. Recent years have witnessed intelligent
distributed computing systems [9], [10], where computing
nodes dispersed in different geographic locations coopera-
tively provide ubiquitous computing optimizations driven by
machine learning. These distributed computing systems target
high availability and scalability under varying workloads. As
these distributed computing systems have not yet calibrated
deep learning-enabled inference on the edge. Therefore, these
solutions incur higher communication overhead and are not
suitable for time-critical applications.

In response to the excessive resource demand of deep
neural networks, the traditional approach is to adopt a cloud
datacenter for training. Data generated from end devices is sent
to the cloud for processing, and then results are sent back
to the end devices after inference. However, in this cloud-
centric approach, data is uploaded to the remote cloud via a
long wide-area network data transmission which can result in
high end-to-end latency which is not desirable for time-critical
applications. To alleviate the latency bottlenecks of the cloud-
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centric approach, edge computing paradigm can be exploited
to offload deep learning training and inference to the network
edge. This offloading enables low-latency inference which is
not affected due to the network transmission.

To cater the requirements of real-time applications, recently
some optimization techniques have been proposed to deploy
the trained deep learning models on resource-constrained edge
devices, e.g., fixed-point quantization [11]], networking prun-
ing [12], and hardware/software acceleration [13], [14], etc.
However, most of these deep learning schemes are applicable
to scenarios, where end devices are not always connected
to the network. In addition, recently transmission scheduling
schemes based on shared deep neural network (DNN) models
[15] have been proposed. These schemes exploit data paral-
lelism to scale-down the size of data considering the resource
constraints of edge devices. Although, DNN-based inference
on the edge provides accurate and reliable inference, however,
these applications require extensive computation resources,
which most of the edge devices cannot well support. Even
deployed on the edge, DNN-based inference requires higher
processing due to a large number of computationally-extensive
layers. Considering mission-critical applications,e.g., AR/VR
games, a natural research challenge is to further improve the
latency of edge-based DNN inference.

The proposed idea attempts data parallelism in the con-
text of deep learning like federated learning [16].However,
federated learning still relies on a central parameter server.
The proposed solution is suitable for situations without a
central server and is also robust under central parameter server
failures.

In the context of IEEE 802.11ax, dense deployment of
APs can result in inter-WLAN interactions. Under these
deployments, partially overlapping APs play a vital role in
creating spatial dependencies called topological dependencies.
Under these scenarios, a configuration of an AP can negatively
impact the performance of neighboring APs. Precisely, these
dependencies can affect the potential of a WLAN to exploit
spatial reuse, thereby limiting its average network throughput.

Conventionally, the above discussed edge-based deep learn-
ing schemes consider the computation and memory resources
of edge devices and pay no consideration to the topological
dependencies that exist between the edge devices within an
existing deployment. These dependencies have a significant
impact on the performance of the overall network, where the
configuration of an edge device affects the performance of
its neighboring edge devices. How to achieve cost-efficient
fast inference under topological dependencies is crucial to
mobile edge operators when considering dense edge device
deployments.

To address the above question, this work adopts the GNN
model on edge devices [17]. GNN derives the topology
information of each edge device from combining its past
configuration settings as well as the modeled effect on the
same from edge devices in its neighborhood. Specifically, this
paper proposes a novel distributed collaborative deep learning
solutions for fast inference called GNN-edge. On one hand,
the proposed schemes exploit the GNN approach to capture
the topological dependencies of the edge devices to optimize

configuration under dynamic and dense scenarios. On the other
hand, the proposed schemes partition the GNN to fit more
realistic edge devices with capacity constraints. The early-
branching mechanism of the proposed schemes assures fast
inference to meet the latency requirements of time-critical ap-
plications. To ensure the accuracy and reliability of the GNN-
edge, this work proposes collaborative learning on the edge
by adopting collaborative SGD and compressed collaborative
SGD. In specific, the optimal configuration of edge device
is inferred with the help of topological dependencies coupled
with the partitioning and early-branching of branchynet which
is further augmented by the collaborative learning among
edge devices to meet best the requirements of time-critical
applications.

The main contributions of this work are summarized as
follows.

• The GNN approach is used to exploit the topological
dependencies of the resource-constrained edge devices
for efficient inference. Considering resource constraints
of edge devices and application requirements, GNN is
partitioned to keep the computationally less intensive
layers on the edge with an early-branching mechanism
based on the latency requirements called GNN-edge.

• By leveraging the benefits of local data, CGNN-edge is
trained online by using collaborative learning on the edge
called as collaborative GNN-edge (CGNN-edge).

• To reduce the communication overhead incurred by the
collaborative learning by the edge devices, GNN-edge
is trained by using compressed collaborative learning
algorithm called as compressed collaborative GNN-edge
(cCGNN-edge).

• The use case of indoor IEEE 802.11ax-based dense
WLAN deployment is modeled by using GNN. In an
indoor WLAN dense deployment, topological dependen-
cies between APs are more frequent and affect the overall
network performance in terms of throughput.

• To evaluate the performance of CGNN-edge and cCGNN-
edge algorithms, simulations based on the use case of in-
door IEEE 802.11ax-based dense wireless local area net-
works (WLANs) deployments are implemented. Results
demonstrate that the CGNN-edge and cCGNN-edge out-
perform GNN-based inference on the cloud called GNN-
cloud in terms of inference speed and communication-
overhead with reasonable accuracy.

This paper is organized as follows. Section II discusses
the related work. In Section III, the use case for the IEEE
802.11ax-based WLAN under dense deployment is presented.
Section IV provides the details of the system model used
for the proposed schemes. In Section V, spatial reuse in
IEEE 802.11ax WLANs is modeled by using GNN. Section
VI presents the proposed collaborative graph neural network
approach for the edge, i.e., CGNN-edge. Section VII describes
the proposed compressed collaborative GNN-based learning
cCGNN-edge, and evaluations along with analysis are pre-
sented in Section VIII. Finally, the conclusion and future work
are given in Section IX.
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II. RELATED WORK

Compared to the conventional cloud computing, the new
era of edge computing has demonstrated significant benefits in
terms of memory cost, energy consumption, and low latency
for a broad range of big data applications.

Khelifi et al. investigated the applications of deep learning
models, e.g., convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and reinforcement learning (RL)
in edge computing. Authors in [19], presented an offload-
ing strategy to deploy deep learning models to optimize
the performance of edge computing. In some of the works
[20], [21], gradient-descent-based distributed solutions to ma-
chine learning have been investigated theoretically in terms
of training convergence and communication overhead. These
works further have been optimized to general communication-
efficient distributed frameworks, e.g., [22]. Although, these
schemes demonstrate a reduction in communication overhead.
However, none of them consider scenarios with topological
dependencies among the edge devices which affect the overall
network performance.

An offload deep learning scheduling scheme for the edge
has been proposed in [23] to optimize the network perfor-
mance. In this scheme, the deep learning tasks are deployed
both at the edge devices and edge servers. However, the
proposed scheme relies on the known service capacity and
bandwidth availability and do not consider the dynamics of
the edge layer and its effect on network performance. Recent
works on deep reinforcement learning for the MEC has been
reported in [24], [25]. These works consider the use of deep Q-
networks to optimize MEC. These solutions, however, suffer
from the drawbacks of Q-table entries which are not scalable
for high dimensional space.

According to works in [26] and [27], the deployment of
a trained deep learning model on resource-constrained edge
devices is achievable with network pruning, quantization, and
Huffman encoding. This and most of the other works rely on
pruning and quantization schemes to work on the resource-
constrained edge. To optimize the operation of the MEC,
these schemes are coupled with special hardware and software
accelerators [28], [29]. Authors in [30] proposed a CNN-
based network architecture to improve the energy efficiency of
IoT devices. The proposed architecture aims to improve deep
learning accuracy on resource-constrained edge devices while
still striving to cope with the real-time latency constraints of
surveillance applications.

An advanced deep reinforcement learning approach deep
Q-network (DQN) for computation offloading on multiple
base stations is proposed in [31]. The DQN-based offloading
algorithms learn an optimal policy to improve the long-term
network utility. More specifically, DQN-based reinforcement
learning utilizes a deep neural network instead of a Q-table.
Different compression techniques to reduce the complexity
of neural networks have been proposed in recent literature
[32], [33]. These schemes aim to meet the requirements of
resource-constrained devices. However, these schemes suffer
in accuracy.

There is some recent work on the deployment of deep neural

networks on mobile devices within a WLAN [34]. The work
proposed a distributed programming model among mobile
devices to accelerate CNN inference. The basic approach is
to exploit model parallelism by partitioning the individual
layers into slices to fit them on memory-constrained mobile
devices. Li et al. [35] introduced a framework for adaptive
mobile object recognition. It consists of an edge master server
to control and train the mobile devices based on domain-
aware adaptation model. Teerapittayanon et al. [36] presented
a distributed deep neural network approach, which partition
the deep neural network across the cloud, edge, and mobile
devices to reduce latency. Although, the proposed approach
achieves better latency, however, it provides no mechanism
to consider edge dependencies coupled with collaborative
learning.

The authors in [49] also concern offloading in MEC,
they investigate the application of machine learning-based
approaches, which perform better than traditional approaches.
Based on their investigation, the authors proposed a prelimi-
nary design of an augmented intelligence-based MEC system.
The proposed framework is expected to construct a smart
MEC decision system based on the principles of artificial
intelligence. In [50], a multi-stage stochastic programming
model for a large-scale cooperative crowd-sensing system
is proposed. The system is based on an incentive-based
mechanism for distributed resource allocation coupled with
multi-stage stochastic programming. It also offers an auction-
based migration for load-balancing. The former work proposes
a preliminary smart MEC decision system while the later
discusses the design of a game-theoretic incentive mechanism
for resource allocation with no consideration to collaborative
learning and topological dependencies.

Although there is a strong drive towards edge-based infer-
ence, however, still most of the deep learning applications,
e.g., speech recognition are cloud-assisted. In a work [37],
authors introduced a novel deep learning model which can be
deployed and executed on wearable small IoT devices to assist
tasks driven by audio recognition. Authors in [38] introduced
a framework based on deep learning and Apache spark to
perform IoT data analytics. It consists of two layers. The first
layer is the deployment of inference on mobile devices. On
the other hand, the second layer consisting of Apache Spark
is deployed on the cloud to train the neural network. This
framework reinforces the possibility of offloading some of the
processing to the edge. Liu e al. [39] proposed the first work
on deep learning-based edge intelligence. Primarily, authors
used the edge intelligence infrastructure for food recognition
applications with an aim to reduce response time and energy
consumption. This work considered mobile devices as edge
devices. However, mobile devices do not reflect the realistic
edge of the network and do not have better support for
executing full-fledged deep learning algorithms.

With the advent of edge computing, prior work has studied
the limitations of edge devices with a focus on lightweight
learning models on the edge [40]. However, compared to
the prior work which focuses more on model choices and
deployment decisions, our work considers inference on the
edge while considering topological dependencies. We propose
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local inference for more complex edge scenarios. Another
work in [41] considers splitting of deep neural network layers
among the cloud and edge to reduce energy consumption and
latency, however, the works focuses only on image processing
applications and does not address the real-interactions among
the edge devices. In another work [16], the authors proposed
a federated learning concept which exploits a group of smart-
phones to train the model in an online manner. Each device
periodically updates the locally trained model to the cloud
which computes and communicates back the updated average
weight. In contrast, our work proposes a local collaborative
training process which requires no assistance of the cloud to
update the weighted gradient average on all the edge devices.

Overall, our work differs from the above in that we investi-
gate deep learning algorithm and deployment which consider
fast inference assisted by local collaborative training in which
topological edge dependencies are exploited to improve the
overall model prediction performance, speed, and accuracy.
To our knowledge, this is the first approach which captures
the edge topological dependencies with a more realistic edge-
compatible GNN approach with faster inference assisted by
the collaborative learning.

III. IEEE 802.11 WLANS USE CASE

Fig. 1. High density WLAN deployment.

Future wireless networks require massive connectivity
which will be heavily dependent on the high-density indoor
and outdoor deployment of access points. A highly-dense
WLAN deployment scenario represents a large number of APs
deployed within a fixed region with a purpose to provide mas-
sive connectivity. Few examples of typical denser scenarios
that IEEE 802.11 ax needs to support include enterprise office
scenario, outdoor large hotspots, dense residential apartments,
and stadiums. The main objective of IEEE 802.11ax dense
deployment is enhanced user experience with at least 4 times
throughput improvement for each station. As a challenge, this
dense deployment of APs often results in partially overlapping

scenarios with coexistence issues. This requires the IEEE
802.11ax deployment to meet the following requirements:
• Efficient use of spectrum under densely deployed APs

and stations
• An improved performance in terms of average network

throughput
• An efficient interference management technique under

coexisting APs
Figure 1 shows an example of next-generation high-density
WLAN deployment where multiple WLANs coexist. In such
scenarios, partially overlapping APs can negatively impact
the performance of neighboring WLANs. If not controlled
appropriately, this can further aggravate the performance of
IEEE 802.11ax WLANs with the exposed and hidden terminal
problem, high contention, flow starvation, and other network
asymmetries.

IV. SYSTEM MODEL

A. Deep Learning-enabled Mobile Edge Architecture

In our proposed deep learning-enabled mobile edge ar-
chitecture, IEEE 802.11 ax-enabled APs are assumed to be
equipped with agents which can monitor the collected infor-
mation. These agents can modify the configurations of APs
to optimize network performance, e.g., an agent can select a
channel or change transmission power. This information can
also be used by different learning algorithms in a centralized,
decentralized, and distributed manner to predict an optimal AP
configuration. In the decentralized mode of learning, agents
exploit local information to select the configuration of a
WLAN. Agents in this mode require communication with
the AP with negligible communication latency. Decentralized
algorithms, e.g., Carrier Sense Multiple Access with Collision
Avoidance used in 802.11 WLANs under uncoordinated de-
ployments suffer in terms of throughput and scalability. On
the other hand, in distributed learning mode, agents decide a
global configuration that can be applied to a dense deployment
of APs. In this mode, agents need to rely on a collaborative
strategy to acquire additional information from the environ-
ment. This information can be used by an agent to decide its
optimal configuration [42].

In addition to the collection, 802.11 ax-enabled agents can
also exchange the collected information with the other entities,
e.g., neighboring agents or a central controller (CC) deployed
on the cloud. The deep learning-enabled edge architecture
considered this work is based on [43]. It consists of two major
layers: the edge layer and could layer as illustrated in Figure
2. The APS equipped with the agents forms the edge layer,
whereas, CC represents the cloud layer. The architecture is
summarized below:

1) Access Point: APs represent the edge of the network
for this work and their operation is controlled by the deep
learning-driven agent as discussed in the next section. APs are
integrated with the agents with the help of two modules: moni-
toring and communication. The monitoring module collects the
information of wireless operation and supplies it to the agent
through the communication module. The collected information
includes performance statistics, network, and configuration
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Fig. 2. Deep learning-enabled mobile edge architecture.

information. The communication module is also responsible
to communicate predictions made by the agents to the AP to
modify its configurations synchronously or asynchronously.

2) Agent: An agent handles the data received from the
AP and utilizes it for the training/retraining of deep learning
module deployed either locally in a distributed manner or
at the CC on the cloud. Similar to AP, it consists of a
communication module, data preparation and training mod-
ule, and a deep learning algorithm. Communication module
ensures information exchange between AP to agent, agent to
agent, and agent to CC. Our proposed distributed collaborative
learning mechanism relies on agent-to-agent communication.
On the contrary, the centralized training mechanism imple-
mented by the CC requires agent-to-CC communication with
no effect on an agent ś deep learning module. Interactions from
agent-to-agent and agent-to-CC assume an underlying IEEE
802.11k communication mechanism. Data preparation module
performs the necessary pre-processing to transform the data in
a form which can be used to train the deep learning module.
Training module updates the deep learning model based on the
data received from the data preparation module. Finally, the
trained deep learning model predicts the new configuration of
the AP and communicates it to AP through the communication
module.

3) Central Controller (CC): The CC deployed on the cloud
controls and coordinates all the agents synchronously and
asynchronously. Similar to an agent, it consists of communi-
cation, data preparation, training, and deep learning modules.
The communication module is responsible to exchange infor-
mation with the agents. Agents collect and report the informa-
tion to the CC, whereas, CC communicates the predicted con-
figuration of the deep learning module to the agents. Any pre-
processing on the collected data/available data is performed
by the data preparation module. The CC can train/retrain
the deep learning model based on the pre-processed data. It
schedules retraining based on the surge reported by the agents.
As sufficient computation resources are available on the CC,
it is possible to deploy more powerful deep learning modules
at the CC for accurate predictions.

B. Distributed learning

Similar to Komondor [43], the agents in the edge layer
collaborate to predict the configuration of WLANs by ex-
changing information and implementing the DL model in a
distributed manner. Additional information collected by the
agents is used for collaborative learning as discussed later.
Distributed learning among agents is illustrated in Figure 3
where agents can exchange their configuration information.

Fig. 3. Agent-agent communication in the distributed learning model.

C. Graph Neural Network Model

Our work adopts Graph Neural Network (GNN)-based
[17] approach to model the topological dependencies of the
edge layer from Figure 2. These dependencies impact the
performance of APs in terms of efficient spectrum utilization,
fairness, and throughput. Given an indoor high-density WLAN
deployment as shown in 1, the use of GNN is motivated by
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the fact that a denser WLAN deployment results in inter-
AP dependencies concerning the channel, transmit power and
carrier sensing power.

Similar to [17], GNN is assumed with two feed-forward
neural networks (FNN) with different types of layers, e.g.,
convolution and pooling. The deep learning module deployed
on both the agent and CC is based on GNN. Given a trained
GNN, an agent can predict the configuration based on its
historical features as well as the features of neighbouring
agents. CC is assumed to be provided with the topological
dependencies in a WLAN deployment through agents. An AP
utilizes the first FNN of GNN to compute its next state sn
based on the features of its neighbouring AP denoted as n∗

, whereas, the second FNN predicts the new configuration
based on the new state and its historical features. This can
be explained with the help of Equation 1 and Equation 2 as
given below.

sn =
∑
m∈n

hw(fn, fm, sm),∀n (1)

On(t) = gw(sn, fn),∀n (2)

In the Equation 1 , fm and sm denote the features and states
of neighbour m. hw is a parametric function and represents
the dependence of state of each node on the states of its
neighbors. gw represents a node ś dependence on its next state
and features. In GNN, a graph is processed by using both the
hw and gw units corresponding to each node. The diffusion
process of these units tends to converge exponentially fast with
stable node states and predicted output.

V. GRAPH NEURAL NETWORK MODEL FOR THE SPATIAL
REUSE

Given a coexisting WLANs scenario, the spatial reuse aims
to improve spectral efficiency. Although, several spatial reuse
mechanisms are possible, however, this work focuses on the
prediction of sensitivity and transmission power configurations
in a distributed and collaborative manner.

The transmission and sensing power fluctuations, channels,
and sensitivity threshold at one AP can adversely affect the
performance of neighboring APs, thereby reflecting critical
topological dependencies. These topological dependencies can
be best modeled with GNN for faster and accurate con-
figuration predictions which can significantly improve the
spectral efficiency. Throughout the rest of the paper, the inter-
dependencies among APs as inter-dependencies among agents
means the same.

GNN-based spatial reuse for the high-density WLANs is
primarily based on the use of Equation 1 and Equation2. An
example of inter-dependencies among agents is depicted in
Figure 4. The components involved in GNN-based configura-
tion prediction are illustrated in Figure 5 and are discussed
below.

A. WLAN-AP Features
The WLAN-AP features are the observations or monitored

information from the neighboring APs or Agents. All WLAN-
AP features including the agent itself and its neighboring agent

are provided as an input to the state function in Equation 1.
However, the output function as given in Equation 2 requires
only the features of the agent on which it is deployed. In the
context of WLAN, these features include channel information,
transmission and sensitivity power, throughput, fairness, and
bit error rate (BER), etc.

B. WLAN-AP States

This work assumes that the APs are stateful, where at any
instant of time an agent has a state. The state sn of each agent
can be derived by the parametric function hw which is based
on an agent ś own features and the features of its neighboring
agents. It can be inferred therefore that the state of an agent
reflects the topological dependencies of the WLAN.

Figure 4 shows the inter-dependencies of agents under a
deployment of 5 WLANs. The figure depicts that, for example,
the state of agent1 depends on the states of four directly
connected agents, and their corresponding features, i.e., f2,
f3, f4, f5. Based on Equation 1, state of agent3, denoted as
s3 in the Figure 4 can be given as Equation 3.

s3 = hw(f3, f2, s2) + hw(f3, f1, s1) (3)

Fig. 4. States & Features from an Agent ś neighbourhood.

C. Output Function

The predicted configuration of an agent depends on the next
state computed by the hw and its own features. The output
function for the example of 4 is given in Equation 4, where
gw function is an FNN which can be trained by an appropriate
gradient calculation. For our proposed work, this gradient is
computed in a distributed and collaborative manner. The gw
function of each agent predicts the transmission and sensitivity
power to be used for the next round.

O3(t) = gw(s3, f3) (4)
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VI. COLLABORATIVE GRAPH NEURAL NETWORK
APPROACH FOR THE EDGE (CGNN-EDGE)

A. Overview

Topological dependencies in denser WLAN deployments
are one of the striking factors which can affect the performance
of WLAN in terms of throughput, fairness, and spectrum
efficiency. This section proposes a collaborative enhancement
to GNN called as CGNN-edge to predict the configurations of
an AP locally and dynamically. Since neighboring APs in an
indoor WLAN deployment likely coexist, an overlapped AP
is expected to influence the performance of its neighboring
APs. This dependency of AP on their neighborhood makes
the GNN model an interesting fit to predict configurations
in a denser indoor WLAN deployment. GNN deployment
and local processing on APs can climb up high incurring
higher latency which is not acceptable to mission-critical
applications, e.g., virtual reality/augmented reality games and
smart factories. To address these issues, on one hand, CGNN-
edge partitions the GNN and deploys the computationally
less intensive layers on the APs. On the other hand, it also
accelerates the GNN interference by branching early based
on application requirements and constraints. CGNN-edge de-
ployment considers only deep learning agents involved in the
edge without any coordination to a central parameter server.
Specifically, this work proposes a collaborative deep learning
mechanism to train the accelerated GNN model on the edge.
The frequent communication among the agents to synchronize
gradients incurs extra network communication overhead. To
overcome, this work also considers compressed gradient-based
optimization to CGNN-edge called as cCGNN-edge which
synchronizes only important gradient coordinates.

The next configuration predicted by the CGNN-edge or
cCGNN-edge is presented in Algorithm 1, which in turn uses
the Algorithm 2 to extract the GNN layers based on the
branchynet model [18]. Collaborative training of CGNN-edge
is given in Algorithm 3, whereas a compressed collaborative
training version for the CGNN-edge is illustrated in Algorithm
4.

B. Description

CGNN-edge-enabled configuration prediction is primarily
defined by the Equation 1 and Equation 2 and is illustrated in
Algorithm 1. It is further optimized adaptively by the GNN
partition to meet the constraints of edge devices as given
in Algorithm 2. To accelerate the CGNN-edge inference, the
Algorithm 2 branch at an earlier GNN layer. This significantly
reduces the computation latency to better address the require-
ments of time-critical applications including autonomous cars
and smart factories etc.

The algorithm 1 takes as an input the AP profile which
can be used to partition the GNN by the Algorithm 2. Within
Algorithm 2, line 1 observes and collects the features of a
WLAN deployment, i.e., features of an AP and its neigh-
borhood. These features include channel, transmission power
(Tx), and sensitivity levels (S). It can be observed from line
2 of the Algorithm that GNN is partitioned coupled with the
early branch points according to the AP profile. To achieve

this, Algorithm 2 is called with the AP profile which returns
the optimal number of GNN layers to proceed. As can be
seen within Algorithm 1, lines 6-7 computes the next state
of the AP based on the hw function. This is an iterative
process to compute the state of each AP involving as many
as hw functions for AP as its neighboring APs in the WLAN
deployment. Within Algorithm 1, lines 10-11 determine the
output state for the configuration prediction based on the states
as computed in the lines 5-8.

Fig. 5. GNN-based prediction of configuration for a single AP/Agent.

The algorithm 2 mitigates the performance bottleneck of
CGNN-edge execution. As the CGNN-edge layers exhibit dif-
ferent runtime, therefore, lines 3-6 of the Algorithm 2 partition
the GNN into two parts, i.e., EAP and SP. EAP represents
computationally less intensive layers which can be deployed
on the edge. On the other hand, computationally intensive
layers SP are offloaded to a computationally sufficient server.
To calibrate the low-latency inference on the edge, Algorithm 2
only focuses on computationally less intensive layers deployed
on the edge as illustrated in lines 8-11. The CGNN-edge is
further optimized for fast inference by exploiting the benefits
of branching, where a trained CGNN-edge can branch earlier
based on the latency constraints of an application. Algorithm 2
uses the BranchyNet [18] model to train the CGNN-edge with
multiple branches as presented in lines 1-6 of the Algorithm 2.
Algorithm 2 utilizes the off-line training to profile the APs and
regression models for each CGNN-edge layer, i.e., R(LGNN )
to predict the performance of each CGNN-edge layer, which
is followed by the Branchynet-enabled training with multiple
branches to accelerate the inference.

As illustrated in the lines 7-20 of the Algorithm 2 that based
on the application requirements, the CGNN-edge is optimized
online using early branching. This optimized CGNN-edge
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model is deployed and executed on the access points. We
use the same regression models as given in [eddgent] to
predict EAPi, i.e., the runtime of the jth layer on the AP.
These regression models for each layer are trained offline and
therefore can be used directly for the performance prediction
of each layer, thereby accelerating the CGNN-edge inference
on the edge. An early branching of CGNN-edge, although
accelerates the inference, however, it brings along the accuracy
constraints.

To train the CGNN-edge, the proposed collaborative learn-
ing mechanism is presented in the Algorithm 3. The proposed
collaborative learning mechanism is based on consensus-
based distributed SGD (CDSGD)[fixedtopo]. However, unlike
CDSGD, the proposed learning mechanism utilizes local data
to train the CGNN-edge collaboratively among neighboring
APs. It couples the data parallelism with the local data along
with the neighborhood information to update the CGNN-edge.

In Algorithm 3, initially, a mini-batch of data is distributed
among the agents thus exhibiting data parallelism. However,
to make sure that the CGNN-edge learning takes into account
the network dynamics, each agent keeps track of its local data
by using the monitoring module as discussed in the Section IV
and illustrated in line 2 of the Algorithm 3. The collected data
is appended with the mini-batch to make an agents’ respective
training dataset. Further, as our work focuses more on topo-
logical dependencies, therefore, the proposed collaborative
learning algorithm assumes that the agents can communicate
with each other as explained in the distributed learning in
Section IV.

The Algorithm 3 is provided with the Dq , where q =
1 . . . N . It denotes the mini-batch of the training data with uq
samples corresponding to the q agent. Within the Algorithm
3, lines 5-7 are based on the concept of SGD and consensus,
where the N(q) denotes the neighborhood of q agent. The α
represents the step size and gx(wp

q ) is the stochastic gradient
for the local training data set wq at epoch pth. Specifically,
the gx(wp

q ) depends on the size of the local training data set
wq . Further details of the CDSGD versions based on Polyak
momentum and Nesterov momentum can be referred from the
[44], [45].

VII. COMPRESSED COLLABORATIVE LEARNING FOR THE
CGNN-EDGE (CCGNN-EDGE)

The collaborative training of the CGNN-edge suggests that
the training gradients are sparse where most weights are close
to 0. This is mainly attributed to the small training samples
available on the APs. These gradients can be represented
as multi-dimensional vectors where individual elements of
gradients are called gradient coordinates. The frequent ex-
change of these small gradient coordinates can result in high
communication overhead among APs. The sparsity of these
gradients suggests that only a small fraction of these gradient
coordinates need to exchanged among neighboring APs after
update of each local data set. Simply dropping small value
gradient coordinates can affect the training accuracy of the
CGNN-edge. Unlike these gradient drop approaches, this work
adopts the communication-efficient gradient update approach

Algorithm 1: AP configuration based on CGNN-edge
Data: APprofile, k = 0
Result: Predicted output configuration using C

1 Collect features for all APs and their neighbourhood
2 CGNN-edge ⇐ Algorithm2(APprofile)
3 . Extract CGNN-edge
4 M ⇐ Layers (G(N,E) . Get layers of CGNN-edge
5 while k < M do
6 compute next state s(k + 1) using

sn(k + 1) =
∑

m∈n hw(fn, fm, sm(k)),∀n
7 k ⇐ k + 1
8 end
9 . Predict configuration

10 Ok = gw(sn(k), fn), ∀n
11 C ⇐ Ok

12 return C

Algorithm 2: Graph neural network for the edge
Data: Exit points E in branchy model, N Number of

layers in each exit point E, regression models
for each layer R(LGNN )

Result: CGNN-edge
1 while E 6= 1 do
2 i⇐ E
3 for j = 1 . . . Ni do
4 EAPj ⇐ RAP (LGNNj

)
5 SPj ⇐ RS(LGNNj

)
6 end
7 profile(GNNi,p) =

argmin
p=1...Ni

(
∑p−1

j=1 EAPj +
∑Ni

y=p SPj)

8 if profile(GNNi,p)) = APprofile then
9 CGNN-edge ⇐ GNNi,p

10 return CGNN-edge
11 end
12 end

Algorithm 3: Collaborative training of CGNN-edge
Data: m, α, N ,wq

0, qx = 1, 2, . . . N
1 . batch of local data on an agent q

Result: Collaborative training of CGNNedge

2 Each AP/agent x keeps track of batch of its local
trainable data

3 W ⇐ 0
4 for Each Agent x do
5 for p = 0→ m do
6 zp+1

q ⇐
∑

l∈N(q) πqlw
l
p

wp+1
q ⇐ zp+1

q − αgx(wp+1
q )

7 end
8 end
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as given [46]. The eSGD approach targets communication-
efficient gradient updates between the edge and the cloud.
However, unlike eSGD, the proposed training approach ex-
change and synchronize gradient updates among agents with
topological dependencies to achieve communication-efficient
collaborative online training.

Instead of dropping all the least significant gradient coordi-
nates, similar to [46], the Algorithm 4 selects a set of critical
gradient coordinates which should be exchanged. These criti-
cal gradient coordinates contribute effectively to collaborative
learning to converge faster without any significant loss of
accuracy. To determine the critical gradients which need to be
synchronized, each gradient coordinate is assigned a weight
which is a positive value. Each time a gradient coordinate
contributes to the collaborative leaving of CGNN-edge, its
weight is updated with a positive value. A gradient coordinate
with a larger weight is considered as the critical gradient to
be synchronized and exchanged next time.

Within the Algorithm 4, in lines 3-4, each agent/AP updates
the weights of gradient coordinates and loss at time t. It
also updates threshold cCGNNthr according to the current
gradient average as illustrated on line 5 to exchange the
accumulated gradients as explained later. Similar to other SGD
methods, the Algorithm 4 strives to minimize the loss function
C for the at any instant of time as given on line 7-9. If the loss
at time t is less than t− 1, it records the gradient coordinate
index denoted as gedgei,t and updates its weight represented as
F x
i,t. On the other hand for a higher loss function, line 11

of Algorithm 4 executes random weight selection to assign
weights to gradient coordinates. The random weight selection
procedure ensures that in the next round, gradient coordinates
with large weight will be more likely selected to be exchanged
by the agents. Algorithm 4 strives to keep loss function at t
less than t− 1 to converge to an optimal loss function.

To ensure less harm to accuracy and convergence, line 13
of Algorithm 4 also considers the small gradient coordinate
values. It accumulates these residual values and applies mo-
mentum correction on it similar to deep compression [47]. To
avoid the delayed outdated residual values, the sum function
on line 13 considers a discount factor β which update the small
but biased gradient coordinate values as given in Equation 5.

gsumi,t = βgsumi,t−1 + (1− β)gi,t (5)

Line 13 within the Algorithm 4 illustrates that as the gsumi,t

exceeds the predefined threshold, i.e., cCGNNthr, agents/APs
synchronize them with their neighbouring agents/APs as given
in Line 20. Line 15 of the Algorithm shows that the next gradi-
ent coordinate to be exchanged gedgei,t is replaced with the gsumi,t

after discarding the least significant weighted coordinates.
Upon receiving the gradient coordinates from the neighbors,

the agent as given in Lines 21-13 of the Algorithm 4 updates
its gradient coordinate gtx according to the average gradient
coordinates of its neighbors to train the CGNN-edge called
now as compressed CGNN-edge (cCGNN-edge).

VIII. SYSTEM EVALUATION

This section evaluates the proposed CGNN-edge and
cCGNN-edge within an indoor WLAN dense deployment

Algorithm 4: Compressed collaborative GNN learning
(cCGNN-edge) on AP x

Data: m, α, N ,F , qx = 1, 2, . . . N)
1 . batch of local data on an agent q

Result: Collaborative training of
CGNN − edge

2 F x
0 ⇐ 0

3 Each AP/agent x updates gradient coordinate weights
at time t

4 Ct ⇐ Ct−1 − gedgex

5 cCGNNthr ⇐
∑

I
gi,t−1

I
6 if (t > 1) then
7 if (loss(Ct−1) > loss(Ct)) then
8 gedgei,t ⇐ gedgei,t−1
9 F x

i,t ⇐ F x
i,t−1

10 else
11 gedget ⇐ rand(weighted(gedget−1 , F

x
i,t)),∀i

12 end
13 gsumt ⇐ momemtumcorrection(Sum(gsumt−1 ))
14 while (gsumt > cCGNNthr) do
15 gedgei,t ⇐ droplsig(gsumt )

16 end
17 else
18 gedgex ⇐ rand(gsumt )
19 end
20 send gedgex to Nx

21 if (Received(gedgex )) then
22 gedgex,t ⇐ average(gedget , N) . Update gx,t

according to average gradient of neighbours
23 end

based on komondor [43]. The evaluations demonstrate various
advantages of the proposed techniques in terms of better
throughput, lower configuration time, and low communication
latency. In this section, the evaluations of proposed schemes
focus on spatial reuse, i.e., to control the sensitivity and
transmit power to reduce interference. However, the proposed
schemes can be applied for the dynamic channel assignment,
channel bonding, Multi-AP communication, Multiple input
multiple output (MIMO), multi-user (MU) MIMO coordina-
tion, and enhanced handoff management.

The basic steps are illustrated below:

• indoor WLAN deployment
• simple replication algorithm for the distribution of mini-

batch data on APs
• collaborative training among APs to update the GNN-

edge based on local data, i.e., CGNN
• compressed collaborative training among APs to update

GNN-edge based on local data, i.e., cCGNN

A. WLAN Indoor Deployment

The evaluations consider a WLAN deployment of 16 sym-
metric APs, i.e., all APs have equal opportunity to compete
for the channel access. The CGNN-edge and cCGNN-edge
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deployment seek to maximize the throughput with the help of
joint carrier sensitivity threshold and transmit power control.

B. Evaluation Dataset

The procedure to collect the datasets is based on distributed
learning of agents as discussed in Section IV-B. The 10
simulation experiments with 10,000 learning iterations are
considered to collect the relevant data. In each iteration, a
monitoring phase is used by an agent to monitor coexisting
APs and report it back to a connected station. The number of
coexistent APs vary between 2 to 16 in each iteration deployed
in a 10× 5× 10m scenario.

C. Training

1) Training of GNN on the Cloud: The offline dataset is
divided into two separate datasets. The first part is used as the
initial part of the training dataset, while the second part is used
to test the CGNN-edge during the training process. The testing
part is used to validate the CGNN-edge and it determines
the end of the CGNN-edge training and the beginning of the
optimization process.

2) Training of CGNN and cCGNN: The agent can make
a transition from the monitoring phase to the train phase to
train the CGNN or cCGNN once the collection is complete.
An agent can switch to a collection state at the next scheduled
collection time. To distribute the initial training data across
different APs for the warm-up training, we use a simple
algorithm which takes the number of APs and assigns each
AP a batch size of 50 from the test sets.

The training procedure on the edge considers online dataset
as part of the training data set. After every optimization round,
the collected dataset entry is appended to the local dataset
of an AP. Accordingly, the CGNN and cCGNN are trained
with an incremental training dataset in an online manner by
using the proposed collaborative learning procedures as given
in Algorithm 3 and Algorithm 4. This assures an adaptive
behavior of the cCGNN and CGNN under dynamic WLAN
deployments.

The branchynet AlexNet [18] is trained over the collected
dataset. It has 5 early exit points, each with 12, 16, 19,20, and
22 layers. The per-layer latency is determined based on the
input size, output size, features set, and model size.

D. Results

Figure 6 shows the change in accuracy for both the GNN-
cloud and CGNN-edge as the number of APs are changed
from 2 to 8 in steps of 2. Although, an addition of APs
slows down the convergence rate, however, CGNN-edge can
demonstrate similar accuracy for all network sizes. GNN-cloud
can achieve better accuracy due to the availability of large
data sets, however, CGNN-edge tries to achieve comparable
accuracy. It can be established from this observation that the
overall accuracy change will become negligible as more APs
are added in the network.

Figure 7 evaluates the prediction accuracy of the trained
CGNN-edge under different network sizes. It can be noted

that varying the number of epochs has resulted in an accuracy
improvement. The addition of APs has noticeable accuracy im-
provement with an increase in the number of epochs contrary
to the first scenario.

Figure 8 shows the accuracy for CGNN-edge under different
batch sizes. The CGNN performs better for large network
size under growing batch size. A small batch size has a
lower impact on a small network. However, this difference
is prominent between small and large networks as the batch
size grows. The larger the batch size an agent has, the less
frequent gradient updates are required, thereby increasing the
accuracy as evident.

The comparison of the AP configuration time with the
CGNN-edge and GNN-cloud with an increase in the number
of APs is illustrated in Figure 9. It is observed that the GNN-
cloud has poor scalability. In practice, an increase in the
number APs causes network delay between the APs and cloud
resulting in a longer wait for configuration time. The CGNN-
edge improves scalability better, compared with the GNN-
cloud. This is mainly attributed to the accessible multiple edge
nodes, low network delay, and higher inference speed.

Figure 10 evaluates the effect of batch size on the accuracy
CGNN and cCGNN with a network size of 5 APs. It can
be noted that an increase in batch size does not contribute
to the accuracy of both the models. However, CGNN tends
to demonstrate better accuracy, compared to the cCGNN.
This is attributed to its frequent and accurate collaborative
gradient updates, compared to the cCGNN with delayed and
compressed updates.

Figure 11 shows average throughout for all the three
schemes for different APs. The figure shows that all three
schemes provide fair throughput. However, CGNN-edge
demonstrates much more stable throughput compared to GNN-
cloud. Due to local early and collaborative inference, both
the CGNN-edge and cCGNN-edge results in less variance in
throughput.

Figure 12 shows the communication overhead incurred by
all three schemes as a function of network latency. This
overhead includes the communication time taken by each
scheme for the configuration. It includes either the commu-
nication time between APs for collaborative training both
for the cGNN-edge and CGNN-edge or communication time
between AP and cloud. It is observed that the cCGNN-edge
has lowest communication time compared with the GNN-cloud
and CGNN-edge. Local inference on the edge reduces the
communication overhead significantly. However, this commu-
nication overhead becomes less significant with an increase in
network latency as demonstrated in real-world scenarios with
unstable network latency.

Loss convergence of cCGNN-edge is evaluated with drop
ratios of 0 and 50. As illustrated in Figure 13, the cCGNN-
edge approaches fast convergence where full gradient coor-
dinates are exchanged, i.e., CGNN-edge. However, as shown
in Figure 13, with only 50% gradient coordinates exchanges,
convergence rate degrades significantly.

Figure 14 illustrates the satisfaction of APs for GNN-
cloud, CGNN-edge, and cCGNN-edge with different latency
requirements. The figure shows the dissatisfied latency re-
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quirements with negative accuracy. All the three schemes are
unable to satisfy the AP requests with latency requirements
of 100ms. However, both the CGNN-edge and cCGNN-edge
satisfy all the requests exceeding latency requirements 200ms
with reasonable accuracy. Due to the fast inference supported
by the early exit and local inference, the proposed schemes
can meet stringent latency requirements. However, GNN-cloud
satisfies configuration requests with 500ms or higher latency
requirements with better accuracy compared to CGNN-edge
and cCGNN-edge.

Since the GNN-cloud uses all the GNN layers for inference,
it results in better accuracy with higher latency, however, incur-
ring higher communication overhead between edge hosts/APs
and cloud. Therefore, GNN-cloud demonstrates better accu-
racy than CGNN-edge and cCGNN-edge under higher latency
requirements.

Fig. 6. CGNN-edge accuracy for APs.

Fig. 7. CGNN-edge accuracy for epochs.

Figure 15 compares the learning time of the GNN-cloud
with the CGNN-edge and cCGNN-edge. GNN-cloud runs
on the CC. It utilizes centralized SGD for learning. As it
is centralized it takes fewer epochs to achieve the desired
accuracy. However, it requires frequent disk access to the
training set which increases the overall learning time. CGNN-
edge and cCGNN-edge running on 8 APs require a higher
number of epochs to achieve the desired accuracy, however,

Fig. 8. CGNN-edge accuracy for batch size.

Fig. 9. CGNN-edge configuration time.

distributed learning reduces the learning time significantly as
demonstrated in Figure 15. Properties including robustness and
distributed learning make both the CGNN-edge and cCGNN-
edge a suitable choice for edge inference.

Figure 16 compares the accuracy of CGNN-edge with and
without collaborative learning. It can be observed from the
Figure that the accuracy of CGNN-edge drops when APs stop
exchanging gradient updates. In this case, APs rely on the local
updates based on the SGD and do not take into consideration
the configuration effects experienced by the neighboring APs.

Figure 17 compares the communication pattern of cCGNN-
edge with CGNN-edge based on CC. Figure plots the average
number of messages exchanged among nodes and the total
number of messages received by the CC for 200 epochs. It
can be observed that communication is balanced in cCGNN-
edge based on CDSGD. On the other hand, CC receives a
higher number of messages to update the SGD. It is apparent
that the reliance on CC can limit the edge system scalability
and performance.

With no doubt, CGNN-edge and cCGNN-edge must trade
something over its offered advantages. Specifically, the edge
nodes execute tasks to locally update training datasets, the
computation load of APs is inevitably heavier on the account
of local training process. This can result in higher energy cost
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Fig. 10. CGNN-edge and cCGNN-edge accuracy for batch sizes.

Fig. 11. Average throughput of cCGNN-edge, CGNN-edge, and GNN-cloud.

on edge devices, and these are open questions to address.

IX. CONCLUSION AND FUTURE WORK

Topological dependencies and latency sensitivity are on-
going critical challenges faced by the denser mobile edge
deployments. In this research, the proposed distributed col-
laborative deep learning approaches called CGNN-edge and
cCGNN-edge optimize spectrum utilization and throughput
with low latency inference thus meeting the requirements
of time-critical applications. In both the approaches, lighter
GNN model coupled with an early branching mechanism sig-
nificantly accelerates the execution/prediction. The proposed
collaborative learning mechanism based on SGD improves the
accuracy and convergence of the CGNN-edge by exchang-
ing stochastic gradients efficiently among edge devices, i.e.,
agents/APs. Further, the compressed collaborative learning
mechanism adopted from the momentum correction reduces
the frequency of gradient exchanges among agents, thereby
reducing the communication overhead while still achieving
comparable accuracy to the collaborative learning mecha-
nism. The experimental results reveal that both the CGNN-
edge and cCGNN-edge provides higher throughput, shorter
response time, and better spectrum utilization under indoor
dense WLAN deployments in comparison to cloud-based
GNN prediction.

Fig. 12. CGNN-edge and cCGNN-edge communication overhead.

Fig. 13. cCGNN-edge convergence.

Our future work envisions to yield more interpretable model
to extract edge dependencies based on self-attention [48].
Specifically, the future work will target drawing out global
dependencies between input, output, and topology.
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