
Machine Vision and Applications (2020) 31:53
https://doi.org/10.1007/s00138-020-01101-5

ORIG INAL PAPER

Deep learning applications in pulmonary medical imaging: recent
updates and insights on COVID-19

Hanan Farhat1 · George E. Sakr1 · Rima Kilany1

Received: 18 February 2020 / Revised: 21 June 2020 / Accepted: 7 July 2020 / Published online: 28 July 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Shortly after deep learning algorithms were applied to Image Analysis, and more importantly to medical imaging, their
applications increased significantly to become a trend. Likewise, deep learning applications (DL) on pulmonary medical
images emerged to achieve remarkable advances leading to promising clinical trials. Yet, coronavirus can be the real trigger
to open the route for fast integration of DL in hospitals and medical centers. This paper reviews the development of deep
learning applications in medical image analysis targeting pulmonary imaging and giving insights of contributions to COVID-
19. It covers more than 160 contributions and surveys in this field, all issued between February 2017 andMay 2020 inclusively,
highlighting various deep learning tasks such as classification, segmentation, and detection, as well as different pulmonary
pathologies like airway diseases, lung cancer, COVID-19 and other infections. It summarizes and discusses the current
state-of-the-art approaches in this research domain, highlighting the challenges, especially with COVID-19 pandemic current
situation.
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1 Introduction

In 1995, Lo et al. [1] were the first to apply Convolutional
Neural Networks to medical imaging, and just after, their
applications widely became a research interest especially
due to advances in GPU and availability of new large pub-
licly available datasets and algorithms. An important survey
by Litjens et al. [2] was published in 2017, summarizing
approaches of deep learning in the medical imaging field.
Specifically, deep learning applied to Lung images were the
subject of 34 papers, where 35%of these targeted lung cancer
diseased patients, and 63% used CT image modality to con-
form their tasks. This number of contributions to lungswas in
the middle level between contributions to pathology, which
were emerging highly, and contributions to bones and retinas
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which was had the fewest contributions. This directed us to
a possible emerging of deep learning applications to Lungs
very soon, especially that lung cancer was the highest cancer
type leading to death in 2018 as 2million caseswere recorded
according to WHO [3]. After a short time, and specifically
in December 31st of 2019, a novel coronavirus (COVID-19)
was eventually identified [3], and research directions even-
tually deviated toward this pandemic. Lung imaging became
a faster key to the solution, and deep learning became the
prosperous research field to invest in.

Since then, many surveys targeted pulmonary diseases
detection/diagnosis, deep learning-based applications onpul-
monary targets, or applications on certain pulmonary image
modalities. This survey covers deep learning in pulmonary
medical imaging including most approaches on all deep
learning tasks and medical image modalities. It summarizes
around 160 contributions in deep learning on lung medical
image analysis, analyzing the research directions prior to and
after February 1, 2017, including response toCOVID-19pan-
demic.

Before 2017, and referring to the same survey [2], CT
scans came third in usage of all deep learning contributions to
organsmedical imaging (19.3%) afterMicroscopy (21%) and
MRI (27%). Thus, dominance of CT applications over CXRs

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-020-01101-5&domain=pdf
http://orcid.org/0000-0002-0781-1151


53 Page 2 of 42 H. Farhat et al.

was obvious in pulmonary medical imaging, but applications
of deep learning-based approacheswas promising eitherway.
The analysis of this paper aims to include medical imaging
directions and favors due to their importance in determining
the deep learning algorithms results.

Selection of paperswas done at three steps: once inmiddle
of 2019 and an update in December 2019. Search was based
on the terms “deep learning”, “medical imaging”, “chest
radiographs”, “chest CT”, “pulmonary nodules”, and “con-
volutional neural networks”. It was performed on Google
Scholar, PubMed, ArXiv and among most of the proceed-
ings of MICCAI and IPMI conferences. Unrelated papers
were excluded, such as ones targeting medical imaging of
other organs, or ones targeting pulmonary diseases but not
deep learning based. Chosen papers were also used to add
relevant references. The first search resulted with 89 stud-
ies after excluding irrelevant papers. In December, 36 papers
were added. After then, another heavy update was done in
May 2020 due to theCOVID-19 pandemic, adding 37 papers.
This third search was done through Google Scholar web-
site, using combinations of “COVID-19”, “deep learning”,
“medical imaging”, “CT”, and “X-rays”. It resulted with
around 1984 search results, minimized to 140 upon first scan,
then to 37 after second scan to include papers targeting only
deep learning applications tomedical imaging forCOVID-19
diagnosis and excluding pre-prints.

The collected papers show how deep learning techniques
are used to perform specific tasks on many type of diseases
using different image modalities. Targeted diseases approxi-
mate percentages were as follows: 61% for lung cancer, 20%
for image anatomy and quality, around 27% for infections,
airway diseases and general thoracic diseases altogether. The
rest targeted pulmonary embolism (PE), pneumothorax, pul-
monary edema and interstitial lung diseases (ILD). At the
level of image modality, around 46% of the contributions
use chest computed tomography (CT), 38.5% use X-rays,
and around 14% use both image modalities while 1.6% go
for PET andMRI usage. Finally, from a task perspective and
referring toLitjens et al. [2], previously, 41.2%of papers han-
dled detection, 35.5%handled classification, and 6%handled
image retrieval. Image enhancement, feature extraction, and
segmentation are eachhandled by2.9%of the 34papers listed
in his paper, while 8.8% target other tasks. Therefore, detec-
tion and classification were competitively researched in the
domain of deep learning tasks applied on chest, with scope
expansion to enhance the input features, segmented organs
and patches, and scans as a whole. However, at the level
of tasks performed by deep learning in the later 3years, the
ranking came approximately as follows: classification came
first (33%) sharply followed by detection (31%), segmen-
tation (23%), image enhancement (7%), feature extraction
(4.7%) and finally registration (1.6%).When emphasizing on
COVID-19, approximately classification and detection had

similar shares (42% of contributions for each) with segmen-
tation having the rest. The percentage is expected to vary as
soon as the many contributions that are still in process of
publications get published.

The coronavirus epidemic can be considered the trigger
to move the maths of deep learning fast into the clinics of
medical doctors. Even thoughnot yet implemented, it became
the concern of researchers around the world, and the subject
of their new experiments. Commercial applications took the
chance to market their products, and artificial intelligence
became the hand to support in any future pandemics. On
medical imaging analysis level, it was the right time to put
the present architectures and possible future improvements
in the service of humans health sector. A lot of challenges
still exist, starting from legal and ethical concerns, reaching
the radiologists trust-gaining journey. And technically, big
multi-centered datasets that are well annotated are needed
along with technological resources to train the algorithms
and come upwith the best AI-COVID-19 assistant, that could
possibly be the any-virus-assistant in the soon future.

The rest of this survey is organized as follows:

• Section 2: gives an overview of medical image modal-
ities, deep learning and surveys on deep learning in
medical imaging, in addition to available datasets for pul-
monary medical images.

• Section 3: summarizes surveys on deep learning-based
applications and approaches on pulmonary medical
images.

• Section 4: defines COVID-19, describes related medical
imaging concerns, summarizes reviews on deep learn-
ing applied to COVID-19 medical imaging analysis, and
finally listing anddescribing contributions to this domain.

• Section 5: discusses the challenges in this explicated
research domain and points out to its future directions.

2 Background overview

This section gives an overview of different medical image
modalities. In addition, it highlights deep learning and pro-
vides surveys on its application in medical imaging. Finally,
it provides available datasets for pulmonary medical images.

2.1 Medical imagemodalities

Medical imaging term refers to techniques used to reveal the
internal organs or tissues of the body in order to diagnose
or detect diseases presence and evolution. Many modalities
of digital medical images exist, such as CT, magnetic reso-
nance imaging (MRI), X-Ray, ultrasound (US), and positron
emission tomography scans (PET). Some modalities are
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organ-specific like retinal photography, and others examine
multiple organs such as CT and MRI [4].

Goel et al. [5] defined common medical imaging modal-
ities and compared some with respect to availability, cost,
radiation effect, data acquisition, speed and resolution. X-
rays are 2D images produced by electromagnetic waves
penetrating the body and absorbed non-uniformly by tissues
and bones. Similarly, CT scans or CAT scans, use electro-
magnetic waves to create detailed cross-sectional images,
resulting in multiple two-dimensional images that can be
used to create 3D representation of the target organ. CT scans
are of better resolution than X-Rays, but are more expensive.
In addition to electromagnetic waves, MRI uses radio waves
to produce three-dimensional images that are of better resolu-
tion and has no ionizing effect in contrary to X-Rays and CT
scans. However, they are last at the level of availability, while
X-Ray, US and CT are widely available. US imaging, also
named sonography, uses high-frequency sound waves that
have no ionizing effect, with affordable fees. Another imag-
ing modality is PET scans that is commonly used beside CT
scans and requires injection of the patient with radiopharma-
ceuticals that define this imaging modality as nuclear.

Medical image modalities differ also in their best-use
cases. PET is important for tissues and organs functionality
monitoring and diagnosis [5], while for lung nodule detec-
tions, CT scans are the most sensitive modality [6] as they
compete by their rapid acquisition, availability and cost effec-
tiveness. On the other hand, Candemir and Antani [7] states
that chest radiographs (aka CXRs) as the most conventional
imaging modality for diagnosis of pulmonary disorders and
cardio-thoracic. Candemir and Antani [7] add that X-rays
are efficient for tuberculosis (TB) too, are widely available,
emit radiations less than other modalities and are affordable
for under-resourced regions of the world where infectious
diseases spread quickly.

The next part provides surveys on applications of deep
learning in medical images analysis in general.

2.2 Surveys on deep learning inmedical images
analysis

Deep learning (DL) is a genre of machine learning (ML)
and is mainly an extension of previous artificial neural net-
work (ANN) forms. DL is based on computational models
that learn features from raw data at many levels of concise-
ness [8], bypassing manual feature extraction [9], imitating
the human neurons structure and resulting with a model of
high computational complexity [10]. In comparison with tra-
ditional ML techniques, Sahiner et al. [11] state two reasons
behind the standing out of DL: the depth of the model and
its composition

Deep learning targets a wide variety of tasks including
classification, regression, clustering, image reconstruction,

artifact reduction, lesion detection, segmentation and oth-
ers [10,11]. In order to perform these tasks, many deep
learning paradigms were developed: convolutional neural
networks (CNN), recurrent neural networks (RNN), rein-
forcement learning, general adversarial networks (GAN),
auto-encoders(AE), and many others [12]. These paradigms
are categorized into three: supervised learning that usu-
ally seeks a specified neural network output, unsupervised
learning that involves inferring unlabeled datasets [12],
and reinforcement learning which is a trade-off between
exploitation and exploration [13], Which is based on the
action-reward principle where the algorithm tries different
actions and based on the rewards; it adjusts itself.

The most popular and commonly used deep learning
paradigm is the convolutional neural network (CNN). The
CNN is built up from several layers that function differently
but complementary. The building blocks layers are: convolu-
tional, activation, pooling, dropout regularization, and batch
normalization layers [9]. A simple demonstration of CNN
architecture is in Fig. 1. The total number of layers impli-
cates the large number of design decisions such as the kernel
size, the activation layer type, regularization level and type,
loss function type, etc. [11].

Deep learning application areas have been expanding,
reaching agriculture [14], mobile and wireless networking
[15], Internet of Things [16], bio-informatics [17], health
management systems [18] and many fields. Nevertheless,
deep learning in medical imaging became widespread in
2012, and work on it developed quickly after then [19].

The availability, reliability and affordability of computer-
assisted diagnosis for early cancer diagnosis can lessen the
inequalities between populations at the level of mortality
and save more lives according to Liu et al. [20]. And this
definitely can be generalized to involve all fatal diseases.
The most outstanding deep learning architecture for imag-
ing is the convolutional neural network (CNN) [11] (Fig. 1),
and, many models were developed later on based on it such
as AlexNet [21], VGG [22], GANs [19], GoogLeNet [23],
ResNet and others [9].

Many studies surveyed and reviewed deep learning on
medical imaging from different perspectives. Contributions
to this field can be chronologically summarized as done next.

The most popular paper in 2016 is that of Shin et al.
[24]1 which exploited the deep convolutional neural net-
works for computer-aided detection at three levels; firstly
different CNN architectures were compared, and secondly
the impact of datasets characteristics was evaluated to finally
verify when and where transfer learning is useful. Transfer
learning is a deep learning technique that allows the use of
networks on a dataset having been trained on another one.
Thoraco-abdominal lymph node (LN) detection and ILD

1 Cited 1672 times at the time of writing.
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Fig. 1 Visualization of convolutional neural network architecture

classification were targeted in its experiments to conclude
that 8-layered and 22-layered deep CNN architectures are
useful when the training data is limited. However, optimal
solutions for computer-aided detection problems should take
into consideration the trade-off between using better learning
models and using more training data. For instance, develop-
ing well annotated datasets is as necessary as developing
new learning algorithms. A substitute for newer datasets is
transfer learning from available natural-images datasets or
exploring the handcrafted features complementary proper-
ties.

In the same year, Wang [25] published his perspective on
deep learning which he started by emphasizing on medical
imaging and explaining why using deep learning for image
reconstruction is as evident for image analysis, expressing
his enthusiasm that work on deep imaging will accelerate the
reinvention of the future of health care and is not a bypassing
wave of research.

A task-specific survey on deep learning done by Miranda
et al. [26] reviews classifications techniques ofmedical image
analysis, including but not restricted to convolutional neural
networks, which aim to achieve high accuracy and identify
which parts of the body are infected. In addition, the sur-
vey covered image modalities used, datasets and trade-offs
for each technique, and the improvements allowing accuracy
and sensitivity enhancement. The challenges were listed as
follows: the continuous increase in diversity and number of
images, mathematical formulations, and computing power.
The survey ended up by an expectation of employing image
classification techniques in computer-aided diagnosis.

Reaching out to 2017, the interest in this domain notably
increased. A survey on segmentation techniques for medical
image processing by Merjulah and Chandra [27] summa-
rized the efficient methods, compared them and concluded
that CNNs achieved the highest accuracy outperforming non-
deep techniques. In addition, the survey noted that CNNs
have the potential to perform detection and segmentation
while applying classification, yet its success is dependent
on the given problem and the suitable corresponding archi-
tecture.

In the same year, Erickson et al. [28] gave a valuable
introduction about machine learning for medical imaging

and its types but emphasized on supervised learning. Their
paper included important definitions for used terminology,
explained the stages of Machine Learning process, defined
supervised machine learning types especially CNNs, listed
open-source tools and libraries, and commented on them.
The drawn-out conclusion is the necessity of understanding
the learning process to avoid misusing it, and the benefits
of CNNs over traditional ML methods are the no-need to
compute features manually.

Shen et al. [29] published a paper in which they intro-
duced the fundamentals of deep learning methodologies and
evaluated their performance in many application areas such
as computer-aided diagnosis and prognosis, tissue segmen-
tation and others. The authors summarized the challenges
defeating approaches by the need to use smaller patches as
input, augment training data for better learning process, and
use different forms of transfer learning. In addition, they
concluded that PET data could be estimated given MRI
data. Current research directions were discussed agreeing
that deep learning advances are due to the development of
GPU, available datasets and algorithms. As recommenda-
tions, it remains a challenge to interpret the learned model,
and the development of algorithms should take into consider-
ation the need to generalize over different imaging protocols,
along with the need for architectures dependent on domain-
specific information.

Ker et al. [4]’s survey was first released in December
2017 and updated in February 2018. It covered all previ-
ous work referencing most important books and reviews in
deep learning for medical analysis and 200 most cited papers
in the last 3years. According to their survey and agreeing
with Shen et al. [29], the majority of published algorithms
employ CNN and the advances in this domain are due to
GPU advances and the availability of larger datasets. How-
ever, they addressed twomore challenges in training data: the
case of data imbalance and the need to estimate how much
labeled data is needed. Concerning the future expectations,
this survey added the use of radio images to predict under-
lying molecular origins of tissues, combining content-based
image retrieval to computer-aided diagnosis, generating bet-
ter quality ofMRI images, and classify lung cancer sub-types.
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Among all, the most popular survey in 2017 is that of
Litjens et al. [2]. It reviewed the major deep learning con-
cepts suitable for medical image analysis and summarized
more than 300 contributions to this domain. It surveyed the
deep learning tasks (Segmentation, Classification, Detection,
Registration, etc.) and application areas (Retinal, Breast, Car-
diac, abdominal, etc.), ending with a critical discussion of
the open challenges and future research directions. A drawn
conclusion is that the most preferred trained CNNs are the
end-to-end ones, on which transfer learning has high impact.
Yet, the exact architecture, according to the survey, is not
enough for a good solution. The model hyper-parameters
have no rules to choose them accordingly; the input sizes
should be relevant to the problem context (not to over-fit);
the acquisition of relevant annotations for images should be
noiseless and as fast as possible, and the features should be
balanced not to accidentally exclude the clinical ones.

In 2018, many surveys were done in this field. Lunder-
vold and Lundervold [9] aimed to introduce deep learning,
describe its application on MRI processing and analysis,
and provide a start-up bench for future contributors listing
state-of-the-art open-source codes, datasets, educational ref-
erences and possible problems. Challenges are categorized
into: “Data,” “Interpret-ability, trust and safety,” and “Work-
flow integration and regularization.” The authors agreed in
their survey that the most used networks are standard deep
neural networks and characterized them as “data-hungry”
networks.

In the same year, Meyer et al. [30] emphasized on
radiotherapy complex treatment facilitated by artificial intel-
ligence. It presented the common network architectures
emphasizing on CNNs and shed the light on published
work in their specified field, classified into seven categories
relevant to the workflow of patients. The authors hoped
their work will inspire researchers to work on radiotherapy-
specific applications. According to them, despite the advan-
tages of deep neural networks, they remained empirical
whether choosing the general architecture or deciding on
the hyper-parameters of models. Even tricks that improve
the performance lacked justifying theories. In addition, the
authors assured that the need for building well-annotated
datasets being as pivotal as new algorithms development.
Finally, they concluded that this is just the start for radiother-
apy and expected that work on it will rapidly evolve.

Moving forward to the beginning of 2019, research has
expanded on medical image analysis using deep learning
and that was clearly proved by the count of papers and
surveys published this year. Latif et al. [31] published a
review on medical imaging using machine learning and
deep learning algorithms. They provided an outline for
researchers including existing medical imaging techniques
with their advantages and drawbacks. They also discussed
multi-dimensional medical data and methods for analyzing

distinctive diseases. In conclusion, disease patterns are bet-
ter classified and categorized by deep learning algorithms
permitting to extend their goals and predicting their perfor-
mance when used for patients’ treatment. Finally, researches
are considering challenges and still flourishing continuously
in health and other application fields.

Wang et al. [32] surveyed deep learning for image super-
resolution. They targeted anomaly detection in different
areas, aiming to review firstly: research deep-learning-based
methods for anomaly detection, and secondly their applica-
tions in various domains along with corresponding assess-
ments. The authors’ categorized methods, drew an outline
including variants and assumptions related to anomalous
behavior differentiation for each method, listed their advan-
tages and limitations, and discussed the real computational
complexities when applied. Last but not least, the survey
ended by a detailed discussion on each level of network
design, learning strategies, evaluation metrics, unsupervised
super-resolution and future directions for real-world sce-
narios (Dealing with images degradation, domain-specific
applications, and multi-scale super-resolution).

Again in 2019, Altaf et al. [33] described the deep learn-
ing effect onmedical-image-analysis as a paradigm shift. The
reviewed literature is organized according to human anatomy
surveying the recent developments in the targeted topic. The
lack of well-annotated large-scale datasets is stated as the
core challenge. However, this survey points out to the impor-
tance of collaborations between experts in medical imaging
and experts in computer vision fields in order to significantly
improve the application of machine learning and computer
vision tasks in medical image analysis and health care.

An overview on algorithms and concepts that would
enhance deep learning performance was given by Thaler and
Menkovski [34]. The paper motivated the use of machine
learning and pointed out to some shortcomes of it. It
described, as well, the major building blocks of deep learn-
ing methods and the way to use them in solving problems.
However, the main content of the paper is applications of
deep learning technologies on health care problems of which
the authors provide a background knowledge for. Different
data modalities (not only images) are defined and struc-
tured within the paper, declaring the remarkable success of
deep learning in many tasks and application areas even with
the large number of challenges present, starting from the
uninterpretable inner process reaching bias-free, large-scale,
available and relevant training data choice.

Another survey is by Haskins et al. [12] targeting a spe-
cific medical image analysis task that is image registration. It
outlines the evolution of deep learning and its limitations in
this context. Besides, it states the future research directions
as follows: deep adversarial image registration, reinforce-
ment learning-based registration, and raw imaging domain
registration.
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A survey of semi-supervised, multi-instance, and transfer
learning in medical image analysis by Cheplygina et al. [35]
traces back the origin of deep neural networks and introduces
applications for different tasks and diseases summarizing the
development of frameworks and various algorithmmodels on
datasets.

As surveys and reviews on deep learning inmedical image
analysis are continuously released and updated, it is worth
noting that research directions are continuing on organ/target
specific levels. Lung was targeted in only 11.3% of studies
issuedbeforeFebruary2017 [2]; however, the number of pub-
lications on deep learning-based applications targeting lung
have increased notably as around 57% of the total papers
mentioned in this paper were published in 2019. Similarly,
around 48% of the publications targeted lung cancer con-
forming with the fact that lung cancer recorded the highest
percentage of new cases in 2018 [36].

With no doubt, the CNN architecture was a great advance
for medical image analysis. Until 2017, many proimising
architectures proved their efficiency, starting with AlexNet
in 2012 [21] reaching Inception-**V4 in 2017 [?], passing
along with VGG [22], GoogLeNet [23], DenseNet [?] and
ResNet [?]. By then, transfer learning has been studied exten-
sively and it became worth noting that using natural images
as training datasets was found to be useful even for medical
image analysis. Moreover, surveys and approaches became
more target-specific in means of organs, image modalities,
or deep learning task (details in Sect. 3). And as deep net-
works became the promising future, the training data was a
challenging barrier as public data is not enough in quantity
and needs to be accompanied by extensive precise work of
radiologists. However, some challenges like LUNA16 [37]
and CheXpert [38] improved the chances for better trained
models, but other sources of large datasets declared that their
labeling of their data is not fully accurate such as [39], which
recommends investing in the labeling process as well as the
deep learning application. Hence, arouses the need for unsu-
pervised approaches [35]. However, the publicly available
datasets that were used by the aforementioned applications
are presented next.

2.3 Datasets for pulmonarymedical images

There are a plenty ofmedical images databases, that are either
available publicly or upon conditional request. For example,
The cancer imaging archive (TCIA) [40] consists of many
collections that target cancer in different organs for varying
imaging modalities. In addition, neuro-imaging datasets of
the brain are available at The Open Access Series of Imag-
ing Studies (OASIS) [41]. Besides, there exists datasets that
target Alzheimer [42], retinas [43], knee MRIs [44], and
sometimes many organs at once [45].

Emphasizing on pulmonary medical imaging, Qin et
al. [46] manifests the top available CXR datasets that
researchers rely on: the Indiana dataset [47], the KIT dataset
[48], theMCdataset [49], the JSRTdataset [50,51], the Shen-
zhen dataset [49], and ChestXray14 dataset [39]. Zhang et
al. [6] states that most significant and well-known databases
for pulmonary nodules in CT are:

• Automatic Nodule Detection 2009 (ANODE09) [52]
• Lung Image Database Consortium and Image Database
Resource Initiative (LIDCIDRI) [53]

• Lung Nodule Analysis 2016 (LUNA16) [37]

In addition, the following public datasets provide lung CT
images:

• Deep Lesion [54] [55]
• COPDGene [56]

while CXRs are available through:

• CheXpert [38]
• MIMIC-CXR 2

Some public datasets used by contributions discussed in
Sect. 3.2 are defined in Table 1.

3 Deep learning and pulmonary medical
imaging analysis

This section presents an overview of the literature of deep
learning applications to the specific topic of medical imaging
analysis. The first part of this section presents an overview of
the surveys on deep learning applications to pulmonary med-
ical image analysis,while the second part presents papers that
prove the improvement brought by deep learning to medi-
cal image analysis. Papers are contributions of researchers
to deep learning applications on pulmonary medical image
analysis. They are clustered according to deep learning tasks:
registration, image enhancement, detection, feature extrac-
tion, and classification. Contributions to each of them is
categorized according to target organ, object, lesion, or dis-
ease.

3.1 Surveys on deep learning applications to
pulmonarymedical imaging analysis

Machine learning targets different chest parts and objectives.
Examples on contributions areas are rib detection and sup-
pression, fissure extraction, airway segmentation, and nodule

2 To request credentials for access: [57].
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Table 1 Public datasets used by contributions to deep learning applications in pulmonary medical imaging analysis; ImO: image modality, CXR:
chest X-ray, CT: computed tomography

Public dataset ImO Description

LIDC [53] CT Lung image database consortium image collection (LIDC-IDRI);
consists of 1018 cases of diagnostic and lung cancer screening
thoracic CT scans with marked-up annotated lesions

DIR-Lab [58] CT Consists of 10 breath-hold CT image pairs that are randomly selected
from the COPDgene

NLST [59] CT The National Lung Screening Trial; consists of 75000 CT exams
images and aimed to determine whether screening for lung cancer
with low-dose helical CT reduces mortality from lung cancer in
high-risk individuals relative to screening with chest radiography

COPDGene [56] CT Chronic Obstructive Pulmonary Disease Gene; consists of 400 CT
scans and aims to test why some smokers develop COPD while
others do not

Computed Tomography Emphysema Database [60] CT Comprises 115 high-resolution CT (HRCT) slices as well as 168
square patches manually annotated in a subset of the slices targeting
emphysema

Deep Lesion [54,55] CT Contains over 32,000 annotated lesions identified on CT images,
which represent 4,400 unique patient

ANODE09 [61] CT Consists of 55 CT scans for evaluation of nodule detection algorithms

ChestXray14 [39] CXR Consists of 112120 frontal view radiographs targeting 14 thoracic
diseases

JSRT [50] CXR Japanese Society of Radiological Technology; consists of 247 PA
chest radiographs with/without lung nodules

Shenzhen and Montgomery [49] CXR Shenzhen; contains 662 frontal CXRs with/without manifestations of
TB including pediatric X-rays (AP). Montogomrg; contains 138
frontal CXRs with/without manifestations of TB

RIH-CXR [62] CXR Rhode Island Hospital chest radiographs consists of 17,202 frontal
view chest radiographs labeled as normal or abnormal

LOCT and chest X-rays [63] CXR Labeled Opticial Coherenece Tomography and CXRs dataset; consists
of thousands of validated OCT and CXRs images that are split into
training and testing sets. OCT Images are labeled as
(disease)–(randomized patient ID)–(image number by this patient)
and split into four directories: CNV, DME, DRUSEN, and NORMAL

MIMIC-CXR [64] CXR Consists of 371,920 CXRs associated with 227,943 imaging studies
labeled with 14 diseases

CheXpert [38] CXR Contains 224,316 chest radiographs of 65,240 patients, with 14
observations in radiology reports

TCIA [65] Multiple The Cancer Imaging Archive; is a service that provides “Collections”
of medical images of cancer for public download. The collections are
organized according to patients related by a common disease (e.g.
lung cancer), image modality (MRI, CT, etc) or research focus

detection, characterization and classification [66]. Similarly,
deep learning methods arouse for plenty of them.

According to [8], applications in chest imaging using
Radio-graphs are mainly lung nodule detection, TB diagno-
sis, andmultiple abnormal pattern (MAP) detection (patterns
such as pneumonia, pleural effusions, etc). In addition, using
chest CT, deep learning can be applied on nodule detec-
tion/screening, ILD, chronic obstructive pulmonary disease
(COPD), and image normalization.

This claim complies with the fact that disregarding the
rarely used image modalities for pulmonary diagnosis such

as US [67] and PET, the emphasis is on CT scans and CXRs
in around 130 papers on deep learning application to chest,
published since 2017.

Several surveys and reviews handled the deep learning
challenge, but the interpretation of what is happening in the
inner processing stages stayed vague. Nevertheless, since
2017, contributions to medical targeting or only pointing to
chest diagnosis were general, task-specific, image-modality-
specific, target-specific, treatment-method-specific, or any
combination of the aforementioned specificities.
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Table 2 Surveys and reviews mentioning or targeting pulmonary diagnosis, G: general, TaS: task specific, IMS: image modality specific, TgS:
target specific, TtS: treatment specific, y: checked

Title Year Citations G TaS IMS TgS TtS

A survey on deep learning in medical image analysis 2017 2631 Y

Deep learning in medical 2017 870 Y

Machine learning for medical imaging 2017 244 Y

Deep learning applications in medical image analysis 2017 185 Y

Promises and challenges for the implementation of computational
medical imaging (radiomics) in oncology

2017 121 Y

Fifty years of computer analysis in chest imaging: rule-based, machine
learning, deep learning

2017 58 Y

Abnormality detection and localization in chest X-rays using deep
convolutional neural networks

2017 41 Y Y Y

Segmentation technique for medical image processing: a survey 2017 6 Y

Computer-aided detection systems to improve lung cancer early
diagnosis: state-of-the-art and challenges

2017 5 Y Y

An overview of deep learning in medical imaging focusing on MRI 2018 73 Y

Survey on deep learning for radiotherapy 2018 58 Y

Computer-aided detection in chest radiography based on artificial
intelligence: a survey

2018 35 Y

Automatic nodule detection for lung cancer in CT images: a review 2018 9 Y Y Y

Comparing deep learning models for population screening using chest
radiography

2018 9 Y

Deep learning in medical imaging and radiation therapy 2019 72 Y

Artificial intelligence in cancer imaging: clinical challenges and
applications

2019 66 Y

Deep learning in medical image registration: a survey 2019 16 Y

Going deep in medical image analysis: concepts, methods, challenges
and future directions

2019 7 Y

Automatic pulmonary nodule detection applying deep learning or
machine learning algorithms to the LIDC-IDRI database: a
systematic review

2019 5 Y Y

A review on lung boundary detection in chest X-rays 2019 4 Y Y Y

Using deep learning techniques in medical imaging: a systematic
review of applications on CT and PET

2019 0 Y

Evolving the pulmonary nodules diagnosis from classical approaches
to deep learning aided decision support: three decades development
course and future prospect

2019 0 Y

A comprehensive review on multi-organs tumor detection based on
machine learning

2020 1 Y Y

Image segmentation using deep learning: a survey 2020 0 Y

Out of 24 surveys and reviews in Table 2, 10 were empha-
sizing on chest images and/or problems. Eight studies were
published in 2019: [7,11,12,20,33,68–70]. Yet, it is expected
that more studies will be issued in the next year and thus
exceed the earlier rates.

In 2018, targets were chest radiography [71,72], MRI [9],
radiotherapy [30], and pulmonary cancerous nodules [6].
A year earlier, lung cancer early diagnosis [73], mediasti-
nal lymph node metastasis of non-small cell lung cancer
(NSCLC) classification [74] and chest imaging in general
[66] were targeted.

The rest of contributions targeted either medical images
in general including chest imaging, or a deep learning task
that involves application on different organs including chest
such as registration, or a disease that infects lungs and others
like cancer.

Wang et al. [74] compared one deep learning method
(used AlexNet CNN architecture) and four classical machine
learning methods for classifying mediastinal lymph node
metastasis of NSCLC. Image patches from two modalities
were used: PET and CT all at once, which may have limited
the performance of CNN. The study favored diagnostic fea-
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tures over texture features in working with lymph nodes due
to their small size. The CNN’s performance did not signifi-
cantly vary from best methods, without even using important
diagnostic features, directing research toward incorporat-
ing diagnostic features into a newly designed dual-modality
PET/CT images.

Van Ginneken [66] summarized 50years of computer
analysis in chest Imaging. It handles rib detection and sup-
pression in chest radiographs. And in CTs, it handles fissure
extraction, airway segmentation, nodule detection, classi-
fication and characterization. The authors concluded that
convnets perform as feature extractors and classifiers at once.
They can be used for producing filtered images, and their
generalization can introduce them into many applications
rapidly. In addition, deep learning continuously allows the
integration of text and image analysis to improve the perfor-
mance.

Even though Kim et al. [75] compared deep and shal-
low learning methods for classifying the regional pattern of
diffuse lung diseases, some limitations existed, such as the
popular training-data-size dilemma. The accuracy of deep
learning exceeded that of shallow in all inter-scanner varia-
tions, attempting to consider the whole lung quantification.
Yet, it did not address the misclassification caused by air-
ways, lung boundaries and vessels. Volumetric CT scans
were recommended to be used in the deep learning process.

Qin et al. [71] surveyed computer-aided AI-based detec-
tion in chest radiography. They referenced important datasets
and image pre-processing techniques and reviewed spe-
cific disease detection like pulmonary nodules and TB, in
addition to multiple disease detection. Out of many, deep
learning methods proved to be the most accurate in classifi-
cation. Moreover, they can predict many suspected disease
types’ presence simultaneously, with limitations caused by
the imbalance or insufficiency of datasets. Features’ extrac-
tion is also time-consuming, which implied the need to
research using other domain datasets to optimize the initial
hyper-parameters decisions.Besides,multiple-disease detec-
tionwas recommended to be given attention, as it is clinically
vital to realize their co-presence.

Traverso et al. [73] reviewed the computer-aided detec-
tion systems that improve the early diagnosis of lung cancer.
Based on their results, the best computer-aided system
involves the use of CNN for false positive reduction and
candidate detection. Even though the combination of deep
learning and other methods appeared to perform better, the
sensitivity saturated already starting from 2 false-positives
per scan.

Sivaramakrishnan et al. [72] compareddeep learningmod-
els for population screening using frontal chest radiography.
The results demonstrated that pre-trained CNNs are promis-
ing for feature extraction in medical images, especially for
TB. Moreover, it emphasized the need for large datasets

to enhance the performance and increase the accuracy. The
comparison between pre-trained and customized deep learn-
ingmodels favored pre-trained ones, as favored features from
shallow layers over those from deep layers of the pre-trained
CNNs.

Zhang et al. [6] reviewed automatic nodule detection for
lung cancer in CT scans. They mentioned the techniques bet-
ter used for lung nodule detection, yet pointed general and
specific challenges for this task, as nodules vary in type,
size, texture, location and their respective clinical records.
The review detailed data acquisition, pre-processing, lung
segmentation, nodule detection and false-positive reduction.
High sensitiveness was achieved by several works, however,
at high false-positive rates. The use of LIDC-IDRI dataset
was frequent among the papers reviewed, and the tradi-
tional methods results were satisfying, but AI-basedmethods
(such as deep learning) have shown better performance and
set the expectations higher. The major advantage of CNN,
according to them, was declared to be its ability to learn
from different sources of data, and determining by itself the
unknown features required for the learning process. CNNs
underperformed SVM classifiers, but were still promising to
breakthrough. The future challenges mentioned were many,
such as the need to consider the different types, sizes, loca-
tions, and textures of pulmonary nodules. Besides, building a
set of features to reduce the false-positives’ rates was pointed
as a challenge. The authors agreed with others that the need
for large public annotated datasets is vital for training the
models, and the cooperation between academic institutions
and medical organizations will help optimize the efforts to
achieve better results.

Labaki andHan [76] questioned if deep learningwillmake
chest imaging smarter. They noted the impact of implement-
ing approaches on larger scale. In addition, it was impossible
to examine all slices of each CT scan; thus, images com-
posed of four cuts were used instead. Larger number of scans
improvedperformance of themodel, and thus,more is needed
for training, taking into consideration the effect of varying
imaging protocols. Furthermore, clinical outcomes accom-
pany potential imaging features such as airway disease. That
is why engaging clinical data into the predictive process was
recommended, as well as prioritizing the compatibility of
models with standard workflows.

Benzaquen et al. [77] discussed lung Cancer Screening
(LCS) and suggested three methods to improve it. First,
selection criteria should be refined (risk factor assessment).
Second, computer-aided diagnosis should be used to interpret
chest CTs. And finally, biological blood signatures should
be used for early diagnosis of cancer. The second method is
our concern, where concisely deep learning was applied for
imaging interpretation, but the involvement of three meth-
ods is recommended to optimize the performance, especially
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that CNNs are still black-box-like where their inner world is
unrevealed yet.

Liu et al. [20] summarizes three decades of pulmonary
nodules’ diagnosis and concludes with a future prospect. It
starts with very early approaches from 1980s and ends with
deep learning various methods like two-/three-dimensional,
multi-view, multi-scale, multi-stream, multi-tasking deep
convolutional neural networks, deep belief networks (DBN),
auto-encoder (AE)networks, and ensemblemethods.Accord-
ing to the paper, tremendous challenges still exist even though
the improvements infield of pulmonary nodules diagnosis are
noticeable. The challenges were identified on data scarcity,
diagnostic accuracy and training efficacy, which are multi-
faceted barriers that need more than a single solution.

Pehrson et al. [70] also reviewed pulmonary nodule detec-
tion. However, they target deep learning exactly rather than
computer-aided methods in general. Specifically, they focus
on papers using lung image database consortium image
collection (LIDC-IDRI) for training and testing models con-
cerned of detecting lung nodules in thoracic CT scans.
The majority of feature-based algorithms included in the
review achieved more than 90% accuracy, while deep learn-
ing methods achieved accuracies in the range 82.2–97.6%.
The authors concluded that even high accuracies do not
prove the preference of machine learning method applied
over others, especially that different hyper-parameters and
heterogeneous selected scans are usually used. A limitation
is also the lack of labeled training data, but LIDC-IDRI is
considered as a step forward, which spots the light on sig-
nificance of the images’ relevant annotations’ acquisition
rather than their availability. Feature-based ML algorithms
perform better than DL; yet, the importance of DL algo-
rithms is amplified when features are not identified as they
are able to identify features themselves. Advances in GPUs
initially created for massive gaming have created an oppor-
tunity to benefit from the computing capabilities in a more
sincere manner: DL experimenting. Many algorithms intro-
duced pre-processing techniques, like transfer learning and
defining bounding boxes prior to prediction. Finally, some
contributions were picked by the authors to rely on for future
work.

Gooen et al. [78] compared deep learning approaches
in pneumothorax detection and localization using CXRs.
Three methods are compared: CNN, FCN and MIL. CNN
has achieved best performance in terms of area under
curve (AUC) while fully convolutional networks(FCN) and
multiple-instance learning(MIL) outperformed it in terms
of localization confidence. Authors recommend elaborating
more techniques, possibly combining the three approaches
by either merging their architectures or cascading them.

Candemir and Antani [7] handle the lung boundary detec-
tion approaches using CXRs issued between 2006 and 2017,
using both frontal X-rays and lateral ones. They high-

light radio-graphic measures that were extracted from lung
boundaries, and their uses in cardiopulmonary abnormality
detection, concluding the challenges facing researches. The
review references publicly available CXRs datasets and clas-
sifies deep learning-based methods as best-performing over
other methods, even if time-consuming and computationally
costly. Moreover, the authors realize the fact that all research
on this topic target adults while pediatric CXRs are usually
more noisy and challenging but disregarded. Thus, datasets
and studies should be developed and performed on pediatrics.

As a conclusion, reviews and surveys have agreed on the
promising future of deep learningmethods, especiallyCNNs,
as well as on the tremendous challenges striking them. The
next part details approaches since 2017 and classifies them
according to their tasks: Registration, Image Enhancement,
Segmentation, Detection, Feature Extraction, and Classifica-
tion highlighting pulmonary diseases.

3.2 Contributions to deep learning applications in
pulmonarymedical imaging analysis

The machine learning methodology of analyzing a medi-
cal image involves many tasks, that most of them may be
applied using deep learning. Yet, researchers do not mind
imposing non-deep-learning methods into the analysis pro-
cess to improve the performance of deep learning proposed
approaches. Referring to the work of Latif et al. [31], the
ML workflow starts by feeding the medical image into the
algorithm, segmenting, extracting features, selecting features
and discarding noises, classifying, and finally detecting the
targets and deciding on the diagnosis. According to the same
reference, deep learning algorithms can categorize, classify
and enumerate patterns of diseases from images upon pro-
cessing. This allows raising the expectations of predictions
based on the image processing output. Figure 2 visualizes two
deep learning tasks applications on chest: Bone suppression
and segmentation, in addition to two targeted chest diseases:
pneumonia and TB.

Target pulmonary applications are mainly divided into
many parts: general thoracic diseases, lung cancer, ILD,
infections, pulmonary edema, PE, airways diseases, and
pneumothorax.

General thoracic diseases include tasks that target multi-
ple pathologies, image quality, lungs anatomy, and diseases
occurrences.

Lung cancer here refers to tumors and nodules. Lung nod-
ules are frequently detected on chest imaging performed to
screen for lung cancer or metastasis from other malignancies
or to evaluate respiratory symptoms. The risk of lung cancer
in these nodules depends on its size, morphology, evolution
over time and patient risk factors.

Diffuse parenchymal lung diseases are characterized by
bilateral and multilobar involvement of the lungs. They are
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Fig. 2 Visualization of some deep learning tasks applications on chest
and some target chest diseases. Bone suppression as application of
image enhancement [79]: a standard chest radiograph, b soft tissue
image. Example on pneumonia [80]: c sample chest image. Example on
TB [81]: d posteroanterior chest radiograph showing upper lobe opaci-
ties with pathologic analysis–proven active TB. Segmentation [82]: e–h
lung nodules segmented using U-Net

frequently caused by ILD and occasionally by infections or
systemic diseases.

Infections covered are two types: TB and pneumonia.
Chest radiology is frequently ordered to diagnose pneumo-
nia which is an infection of the lung parenchyma that can be
caused by bacteria, viruses or fungal infection, while TB is
an infection by mycobacterium TB that is endemic in certain
populations and have characteristic findings on chest radiol-
ogy.

Pulmonary edema refers to the accumulation of fluid in
the lungs and is frequently caused by heart failure (cardio-
genic), other causes include inflammation (non-cardiogenic).
Pulmonary edema has features on CXR and CT scan of bilat-
eral alveolar filling in addition to vascular engorgement and
pleural effusions.

PE is a disease whereby a clot or thrombus occlude one
or multiple branches in the pulmonary arteries. It is usually
detected by CT scan with contrast administration to detect a
filling defect in the pulmonary vasculature.

Airway anatomy and segmentation is important to localize
lesions in the lung and guide procedures such as bron-
choscopy and lung biopsy. In addition, the airways are
affected by multiple diseases including asthma, COPD,
bronchiectasis and cystic fibrosis.

Finally, pneumothorax is an accumulation of air between
the visceral and parietal pleura covering the lungs, diagnosed
by CXR or CT scan. Recently, US is used for diagnosis.

Definitions of tasks and approaches to each with corre-
sponding target disease are detailed in the next parts.

Table 3 Contributions to registration in pulmonary medical imaging
analysis

Authors Year Citations Modality

de Vos et al. [83] 2019 55 CXR

Hering et al. [84] 2019 0 CT

3.2.1 Registration

Images registration transforms different image datasets into
one system that has matched imaging content [12]. Pre-
viously, it was manually done because it requires clinical
expertise. However, deep learning has changed the landscape
of image registration research.

An approach to apply deep learning onmedical image reg-
istration was proposed by de Vos et al. [83] where stacked
layers of trained ConvNets are used to exploit the image
similarity analogous to conventional intensity-based image
registration and thus allow the architecture to predict the reg-
istration of unseen images. The approach was comparable to
conventional image registration methods but faster by sev-
eral orders of magnitude. Another registration contribution
is by Hering et al. [84] which proposed a using the whole
image rather than patches, depending mainly on two blocks:
a convolutional neural network in addition to the loss func-
tion (U-net architecture), and the embedding into amultilevel
approach from coarse to fine. The approach allows predict-
ing a 3D deformation field. Both contributions are classified
under image anatomy and quality, one targeting X-rays and
another targeting CT scans (Table 3).

3.2.2 Image enhancement

Image enhancement is a pre-processing technique. It improves
the visual representation of the image and thus enhances its
analysis [85]. It could be in the form of denoising, bone
suppression, tissue-bone separation, reduction of spatial res-
olution loss, or the reconstruction of the image itself. The
contributions are summed up in Table 4.
3.2.2.1. Denoising

Dealing directly with denoising, Umehara et al. [86]
defined image super-resolution as producing ahigh-resolution
image from low resolution one. They compared the image
quality of the Super-resolution convolutional neural net-
work (SRCNN) and conventional image interpolation meth-
ods, nearest neighbor, bi-linear and bi-cubic interpolations.
SRCNN scheme significantly outperformed conventional
interpolation algorithms for enhancing image resolution at
the quantitative level (peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM)) and visual level (sharper edges
with no obvious artifacts) yielding to the improvement of
image quality of magnified chest radiographs.
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Table 4 Contributions to image enhancement in pulmonary medical imaging analysis

Authors Year Citations Image modality Target

Lee et al. [94] 2019 1 CXR Dual-energy CXR generation with single X-ray exposure

Lee et al. [93] 2019 2 CT Image resolution enhancement

Lee et al. [91] 2019 9 CT Spatial resolution loss reduction

Umehara et al. [92] 2018 19 CT Image conversion among different reconstruction kernels

Umehara et al. [86] 2017 9 CXR Denoising

Vidya et al. [89] 2019 0 CXR Denoising

Ahn et al. [88] 2019 0 CT Denoising ultra-low-dose CT scans

Tang et al. [87] 2019 0 MRI Denoising

Yang et al. [79] 2017 51 CXR Bone suppression

Zarshenas et al. [90] 2019 2 PET Bone and soft-tissue suppression

Secondly, Tang et al. [87] targeted denoising also, but
for PET scans using artificial neural networks. A three-
layer ANN architecture was adopted, with 128 hidden layers.
Datasets were customized; 1 for training and 9 for evalua-
tion. The model proved its efficiency in noise reduction of
low-count (1/10-count) chest PET images as it recorded an
average of 40% decrease at the level of 1/10-count images.
Besides, 40% signal-to-noise ratio increase was recorded for
ANN processed images for all patients. Themodel was noted
to be promising as it is not time-consuming nor computation-
ally costly.

Moreover, Ahn et al. [88] presented a denoising deep
learning approach for ultra-low-dose chest CT. A modified
U-net model was used, with kernel size 4x4 and five layers.
It was trained by anonymized regular-dose chest CT scans,
which were also used to produce low-dose CT scans and
low-dose noise by a simulator. The model then predicted
the denoised image by subtracting the predicted noise image
from the ultra-low-dose CT image. The bronchial wall, lung
fissure, and soft tissue were measured visually. Besides, the
standard deviation of soft tissue was calculated.

Noise can be caused by different scanners types and man-
ufacturers. Vidya et al. [89] aimed to improve the learning
process applied to medical images, specifically chest radio-
graphs, reducing these effects. Global normalization and a
local enhancement filter (for finer structures and opacities)
are applied on three public and one private data sources.
The model used for experimenting is DenseNet and recorded
0.043 mean enhancement (increase) with standard deviation
decrease by 0.013. This proved the efficiency of the proposed
transformations.
3.2.2.2. Bone suppression

Bone suppression and separating it from soft tissues are
also denoising froma clinical point of view in some cases. For
such reason, Zarshenas et al. [90] aimed to develop a model
that separates ribs and clavicles from soft tissue to better
visualize chest radiographs. The proposed method included

CNN of two scopes: anatomy-specific and orientation-
specific. The anatomy-specific CNN was designed previ-
ously but redefined by the authors, to separate bones from
soft tissues. Besides, they presented different orientation-
specific CNNs—with the corresponding—frequencies that
were trained. Several additions to the end of the process
resulted in a higher similarity in comparison with gold-
standard bone separation techniques.

Another approach was held by Yang et al. [79] who
used convolutional networks for bone suppression to refine
the predicted bone gradients progressively. The architecture
based on many cascaded convolutional networks worked
to predict bone gradients at varying resolutions and scales.
Finally, the gradients were fused to produce an estimation to
be subtracted from the original CXRwhere bone components
were to be eliminated.
3.2.2.3. Image reconstruction and others

Reconstruction of images from sparsely sampledCT scans
was also a concern at the level of image quality.

Spatial resolution loss of predicted imageswas aimed to be
reduced by Lee et al. [91], who proposed fully convolutional
networks replacing pooling layers with wavelet transform to
predict high-quality images. The hybrid reconstruction tech-
nique reduced the blurring effect of deep learning and the
streak artifacts resulting from sparse sampling conditions.
This approach was applied for sparsely sampled CT scans
such that images were restored with quality similar to that of
fully sampled images.

Umehara et al. [86] continued their work after training
SRCNN on JSRT to train on CT scans from The Can-
cer Imaging Archive in 2018 [92]. The results showed a
highly restored reconstructed image comparable to the ref-
erence image and magnified twice. Thus, they suggested
that SRCNNmay become a potential solution for generating
high-resolution CT images from standard CT images.

Lee et al. [93] aimed to develop and validate a CNN that
converts CT images reconstructed with one kernel to images
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with different reconstruction kernels, and it showed adequate
performance with high accuracy and speed, indicating its
usefulness for clinical application.

Reconstruction of images can be also for preventive rea-
sons, like reducing the need for extra exposure of patients
to radiation. This was the motivation of Lee et al. [94],
besides improving the diagnostic accuracy. The objectivewas
achieved by developing a methodology to synthesize dual-
energy chest radiographs from given single-energy chest
ones. The proposedmethodwas amodifiedU-net, in addition
to an anti-correlated relationship (ACR) of dual-energy chest
radiographs. The model was trained, tested and evaluated by
calculating the modulation transfer function and coefficient
of variation. The structural similarity approach (SSIM) com-
paring predicted and correct DECR was over 0.85 which is
one of the highest found in the literature. Moreover, the pro-
duced images’ quality measured better than that of U-net.

The listed contributions are clear evidence of image
enhancement role in improving the accuracy of deep learning
processes by refining the input images, reconstructing them,
and possibly synthesizing new images from them.

3.2.3 Segmentation

Segmentation, which is a pre-processing technique, aims to
extract Regions of Interest (ROI) from medical images aim-
ing to optimize the image analysis process. It is actually the
process of dividing images intomeaningful parts, which refer
in the case of medical images to organs, tissues or other bio-
logical structures [27]. The division process locates exact
boundaries of targeted objects, but cover the entire image
when collected.Contributions to this task are given inTable 5.
It can be of two types: organ segmentation or lesion seg-
mentation. Categorization of contributions is under these
two types and targets which are multi-organ, cardio-thoracic,
lungs and bones, lung parenchyma, pulmonary nodules, lung
cancer tissue, lung tumors, pulmonary vessels, and airways
diseases.
3.2.3.2. Organ or substructure segmentation

In contributions to segmentation in pulmonary medical
imaging analysis, authors targeted sometimes organs in gen-
eral, including lungs or parts of it.

Multi-organ, cardio-thoracic

Zhang et al. [95] proposed dense image-to-image (DI2I)
network for multi-organ segmentation, that was trained on
digitally reconstructed radiographs rendered from CT vol-
umes, followed by a task-driven GAN that consists of a
modified cycle-GAN substructure for pixel-to-pixel trans-
lation between DRRs and X-ray images in addition to a
module leveraging the pre-trained DI2I for consistency. The

TD-GAN aimed to achieve style transfer from unseen real
X-ray images.

Two approaches emphasized on CXR and segmented
organs fromchest area.Dai et al. [96] proposed SCAN frame-
work that consists of a segmentation network that plays the
role of generator in GAN, and a critic network. The critic
takes either the ground truth mask or the predicted mask
and outputs the probability estimate whether the input is the
ground truth or predicted mask.

Moreover, Dong et al. [97] proposed an unsupervised
adaptation framework on adversial networks, that learns
domain-invariant feature representations from available open
sources and produces accurate chest organ segmentation for
unlabeled datasets. A discriminator is added to distinguish
segmentation predictions from ground truth masks.

Lungs and bones

In fact, Gordienko et al. wasmore precise segmenting only
lungs and bones from CXRs. His two papers: Gordienko
et al. [98] and Gordienko et al.[99], studied the impact of
pre-processing techniques on dimensionality reduction and
performance.Gordienko et al. [99]’s comparison showed that
bone shadow exclusion demonstrates the best accuracy and
loss results in comparison to other pre-processed datasets
after lung segmentation. However, Gordienko et al. [98]
compared an original dataset to datasets of different com-
binations of lung segmentation, bone shadow exclusion and
outliers filtering. The pre-processed dataset obtained after
lung segmentation, bone shadow exclusion, and filtering out
the outliers by t-SNE demonstrated the highest training rate
and best accuracy in comparison to the other pre-processed
datasets. This emphasizes the importance of lung segmenta-
tion in addition toother image enhancements prior to training.

Lung parenchyma

Closer approaches to the main course of pulmonary medical
imaging analysis segment lung parenchyma, which is the
portion of the lung involved in gas transfer, and other times
segment pulmonary lobes and fissures.

Hooda et al. [100] proposed a segmentation method based
on deep convolutional network targeting lungs, to indicate
precise regions of interest in CXRs. Proposed models were
based on standard FCN-4 architecture and applied dropout
layers for comparison. The proposed model achieved satis-
factory performance; 98.75% accuracy and 96.10% overlap.

Besides, Huynh and Anh [101] proposed a deep learn-
ing lung segmentation method emphasizing on large CXR
images. The architecture consisted of convolutional, max-
pooling, flattening, and fully connected layers. Experiment-
ing was performed on images from Hoan My Hospital (15
images for training, 50 for testing) and 93% accuracy was
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Table 5 Contributions to
segmentation in pulmonary
medical imaging analysis

Authors Year Citations Image modality Target

Zhang et al. [95] 2018 36 X-ray Multi-organ

Dai et al. [96] 2018 38 CXR Cardio-thoracic

Dong et al. [97] 2018 22 CXR Cardio-thoracic

Gordienko et al. [99] 2018 23 CXR Lungs and bones

Gordienko et al. [98] 2018 15 CXR Lung and bones

Hooda et al. [100] 2019 1 CXR Lung parenchyma

Huynh and Anh [101] 2019 1 CXR Lung parenchyma

Kitahara et al. [102] 2019 1 CXR Lung parenchyma

Furutani et al. [103] 2019 0 CXR Lung parenchyma

Skourt et al. [104] 2018 22 CT Lung parenchyma

Gerard and Reinhardt [105] 2019 1 CT Lung parenchyma

Wang et al. [106] 2019 0 CT Lung parenchyma

Wang et al. [82] 2017 100 CT Pulmonary nodules

Mobiny and Van Nguyen [115] 2018 38 CT Pulmonary nodules

Jin et al. [114] 2018 37 CT Pulmonary nodules

Wang et al. [113] 2018 5 CT Pulmonary nodules

Hu et al. [116] 2019 4 CT Pulmonary nodules

Tang et al. [118] 2019 1 CT Pulmonary nodules

Wang et al. [117] 2019 0 CT Pulmonary nodules

Moriya et al. [120] 2019 0 CT Lung cancer tissue

Jiang et al. [121] 2018 24 Multiple Lung tumors

Jue et al. [122] 2019 0 CT Lung tumors

Astaraki et al. [123] 2019 0 CT Lung tumors

Cui et al. [107] 2019 1 CT Pulmonary vessels

Yun et al. [108] 2019 6 CT Airways diseases

Nadeem et al. [109] 2019 0 CT Airways diseases

Qin et al. [110] 2019 0 CT Airways diseases

Zhao et al. [111] 2019 0 CT Airways diseases

Wang et al. [112] 2019 0 CT Airways diseases

achieved versus 76% for conventional CNN. Similarly, the
proposed model outperformed the conventional CNN at the
level of precision, recall, F1 and Dice score.

Kitahara et al. [102] targeted lung segmentation for CXRs
using Fully Convolutional Neural Networks. They aimed to
reduce themis-recognition of lungs, and used pre-processing
techniques to achieve their goal. A customized dataset of
inhale and exhale radiographs was used in order to vali-
date the efficiency of model, where the change in area of
lungs throughout frames was used to assess COPB presence
(reduced change rate is a sign of disease), and experiments
recorded 94% accuracy.

Again, Furutani et al. [103] aimed to segment lungs from
CXRs proposing a model based on U-net deep architecture.
The Dice-coefficient achieved was 0.91 on average.

Skourt et al. [104] proposed a lungCT image segmentation
using the U-net architecture, consisting of a contracting path
to extract high-level information and a symmetric expanding

path to recover the needed information. Results showed an
accurate segmentation with 0.9502 Dice-coefficient index,
and the capability of applying it to a wide area of different
segmentation tasks in medical imaging.

For the same segmentation target, Gerard and Reinhardt
[105] aimed to segment pulmonary lobes and fissures from
chest CT scans and thus proposed a deep learning frame-
work made up of a novel pipeline of 3D CNN series to serve
the purpose. It was experimented on COPDGene subset and
achieved 0.993 Dice coefficient and 0.138 mm median aver-
age symmetric surface distance, showing the robustness of
the model to different image quality, inspiration levels and
pathologies.

Finally, Wang et al. [106] proposed a pulmonary lobes’
segmentation model by first applying automated lung seg-
mentation and then volumetric CNN (V-net) to CT scans.
Additional feature maps are generated by coordination-
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guided CNNs to reduce misclassification. The model has
achieved 0.947 dice coefficient index.

Pulmonary vessels

As for pulmonary vessels, Cui et al. [107] proposed a
framework for automated segmentation based on a 2.5D
convolution network, where slice radius is introduced to con-
volve adjacent information, and multi-planar fusion is owed
to optimize the presentation of intra/inter-slice features.After
then, segmentation results are refined using component infor-
mation of pulmonary vessel tree.

Airways diseases

Reaching for airways segmentation, approaches were held
on CT scans only.

Yun et al. [108] proposed a 2.5D model that starts by
extracting airway-candidate patches that are then classified
by 2.5D CNN resulting with a likelihood map used for seg-
mentation of airways finally. On the other side, Nadeem
et al. [109] targeted airway segmentation from CT scans
using deep learning in addition to conventional methods.
The experiments showed significant advances in terms of
accuracy at branch-level compared to unedited results from
conventional industry method. Besides, the segmentation’s
leakages were significantly reduced. The proposed model
involved a 3D U-Net that computes a likelihood map of the
airway lumen space at total lung capacity from chest CTs,
where the map is then fed into an augmentation conventional
process to remove leakages consequently.

Another approach was by Qin et al. [110] who proposed
a voxel-connectivity aware approach for accurate Airway
segmentation that transforms conventional binary segmen-
tation to 26 tasks of connectivity prediction, learning both
airway structure and relationship between neighboring vox-
els, feeding the lung distance map and voxel coordinates into
AirwayNet as additional semantic information.

Zhao et al. [111] proposed a two-stage 2d+3D neural net-
work and a linear programming based tracking algorithm for
airway segmentation, followed by a bronchus classification
algorithm based on the segmentation results.

Last but not least, Wang et al. [112] introduced a 3D slice-
by-slice convolutional model in a U-net architecture, and a
novel loss function called radial distance loss.
3.2.3.2. Lesion Segmentation

Deeper approaches of segmentation target tumors and/or
pulmonary nodules/tissues as an important step prior to ana-
lyzing them.

Pulmonary nodules

Firstly, Wang et al. [82] pointed out to analysis and mea-
surement tools efficient for segmentation. They are Dice
similarity coefficient DSC, which measures the overlapping
between two segmentation results, the ASD which mea-
sures the average boundary distance between surfaces of
two segmentation results, and the positive predictive value
PPV beside the conventional specificity and sensitivity. The
authors of the same paper proposed a data-driven model
that segments lung nodules from heterogeneous CT images,
named the Central Focused Convolutional Neural Networks
CF-CNN. The proposed model aimed to capture a diverse
set of features that are nodule-sensitive from 3D and 2D
CT images and classify the voxels taking into consideration
the neighboring voxels’ effect. These key insights were tar-
geted by a central pooling layer that retainsmuch information
on voxel patch center, followed by a patch learning strat-
egy. Weighed sampling facilitated the training of the model
that shows a performance superior to conventional models,
achieving 82.15% and 80.02% dice scores for two performed
experiments.

Another approach was done byWang et al. [113] who pro-
posed a deep region-based network (RCNN) for detection of
pulmonary nodules in 3D CT images generating simultane-
ously a segmentation mask for each instance, in addition
to a deep active self-paced learning (DASL) strategy for
reducing annotation effort and making use of un-annotated
samples(weekly supervised).

Jin et al. [114] coupled a 3D CGAN with a novel multi-
mask loss to generate CT-realistic high-quality lung nodules
conditioned on a VOI with an erased central region.

CapsNet was proposed byMobiny and Van Nguyen [115]
as alternative to CNN, besides amodified routingmechanism
speeds up the process 3 times.

Based on probabilistic U-net, Hu et al. [116] proposed a
model for segmentation that outputs two kinds of quantifiable
uncertainty: aleatoric and epistemic.

Wang et al. [117] proposed a mixed supervised dual-
network (MSDN) that consists of a network for detection and
another one for segmentation, and used “Squeeze and Exci-
tation” for transferring information from auxiliary detection
to help segmentation.

NoduleNet was proposed by Tang et al. [118], which is an
end-to-end3dDCNNincorporating twodesign tricks: decou-
ples feature maps for nodule detection and false-positive
reduction and segmentation refinement subnet for increas-
ing nodule segmentation precision.

At a larger scale, models genesis developed by Zhou et al.
[119] aimed to generate powerful application-specific target
models through transfer learning. Models genesis is a collec-
tion of generic source models built directly from unlabeled
3D image 3D data with a unified self-supervised method. It
detects pulmonary nodules, but segments them first.
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Lung cancer tissues

Moriya et al. [120] proposed a 2-phase deep unsupervised
generative segmentation model; reconstructs image patches
after inferred by categorical latent variables from unla-
beled images and estimates, after training, the probability
of belonging to each category to obtain segmented image.

Lung tumors

Tumors segmentation was held by several approaches too.
Jiang et al. [121] proposed an adversial domain adaptation-

based deep learning approach for tumor segmentation: a
tumor-aware unsupervised cross-domain adaptation(CT to
MRI), then a semi-supervised tumor segmentation using U-
net trained with synthesized and limited number of original
MRIs. Introduced also a tumor-aware loss for unsupervised
cross-domain adaptation.

Besides, Jue et al. [122] proposed a cross-modality educed
deep learning segmentation that combines CT and pseudo-
MR produced from CT by aligning their features to obtain
segmentation onCT.The propositionwas implemented using
U-net and Dense-FCN.

Finally, Astaraki et al. [123] proposed normal appear-
ance auto-encoder that automatically replaces lung nod-
ules/masses with healthy appearing tissue, incorporates the
output along with the original latter to a segmentation net-
work, and trains the normal-appearance auto-encoder using
semi-automated in-painting network.

As a result, segmentation, involving 2D and 3D scans,
certainly enhances the performance of classifiers, whether
at the scale of organ (lung) or deeper as for nodules. U-Net
convolutional neural networks were notably used as basis
for proposed architectures. Besides, the combination of seg-
mentation with other pre-processing techniques appeared to
come up with better accuracies.

3.2.4 Detection

Detection is a key part of the diagnosis, typically consisting
of localization and identification of specific lesions in the
image [2]. Computer-aided detection is usually referred to as
CADe and sometimes as localization. It could be detection of
a single disease such as TB ormulti-disease detection such as
anomalies detection [46]. Brief list of detection contributions
can be found in Table 6.

General thoracic diseases

Starting by general thoracic disease detection, many
approaches are to be considered.

Rajpurkar et al. [124] developed what they called
CheXNeXt neural network, which is based on 121-DenseNet

architecture to discover 14 pathologies from CXR. They
trained it on ChestXray-14 dataset in two steps. Besides,
the model is initialized with parameters from a network pre-
trained on ImageNet dataset.

For detecting multiple abnormalities, Singh et al. [125]
assessed the accuracy of Qura AI (commercially available
DL algorithm) using Chest Xray 8 dataset and proposed a
standard of reference to select images and direct radiologists.
The algorithm was found to be of high accuracy, and might
serve as second reader to improve radiologists performance.

Cai et al. [126] proposed an attention mining AM strategy
to improve CNN’s sensitivity or saliency to disease patterns.
Moreover, the ResNet CNN model was modified to include
multi-scale aggregation (MSA) to improve the localization
of small-scale disease findings.

For anomaly detection on CXRs, CXNet-m1 was pro-
posed by Xu et al. [127] based on deep learning. They aimed
to overcome the conventional limitations of the existing deep
learning techniques such as over-fitting and low transfer
efficiency by a shorter, thinner and more powerful design
than fine-tuned CNN. The CXNet-m1 achieved 67.7% accu-
racy, 73.6% precision, 73.8% recall, 73.7% F-measure, and
65.8% AUC. All values were the best among the experi-
mented networks except for precision which came next after
Inception-ResNet. This approach assured the importance of
the proper design rather than the fine-tuning, but still agreed
that the more training, the better learning process would be.

For automatic triaging of adult chest radiographs,
Annarumma et al. [128] developed and tested an artificial
intelligence based on deep convolutional neural networks.
An NLP system was used to analyze free-text reports corre-
sponding to images of the adopted training dataset, and the
model achieved a sensitivity of 71% and specificity of 95%
beside 73% and 94% for positive predictive value (PPV) and
negative predictive value (NVP), respectively, assuring the
clinically acceptable performance of the developed system.

On the another hand, Gerard et al. [129] targeted pul-
monary fissure detection in CT images using deep learning.
It is based on a novel coarse-to-fine cascade of ConvNets,
named FissureNet, and a novel 3D segmentation architecture
named Seg3DNet. Fissure detection was evaluated with two
rule-based methods (Hessian and DoS) and two learning-
based methods (FissureNet and U-Net). Upon experiment,
learning-based methods outperformed rule-based methods,
and FissureNet outperformed U-Net. FissureNet achieved
high sensitivity for fissure detection and few false-positives
were produced. It was also proved to be robust against varia-
tions in image modalities, scanning protocols and inspiration
levels. The overall AUC achieved for FissureNet was 0.98
beating that of U-Net and Hessian.

Infections: pneumonia and tuberculosis
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Table 6 Contributions to
detection in pulmonary medical
imaging analysis

Authors Year Citations Image modality Target

Rajpurkar et al. [124] 2018 107 CXR General thoracic diseases

Annarumma et al. [128] 2019 28 CXR General thoracic diseases

Singh et al. [125] 2018 17 CXR General thoracic diseases

Cai et al. [126] 2018 9 CXR General thoracic diseases

Xu et al. [127] 2019 7 CXR General thoracic diseases

Gerard et al. [129] 2019 15 CT General thoracic diseases

Rajpurkar et al. [130] 2017 450 CXR Infections, pneumonia

Ayan and Unver [131] 2019 0 CXR Infections, pneumonia

Heo et al. [132] 2019 6 CXR Infections, tuberculosis

Ho et al. [133] 2019 0 CXR Infections, tuberculosis

Lin et al. [134] 2019 0 CT Pulmonary embolism

Taylor et al. [135] 2018 16 CXR Pneumothorax

Park et al. [136] 2019 2 CXR Pneumothorax

Nam et al. [137] 2019 53 CXR Lung cancer

Zhao et al. [138] 2019 6 CXR Lung cancer

Pesce et al. [145] 2017 2 CXR Lung cancer

Chang and Moturu [149] 2019 0 CXR Lung cancer

Setio et al. [148] 2017 493 CT Lung cancer

Dou et al. [147] 2017 207 CT Lung cancer

Ardila et al. [153] 2019 99 CT Lung cancer

Huang et al. [150] 2017 66 CT Lung cancer

Dou et al. [143] 2017 60 CT Lung cancer

Jiang et al. [141] 2018 58 CT Lung cancer

Hamidian et al. [139] 2017 43 CT Lung cancer

Masood et al. [142] 2018 41 CT Lung cancer

Yan et al. [158] 2018 36 CT Lung cancer

Khosravan and Bagci [156] 2018 28 CT Lung cancer

Kuan et al. [144] 2017 23 CT Lung cancer

Zhu et al. [157] 2018 19 CT Lung cancer

Gu et al. [151] 2018 12 CT Lung cancer

Wang et al. [155] 2018 10 CT Lung cancer

Bhatia et al. [159] 2019 7 CT Lung cancer

Winkels and Cohen [160] 2019 5 CT Lung cancer

Cha et al. [140] 2019 3 CT Lung cancer

Wang et al. [154] 2019 2 CT Lung cancer

Tang et al. [118] 2019 1 CT Lung cancer

Gong et al. [152] 2019 0 CT Lung cancer

Astaraki et al. [123] 2019 0 CT Lung cancer

Zhang et al. [161] 2019 0 CT Lung cancer

Gonzalez et al. [162] 2018 60 CT Airways diseases

Reaching out for infectious diseases, pneumonia and TB
were a target for localization task using deep learning-based
models. Rajpurkar et al. [130] targeted pneumonia detec-
tion on CXRs and developed for that an algorithm of 121
convolutional layers. An extension was applied to detect 14
other diseases. Its F1 score value exceeded the average per-
formance of 4 radiologists (0.435 vs. 0.387 at 95% bootstrap

confidence interval), but only frontal radiographs were used
with no access to patients history.

Again, for better detection of pneumonia from CXRs,
Ayan and Unver [131] compared two deep learning mod-
els; VGG-16 and Xception. Both models were fine-tuned
and involved transfer learning to enhance their perfor-
mance. Many parameters were used to compare VGG-16
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and Xception, and each outperformed the other at some.
For example, VGG-16 outperformed Xception in accuracy
as they recorded 87% and 82%, respectively, yet Xception
was more successful at sensitivity. Each network proved to
have its own capabilities even when tested on same datasets.

Whereas for TB detection, Heo et al. [132] used deep
learning on chest radiographs of annual workers’ health
examination data using different feature extractors. Then,
they compared the performances of convolutional neural net-
works (CNNs) based on images only (I-CNN) to CNNs
including demographic variables (D-CNN). CNNs using
demographic variables recorded higher AUC values (0.957
vs. 0.9714) and greater sensitivity values but less attenuating
(0.815 vs. 0.775), validating that machine learning facilitates
detection of TB in CXRs and demographic values improve
the results.

Besides, Ho et al. [133] compared the performance of
three deep learning models (ResNet-152, Inception-ResNet
and DenseNet-121) for automated detection of pulmonary
TB and evaluated their efficiency on chest radiography diag-
nosis as early detection can reduce high mortality rates due
to this disease. One training dataset (ChestXray14) and two
external datasets (Montgomery and Shenzhen) were used for
experimenting detection of diseased cases. Pre-processing
techniques were applied (augmentation and tSNE visualiza-
tion) and increased average AUC of DCNNs.

Pulmonary embolism

At the level of PE, Lin et al. [134] proposed an end-to-end
network that consists of: a 3D candidate proposal network for
detecting cubes containing suspected PE, a 3D spatial trans-
formation sub-net for generating fixed-sized vessel-aligned
image representation for candidates, and a 2D classification
network which takes the three cross sections of the trans-
formed cubes as input and eliminates false-positives.

Pneumothorax

Moving to pneumothorax, Taylor et al. [135] devel-
oped various automated image classifiers that detect clin-
ically significant (moderate and large) pneumothorax and
trained them on a customized dataset, willing to avoid life-
threatening delay of radiologists reviews in urgent cases such
as overnights. Another contribution was that of Park et al.
[136] who proposed a 26 layer CNN that detects pneumoth-
orax.

Lung cancer

Lung cancer detection targets nodules and tumors of differ-
ent sizes and types. It is actually the most targeted for deep
learning-based detection task.

Nam et al. [137] proposed a deep CNN (DLAD) with 25
layers and 8 residual connections. It used batch normalization
technique to speed up the training and used pixel intensity of
chest radiography as input to output the location and malig-
nant nodule presence.

Moreover, Zhao et al. [138] targeted detection of EGFR-
mutations in pulmonary adenocarcinoma and developed a
3D-deep learning-based methodology to serve its purpose
using CXRs. The proposed model, named 3D DenseNets,
learns strong representations with supervised end-to-end
training, and is finely tuned with another nodules subset.
Augmentation is applied to avoid over-fitting, and experi-
ments recorded 75.8% and 75% AUC for holdout and public
test sets, respectively, for detection of the EGFR mutations
and thus is a promisingmodel. Besides, deep learned features
were found to be related to conventional radiomics, but more
robust, compact and expressive.

For automatic detection of lung nodules in chest CT,
Hamidian et al. [139] trained a 3D CNN. It involved two
stages: screening and discrimination, that aim to generate
candidate regions of interest at the first place, and then, a
more specialized CNN classifies them as nodule or back-
ground. This screening architecture reduced the size of initial
search space and thus lead to a 800-fold speed-up compared
to using the brute-forcemethod of sliding the 3DCNNacross
the volume to obtain the classification scores for the whole
CT exam. The approach was multi-scale to detect nodules
with varying sizes at similar sensitivities compared to one
another, and the recorded results were 80% and 95% sensi-
tivities at 22.5 and 563 false positive rates, respectively.

Cha et al. [140] proposed a deep convolutional neural
network-basedmodel for detecting operable lung cancerwith
chest radiographs. It resulted with an overall sensitivity of
76.8%with a 0.3 false-positive per image and AUC of 0.732.
The sensitivity of DLM performance was superior to aver-
age of 6 human readers and demonstrated its high diagnostic
capability.

Adding to that, Jiang et al. [141] proposed an effective lung
nodule detection scheme based on multi-group patches cut
out from the lung images, pre-processed by the Frangi filter.
The results demonstrated that the multi-group patch-based
learning system is efficient to improve the performance of
lung nodule detection and greatly reduces the false-positives
in the case of huge data by achieving 80.06% sensitivity with
4.7 false-positives per scan and 94% sensitivity with 15.1
false-positives per scan.

Masood et al. [142] proposed an IoT-enabled computer-
assisted decision support system for detection of pulmonary
cancer and classification of its stages by using a novel deep
learning-based model and metastasis information obtained
from medical body area network (MBAN). DFCNet is pro-
posed and based on the deep fully convolutional neural
network (FCNN) which is used for classification of each
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detected pulmonary nodule into four lung cancer stages. The
proposed architecture achieved 84.58% accuracy for DFC-
Net in comparison with 77.6% for conventional CNN and a
potential for generalization to detect other cancer types.

Also for pulmonary nodule detection, Dou et al. [143]
proposed 3D ConNets along with online sample filtering and
hybrid-loss residual learning. The framework consisted of
two stages: candidate screening where 3D FCNN is estab-
lished and trained with the online sample filtering, and then,
false-positive reduction using hybrid-loss residual network
that control the information of nodules (location and size) to
guide the nodule recognition process. The overall sensitiv-
ity of the framework at the last stage along with FCN, OSF,
ResNet and HL was 90.5% at 1 false-positive per scan.

Kuan et al. [144] presented a framework for computer-
aided lung cancer diagnosis, that ranked 41st out of 1972
teams in the Kaggle Data Science Bowl 2017. They aimed to
detect the nodules in 3D CAT scans and then classify them
as malignant or not, to finally assign a cancer probability
based on the results. The log-loss valued 0.52712 where only
4 features were used in the competition (number of nod-
ules, mean, std, and sum of softmax output). For additional
features, results for the Malignancy detector recorded 0.719
sensitivity, 0.653 specificity, 0.558 F1 score, and 0.484 log-
loss. The combination of detector with the nodule classifier
achieved better results except for sensitivity value.

In 2017, Pesce et al. [145] contribution was published and
then got updated in 2019 [146]. It basically proposed two
architectures for lung nodules detection from chest radio-
graphs using visual attention networks; the first is CNN with
attention feedback CONAF and the other is recurrent with
annotation feedback RAMAF, accompanied with an NLP
system for tagging images automatically to be validated.
CONAF achieved for Localization the highest sensitivity and
average overlap when compared lesions to normal only (0.74
and 0.45 respectively) and same when compared lesions to
all others (0.65 and 0.43 respectively). Yet, for precision,
CONAF recorded 0.21 for lesions vs. normal only and 0.15
for lesion vs. all others.

For the sake of false positive reduction in automated
pulmonary nodule detection, Dou et al. [147] proposed a
novel method employing three-dimensional convolutional
networks. The proposed method used volumetric CT scans,
that adds to the 3D architecture to encode more spatial infor-
mation and extract more Representative features than 2D
architectures using 2D training samples. The methodology
embedded amultilevel strategy tomeet the challenges caused
by the variations and hard mimics of pulmonary nodules. An
advantage of the framework is its generalizability as it can
be extended to other 3D detection tasks.

Using multi-view convolutional networks (ConvNets),
Setio et al. [148] proposed a CAD system for pulmonary
nodules. Discriminative features were automatically learned

from the training data. The input of network is nodule can-
didates obtained by combining three candidate detectors
specifically designed for solid, sub-solid, and large nodules.
For each candidate, a set of 2-D patches from differently
oriented planes should be extracted. The proposed architec-
ture comprises multiple streams of 2-D ConvNets, where the
outputs are then combined using a dedicated fusion method
to yield the final classification. In order to avoid over-fitting,
data augmentation and dropout were applied. Experimenting
the proposed framework resulted with a 90.1% and 85.4%
sensitivity values at 4 and 1 false-positives per scan, respec-
tively.

On the other hand, Chang and Moturu [149] targeted
detecting early stage lung cancer using synthetically gen-
erated X-rays throughout a model based on CNN. Pre-
processing techniques were applied in order to generate the
X-Rays from CTs (due to the lack of real X-rays according
to authors), followed by a random generation and place-
ment of nodules to optimize the training process. The model
achieved 97.45% validation accuracy for 1–3cm diameter
sizes of nodules and 1000HU3 for radio-density. On the other
hand, the least recorded accuracy was 70.55% at 3–150HU
radio-density for 0.3–3cm diameter of nodule size. Themain
barriers are declared as optimizing the hyper-parameters,
guaranteeing enough variability of training data, tweaking
the size of patches and sliding window, and fine-tuning sev-
eral other parameters.

Huang et al. [150] targeted lung nodule detection mainly
using CT scans. The proposed system was based on 3D
CNNs, leveraging perturbing anatomical structures and data-
driven machine-learned features. The system first generates
candidate nodules and estimates their local orientation. Can-
didates are then fed into a trained 3DCNN to predict whether
they are nodules or not, achieving 90% sensitivity at 5 false-
positives rate. Authors concluded the efficiency of involving
a priori information and the preference of 3D CNN over 2D
CNN for volumetric medical image analysis.

Continuing with lung nodule detection, Gu et al. [151]
also used deep convolutional neural networks. The proposed
model used a multi-scale prediction methodology designed
for chest CTs, providing three schemes for selection accord-
ing to need. As 3D CNNs can utilize richer spatial 3D
contextual information than 2DCNNs; the proposed schemes
including multi-scale cubes can be an outstanding solution
for extremely small nodules’ detection. The sensitivitieswere
recorded at 1 and 4 false-positives rates andwere 87.94% and
92.93%, respectively, implying the feasibility of extending
the system to other medical fields.

Gong et al. [152] showed that deep learning observers
strongly correlate to human observer performance, as it was
proposed and tested on localization of lung nodules in chest

3 Hounsfield units used to measure radio-density.
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CT scans. A local customized dataset was used consisting of
different variables instantiating varying experimental condi-
tions (nodules sizes, nodule types, radiation dose levels, etc.).
The correlation was measured by Pearson’s coefficient and
recorded 0.988 with 95% confidence interval.

Willing to improve lung screening using CT scans, Ardila
et al. [153] proposed a model based on deep learning which
performed equally to six radiologists when prior CT was
provided. However, without prior CT, it outperformed the
radiologists reducing false-positive rates by 11% and false-
negatives by 5%.

Wanget al. [154] targeted lung cancer detectionusingdeep
CNN in addition to a random forest classifier to detail the
diagnosis.A3Dattention-baseddeepCNNis proposedby the
authors, using CT images, to detect lung cancer without prior
suspicions of interest regions. Demographic clinical features
were used for the classifier. Accuracy recorded for attention
network and AUC recorded for clinical demographic fea-
tures each apart were 68.7% and 63.5%, respectively. When
combining both, AUC records 78.7%.

While Wang et al. [155] proposed a pulmonary detection
framework consisting of feature pyramid network, condi-
tional 3D non-maximum suppression, and an attention 3D
CNN, Khosravan and Bagci [156] used a single feed-forward
pass of a single network for detection, designed as a 3DCNN
with dense connections and trained in an end-to-end manner.

Zhu et al. [157] proposed a deep 3D ConvNet framework
augmented with expectation-maximization (EM), to mine
weakly supervised labels in EMRs for pulmonary nodule
detection.

To incorporate 3D context information efficiently, Yan
et al. [158] developed a 3D context-enhanced region-based
CNN by aggregating feature maps of 2D images.

Astaraki et al. [123] proposed normal appearance auto-
encoder (NAA) that automatically replaces lung nodules/
masses with healthy appearing tissue, incorporating the out-
put along with the original latter to a segmentation network,
and training the NAA using semi-automated in-painting net-
work.

NoduleNet was developed by Tang et al. [118], which is
an end-to-end 3d DCNN, incorporating two design tricks:
decouples feature maps for nodule detection and false-
positive reduction, and segmentation refinement subnet for
increasing nodule segmentation precision.

Bhatia et al. [159] delineated a pipeline of pre-processing
techniques highlighting lung regions and extracting features
using U-net and ResNet models. Multiple classifiers are used
after then to predict the probability of the CT scan being
cancerous, trained on LIDC-IDRI dataset.

Winkels and Cohen [160] proposed 3D roto-translation
group convolutions instead of standard translational convolu-
tions in application to pulmonary nodules. Baseline network
used consisted of 6 convolutional layers, batch normalization

andReLunonlinearities, 3Dmaxpooling and fully connected
layer.

Last but not least, Zhang et al. [161] proposed amodel that
first segments lung parenchyma by region growing method,
then comes the model PndDBN-5 which consists of three
Restricted Boltzmann Machines (RBM).

Airways diseases

To detect and stage COPD and consecutively predict acute
respiratory disease (ARD) using chest CT scans, Gonzalez
et al. [162] studied the capability of CNN involving logistic
and cox regression to assess COPD and mortality respec-
tively. They have realized that CNNs provide a flexible and
fast method that may allow assessing population-wide dis-
eases, in addition to proving its efficiency for the previously
mentioned objective.

Plenty of work has been done on detection in pulmonary
medical imaging analysis, and proposed models proved to be
competitively efficient at both speed and performance. Yet,
many approaches involved external factors which improved
their performance, such as: NLP to benefit from textual data,
IoT to bring live data into the process, demographic features
to add input information, pre-filtration of input patches, etc.
In addition, most of the work on detection targeted lung can-
cer, specifically using CT modality, and a fair number of
approaches targeted infections and general thoracic diseases,
for which CXRs were used. Moreover, CXRs usage domi-
nated pneumothorax while CT dominated PE and airways
diseases. Relating to the architectures, AleXnet, ResNet,
DenseNet, Inception and region-growingnetworkswere used
themselves or after editing, and in some approaches, segmen-
tation (such as U-net-based models) was aggregated to the
detector to support the process.

3.2.5 Features extraction

Features extraction is the characteristic discriminating deep
learning from traditional machine learning methods, as it is
done automatically in DL while done exhaustively manu-
ally in ML. Features are important for the learning process
and could be acquired from training medical datasets, natu-
ral images datasets or by transfer learning from pre-trained
medical image analysis networks. For a list of the contribu-
tions to this task, refer to Table 7. Contributions to feature
extraction are clustered according to target: general thoracic
diseases, infections, and pulmonary nodules.

General thoracic diseases

Nemoto et al. [163] aimed to generate features from normal
volume patches only, using a deep convolutional auto-
encoder (D-CAE) network. The D-CAE is trained by CT
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Table 7 Contributions to
features extraction in pulmonary
medical imaging analysis

Authors Year Citations Image modality Target

Chen et al. [164] 2019 1 CXR General thoracic diseases

Nemoto et al. [163] 2019 0 CT General thoracic diseases

Lopes and Valiati [165] 2017 33 CXR Infections, tuberculosis

Gozes and Greenspan [166] 2019 0 CXR Infections, tuberculosis

Liang and Zheng [167] 2019 2 CXR Infections, pneumonia

Chen et al. [168] 2017 45 CT Pulmonary nodules

scans that include no lesions, which thus calculates the
low-dimensional features and reproduction error from 2.5D
volume patches. Combining both previous features and deep-
CAE generated features increased the AUC to 98.9%.

Moreover, Chen et al. [164] proposed a dual asymmet-
ric DCNN model, that is a complementary combination of
ResNet andDenseNet such that feature extraction is imposed
at two levels: feature and decision, then combining the two
loss functions from both networks. The model functions as a
multi-label thoracic disease classifier and was proved to be
effective with respect to state-of-the-art baselines throughout
experimenting on ChestX-ray14 dataset.

Infections: pneumonia and tuberculosis

Targeting infections, Lopes and Valiati [165] proposed three
models for feature extraction applied on TB to refute that
fine-tuned CNNs always surpass pre-trained ones. The first
model used different CNN architectures (examples is VGG-
19) to extract features each at once from resized images,
which were then fed into SVM classifier. The second model
took the same three CNN architectures and allowed them to
extract features from certain regions of interest ROI, then
combined them creating a global descriptor used to train a
SVM. The final model was made up of best SVMs trained
in models 1 and 2 to create ensembles of classifiers. Based
on the results obtained in this paper, pre-trained networks
were validated for their usefulness and power. Referring to
the results, it is recommended that model 2 be applied on
high-resolution datasets to extract valuable global descriptor
even though it will need toomuch time. Different results may
occur if other CNN architectures, classifiers and methods for
visual dictionary generationwere used instead ofGoogLenet,
ResNet and VGG, Support Vector Machine (SVM), and K-
clustering method.

On the same side, Gozes andGreenspan [166] targeted TB
willing to study impact of feature learning (pre-training deep
model) specifically on CXR using DenseNet-121 CNN. The
application incorporated meta data and trained the model on
ChestX-ray14 dataset which includes 14 thoracic patholo-
gies. The feature learning allows for better transfer learning

on small-scale datasets for Tb (On Shenzen dataset: AUC
recorded was 96.5%).

Also about infections, Liang and Zheng [167] aimed to
develop a deep learning-based model that overcomes lack of
spatial information in conventional deepCNN feature extrac-
tion, and thus improve accuracy of classifiers. In order to
detect pneumonia in children CXRs, they proposed a frame-
work that combined dilated convolution and residual thought
to avoid over-fitting, depth-model degradation problems and
spatial information loss. Results recorded were 96.7% recall
rate and 92.7% f1-score. The model is considered reliable
for classification of children pneumonia in CXRs.

Pulmonary nodules

Emphasizing on pulmonary nodules, Chen et al. [168]
exploited three different multi-task learning schemes (MTL)
to take advantage of heterogeneous computational features
derived from deep learning models of convolutional neu-
ral network (CNN) and stacked de-noising auto-encoder
(SDAE), in addition to hand-crafted Haar-like and HoG fea-
tures. These extracted features aim to ease the description of
9 semantic features for lung nodules in CT images. As each
semantic feature is considered an individual task, hetero-
geneous computational features are tasks selected by MTL
schemes and mapped toward radiologists’ ratings along with
cross-validation evaluation schemes on the nodules that were
randomly selected from LIDC dataset. Results predicted that
MTLschemes ratingswere closer to radiologists’ than single-
task methods and were considered robust. Besides, results of
co-training CNN regression were more accurate than single-
task regression, but did not surpass the multi-task regression.
On the other hand, it was concluded that deeper CNN is
not always equal to better regression performance, but big-
ger training datasets are expected to yield better regression
results with CNN. Besides, the combination of all heteroge-
neous features can effectively boost the results.

Feature extraction is indirectly addressed in a lot of
approaches tackling deep learning. They all disregard man-
ual extraction of features, but prefer to maximize the number
of features involved for better classification (also referred to
as discrimination), noting that the more training is applied
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to the architecture, better chances of surpassing fine-tuned
CNNs are exposed. Children were targeted in one approach,
and age prediction was suggested in another which introduce
deep learning objectives. More about classification is present
in the next part.

3.2.6 Classification

Classification is an important task in medical image analysis,
that comes just after feature extraction and representation. It
aims to map the input variables (images or records) into out-
put variables that represent a specific class such as “diseased”
or “healthy” [26]. Table 8 lists contributions to this task. They
are clustered according to target: general thoracic diseases,
interstitial lung diseases, infections, pulmonary edema, air-
way diseases and lung cancer.

General thoracic diseases

Contributions which handled general thoracic diseases clas-
sification are discussed first. Abiyev and Maaitah [169]
demonstrated the feasibility of classifying chest pathologies
in CXRs using CNN, and compares CNN, BPNN and CpNN
networks.

DLAD was proposed by Hwang et al. [170], which is a
classification algorithmwith dense blocks comprising 5 clas-
sifiers, 1 for each disease and the fifth for normal/abnormal
classification. Two loss types were used for training: classi-
fication and localization.

CXRs classification into anteroposterior or posteroante-
rior views was held by Kim et al. [171] who developed
a ResNet-18 DCNN. It was trained on NIH ChestXray14
database that consists of adults and pediatrics CXRs.Another
similar network was developed and trained only on pediatric
CXRs.RecordedAUCvalues and accuracieswere 99.7%and
98%, respectively, for pediatrics trained network, and 100%
and 99.6%, respectively, for fully trained network (adults
and pediatrics). Similarly, sensitivity and specificity of fully
trained network outperformed those of pediatrics-trained net-
work. However, the reduction is slight with respect to 95%
training data reduction.

Tang et al. [172] targeted identification of abnormal CXR
using the proposed model based on generative adversarial
one-class identifier. The model is mainly trained to iden-
tify normal CXR by reconstructing it. If the input image is
abnormal, the reconstructed image will be poor and thus be
identified. The model has achieved 84.1% AUC with archi-
tecture composed of three DCNNs; auto-encoder U-Net,
discriminator and decoder.

Besides, Pan et al. [62] compared two deep learning clas-
sifiers: DenseNet and MobileNet-V2, that were trained by
both Rhode Island Hospital chest radiograph (RIH-CXR)
and Health ChestXray14 (NIH-CXR) datasets for nor-

mal/abnormal and 14 thoracic diseases classification. When
tested for normal/abnormal classification, DenseNet and
MobileNet-V2 recorded 90% and 89.3% AUROC, respec-
tively, when trained by NIH-CXR, versus 96% and 95.1%
on RIH-CXR. On the other hand, MobileNet-V2 recorded
AUROC with 1% average distance within that of DenseNet.
As a result, MobileNet-V2 and DenseNet performance was
comparable, and decreases slightly when tested by exter-
nal dataset, which should be taken into consideration when
applying to other institutions’ datasets.

Evaluating the effect of augmentation on classification,
Ogawa et al. [173] used augmented training datasets for
abnormal chest radiographs detection based on deep convo-
lutional neural network. The augmentation was followed by
a binary classification of the images and the accuracy mea-
sured was higher than that with non-augmented datasets.

The ability of deep learning classification methods to han-
dle label noise was studied by Calli et al. [174]. The test
was applied on chest radiographs and exactly on ChestX-
ray14 publicly available dataset. The experiments revealed
that deep learning methods are robust against label noise but
are not completely insensitive to them. Results show that
16% and 32% training label noise cause only 1.5% and 4.6%
respective drops in accuracy.

Another approach to general classificationwas age predic-
tion. Karargyris et al. [175] aimed to predict the patient’s age
from his CXR and compare it to his actual age to improve
counseling particularly when there is a notable difference.
CNN was trained in regression on a large publicly avail-
able dataset, and heat maps were explored to realize the
significance of areas near spine, shoulders, mediastinum and
clavicles for age prediction.

Wong et al. [176] aimed to classify the disease-free CXRs
without risking to discharge sick patients. The proposed
architecture is based on Inception-ResNet-v2 model that is
trained using ImageNet to provide image features, then by
CXRs labeled by radiologists. The precision is optimized to
100% and the recall to 50% in order to classify a good num-
ber of normal X-rays (but not all) making clinicians work
easier.

Similarly, classification of CXR was the target of Ma et
al. [177] who proposed a novel scheme of cross-attention
networks (CAN) for automated thoracic disease classifica-
tion, where features were got from pumping images into two
networks that have different initializations, which will then
go into ReLU layers. The feature maps then would be the
input to a transition layer to transform two groups of features
into the same shape, then cross-attention feature maps are
produced using Hadamard product.

Purkayastha et al. [178] documented the implementation
of deep learning in LibreHealth Radiology, a version of a
modern electronic health record system (LiberHealth EHR)
that is dedicated to radiology and imaging professionals. The
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Table 8 Contributions to
classification in pulmonary
medical imaging analysis

Authors Year Citations Image modality Target

Abiyev and Maaitah [169] 2018 26 CXR General thoracic diseases

Hwang et al. [170] 2019 18 CXR General thoracic diseases

Tang et al. [172] 2019 5 CXR General thoracic diseases

Pan et al. [62] 2019 5 CXR General thoracic diseases

Ogawa et al. [173] 2019 2 CXR General thoracic diseases

Kim et al. [171] 2019 2 CXR General thoracic diseases

Calli et al. [174] 2019 1 CXR General thoracic diseases

Purkayastha et al. [178] 2019 1 CXR General thoracic diseases

Karargyris et al. [175] 2019 0 CXR General thoracic diseases

Wong et al. [176] 2019 0 CXR General thoracic diseases

Ma et al. [177] 2019 0 CXR General thoracic diseases

Tang et al. [179] 2019 1 CT General thoracic diseases

Gao et al. [180] 2018 118 CT Interstitial lung diseases

Kim et al. [181] 2018 21 CT Interstitial lung diseases

Lakhani and Sundaram [81] 2017 416 CXR Infections, tuberculosis

Raju et al. [182] 2019 0 CXR Infections, tuberculosis

Zech et al. [183] 2018 101 CXR Infections, pneumonia

Stephen et al. [80] 2019 4 CXR Infections, pneumonia

Wang et al. [184] 2019 0 CXR Pulmonary edema

Zucker et al. [185] 2019 1 CXR Airway diseases

Zhao et al. [111] 2019 0 CT Airway diseases

Wang et al. [186] 2019 2 CXR Pneumothorax

Pesce et al. [145] 2017 2 CXR Lung Cancer

Takemiya et al. [187] 2019 1 CXR Lung cancer

Shen et al. [192] 2017 172 CT Lung cancer

Ciompi et al. [194] 2017 129 CT Lung cancer

Liao et al. [196] 2019 76 CT Lung cancer

Song et al. [203] 2017 69 CT Lung cancer

Hussein et al. [197] 2017 46 CT Lung cancer

Masood et al. [142] 2018 41 CT Lung cancer

Hussein et al. [188] 2017 39 CT Lung cancer

Wang et al. [195] 2017 37 CT Lung cancer

Shen et al. [190] 2019 22 CT Lung cancer

da Silva et al. [191] 2018 25 CT Lung cancer

Kuan et al. [144] 2017 23 CT Lung cancer

Xu et al. [199] 2019 19 CT Lung cancer

Liu et al. [193] 2017 13 CT Lung cancer

Khosravan et al. [198] 2019 9 CT Lung cancer

Xie et al. [202] 2019 4 CT Lung cancer

Luckehe and von Voigt [189] 2018 3 CT Lung cancer

Srivastava and Purwar [201] 2019 1 CT Lung cancer

Byun et al. [200] 2019 0 CT Lung cancer

Zhou et al. [119] 2019 4 Multiple Lung cancer
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approach integrated CheXNet into LibreHealth Radiology
allowing physicians to upload chest radiographs to diagnose
in means of 30 seconds 14 thoracic diseases, reducing the
usual delay and surpassing shortage of trained radiologists.
A web service is provided to allow clients with poor compu-
tational resources to make use of the system, achieving 86%
accuracy.

Finally, an approach used CT scans for classification.
Tang et al. [179] targeted classification of four lung diseases:
pneumonia, nodule, pulmonary edema and atelectasis using
case-level weak supervision. A local dataset was prepared
and labeled based on radiologists reports after being ana-
lyzed by rule-based models. Ten CT slices for each patient
held the same label yet possibly did not all show the diseases.
Performance of deep classifier (ResNet-50 with fourfold
cross-validation) was recorded on slice-level (standalone
slice) and on patient-level (mean probability of five slices
chosen where they have the highest probability). For slice-
level, AUC recordswere 71% for nodule, 79% for atelectasis,
96% edema, and 90% for pneumonia, whereas on patient-
level, AUC recorded 74% for nodule, 83% for atelectasis,
97% for edema, and 91% for pneumonia. In addition, a heat
map is generated to approximate the disease detector.

Interstitial lung diseases

ILD were targeted by two approaches. Gao et al. [180] pro-
posed a network consisting of five convolutional layers, three
FC layers and a softmax classification of 6 classes. Kim et
al. [181] also employed convolutional neural network con-
taining 6 layers (4 convolutional and 2 fully connected) for
classification of diffuse lung disease regional patterns, and
compared it with a shallow learning method (Support Vector
Machine). The deep learning method significantly outper-
formed shallow ones, as the classification accuracy of CNN
recorded 95.12%. Clinical information and additional train-
ing data are expected to enhance the performance.

Infections: pneumonia and tuberculosis

Classification of TB-diseased or pnuemonic images from
healthy ones was also approached from deep learning point
of view. Lakhani and Sundaram [81] compared two dif-
ferent deep convolutional neural networks: AlexNet and
GoogLeNet. Both models were used to classify images
as diseased with pulmonary TB or as healthy, and used
for that both trained and untrained networks of ImageNet.
Augmentation was applied as well, in addition to multi-
ple pre-processing techniques. Ensembles were performed
on the best-performing algorithms. In cases were classi-
fiers resulted in contradictory classifications, an independent
board-certified cardio-thoracic radiologist interpreted the
images. An ensemble of the two DCCNs performed the

best as it recorded the highest AUC (0.99). Besides, the
pre-trainedmodels surpassed untrained ones.Moreover, aug-
mentation increased accuracies and radiologists assessment
in cases of disagreement further improved the results.

Similarly, Raju et al. [182] targeted TB detection using
a complete CNN approach, applied on CXRs. Data were
intensified at the edges and then cropped by identifying the
background. Resizing and normalization of pixel valueswere
then applied before implementing two suggested methods.
Thefirstmethod proposedwas deep residual network, and the
secondwasOxfordnet. Formethod 1, sensitivity was 82.08%
and specificity was 93.80%, while for method 2, sensitivity
was 84.91% and specificity was 93.02%. Additional training
of the models would increase their robustness and applying
more pre-processing methods can improve the performance.

Moving to pneumonia, Zech et al. [183] aimed to test the
performance of deep learning models with variable general-
ization. To meet their objective, they compared the datasets
impact on CNN classifiers used for pneumonia detection
in chest radiographs. As a result, five natural comparison
models were considered, each built up from different combi-
nations of training and validation datasets. The experiment
revealed that CNNs were best performing when internal
datasets were involved (3 out of 5 natural comparisons),
which may confound disease predictions. The best values
achieved were 73.2% for accuracy, 93.4% for AUC, 95% for
sensitivity and 70.9% for specificity.

Moreover, Stephen et al. [80] proposed a deep learning-
based model for classification of pneumonia using CXRs
from [63] dataset. The proposed model did not include trans-
fer learning. Instead, it was built to extract features from the
input X-ray and classify it. Several augmentation techniques
were applied to enhance the validation accuracy allowing it
to achieve remarkable results. The accuracies recorded best
at 200 dataset size, where training and validation accuracies
recorded 95.31% and 93.73% respectively.

Pulmonary edema

For the classification of pulmonary Edema severity using
CXRs, Wang et al. [184] compared a number of deep
learning based models; DenseNet, ResNet-50, Inception-
V3, InceptionResNet-V2,NASNetMobile, DenseNetw/lung
ROI, DenseNet w/Semi-Supervised I, DenseNet w/Semi-
Supervised II). A large-scale dataset was used (MIMIC-
CXR) and highest AUC recorded for multi-class severity
classification was for DenseNet w/ Semi-Supervised II
(81.3%), as well as for no-pneumonia and mild pneumo-
nia (85.3% and 74.7% respectively). DenseNet w/ Semi-
Supervised I achieved best AUC for severe pneumonia
(88.9%) while NASNetMobile achieved best AUC record
for moderate pneumonia. As a result, semi-supervised learn-
ing via self-training with pseudo labeling is promising with
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respect to dealing with large-scale unlabeled images tested
for pulmonary edema.

Airway diseases

However, among airways diseases classification, Zucker et
al. [185] aimed to investigate the hypothesis that DCNN
can facilitate automated Brasfield scoring of CXRs and con-
cluded its promising accuracy, similar to or exceeding that
of board-certified pediatric radiologists, except for the air
trapping and large lesions subfeatures. Note that Brasfield
scoring system is specific to cystic fibrosis evaluation using
CXRs.

Adding to that, Zhao et al. [111] proposed a two-stage
2D/3D neural network and a linear programming based
tracking algorithm for airway segmentation, followed by
a bronchus classification algorithm based on segmentation
results.

Pneumothorax

Targeting pneumothorax pulmonary disease classification,
Wang et al. [186] proposed a deep-learning-based image
classification method for using CXRs. It is composed of a
DCNN that features a network in network (NIN) for data
cleaning and random histogram equalization data augmen-
tation processing. The method’s efficiency was validated as
experiments yielded 98.44%AUC and 99.06% on ZJU-2 and
ChestXray14 datasets, respectively.

Lung cancer

Targeting lung cancer in its different forms with classifi-
cation task is a novel approach with plenty of contribution.

At the level of CXR, the contribution of Pesce et al.
[145] was updated in 2019 [146]. It basically proposed two
architectures for lung nodules detection from chest radio-
graphs using visual attention networks; the first is CNN with
attention feedback CONAF and the other is recurrent with
annotation feedback RAMAF, accompanied with an NLP
system for tagging images automatically to be validated. For
classification evaluation, CONAF achieved highest accuracy,
F1 score, sensitivity and precision when compared lesions to
normal only (0.85, 0.85, 0.78 and 0.92, respectively), and
highest accuracy and F1 score only when compared lesions
to all others (0.76 and 0.67, respectively). Yet, it recorded
0.74 sensitivity and 0.6 precision when compared to all oth-
ers.

At the same level, Takemiya et al. [187] targeted pul-
monary nodules detection using Region-CNN on chest
radiographs. They first selected candidate regions from X-
rays by selective search, then applied CNN classifier to
classify nodules from non-nodule opacities.

However, among CT image modality, more contributions
were published.

Hussein et al. [188] targeted lung nodules classifica-
tion as malignant or non-malignant using CNNs for feature
extraction, taking into consideration the notable variations
in appearance between nodules. The model proposed is a
multi-view CNN that used first Median Intensity projection
to produce three 2D patches each corresponding to a certain
dimension. A tensor is formed by concatenating the three
patches which serve as different input image channels. Data
augmentation is applied after then, and the CNN network
extracts the features from augmented input images to finally
undergo Gaussian Process regression obtaining the malig-
nancy score. High level attributes achieve 86.58% regression
accuracy (0.59 SEM%) while adding CNN to the attributes
increases regression accuracy to 92.31% (1.59 SEM%).

Besides, Luckehe and von Voigt [189] aimed to simplify
the image based on an evolutionary algorithm EA, in order
to focus on relevant parts in classification using CNN. This
showed that even though 50% of the pixels were simplified,
meaningfulness was preserved and run-time was enhanced.

In addition, Shen et al. [190] targeted lung nodule malig-
nancy classification specifically in CT scans through a hier-
archical semantic convolutional neural network (HSCNN).
They provided a network of two output levels: a low-level
that quantifies five diagnostic features used by radiologists
and can explain how the model interprets images profes-
sionally; and a high-level malignancy prediction score. The
high-level output takes information from low-level tasks alto-
gether with representations learned by convolutional layers,
and use them to predict the malignancy score. The proposed
model’s experimental results surpassed common 3D CNN
approaches and showed notable advance in the interpretabil-
ity of the model. Yet, the features selected did not cover all
semantic ones, and labels of LIDC dataset were not reflecting
pathological diagnosis.

DFCNet based on deep fully convolutional neural network
was proposed by Masood et al. [142], targeting pulmonary
cancer detection and stage classification in CT images. Can-
cer detected with the help of metastasis information obtained
from MBAN (Medical Body Area Network—IoT) was then
classified into one of four lung cancer stages. The accuracy
of DFCNet recorded 84.58% while 77.6% for CNN, and the
proposed model was considered as generic that could cover
different cancer types.

da Silva et al. [191] used paper swarm optimization PSO
algorithm to optimize the convolutional neural network’s
hyper-parameters such as pooling type, number of batches
training and dropout probabilities. The PSO involvement
aimed to reduce the false-positives’ rate and eliminate the
need for manual search. The proposed method was com-
pared to different conventional and deep learning techniques
and recorded the best performance rates especially sensitiv-
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ity. The results were 97.62% for accuracy, 95.5% for AUC,
98.64% for specificity and 92.2% for sensitivity.

On the same side, Shen et al. [192] presented a multi-crop
CNN that automatically extracts nodule remarkable infor-
mation by employing a pooling strategy that crops different
regions from convolutional feature maps. After then, it effec-
tively appliesmax-pooling different times. In addition to lung
nodule malignancy classification, the proposed model char-
acterizes semantic attributes and diameter of nodules, which
are potentially helpful in modeling nodule malignancy. The
highest classification accuracy obtained was 87.14% where
MC-CNN had 64 layers, while AUC’s best record (0.93) was
at 16 layers ofMC-CNN. Specificity and sensitivity recorded
77% and 93%, respectively.

Liu et al. [193] presented a 3d CNN trained from scratch,
to classify pulmonary nodule malignancy. Different com-
binations of traditional machine learning models and 3D
CNNs were used to create ensembles for classification.
Results showed that models involving 3D CNNs—whether
single or ensemble—outperformed those which do not. Fur-
thermore, an ensemble that joins traditional models to 3D
CNN yields complementary information enhancing its per-
formance. AUC recorded for single 3D CNN was 73.2%
while that for ensemble model including 3D CNN was 78%.

Also, Ciompi et al. [194] targeted the automatic pul-
monary nodule management by applying deep learning on
lung cancer screening using CT scans. It proposed a model
based on multi-stream multi-scale convolutional networks
that aim to classify all nodule types without the need for any
information. The system eliminated need for additional pre-
processing such as segmentation of nodules and their sizes by
learning to analyze arbitrary number of 2D views of a given
nodule and forming a 3D representation of it. Experiments
show a performance better than that of classical machine
learning approaches (accuracy between78%and79.5%), and
within the inter-observer variability. More training data can
enhance some tests’ recall and precision values.

Adding to contributions, Wang et al. [195] targeted nod-
ule classification using chest radiography through a proposed
deep feature fusion process involving non-medical and hand-
crafted features willing to reduce false-positive rate. Exper-
iments showed that the fusion of both deep model features
and handcrafted ones outperform using only single hand-
crafted features as sensitivities and specificities recorded
were, respectively, 69.3% and 96.2% for deep fusion, and
62% and 95.4% for single handcrafted features. Authors look
forward to build a big dataset from clinical data to train the
network in the future.

Liao et al. [196] targeted malignancy of pulmonary nod-
ules proposing a 3D deep neural network consisting of two
parts: a 3D region proposal network for nodule detection,
and another one that selects the top five nodules based on
the detection confidence evaluating their probability to be

cancerous. Both parts are modified U-net models, and the
final architecture came first in Data Science Bowl 2017 com-
petition. It recorded 81.42% accuracy at 0.5 threshold, and
69.76% at threshold 1. Moreover, the AUC recorded 87% at
threshold 0.5. Ranking 41st out of 1972 teams in the Kaggle
Data ScienceBowl 2017,Kuan et al. [144] presented a frame-
work for computer-aided lung cancer diagnosis. It aimed to
detect the nodules in 3DCAT scans and then classify them as
malignant or not, to finally assign a cancer probability based
on the results. Log-loss valued 0.52712where only 4 features
were used in the competition (number of nodules, mean, std,
and sum of softmax output). For additional features, results
for theNoduleClassifierNCrecorded0.632 sensitivity, 0.582
specificity, 0.474 F1 score, and 0.578 log-loss. The combina-
tion of detector with nodule classifier achieved better results
in all metrics.

Hussein et al. [197] proposed a framework that aims
to classify pulmonary nodules whether malignant or not.
They employed transfer learning over 3D CNN in order to
enhance the characterization of nodules. First, the architec-
ture fine-tunes 3D CNNs involving 6 attributes in addition to
a malignancy label. Each attribute and label are passed into
a different 3D CNN where each consists of 5 convolution, 5
max pooling and 2 fully connected layers. Fusion of features
comes next, then finally the multiplication with coefficient
vector to obtain malignancy score. The proposed model
achieved 91.26% accuracy upon experimenting. Including
PET scans with CT seems promising on the level of diagnos-
tic accuracy improvement.

Moreover, [198] developed an eye-tracking interface that
is out of scope of this survey. The eye-tracking data and
a CAD system are unified using an algorithm that involves
graph-based clustering and sparsification, in order to interpret
gaze patterns both quantitatively and qualitatively. Fur-
thermore, segmentation and suspicious areas diagnosis are
performed by an incorporated deep learning multi-task plat-
form. Tests were made on low dose chest CT scans and
specifically lung cancer screening, but showed a possibility
of generalizing the framework to cover more complex com-
plications and different image modalities. The best accuracy
recorded for classification was 97%, and the DSC for seg-
mentation was 91%. The common limitation of availability
and abundance of training data was present too.

Besides, Xu et al. [199] targeted lung cancer treatment
response prediction using deep learning on serial CT imag-
ing. Two local datasets of stage-3 non-small cell lung cancer
patients’ CT scans were customized to train and validate the
efficiency of a CNNwith RNNmodel. The datasets involved
images from pre-treatment and post-treatment follow-up (1,
3 and 6 months later). It was noted that each additional
follow-up scan added for training has enhanced the model
performance. Result of the model was grouping images
according to mortality risk and evidence of the ability to
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integrate multiple-time-points scans into the deep learning
approach.

Another contribution was by Byun et al. [200], which tar-
geted ground-glass nodules (GGN) classification in chest CT
scans. Themethodology proposed starts with image augmen-
tation and background removal to enhance the input image
and then uses a GGN-Net classifier that classifies GGNs into
three classes using multiple input images, and the classi-
fication performance is evaluated according to input images
types. The proposedmodel achieved 82.79% accuracy which
was higher than single input images by 10.35%, 13.79%,
and 6.90% for intensity-based, texture-enhanced and shape-
enhanced images, respectively.

Srivastava and Purwar [201] aimed to simplify the deep
learning classification process of lungs’ CT images by
embedding six external shape-based features; viz. solidity,
circularity, discrete Fourier transform of radial length func-
tion, histogram of oriented gradient, moment, and histogram
of active contour image. Experiments recorded 95.26% pre-
cision average and 69.56% recall average for two databases.

Also, Ogawa et al. [173] aimed to study the impact of
augmentation on binary classification using DCNNs when
applied to chest radiographs. The model was trained using
images augmented by many operations, either alone or com-
bined: rotation, horizontal and vertical flipping, brightness
variation and Gaussian blur. Augmentation improved the
accuracy of the network model, and the best record was
achieved when rotation and horizontal flipping were applied
together (91%).

Last but not least, Xie et al. [202] targeted benign-
malignant lung nodule classification on chest CT scans. The
proposed model is built up from two parts: an adversar-
ial auto-encoder-based unsupervised reconstruction network
and a supervised classification network. The two parts of the
model are connected by learnable transition layers for adap-
tion. An extension of the model was applied to characterize
each nodule’s overall features and was experimented using
LIDC-IDRI dataset recording 92.53% accuracy and 95.81%
AUC.

Same as in detection, lung cancer was mostly the tar-
get in classification. However, general thoracic disease were
also targeted by a good number of approaches relatively.
The image modalities used in each targeted topic are almost
the same as those used in detection too; CXR for general
thoracic diseases, PE and infections, whereas CT was used
for ILD and lung cancer. Airway diseases were approached
from both perspectives (CXR and CT) in a couple of
approaches, respectively. General thoracic diseases included
classification of anteroposterior/posteroanterior views, nor-
mal/diseases images, age prediction, or multiple diseases
altogether. In lung cancer, classification was mainly for
malignancy or ground-glass nodules types.

Classification approaches using deep learning methods
have recorded good performance values; highly dependent
on pre-processing techniques, external information involved,
pooling methods used, multi-resolution models, and detec-
tion performance. Architectures were based on CNNs, some-
times comparing different architectures or applying them
with certain edits. Examples on the architectures areAlexNet,
GoogLeNet, DenseNet, and region attention feedback net-
works. Moreover, the choice of training and validation
datasets was proved to be critical, similar to the impact of
training dataset which are abundantly available. Classifiers
are improving their generalizability to cover many diseases
at once, and urgency level for treatment has become a target
to predict as well.

This part presented an overview of deep learning. Then,
it highlighted several surveys on deep learning application
to pulmonary medical imaging analysis. Next, it summed up
the contributions to the aforementioned topic, categorizing
them on the task level (registration, image enhancement, seg-
mentation, detection, feature extraction and classification).
In depth of the tasks, a closer look was taken to targeted
diseases, used image modalities, and basic adopted archi-
tectures. Finally, conclusions were drawn as a result of the
discussions. Extensive work has been done to pulmonary
image analysis, and eventually continues to be done until
clinically approved.

4 Deep learning and pulmonary medical
imaging analysis: COVID-19

InDecember 2019,Huang et al. [204] reported the first occur-
rences of 2019 novel coronavirus (COVID-19), which was
then recognized by WHO [3] on December 31st. Later, in
March of 2020, it was declared as pandemic, having infected
more than 7 billion people worldwide by June 2020. As fast
as that, deep learning applications were shifted from all pos-
sible domains to emphasize on the humane catastrophe.

4.1 COVID-19

It is the infectious disease caused by themost recently discov-
ered coronavirus, which belongs to a large family of viruses
that may cause illness in animals or humans. In humans, sev-
eral coronaviruses are known to cause respiratory infections
ranging from the common cold to more severe diseases such
as Severe Acute Respiratory Syndrome (SARS) and Middle
East Respiratory Syndrome (MERS). Fever, tiredness and
dry cough are the most common symptoms of COVID-19.
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4.2 Medical imaging and COVID-19

Basically, the diagnosis of COVID-19 is based on poly-
merase chain reaction (PCR) tests,while the usage ofmedical
imaging as a diagnostic test for COVID-19 was controver-
sial. Most radiological societies did not recommended CT
screening for COVID-19 detection, especially that it has
similar features to several pneumonia types. By the end of
March, Simpson et al. [205] anticipated a potential use of CT
screening in clinical management and proposed four cate-
gories of standardized CT reporting language of COVID-19.
Later in April, a study by Mahmood et al. [206] of 12270
patients recommended patients undergo CT screening to
detect COVID-19 the earliest, in order to prohibit or avoid
the speedy spread of infection.

And even thoughCT scanswere favored over chest X-rays
forCOVID-19 detection, another perspectivewas thatX-rays
are cheaper, more available, and even portable (PCXR), min-
imizing the chances for patients to move around and spread
the virus. This was the case with the classification scenarios
suggested by Pereira et al. [207] for identification of COVID-
19.

Portability, bedside evaluation capability, and possibility
to repeat the examination during follow-up have questioned
the possible diagnostic and prognostic role of lung ultrasound
(LUS) and later application of deep learning to it. A study
by Soldati et al. [208] stated that LUS are urgently needed
and suggested a comparison with chest X-ray and/or lung
CT scan to help design a diagnostic workup suitable to the
technological and human resources.

On another side, the statement of the Italian Society of
Medical and InterventionalRadiology aboutCTandAIusage
is suspected or COVID-19 positive patients [209] recom-
mended chest X-rays as a first-line imaging tool, CT as an
additional tool and US as a monitoring tool, prioritizing the
sanitation of scan equipment after suspicion or detection
of COVID-19 positive patients. Moreover, it supported the
research on the use of AI as a diagnosis and prognosis deci-
sion support system excluding AI-CT scans combinations,
insisting that CT scans should not be considered as first-line
test to diagnose COVID-19.

A review on the role of imaging in the detection and man-
agement of COVID-19 by Dong et al. [210] revealed that
characteristics of typical imaging and their changes play an
important role in the detection and management of COVID-
19. In addition, it showed that CT scans can improve the
speed and accuracy of diagnosis and patient management, if
made based on epidemiological history, nucleic acid detec-
tion, clinical symptoms, and laboratory findings. Not only
that, but also predicted that the combination of AI and CT
scans can offset medical resources limitations, speed up the
diagnosis process and assess in the prognosis.

In all cases, multi-center studies will still be needed to
ascertain the current findings.

4.3 Reviews on deep learning applications to
COVID-19medical imaging analysis

Researchers dedicated their time and resources to help fight
the virus on several levels. And for sure, Artificial Intelli-
gence had its big share. For instance, it was suggested as a
detection mechanism of the cough of a COVID-19 patient
[211]. Another example on deep learning specifically was a
technique suggested for monitoring COVID-19 social dis-
tancing by Punn et al. [212]. No proposed system aimed to
fully replace clinical tests or diagnosis; however, they were
emerging as backup plans for peak hours and to assist inex-
perienced medical teams.

Technological strategies

Startingwith technological strategies for controllingCOVID-
19 pandemic, a review by Elavarasan and Pugazhendhi [213]
listed image analysis in the viable prospective technologies,
under AI category. Ethical and legal issues are considered
as significant challenges of image analysis, while future
prospects include clinicians need to work closely with the
AI research community.

Another approach was a review by Kumar et al. [214],
that emphasized more on diagnosis using radiology images
and patient’s health condition prediction. Moreover, it stated
contributions recording accuracies of applications of AI in
CT diagnosis of COVID-19 ranging from 79.3% until 95%.
A wide scope potential utilization of these technologies is
concluded to cover clinical and cultural difficulties caused
by coronavirus, but still need advances to meet the needed
operational effect.

Artificial intelligence

Other reviews covered AI with COVID-19. Naudé [215] dis-
cussed the limitations, constraints and pitfalls of AI with
COVID-19. Emphasizing on diagnosis and prognosis, using
AI can speed it up, save lives, limit the spread of coronavirus
and increase the training data needed to improve the algo-
rithms. However, the potential of AI in this domain “isn’t
yet carried into practice.” The limitations are usually the
unavailability of enough training data, the selection probable
bias, and the possibility of contamination of equipment upon
imaging patients. Therefore, according to them, “no one this
spring is going to be given a coronavirus diagnosis by an AI
doctor.”

Another review on AI applications by Kulkarni et al.
[216] Summarized the main applications of AI in COVID-19
pandemic in early detection and diagnosis of the infection,
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monitoring the treatment, contact tracing of the individuals,
projection of cases and mortality, development of drugs and
vaccines, and prevention of disease.

Shi et al. [217] covered the entire pipeline of AI medical
imaging analysis techniques for COVID-19. For segmen-
tation, all contributions were on CT images, segmenting
either lungs, lung lobes, lung segments, lesions, trachea or
bronchus. The methods used included U-Net, U-Net++, VB-
Net and other commercial software. However, for diagnosis,
contributions were performed on X-rays or CT scans, while
methods included CNN, ResNet50, U-Net++, U-Net, or RF.
The diagnosis methods accuracies ranged between 82.9%
and 98%. A final note mentioned that these methods provide
only little information about COVID-19 patients whichmake
it a decision support tool rather than a first-line test.

Besides, Nguyen et al. [218] surveyed block-chain and
AI-based solutions to combat COVID-19. The main future
prospects deduced concerning medical imaging analysis
solutions to COVID-19 were the development of AI models,
and the combination of AI-based solutions with other tech-
nologies. Adaptive AI models were suggested for predictive
modeling, patient monitoring, and in emergency depart-
ments. The high computational capability and resourceful
storage are the cloud special features that would facilitate
AI analytics if integrated. Thus, a highly advanced med-
ical system is expected in the near future to combat the
coronavirus-like epidemics.

The Need of Active Learning and Cross-Population
Train/Test Models on Multitudinal/Multimodal Data was
studied by Santosh [219]. It is basically the need to tools
that can learn over time without having full knowledge about
the data (Active Learning—AL), where learning is incre-
mented as time proceeds (Incremental Learning-IL) allowing
the model to adapt to new data. Moreover, it is wise—with
respect to the authors—as a result of their research to use
multimodal and multitudinal data with AI tools to be ready
for dealing with COVID-19—like epidemics, where the vari-
ety in the data characteristics and from different populations
can yield more consistent decisions.

Prediction models

Covering prediction models, a review by Wynants et al.
[220] on prediction models for diagnosis and prognosis of
COVID-19 stated that these models are at high-risk bias due
to selection of control patients, exclusion of patients who
lose interest in the study before it ends, and model over-
fitting. And the recommendation is for an urgent update of
COVID-19 related prediction models, their validation, and
their development by sharing data and expertise. Otherwise,
the estimates are likely to be misleading. Besides, the pre-
diction models identified in models included in the review

Table 9 Datasets used in training and validating deep learning algo-
rithms

Dataset types Percentage of papers from total

Collected 30%

Public 70% LIDC or subset 28%

ChestXray14 15%

Shenzhen 5.8%

JSRT 5.8%

TCIA 4.7%

Others 18.6%

are advised to be considered as candidate predictors for new
efficient models.

4.4 Deep learning applications to COVID-19medical
imaging analysis

Contributions to deep learning applications for COVID-19
that were published in pre-prints until the end of May 2020
were excluded from the search. However, they might be
included in the previous part. Table 10 lists the contributions
described below.

4.4.1 Segmentation

Starting with segmentation, Butt et al. [221] proposed a sys-
tem to screen coronavirus disease 2019. It used a 3D CNN
to segment multiple candidate cubes from the CT scan after
pre-processed. Then, the system collects the center image
and the two neighbors of each cube. After then, classification
takes place to categorize patches into COVID-19, Influenza-
A-viral-pneumonia, and irrelevant-to-infection. To vote the
patches from the same cube, the type and the confidence
score are used. Finally, Noisy-or Bayesian function are used
to calculate the overall analysis report.

Another segmentation system was proposed by Wang et
al. [32], which is applied to chest X-rays, basically using a
CNN to extract the feature map of the image along with the
classification result, regression result, and the needed mask.

Murphy et al. [222] performed a multi-reader of an AI
system based on chest X-rays and was for commercial use
that targets the detection of tuberculosis. The system is of
two parts: segmentation of lungs using U-Net and then a
patch-based analysis by a CNN, followed by an ensemble
of networks that aim to classify images as a final step. AUC
recorded was of 0.81, and the system was comparable to six
independent readers performance.
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4.4.2 Detection

As for detection, many contributions were recognized. Hurt
et al. [226] proposed a localization system based on U-Net
trained with 22k radiographs annotated by radiologists pro-
ducing probability maps, which seemed to be generalizable
and robust to be applied with patients of COVID-19.

On another side, Loey et al. [227] tested all three algo-
rithmsAlexNet, GoogleNet andResNet-18 on three different
scenarios: one containing four dataset classes, another one
including three classes, and a third scenario including two
classes. GoogleNet is selected as the best deep transfer
model of the first scenario (80.6% testing accuracy), AlexNet
is selected for the second (%85.2 testing accuracy), and
GoogleNet for the third scenario (100% for testing accuracy
and 99.9% for validation accuracy).

As for comparison too, Apostolopoulos and Mpesiana
[228] experimented VGG-19, MobileNet-v2, Inception,
Xception, and Inception-ResNet-V2 with transfer learning
on Covid-19. The best confusion metrics were given by
MobileNet-V2 and VGG-19.

Li et al. [223] developed a 3D deep learning tool for
COVID-19 detection using CT scans. First, the 3D CT exam
is pre-processed and lungs are extracted as ROI using U-Net.
Then the second part of the tool is based on a ResNet-50
network that aims to generate features, that then will be max-
pooled. Finally, the feature maps is fed into a fully connected
layer and activated using soft-max functions to generate the
probability score for COVID-19, CAP and non-pneumonic.
Both local 2D features and global 3Dones are being extracted
at the first place. AUC recorded is 0.96.

A COVID-19 detection system for X-rays and CT scans
is proposed by Kassani et al. [225] and tested using different
backbone networks. The best achieved accuracies were by
DenseNet121 (99%) followed by a hybrid learner based on
ResNet-50 trained by LightGBM (98%). The other included
back-bone networks areMobileNet,Xception, Inception-V3,
Inception-ResNet-V2, VGG and NASNe.

Luz et al. [229] also experimented different networks on
chest X-ray images in order to detect COVID-19. An Effi-
cientNet is proposed of five families that differ in input
image shape. It is basically made up of convolutional layers
followed by pooling layers and Mobile Inverted Bottlneck
Conv self-made blocks. Its performance is then compared to
MobileNet, MobileNet-V2, ResNet-50, VGG-16 and VGG-
19. Results showed that EfficientNet had fewer parameters
than ResNet-50 and VGG-16, with high accuracy and sen-
sitivity (highest recorded was for EfficientNet B3: 93.9%
accuracy and 96.8% sensitivity)

In addition, Hasan et al. [224] suggested a framework
that uses histogram thresholding to isolate the background of
CT lung scan, which then undergoes feature extraction using
CNN and Q-deformed entropy algorithm. Then the features

extracted are classified using long short-termmemory neural
network (LSTM NN). The achieved accuracy was 99.68%
using the collected dataset.

Toğaçar et al. [230] also proposed a framework for
COVID-19 detection using chest X-rays, starting with fuzzy
color technique as a pre-processing step to restructure the
data classes, then stack them with original images. After
then, the stacked dataset is trained with SqueezeNet and
MobileNetV2, then outputs are processed using an opti-
mization method. SVM is finally used to classify the results
achieving 98.3% accuracy.

4.4.3 Classification

As for classification, Wu et al. [231] proposed the fusion of
deep learning networks for COVID-19 detection using the
maximum lung regions in axial, coronal and sagittal views
of CT scans. The lung regions are first segmented using
threshold segmentation; then, the model based on ResNet-50
is trained yielding the three branch network output feature
maps. A fully connected layer receives the output. AUC
recorded 0.732, while the accuracy achieved 70% in vali-
dation test. In testing, AUC and accuracy achieved 0.819 and
76%, respectively.

Ozturk et al. [236] also proposed a framework for the
same objective, based on 17 convolution layers and dif-
ferent filtering. The accuracy achieved for binary classifi-
cation (COVID vs. No-Findings) recorded 87.02% and for
multi-class (COVID vs NO-Findings-Pneumonia) recorded
98.08%.

Besides, Ardakani et al. [232] compared ten neural net-
works on CT scans for classification of COVID-19: AlexNet,
VGG-16,VGG-19, SqueezeNet, GoogleNet,MobileNet-V2,
ResNet-18, ResNet-50, ResNet-101, and Xception. ResNet-
101 appeared to beof high sensitivity and could be considered
in radiology department to facilitate operations.

Ucar and Korkmaz [233] proposed a framework using
chest X-ray that is based on SqueezeNet tuned for coron-
avirus with Bayesian optimization additive. It is an easy-
to-implement deep learning model which has an accuracy
performance of 98.3% (among normal, pneumonia and
Covid cases), and 100% for the single recognition ofCOVID-
19 (among other classes).

Moreover, Farid et al. [234] compared the performance of
proposed feature extractor and proposed stack hybrid clas-
sification using CT scans, with a CNN model. The result
was reduced false-negative rate and showed a relatively high
overall accuracy with more accurate results for the favor of
the proposed model.

Butt et al. [221] proposed a deep learning framework for
the classification of COVID-19 also. It was experiments on
two levels: first where a traditional ResNet-23-based network
is the back-bone network, and second where a location-
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attention mechanism is concatenated in the fully connected
layer. The second network’s performance surpassed the first
one, recording an overall accuracy of 86.7%.

CNN was used in Singh et al. [235] contribution on CT
scans to classifyCOVID-19 infectedor non-infectedpatients.
The initial parameters were tuned using a multi-objective
differential evolution (MODE). The results surpassed other
models (i.e., ANN, ANFIS,…) by 1.9789% in terms of accu-
racy.

5 Discussion

Applications of deep learning technology are developing day
after day in various domains, such as audio processing, text
analysis and natural language processing, physical sciences
andmany other [10]. Emphasizing on its application tomedi-
cal imaging analysis, there was a notable advance after 2017
as several pulmonary diseases and medical concerns were
targeted from different perspectives.The noticeable advance
was due to coronavirus epidemic by the end of 2019, which
rang the bells for clinical trials time to start putting all the
Maths into real-time enforcement.

Previous challenges

Machine learning, broader family of deep learning, has faced
many challenges, being applied to medical imaging domain.
Previously, de Bruijne [237] highlighted five challenges to
be addressed in upcoming research; improvement of data
access, making use of image modalities and data in pro-
cessing pipeline, interpretation of results and application of
models to clinical practice, and training of robust models
with little training data. In addition, de Bruijne [237] spot-
ted the light on future research directions including learning
fromweak labels, coping with variant imaging protocols and
finally improving results interpretations. Learning fromweak
labels was a concern because the majority of algorithms in
the past episode (2015–2017) employed supervised learning
methods according toKer et al. [4]. Another reason is the vast
use of CNNs stated byLitjens et al. [2], which requires a large
amount of relevant training data. Later, Lundervold and Lun-
dervold [9] added to the requirements issues related to data
access, privacy and data protection, especially that medical
data are sensitive and mostly anonymized. Although many
solutions were proposed since then, the objectives remained
to have complex conditions that require further studies.

Weak labels?

Call for work on unsupervised or weak-labeled data grabbed
the attention of few at the level of chest research, such
as Tang et al. [179] who classified four lung diseases

with weak-supervision, and Xie et al. [202] who combined
an adversarial auto-encoder-based unsupervised reconstruc-
tion network with a supervised classification one. Another
approach that targeted registration using weak labels was
that of de Vos et al. [83].

The need for unsupervised learning actually emerged the
most with COVID-19, as in epidemics, there is no time for
radiologists to dedicate for datasets building and manage-
ment.

Datasets

In fact, approaches were more focused on supervised learn-
ing, which brings us to training/validation-data availability.
Litjens et al. [2] clarified that the core problem was not the
unavailability of imaging data, as most of western hospitals
were already equipped with Picture Archiving and Com-
munication systems (PACs). Yet, the issue was not their
availability, but their structure and relevance to the training
objectives. Datasets used by contributions from 2017 until
now were featured in Table 1. Publicly available datasets
were used by approximately 70% of the cases for training,
validation or both. The other 30% of cases used privately col-
lected institutionally authorized datasets which allows the
customization of models to certain areas needs. However,
7.9% of the cases use both collected and publicly available
datasets, either for comparison reasons or to avoid over-
fitting. LIDC and ChestXray14 achieved the highest datasets
usage percentages (28% and 15%) due to the large number
of images available with corresponding annotations. Other
notable public datasets usedwereShenzhen, JSRTandTCIA.
An important dataset CheXpert [38] was published in 2019
and is of interest of many contributions. More information
about most remarkable public datasets used is available in
Table 9.

On another side, COVID-19’s most popular dataset was
published by Cohen et al. [238], who made frontal view X-
rays available after collecting them from different sites and
publications, and added annotations as time proceeds. CT
scans were also made available by Zhao et al. [239] from
216 patients and 463 non-COVID-19 persons. This does not
exclude the self-collected datasets by some aforementioned
contributions.

Results interpretability and training data

Interpretability of results and model behavior can take
place on many property levels according to Molnar [240]:
accuracy, consistency, stability, certainty, and confidence.
Accuracy and confidence interval were used in many
approaches such as that of Purkayastha et al. [178] and Gong
et al. [152]. To evaluate certainty, some approaches calcu-
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lated “precision, recall and F-score.” Others calculated “area
under ROC,” and sometimes approaches calculated both.

For stability, many approaches compared the performance
of their models using different datasets whether for train-
ing, feature learning, validation, or all together. Examples
of approaches in training, validation and all together are,
respectively: Pan et al. [62], Ho et al. [133] and Gozes
and Greenspan [166]. Some also experimented on different
dataset sizes such as Shen et al. [192]. Performance was bet-
ter when validated on internal datasets rather than external
ones (using subset of dataset used for training) by Ho et al.
[133]; however, there is an optimal training dataset size for
each situation. Pediatrics were introduced to chest diseases
diagnosis as suggested by Candemir andAntani [7]; then, the
modelwas trainedwith pediatrics and adults images resulting
with good performance of the deep learning classifier byKim
et al. [171]. However, the addition of adults images to train-
ing data did not increase the accuracy a lot (only increased
1.6%). Data augmentation was also used as one of the effi-
cient pre-processing technique in many approaches to avoid
over-fitting such as that of Zhao et al. [138], Setio et al. [148],
Ho et al. [133]. Bone shadow exclusion such as that of Gor-
dienko et al. [99] and normalization of pixel values like in
that of Raju et al. [182] also improved classification when
applied to input images as pre-processing procedures.

As expected with respect to applying deep learning to
COVID-19, the more Imaging data available, the better the
results are. However, the lack of enough training data has
made researches move on with small available datasets, and
apply augmentation when possible, ending up with a uncer-
tain results, and a call for more dataset entries as soon as
possible.

Networks architecture

Previously, end-to-end trained CNNs were seen to become
the standard practice being integrated by most approaches
into image analysis pipelines, replacing handcraftedmachine
learning methods research [2]. Similarly, their application
fields expanded. Few contributions to chest were based on
auto-encoders such as those of Xie et al. [202] and Nemoto et
al. [163], while many were based on U-nets such as segmen-
tation approaches of Ahn et al. [88] and Furutani et al. [103].
Likewise, other CNN architectures were used as FCNN by
Dou et al. [143], ResNet by Kim et al. [171], and DenseNet
by Gozes and Greenspan [166]. Moreover, combinations of
architectures took place as by Gozes and Greenspan [164]
where ResNet and DenseNet were integrated, and compar-
isons of multiple architectures were explicit as by Gozes
and Greenspan [133], Ayan and Unver [131], Pan et al.
[62], and Wang et al. [184]. The comparison of multi-
ple architectures’ application on same task is interpretation
on consistency level. At the same level, results of experi-

ments were compared sometimes to radiologists’ diagnosis
and classification, showing the competency of deep learn-
ing, such as the approach of Rajpurkar et al. [130] where
model’s performance was compared to 4 radiologists using
only frontal radiographs and that of Ardila et al. [153] where
model’s performance was compared to 6 radiologists.

Multi-view CNNs were proposed by Hussein et al. [188],
multi-task learning was used by Chen et al. [168], and multi-
crop CNN by Shen et al. [192]. Two-dimensional views were
used to form a 3D representation of a given nodule byCiompi
et al. [194], and vice versa, 3D CT scans were used to syn-
thesize X-rays (2D) when they are unavailable by Chang
and Moturu [149]. 3D CNNs were preferred over 2D for
volumetric medical image analysis efficiency-wise in many
approaches, one of them is that of Huang et al. [150].

Models involving CNNs outperformed traditional learn-
ing ones, yet, their combination enhanced performance of the
classifier [193]. Priory information, especially demographic
features, also improved the performance of deep learning
models as concluded by Heo et al. [132]. Sometimes, these
information were integrated through NLP systems as by
Annarumma et al. [128]. On top of that, the role of hand-
crafted features was found, byWang et al. [195], to be useful
on the level of performance enhancement when fused with
deep learned features.

Fine-tuning was put in comparison against pre-training of
deep learning networks, as Lopes and Valiati [165] validated
the usefulness and power of pre-trained networks refuting
the saying that fine-tuning is better. On the other hand, Xu et
al. [127] assured the importance of proper design rather than
the fine-tuning, but still agreed that extra training enhances
the performance of deep learning model.

Because contributions were vigorously developed in the
3years past to COVID-19 pandemic, it was time by 2020
to apply all past methods and study their performance for
the new virus. CNNs were basically used to segment lungs,
U-Nets were used to extract features, and most of the contri-
butions emphasized on comparing the efficiency of popular
architectures like AlexNet, MobileNet, ResNet, GoogleNet,
SqueezeNet, Inception, Xception, VGG, and DenseNet with
their various versions and layers count. Few contributions
came up with customized networks, like EfficientNet by Luz
et al. [229].

New applications

New applications to medical deep learning on chest were
introduced the past 4years, such as to age prediction learn-
ing model by Karargyris et al. [175] that aims to predict the
age of a patient from his medical scan, where a gap between
the predicted age and the real one indicates a health concern.
Another approach by Wong et al. [176] classifies the normal
scans to disregard them prioritizing diagnosis of abnormal
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ones. In an advanced contribution, a deep learning classi-
fier by Annarumma et al. [128] aims to predict the urgency
of cases to allow treating worse first. Databases built along
years with follow-up scans of patients allow involvement of
mortality risk prediction, such as the one used in the contribu-
tion of Xu et al. [199], and relating to available training data,
inhale/exhale scans allow training of deep learning models
that segment lungs and assess COPD diseases more effi-
ciently as concluded by Kitahara et al. [102]. In addition,
frontal chest radiographs can be classified into anteroposte-
rior or posteroanterior views by the classifier of Kim et al.
[171].

Image modalities

Segmentation applications basedondeep learningmethod-
ologies were mostly on CT scans for airways diseases and
lung cancer (nodules and tumors), whereas CXRs were used
more for organ segmentation. On detection, lung cancer was
the most approached target, more often in CT scans, but with
recent approaches on CXRs. But for infections and multiple
pathologies, use of CXR was dominant. On the other hand,
classification of general thoracic diseases on CXR images
and that of lung cancer on CT scans were of higher interest
than other diseases.

When tackling the dilemma of information extracted from
medical images concerning coronavirus, we notice that two
parties exist: one encouraging the use of CT scans and one
which does not. However, published contributions by the end
of May 2020 showed an approximately equal share for each
of both imagemodalities. Yet, CT scans weremostly used for
classification, while CXRs were used for detection, feature
extraction and segmentation.

6 Conclusion

As choosing the datasets is critical for training models, and
over-fitting is probable especially with the varying imaging
technologies and the wide variety of diseases, research is
missing the third world population that might formulate dif-
ferent imaging features and is of more need to technological
aid, especiallywith the present shortage of health institutions,
medical staff and PACs. Unsupervised learning can thus be
the solution, even though training data is becoming more rel-
evant. It is early to have public datasets fully satisfying the
needs of deep learning models, particularly for developing
countries, but promising contributions can be expanded to
different imagemodalities and populations, as in [119]which
do self-supervised learning covering segmentation and clas-
sification in 2D and 3D versions can be expanded.

Many new ideas are applied to deep learning on chest, and
the scope of research interest isn’t just expanding to fulfill

the tasks more conveniently, but going in depth of clinical
needs, proving the support scope it can provide by exper-
iments done with available datasets. Interpretability is still
in debate, and Molnar [240] suggest pixel-level labeling to
make better use of feature visualization and understand what
is really inside the box. Many clinical applications of deep
learning-based models have started to take their place, as
that by Hwang et al. [241], and Foch Hospital in Suresnes,
France [242]. For COVID-19 diagnosis and prognosis, it is
still questionable when it will be implemented, but efforts
put in this domain make it very promising, especially with
it being the very vast chance to prove past work done with
deep learning. Nevertheless, research direction of deep learn-
ing on chest medical imaging foresees remarkable advances
and a flourishing future full of achievements especially with
the unexpected coronavirus stepping into the world since the
beginning of 2020.
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