
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 1

FPGA-accelerated Searchable Encrypted
Database Management Systems for Cloud

Services
Mitsuhiro Okada, Takayuki Suzuki, Naoya Nishio, Hasitha Muthumala Waidyasooriya,

and Masanori Hariyama

Abstract—The use of database management systems (DBMSs) as a cloud service is rapidly expanding. Cloud DBMSs offer many
advantages, such as easier management, lower costs, and greater scalability. However, there are still security concerns regarding
attacks from adversaries. DBMSs that use searchable encryption have been investigated with regard to ensuring their security.
Because searchable encryption allows query execution over encrypted data in the cloud, sensitive data can be securely stored there in
the cloud. On the other hand, encrypted query processing is slower than query processing on plaintext data. In this paper, we use a
field-programmable gate array (FPGA) to accelerate query processing in a searchable encrypted DBMS. We also propose a new
cache function to shorten the access time to database tables in a DBMS. According to an evaluation using basic queries, the proposed
system has achieved up to 110.7 times speed-up compared with central processing unit (CPU) processing of a single core. In addition,
the proposed system can process queries faster than the plaintext processing on a CPU when processing large amounts of data.

Index Terms—Database management system, FPGA, Searchable encryption, OpenCL.

F

1 INTRODUCTION

THE use of database management systems (DBMSs) as
a cloud service is rapidly expanding. The benefits of

cloud DBMSs include easier management, lower costs, and
greater scalability. However, while cloud DBMSs offers
many advantages to users, they also introduce security
concerns. For example, there was an incident in which a
cloud administrator leaked sensitive personal information
[1] and another incident in which a hacker leaked personal
information by obtaining administrative privileges [2], [3].

One means of protecting sensitive data from adversaries
is to encrypt data on the client side using encryption
functions provided by a DBMS [4], [5]. In this approach,
however, a DBMS can execute only equality queries because
the data stored on the DBMS server is encrypted with a
deterministic algorithm on the client side. If a user requests
other query types, all encrypted data must be decrypted on
the client side after being downloaded from the cloud. This
extra process undermines the convenience and efficiency of
cloud services.

Another approach is to arrange a secure trusted piece
of hardware on the cloud that the cloud administrator
cannot access. Because encrypted data are decrypted using
a secret key stored in the trusted hardware, queries can be

• M. Okada and N. Nishio are with Center for Technology Innovation -
Digital Technology, Research & Development Group, Hitachi, Japan.
E-mail: {mitsuhiro.okada.uf, naoya.nishio.jv}@hitachi.com

• T. Shzuki is with Financial Institutions Business Unit, Hitachi, Japan.
E-mail: takayuki.suzuki.gu@hitachi.com

• M. Okada, H. Waidyasooriya and M. Hariyama are with Tohoku
University, Japan.
E-mail: mitsuhiro.okada.r5@dc.tohoku.ac.jp, {hasitha,
hariyama}@ecei.tohoku.ac.jp

executed securely [6], [7], [8], [9]. However, this requires the
assumption that the trusted hardware is perfectly secure. If
the secret key is stolen by adversaries as a result of hardware
bugs, backdoors, or side-channel attacks, all the encrypted
data in the database are decrypted. Indeed, one recent study
[10] succeeded in extracting the secret key from trusted
hardware using a side-channel attack, thereby showing that
security is not guaranteed on this approach.

The use of DBMSs that employ searchable encryption to
overcome these problems has been proposed [11], [12], [13].
Such a DBMS (which we call a searchable encrypted DBMS)
enables query execution over encrypted data in the cloud
while protecting sensitive data from adversaries. Neverthe-
less, a searchable encrypted DBMS has two drawbacks with
respect to computational performance. First, query execu-
tion on encrypted data requires unique computations that
slow down the processing speed compared to plaintext data
processing. Second, access time to database tables increases
as the amount of data increases because of the encryption
process.

Recently, cloud vendors such as Amazon [14], IBM [15],
and Microsoft [16] have introduced field-programmable
gate arrays (FPGAs) that aim to accelerate user specific
processing in the cloud. In this paper, we propose an
FPGA accelerator and system architecture for accelerating
a searchable encrypted DBMS. We also propose a new cache
function called Crypto Cache to reduce the access time to
database tables in a DBMS.

2 RELATED WORK

There are some studies [50], [51], [52] about accelerators for
searchable encryption processing. However, these studies

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 2

were intended only to speed-up the searchable encryption
processing and not evaluated with DBMSs.

Table 1 summarizes the comparison of this work with
previous work in relation to DBMSs. Although accelerators
for DBMSs and searchable encrypted DBMSs are both re-
ported in previous work, there is no study combining the
two ideas. Our system is the first to use an FPGA to accel-
erate encrypted query processing. This section introduces
previous work on accelerators for DBMSs and searchable
encrypted DBMSs.

Accelerators for DBMSs. Netezza [17] combines an FPGA
with a hard disk drive to accelerate sequential scan pro-
cessing. Dennl et al [18] design an FPGA accelerator to
perform WHERE clause processing in parallel. Some studies
[19], [20], [21], [22] accelerate join operations using an FPGA
or a graphical processing unit (GPU). OmniDB [41] and
Postgresql [42] support GPU acceleration for subsets of
Structured Query Language (SQL). Wang et al [53] acceler-
ated some operations by generating feasible execution plans
with multiple FPGA images on OpenCL-based FPGAs. Fur-
thermore, FPGAs have been used for studies of near storage
processing to accelerate DBMSs [54], [55], [56].

Because the purpose of these studies is to accelerate sub-
sets of SQL in a DBMS, they do not address the acceleration
of searchable encrypted DBMSs.

Searchable Encrypted DBMSs. The pioneering work
on searchable encrypted DBMSs involved CryptDB [11].
CryptDB uses several encryption schemes to create a DBMS,
supporting equality, order, word search, addition, and join oper-
ations. MONOMI [23], which builds on CryptDB, improves
the performance on the Transaction Processing Council
Benchmark H (TPC-H) [49] by optimizing the partitioning
of query execution between the client and the server. Other
methods of improving the performance of CryptDB include
the acceleration of the Advanced Encryption Standard (AES)
processing that is part of encrypted query processing by
using AES hardware in a CPU [24] and the acceleration
of addition operations by applying the Chinese remainder
theorem [25].

Seabed [12] and Arx [13] enhance security or improve the
processing speed as compared with CryptDB. Seabed uses
order-preserving encryption [33] for order operations, a more
secure encryption scheme than the one used in CryptDB,
and also uses an additively symmetric homomorphic en-
cryption scheme for accelerating addition operations. Arx
uses Arx-RANGE based on tree traversal for order opera-
tions and probabilistic encryption for equality operations to
strengthen security.

Although these studies attempt to improve query pro-
cessing speed, their approaches are limited to optimizing
algorithms and using AES hardware in a CPU. These studies
do not consider the use of specialized hardware for acceler-
ation.

3 PROPOSED SEARCHABLE ENCRYPTED DBMS
3.1 System architecture
Fig. 1 shows the system architecture of the proposed FPGA
accelerated searchable encrypted DBMS. Following the ar-
chitecture of Arx, our architecture deploys an application

TABLE 1
Comparisons of previous studies and our work

[17], [18], [19], [20], [11], [12],
[21], [22], [41], [42], [13], [23], This work
[53], [54], [55], [56] [24], [25]

Accelerator Supported Not supported Supported
Searchable
Encryption Not supported Supported Supported

proxy at the application server and a server proxy at the
DBMS server. Because encrypted query processing is per-
formed in these two proxies, the application and the DBMS
does not require modifications. The new components of our
architecture are the Query Accelerator on the FPGA and the
Crypto Cache on the server proxy. The FPGA board is an
external device connected to the DBMS server via Peripheral
Component Interconnect Express (PCIe), with the result that
said Query Accelerator cannot access the memory on the
DBMS server directly. This creates overhead in that data
must be transferred from the memory on the DBMS server to
the memory on the FPGA board. However, when the Query
Accelerator is required to repeatedly perform the same
computation over large amount of data, it can process faster
than a CPU because FPGAs use parallelism and pipeline
processing.

Following are the explanations of each module in Fig. 1.

Query Handler. The Query Handler has two functions.
The first is to perform encryption-related functions (e.g.,
managing the secret key, encrypting and decrypting data,
or generating encrypted queries). Fig. 2 shows an example
of an encrypted table. Not only values, but also table names
and column names are encrypted. Table names and column
names are encrypted to ensure that the frequency distribu-
tion of encrypted data will not be guessed from those names.

The second function is to convert a normal SQL query
issued by the application into a query plan that will be
executed in the server proxy based on the metadata of
encrypted tables. These metadata are generated at the same
time as the creation of encrypted tables. Fig. 3 shows an ex-
ample of a query plan. A query plan is written in JavaScript
Object Notation (JSON) format and sent to the cloud with
not only the search condition but also the table and column
names being encrypted.

Crypto Cache. The Crypto Cache also has two functions.
The first is to read encrypted tables from the DBMS and
store them in the memory managed by the server proxy. This
function enables the Query Executor to do without access to
the DBMS when it creates a result table to be returned to the
application server.

The second function is for advance setting of data for
predicate processing. The Crypto Cache removes unnec-
essary data from the encrypted tables and transfers the
organized data to the memory on the FPGA board.

These two functions of the Crypto Cache are executed
on startup. In cases in which queries that update encrypted
tables in the DBMS (e.g., INSERT, DELETE, and UPDATE)
are issued, the corresponding data in both the DBMS and
the Crypto Cache are updated accordingly to ensure the
consistency of data between the DBMS and the Crypto

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 3

����������

	

�������

	

��������

�����

������������

�����������

����

����

���	�����

����	

�����

���

����	

��������

��	���

�����

������

	

��������������

 �����!���������"#

����	�

�����������

�����������

�����	

Fig. 1. Overview of the system architecture

Fig. 2. Example of an encrypted table

Fig. 3. Example of a query plan

Cache. Consequently, the Query Executor has no need to
read encrypted tables from the DBMS every time it receives
a query plan from the application server. While normally
a DBMS itself has a function to cache tables for the same
queries, we implemented the Crypto Cache to bypass the
process of reading encrypted data from the DBMS and trans-
ferring the data after organizing the data to the memory on
the FPGA board.

Query Executor. The Query Executor receives a query plan
and executes it. Because encrypted data are already on the
FPGA board owing to the Crypto Cache, the Query Executor
is required only to send an encrypted search condition to the
memory on the FPGA board. Once the encrypted data and
the encrypted search condition are both in the memory, the
Query Executor orders the Query Accelerator to perform
predicate processing. The processing results are first stored
in the memory on the FPGA board and then transferred to
the memory in the server proxy. Based on the processing

results, the Query Executor obtains the encrypted data
in output columns requested by the query plan from the
Crypto Cache and returns the data to the application proxy.

Query Accelerator. The Query Accelerator accelerates pred-
icate processing. This component is described in detail in
Section 3.3.

The architecture explained above enables query execu-
tion without decrypting the encrypted data on the DBMS
server. In addition, the architecture is designed in such a
way that the proposed FPGA accelerator for cloud DBMSs
can be implemented without modifying the DBMS. In other
words, we designed the architecture to be independent of
the choice of DBMS. Thus, our proposed system can be
implemented easily on various DBMSs just by changing
the server proxy according to the application programming
interface (API) of the DBMS.

3.2 Functionality

We implemented four basic DBMS query operations, equal-
ity, order, word search, and join, because these basic query
operations are most often used for highly sensitive data,
such as lists of personal information. In the TPC-H bench-
mark, under the experimental conditions in Section 5, 90%
of queries related to the encrypted table can be handled by
these four basic operations. We will discuss support for
other operations such as addition and ORDER BY in Section
6.

Equality. Various studies proposed searchable encryp-
tion schemes that support equality operations [26], [27], [28],
[29], [30]. We use Symmetric Searchable Encryption (SSE),
proposed by Yoshino et al [29]. We chose SSE because it
uses different pseudorandom functions for encrypting data
and encrypting search conditions, making their scheme the
most secure compared to the others.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 4

Order. There are several studies on searchable encryption
schemes that are compatible with order operations [31], [32],
[33], [34], [35]. We use Order-Revealing Encryption (ORE),
proposed by Lewi et al [34], which provides both high-level
security and practical processing speed. In terms of security,
the method using Arx-RANGE in Arx is more secure than
ORE, but the increase in data size as a result of encryption is
far greater with garbled circuits, rendering the method less
desirable for large-scale databases. We used the source code
of ORE available on GitHub [36] with the parameters set as
Bit Length = 32; Block Size = 8. Note that the data encrypted
with ORE are used only for order operations and do not get
decrypted. To reduce the storage capacity, only the columns
required for order operations are stored when a user creates
a new encrypted table.

Word Search. We support three subfunctions of word
search: prefix search, substring search, and suffix search. As for
word search operations, approaches that use k-grams and
suffix trees to perform searches efficiently have been pro-
posed [37], [38], [39], [40]. However, we chose a method that
separates plaintexts into single characters and uses the SSE
to encrypt each character, because we can implement this
method in parallel on FPGAs by using pipelines. To perform
the word search, the FPGA accelerator requires the boundary
information of each field. Because this information is created
when Crypto Cache reads encrypted tables from the DBMS,
the information is not required to be stored in the DBMS.
Note that the encrypted data of each character are used
only for word search operations and do not get decrypted.
To reduce the storage capacity, only the columns required
for word search operations are stored when a user creates a
new encrypted table.

Join. Our system supports equality-join operations using
SSE. However, because we use probabilistic encryption that
makes use of a pseudorandom function for data encryption,
equality operations cannot be performed between encrypted
data items. To address this problem, for columns in which
join operations are executed, an encrypted search condition
that corresponds to each encrypted datum is stored in the
database. Even though this encrypted search condition is
stored in the database, it is encrypted using a pseudo-
random function as well and contains no information that
could potentially be used to decrypt the encrypted data.

3.3 FPGA implementation

3.3.1 Overview
Fig. 4 shows an overview of the FPGA accelerator using
Intel FPGA for OpenCL [44]. The accelerator consists of a
BSP and programmable logic for user-created modules. The
BSP contains fixed resources that communicate with exter-
nal devices and control the modules. The programmable
logic includes five modules connected using four first-in and
first-out (FIFO). The circuit design in programmable logic
is written in the C programming language. The circuit is
generated from the C source code using the HLS Compiler
[44]. Consequently, even software engineers who have never
designed a circuit can design logic modules. Moreover,
engineers can easily control the FPGA accelerator using the
OpenCL API of (1)–(3) in Fig. 4.

��������		��
������������

������������������

����

������

�����

����

	
��
�

��

	
��
�

�������

��������

��������

	
��
�

	
����

����
�

����

�	�

�����

	
����

����

����

����

����

���������
�
����
����
�

���������
�
���

�!�������
�
	
������
�

Fig. 4. Overview of the FPGA accelerator

����

����

����

��	
�

��	��

��	��

��	���

��	��

��	���

��	���

��	��

��	���

��	���

���������

��	����

������

��������

�� !"�

��	��

��	���

��	���

����#����

�$�����%�����$!&'���

����%����� �����(� ��)���	���

$�����%�$!&'�������)���	���

��	��

��	���

��	��

���������

���������

����#����

��	���

��	���

���������

��������

�

��

� ��*

�

��

� ��*

�

�� !"�

�� !"�

$��

���

�$

���������

���������

����#����

�

���������

����#����

��������

������

�+!�"(�,�)�	-

�+!�"(�,�)�	-

�

�

��	��

��	���

Fig. 5. Example of a prefix search: The search for the prefix ”AB” is
executed on three rows of data, ”ABAD,” ”FAC,” and ”ACD.”

3.3.2 Implementation detail in Programmable Logic

Reader and Writer modules. The Reader and Writer mod-
ules work differently for word search and other operations.
Each case is described below.

When performing equality, order, or join operations, the
Data Reader reads encrypted data (EncData) in all rows in
the order of address. The SC Reader reads encrypted search
conditions (EncSC). The SSE or ORE module is executed if
EncData and EncSC are present in FIFO. The Result Writer
stores the information of match(1)/not match(0) for every
row in the Result region. The WordInfo Reader is not used.

When performing word search operations, an algorithm
that narrows down the calculation candidates is used to
reduce the amount of computation. Fig. 5 shows an example
of how the Reader and Writer modules work in a prefix
search. In this example, a query that searches for prefix

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 5

”AB” is executed on three rows of data: ”ABAD,” ”FAC,”
and ”ACD.” The encrypted data of each character is stored
in the EncData region. The encrypted search condition of
each character is stored in the EncSC region. As information
for accessing specific EncData, the field information (row
number (RN), address of the first character (AoFC), and
number of characters (NoC)) of each row are stored in the
WordInfo region.

At the first step, WordInfo Reader reads the field infor-
mation from the WordInfo region. Based on the AoFC in the
field information, Data Reader reads the first character of
EncData in each row, and SC Reader reads the first character
of EncSC. After the SSE module performs equality checks
using both EncSC and EncData, Result Writer writes only
the field information of the matched rows in the WordInfo
region and writes the total number of matched rows in the
Result region.

At the second step, WordInfo Reader reads field infor-
mation written by the previous step, Data Reader reads the
second character of EncData based on the AoFC in the field
information, and SC Reader reads the second character of
the EncSC. Result Writer writes only the field information
of the matched rows in the WordInfo region and writes the
total number of matched rows in the Result region.

These steps are repeated as many times as the NoC in
the search conditions. At the completion of processing, the
server proxy extracts the RN from the field information
written in the WordInfo region.

Although the example given above is of a prefix search,
substring and suffix searches can be executed by changing
the behavior in the first step of WordInfo Reader. To be more
precise, in suffix searches, the AoFC in the field information
is rewritten by calculating it from the NoC and the number
of search conditions. In substring searches, the field infor-
mation is replicated after incrementing the AoFC by one to
perform equality checks while shifting one character.

SSE module. SSE performs equality checks with EncData
and EncSC as inputs in the manner described in Fig. 6,
where kw is plaintext data, qr is a search condition, r and
r′ are different pseudorandom values, sk e is the secret key,
and sk s is the key shared with the application server. We
implement AES in a cipher block chaining mode as encryp-
tion function E()̇, SHA256 as hash function H(), and the
MixColumn operation in Rijndael [46] as the homomorphic
function F (). If kw and qr are equal, the two pseudoran-
dom values r′ in EncSC cancel each other. Consequently,
the computation result is equal to H(F (r)) in EncData.
SSE is designed to perform pipeline processing, in which
decryption and F () are executed in parallel.

ORE module. Now, we explain the processing procedure of
ORE (Fig. 7). ORE performs order checks with EncData and
EncSC as inputs. ctxt1 l, ctxt2 l, and ctxt2 r each consists
of four blocks. Nonce, the key shared with the application
server, is stored in EncSC. Blocks in the same positions in
ctxt1 l and ctxt2 l are tested for equality, and if the two
blocks differ, ORE performs the calculations shown in Eqs.
(1) and (2) to determine whether EncData are larger or
smaller than EncSC. If there are no differing blocks between
ctxt1 l and ctxt2 l, they are judged to be equal.

E(kw, sk_e)⊕rH(F(r)) E(qr, sk_e)⊕r’ E(F(r’), sk_s)

Decode()F()

H()

��������	
���

r⊕r’ (��	qr �����	 kw)

F(r)⊕F(r’) F(r’)

F(r)

H(F(r))

������ ���

⊕

⊕

���������	

��	����

Fig. 6. Design of the SSE predicate processing module

ctxt2_l3 ctxt2_l2 ctxt2_l1 ctxt2_l0 ctxt2_r3 ctxt2_r2 ctxt2_r1 ctxt2_r0Nonce

�����

ctxt1_l3 ctxt1_l2 ctxt1_l1 ctxt1_l0

��������	

Decode(ctx1_ldiff[0:15], Nonce)

����	�
�����������

mpz_tstbit(ctxt2_rdiff, ctx1_ldiff[16:19]) ⊕ r

diff ���������	
����

��������	��

�

���

r

��������������

�
�����

�

v

�����

Fig. 7. Design of the ORE predicate processing module

r = Decode(ctx1 ldiff [0 : 15], Nonce) (1)

v = mpz tstbit(ctxt2 rdiff , ctx1 ldiff [16 : 19])⊕ r (2)

In these equations, diff indicates the number of dif-
ferent blocks. We implemented AES in a counter mode
for Decode and the mpz tstbit [48] function in the GNU
Multiple Precision Arithmetic Library for mpz tstbit. ORE
is also designed to perform pipeline processing, in which
equality checks between pairs of blocks are executed in
parallel.

3.3.3 Implementation result

We implemented the above-described functions using the
FPGA board and FPGA compiler described in Table 2.
Table 3 shows the FPGA resource utilization of each logic
module. The numbers in parentheses indicate the respective
percentages of resources used by each of the modules.
Each module operates at 213 MHz. The power consumption
of the FPGA is 26.4 W, which was calculated using the
power estimation tool provided by Intel [57]. Although the
clock frequency of the FPGA is lower than that of the CPU,
it can process at a higher speed on lower power because
the FPGA has the capabilities of pipelining and parallel
processing.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 6

TABLE 2
Machine specifications

Items Specification
CPU Intel Xeon Silver 4110@2.1GHz
Server memory DDR4 2400MHz 192GB
FPGA board Intel Arria10 evaluation board

(DK-DEV-10AX115S-A)
with DDR3 1066MHz 2GB

OS Ubuntu 16.4 LTS
DBMS MySQL 5.7.22
FPGA compiler Intel SDK for OpenCL version 17.1

TABLE 3
Resource utilization

Module ALUTs FFs RAMs DSPs
BSP 80771 166418 367 0
Data Reader 14832 20849 48 2
SC Reader 7175 10147 26 2
WordInfo Reader 7608 10051 32 0
SSE 68146 52468 218 2
ORE 12544 18289 223 0
Result Writer 25839 29000 56 6
Total 216915 307222 970 12

(28%) (20%) (41%) (1%)

4 EVALUATION

4.1 Evaluation setup

Machine specifications. We assessed the effectiveness
of our FPGA accelerator by implementing an application
server and a DBMS server in a single machine. Table 2 shows
the hardware and software we used.

Test table. We chose a list of personal information as
our test data as shown in Fig. 8. We used Faker [45] to
generate a list of personal information. The ten columns
in the personal information table are user ID, name, sex,
address, e-mail, birthday, phone, company, credit card, and
credit scores, which are all encrypted. The word search table
used for word search and the order table of credit scores
used for order operations are stored as tables separated
from the personal information table. The information on the
link between the personal information table and the other
tables is managed by the Query Handler as metadata. We
also created a company ranking table, which is used for
evaluating join operations. This table stores the information
of company names with top ten revenues and their rank-
ings. The company names and their rankings are stored as
plaintext. Encrypted search conditions that correspond to
each company are also stored in the same table to be used
for join operations.

Table 4 shows a comparison of the total amount of data
between plaintext and ciphertext with 1 M rows. The total
data volume of the ciphertext tables increases approximately
nine-fold after encryption.

Test queries. The test queries are the five basic queries listed
in Table 5. The number of equality operations in prefix search
and suffix search is the same as in our FPGA implementation.
Consequently, we evaluate the performance only of prefix
search. We discuss support for queries with multiple search
conditions in Section 6.

���������	

����������

�������
 �

������
 ����

����������
�����

���������
 �����

������������
�����

������	�
 ������

�����	�����
������

��������������
��

������������	�
�

������	��	���

������������	�
��������� �!"

����������������#

�������
 �������� �$%%"

�����&

���& ��'

(����� ()���*"

������+	��
 �������� �,-

��������	
���������	�����

�������	�������	�����

��������	�����

�����	�����

�������� �.*

�������� �/-

�������� �.*

�������� �$"%

�������� �!!

�������� �.*

�������� �.*

�������� �!!

�������� �/-

�������� �.*

Fig. 8. Structure of the test table

TABLE 4
Comparison of the total amount of data between plaintext and

ciphertext with 1 M rows.

Table name Plaintext Ciphertext
Personal information table 230 MB 692 MB
Word search table - 1392 MB
Order table - 84 MB
Company Ranking table 0.64 KB 0.96 KB
Total 230 MB 2068 MB

Evaluation method. We set the performance of CPU pro-
cessing with the database cache (CPU w/DBC) as the base-
line. To check the acceleration effect of both the Query Accel-
erator and the Crypto Cache, we evaluate FPGA processing
with the database cache (FPGA w/DBC), CPU processing
with the Crypto Cache (CPU w/CC), and FPGA processing
with the Crypto Cache (FPGA w/CC). Note that CPU w/CC
does not use the function to transfer encrypted data to the
memory on the FPGA board. We also evaluate plaintext data
processing in the CPU (Plain). We measure the processing
time of end-to-end latency, which is the duration from
the point at which the application proxy receives an SQL
query to the point at which the application proxy prepares
plaintext data for the user.

In CPU processing, the CPU in the server proxy per-
forms predicate processing with SSE or ORE as described in
Section 3. CPU processing in all setups is performed using
a single core CPU. The end-to-end latency of plaintext data
processing is measured without using the database cache.

The encrypted tables are stored in the memory in
the server proxy using the in-memory storage engine of
MySQL. We evaluate performances for tables with 100, 1
K, 10 K, 100 K, 500 K, 1 M and 10 M rows because the end-
to-end latency changes depending on the number of rows in
a table. Note that owing to the insufficient memory capacity
on the FPGA board, prefix search and substring search with 10
M rows using FPGA are not executed.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 7

TABLE 5
List of test queries

Operation type Query
Equality SELECT * FROM p info WHERE use id = 10;
Order SELECT * FROM p info WHERE credit score > 845;
Prefix SELECT * FROM p info WHERE name LIKE ”Sherry%”;
Substring SELECT * FROM p info WHERE name LIKE ”%Sherry%”;
Join SELECT p info.user id, p info.name, c rank.rank FROM p info

INNER JOIN SUB ON p info.company = c rank.company;

TABLE 6
End-to-end latency for 1M rows

Plaintext CPU w/DBC FPGA w/CC Speed-up
Equality 46.3 [ms] 942.9 [ms] 8.5 [ms] x110.7
Order 58.2 [ms] 646.6 [ms] 24.9 [ms] x26.0
Prefix 75.5 [ms] 1362.7 [ms] 16.3 [ms] x83.6
Substring 91.7 [ms] 4949.8 [ms] 76.7 [ms] x64.5
Join 968.6 [ms] 5503.4 [ms] 83.7 [ms] x65.7

4.2 Performance evaluation

Table 6 shows the end-to-end latency of tables with 1 M
rows, where the ratio of the speed-up become stable for
all operations. FPGA w/CC is 26.0 to 110.7 times faster
than CPU w/DBC and also achieved faster than plaintext
processing in the CPU. This indicates that storing sensitive
data safely in a cloud DBMS while minimizing performance
degradation is possible. We investigate in more detail from
the following two perspectives.

End-to-end latency against the number of rows. For
Figs. 9(a)–13(a), we present the graph of end-to-end la-
tency plotted against the number of rows. If we compare
w/DBC and w/CC for each of CPU processing and FPGA
processing, w/CC is always faster than w/DBC, which
confirms the effectiveness of the Crypto Cache. On the other
hand, regarding the Query Accelerator, the effectiveness of
acceleration differs depending on the number of rows. For
example, comparing the effect of the speed-ups of CPU
w/CC and FPGA w/CC, the effect of the speed-up is large
and small at 1 M and 100 rows, respectively. The reason for
this difference is the control overhead detailed in the break-
down of end-to-end latency. The results of the performance
evaluation demonstrate that our FPGA accelerator is highly
effective when the number of rows is sufficiently large that
the control overhead becomes negligible.

In addition, we can observe that for greater than 100 K
rows, end-to-end latency increases nearly in proportion to
the number of rows. This suggests that the effectiveness of
the FPGA accelerator persists even if the number of rows
increases further. We believe that if we can prepare sufficient
memory for storing data in our system, query execution on
even a large-scale encrypted database with tables of 1 or
10 M rows or more can be performed while obtaining the
same speed-up ratio as in Table 6. We will discuss ways to
overcome the problem of memory capacity in Section 6.

Breakdown of end-to-end latency. The breakdown of end-
to-end latency for operations on 100 rows and 1 M rows is
shown in Figs. 9(b)–13(b) and Figs. 9(c)–13(c), respectively.

The end-to-end latency of each operation is divided into
six different processes: encrypting a query and creating
a query plan (Encrypt), reading encrypted data from the
DBMS (Read data), transferring data from the server proxy
to FPGA (FPGA Trans.), performing predicate processing
with the CPU (CPU Proc.) or with the FPGA (FPGA Exe.),
preparing an encrypted table with query results for the
user (Prepare table), and decrypting the encrypted table
(Decrypt). We can see that the proportions occupied by the
six processes differ, according to the operation type and the
number of rows.

In Figs. 9(b)–13(b) and Figs. 9(c)–13(c), when the Crypto
Cache is not used, Read data (gray bar), FPGA Trans. (pink
bar) and Prepare table (green bar) are required. The green
bar reads the personal information table necessary for
returning query results from the DBMS, differing from the
equality and join queries.

Focusing on CPU w/DBC in Figs. 9(c)–13(c), the pro-
portion of predicate processing time (yellow bar) to the
read data time (gray bar) and the prepare table time (green
bar) is large for substring and join queries because the same
EncData are subjected to equality operation processing under
different search conditions.

As shown in Fig. 10(c), a large portion of query process-
ing time with FPGA w/CC is occupied by decrypting. This
is the reason that a relatively small speed-up is achieved
for order queries compared to the other queries, as shown
in Table 6. Actually, the decrypting time of single encrypted
data are extremely small (approximately 0.36 ns). However,
when the amount of encrypted data to be decrypted is
considerably large, the decrypting time can be a bottleneck.
To address this problem, we can use an FPGA accelerator in
the application proxy for decryption.

The breakdown of the 100 rows (Figs. 9(b)–13(b)) shows
that the FPGA processing (FPGA Trans. and FPGA Exe.)
is slower or slightly faster than the CPU Proc.; no speed-
up is as effective as that of 1 M rows because both FPGA
Trans. and FPGA Exe. have fixed control overheads in
addition to the data transfer time and FPGA execution
time proportional to the number of rows. For 100 rows, the
overall processing time is as short as approximately 0.5-2
ms; therefore, we consider that this control overhead has
significantly affected the FPGA processing time because the
time of processing proportional to the number of rows is
very small.

4.3 Performance comparison of multi-thread CPU and
FPGA
We compared the performance of multi-threaded CPU
w/CC and FPGA w/CC with 1 M rows. The evaluation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 8

102 103 104 105 106 107
Number of Rows

10−1

100

101

102

103

104
En

d-
to

-E
nd

 L
at

en
cy

 [m
s]

CPU w/DBC
FPGA w/DBC
CPU w/CC
FPGA w/CC
Plain

(a) End-to-end latency

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0.0

0.1

0.2

0.3

0.4

0.5

En
d-
to
-E
nd

 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(b) Breakdown of latency for 100 rows

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0

200

400

600

800

1000

En
d-
to
-E
nd

 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(c) Breakdown of latency for 1 M rows
Fig. 9. Result of equality operations

102 103 104 105 106 107
Number of Rows

10−1

100

101

102

103

104

En
d-

to
-E

nd
 L

at
en

cy
 [m

s]

CPU w/DBC
FPGA w/DBC
CPU w/CC
FPGA w/CC
Plain

(a) End-to-end latency

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0.0

0.2

0.4

0.6

0.8
En

d-
to
-E
nd

 L
at
en

cy
 [m

s]
Encrypt
Read data
CPU Proc.
FPGA Trans.

FPGA Exe.
Prepare table
Decrypt
Plain

(b) Breakdown of latency for 100 rows

CP
U w
/DB
C

FPG
A w
/DB
C

CP
U w
/CC

FPG
A w
/CC Pla

in
0

100

200

300

400

500

600

En
d-
to
-E
nd
 L
at
en
cy
 [m
s]

Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(c) Breakdown of latency for 1 M rows
Fig. 10. Result of order operations

102 103 104 105 106 107
Number of Rows

10−1

100

101

102

103

104

En
d-

to
-E

nd
 L

at
en

cy
 [m

s]

CPU w/DBC
FPGA w/DBC
CPU w/CC
FPGA w/CC
Plain

(a) End-to-end latency

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

En
d-
to
-E
nd

 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.

FPGA Exe.
Prepare table
Decrypt
Plain

(b) Breakdown of latency for 100 rows

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0

200

400

600

800

1000

1200

1400
En
d-
to
-E
nd

 L
at
en
cy
 [m

s]
Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(c) Breakdown of latency for 1 M rows
Fig. 11. Results of prefix search

102 103 104 105 106 107
Number of Rows

10−1

100

101

102

103

104

En
d-

to
-E

nd
 L

at
en

cy
 [m

s]

CPU w/DBC
FPGA w/DBC
CPU w/CC
FPGA w/CC
Plain

(a) End-to-end latency

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
d-
to
-E
nd

 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.

FPGA Exe.
Prepare table
Decrypt
Plain

(b) Breakdown of latency for 100 rows

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0

1000

2000

3000

4000

5000

En
d-
to
-E
nd

 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(c) Breakdown of latency for 1 M rows
Fig. 12. Results of substring search

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 9

102 103 104 105 106 107

Number of Rows

100

101

102

103

104
En

d-
to

-E
nd

 L
at

en
cy

 [m
s]

CPU w/DBC
FPGA w/DBC
CPU w/CC
FPGA w/CC
Plain

(a) End-to-end latency

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0.0

0.5

1.0

1.5

2.0

En
d-
to
-E
nd
 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(b) Breakdown of latency for 100 rows

CP
U w

/DB
C

FPG
A w

/DB
C

CP
U w

/CC

FPG
A w

/CC Pla
in

0

1000

2000

3000

4000

5000

En
d-
to
-E
nd

 L
at
en
cy
 [m

s]

Encrypt
Read data
CPU Proc.
FPGA Trans.
FPGA Exe.
Prepare table
Decrypt
Plain

(c) Breakdown of latency for 1 M rows
Fig. 13. Results of join operations

of the multi-thread performance was performed for up to
16 threads by use of the thread function in C++11. In Figs.
9(c)-13(c), only the CPU Proc. (yellow bar) is multi-threaded.

Table 7 shows the results of the multi-threading with 1 M
rows. We can observe that the processing speed increases as
the number of threads increase but saturates at 16 threads
because of the 8-core CPU. With this result, we confirmed
that FPGA w/CC is faster than CPU w/CC when using 16
threads.

In addition, the power consumptions of the CPU and
the FPGA were compared. The power consumption of the
Xeon is 85 W from the Thermal Design Power value in the
specification sheet. However, the power consumption of the
FPGA is 26.4 W as stated in Section 3.3.3. These findings
imply that the FPGA has lower power consumption than
the CPU. If the number of CPUs is increased, the processing
speed increases and the power consumption accordingly
increases. Therefore, we think that the FPGA has good
computational resources in terms of power efficiency.

4.4 Comparison with other searchable encrypted
DBMSs
4.4.1 Performance evaluation
We compare the performance of our proposed system with
other systems for processing 1 M rows of data. The systems
compared here include CryptDB, Arx, and Seabed, all of
which are searchable encrypted DBMSs. Because word search
operations are not supported in these three systems, we
compare the performance of thier equality, order, and join
operations in Table 8.

Using the source code available on GitHub [47], we
implemented CryptDB on the same machine as ours and
measured the end-to-end latency using the same test table.
When CryptDB executes a query, outer layers of proba-
bilistic encryption are removed, leaving only the layer of
deterministic encryption to protect data. As a result, the
security level decreases, but the query processing speed
increases after the second time. For that reason, the end-
to-end latency of query executions from the second time
onwards is also written in parentheses alongside the latency
of the first execution in Table 8.

Because the source code of Seabed is not available, we
could not implement it for performance evaluation. How-
ever, the source code of order-preserving encryption [33],

which is used for order operations in Seabed, is available.
Consequently, the results of order operations executed in the
same machine as ours are reported in Table 8. Because the
latencies of the equality and join operations are not available,
they are omitted from our comparison.

Because the source code of Arx is unavailable, obtaining
the end-to-end latency is challenging. However, the speed
of a single predicate processing is reported in [13]. We
estimated the latency of 1 M rows, based on the performance
of single predicate processing. Note that the machine speci-
fication is also different from ours.

Table 8 shows that our system drastically improves
query processing speed compared to CryptDB, Arx, and
Seabed.

4.4.2 Security evaluation
Lastly, we compare the security level of CryptDB, Arx,
Seabed, and our system in Table 9. For equality and join
operations, because Arx and ours both use probabilistic
encryption, which encrypts equal values into different ci-
phertexts, the security level of the two systems can be
considered equal. On the other hand, Seabed and CryptDB
rely on deterministic encryption, which encrypts data in a
predicatable manner, with the result that we consider their
security levels to be lower than those of Arx and ours.

For order operations, we use ORE, which has a potential
weakness in security, where the information of a different
block among the four blocks can be leaked. In that sense,
our system does not match the security level of Arx, which is
reported to allow no leaks. Nevertheless, the ORE we imple-
mented is more secure than the order-preserving encryption
[33] in Seabed or the OPE in CryptDB.

We believe that our system is practical in terms of
processing speed and achieves a high level of security.

5 EVALUATION OF TPC-H BENCHMARK

We evaluated the TPC-H benchmark of the proposed sys-
tem. The TCP-H benchmark has non-sensitive tables such
as the order list and line items, as well as a sensitive
customer information table. We encrypted the customer
information table, except for the customer ID (c custkey)
column, whereas the other tables were stored as plaintext.
Thus, we were able to minimize the functional limitations

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 10

TABLE 7
Comparison of multi-thread performances with 1 M rows

CPU w/CC
1 thread 2 threads 4 threads 8 threads 16 threads FPGA w/CC

Equality 500.9 [ms] 297.3 [ms] 182.2 [ms] 97.7 [ms] 74.8 [ms] 8.5 [ms]
Order 199.9 [ms] 125.0 [ms] 73.6 [ms] 48.0 [ms] 45.9 [ms] 24.9 [ms]
Prefix 708.5 [ms] 435.2 [ms] 245.8 [ms] 139.1 [ms] 128.3 [ms] 16.3 [ms]
Substring 4328.6 [ms] 2242.6 [ms] 1201.2 [ms] 707.3 [ms] 595.6 [ms] 76.7 [ms]
Join 5067.7 [ms] 2578.2 [ms] 1339.3 [ms] 759.8 [ms] 647.4 [ms] 83.7 [ms]

TABLE 8
Comparison of latency for 1 M rows with other systems

Scheme Equality [ms] order [ms] Join [ms]
CryptDB 48000 (1670) 46000 (2040) 46000 (2700)
Seabed - 700 -
Arx 2400 2100000 23680
Ours 8.5 24.9 83.7

TABLE 9
Comparison of security levels

Operation type Low <- - - - - - - - - - - - - - - -> High
Equality/Join CryptDB = Seabed < Ours = Arx
Order CryptDB < Seabed < Ours < Arx

resulting from the encryption of the tables while ensuring
security.

The experimental environment is the same as that shown
in Table 2. We used the TPC-H benchmark tool version 2.18
[49] over the scaling factor of 10 (customer information table
is 1.5 M rows). Then, we evaluated the two queries (Q3 and
Q5) related to the encrypted customer information table.
Because the customer information table was encrypted,
original query could not be executed. Therefore, we divided
the original query into multiple queries.

Tables 10 and 11 show the original and divided queries
in Q3 and Q5, respectively. We evaluated the CPU w/DBC
and FPGA w/CC over ciphertext; further we evaluated the
original and divided queries over plaintext. In the case of
CPU w/DBC and FPGA w/CC, (2) in Table 10 and (2-2)
in Table 11 have encrypted query processing because of
access to the encrypted customer information table. All the
methods were used a single core CPU.

Fig. 14 shows the end-to-end latencies and breakdown
performances on Q3 and Q5. The latter was divided by
each step, as shown in Tables 10 and 11. There is a very
small performance degradation because of the division of
the query from the result of the original and divided
queries. FPGA w/CC was faster than CPU w/DBC and
achieved nearly the same speed as the original query. For the
breakdown performance, the encrypted query processing
(red bar) in FPGA w/CC can be performed faster than in
CPU w/DBC. Thus, we confirmed the effectiveness of the
proposed system for real applications.

6 DISCUSSION

Support for large tables. We evaluated tables with up to
10 M rows based on the limitation of 2 GB memory on the

FPGA board. To accommodate the larger number of rows,
there are two approaches. The first approach is to increase
the memory capacity on the FPGA board; we can use an
FPGA board that can have up to 256 GB of memory [58]
as required. The second approach is to use multiple FPGA
boards; it is possible to deal with a large table by storing
the divided tables to multiple FPGA boards. The multiple
FPGA boards are available over cloud services [59].

Support for multiple search conditions. We evaluated
the performance of executing simple queries with only
one search condition, but in practice, queries with multi-
ple search conditions are often issued. Our system could
support queries with multiple search conditions by first
converting such a query into a query plan in which simple
queries like equality and order operations are performed
multiple times and then executing these simple queries one
by one in the server proxy. However, as the number of
search conditions increases, this process must be repeated
many times, which in turn slows down the query processing
speed. Instead, we could also implement specialized hard-
ware for frequently used search conditions. One significant
advantage of using FPGA, which is reprogrammable, is to
be able to add specialized hardware for bottleneck opera-
tions depending on the workload even after the DBMS is
already in operation.

Support for other operations. We implemented four basic
query operations in this work. We consider the scalability of
our proposed system to be high, because it is designed to
be easily modifiable in such cases as changing encryption
schemes for the same operation or adding other encryp-
tion schemes. However, it is limited to operations that
have searchable encryption or execute with combinations of
searchable encryption. For instance, addition operations on
encrypted data can be performed if we implement search-
able encryption instead of the SSE and ORE module in
Fig. 4 for addition operations. As Table 3 shows, the FPGA
has sufficient unused resources to enable us to add more
functions to the existing accelerator.

Support for queries with no searchable encryption. Our
system can support queries for which searchable encryption
does not yet exist by working with the application server.
For example, ORDER BY could be processed by ordering
data after it is decrypted on the application server.

Multi-threaded circuits design. We think that the effects
of a speed-up can be further increased if multi-threaded
circuits are implemented using free resources in the FPGA.
Note that the FPGA requires sufficient memory bandwidth
to supply the input data to the multi-threaded circuits for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 11

TABLE 10
Original and divided queries in Q3

Original query
SELECT l orderkey, sum(l extendedprice * (1 − l discount)) as revenue, o orderdate,
o shippriority FROM CUSTOMER, ORDERS, LINEITEM WHERE c mktsegment = ’AUTOMO-
BILE’ and c custkey = o custkey and l orderkey = o orderkey and o orderdate < date ’1995-
03-13’ and l shipdate > date ’1995-03-13’ GROUP BY l orderkey, o orderdate, o shippriority
ORDER BY revenue desc, o orderdate LIMIT 10;

Divided queries (1)
CREATE TEMPORARY TABLE TEMP (t custkey int not null) ENGINE=MEMORY;

(2)
INSERT INTO TEMP SELECT c custkey FROM CUSTOMER WHERE c mktsegment = ’AUTO-
MOBILE’;

(3)
SELECT l orderkey, sum(l extendedprice * (1 − l discount)) as revenue, o orderdate,
o shippriority FROM TEMP, ORDERS, LINEITEM WHERE t custkey = o custkey and
l orderkey = o orderkey and o orderdate < date ’1995-03-13’ and l shipdate > date ’1995-03-
13’ GROUP BY l orderkey, o orderdate, o shippriority ORDER BY revenue desc, o orderdate
LIMIT 10;

TABLE 11
Original and divided queries in Q5

Original query
SELECT n name, sum(l extendedprice * (1 − l discount)) as revenue from CUSTOMER, OR-
DERS, LINEITEM, SUPPLIER, NATION, REGION where c custkey = o custkey and l orderkey
= o orderkey and l suppkey = s suppkey and c nationkey = s nationkey and s nationkey =
n nationkey and n regionkey = r regionkey and r name = ’MIDDLE EAST’ and o orderdate
>= date ’1994-01-01’ and o orderdate < date ’1994-01-01’ + interval ’1’ year GROUP BY n name
ORDER BY revenue desc;

Divided queries (1)
SELECT n name, n nationkey from NATION, REGION WHERE n regionkey = r regionkey
and r name = ’MIDDLE EAST’;

(2)
Iterate 2-1) to 2-3) on each n nationkeyi

(2-1)
CREATE TEMPORARY TABLE TEMPi (t custkey int not null) ENGINE=MEMORY;

(2-2)
INSERT INTO TEMPi SELECT c custkey FROM CUSTOMER WHERE c nationkey =
n nationkeyi;

(2-3)
SELECT sum(l extendedprice * (1 − l discount)) as revenue FROM TEMP, ORDERS, LINEITEM,
SUPPLIER WHERE t custkey = o custkey and l orderkey = o orderkey and l suppkey
= s suppkey and s nationkey = n nationkeyi and o orderdate >= date ’1994-01-01’ and
o orderdate < date ’1994-01-01’ + interval ’1’ year;

(3)
Execute ”ORDER BY revenue desc” and combine n name

Ori
gin
al
qu
ery

(6.
4s)

Div
ide
d q
ue
ry

(6.
7s) CP

U w
/DB
C

(7.
5s)

FPG
A w

/CC

(6.
4s)

0

1

2

3

4

5

6

7

8

En
d-
to
-E
nd
 L
at
en
cy
 [s
]

original (1) (2) (3)

(a) Result of Q3
Ori
gin
al
qu
ery

(5.
0s)

Div
ide
d q
ue
ry

(5.
1s) CP

U w
/DB

C

(8.
4s)

FPG
A w

/CC

(5.
0s)

0

1

2

3

4

5

6

7

8

9

En
d-
to
-E
nd

 L
at
en

cy
 [s
]

original
(1)
(2-1)
(2-2)
(2-3)
(3)

(b) Result of Q5
Fig. 14. End-to-end latencies and breakdown performances

satisfactory performance.

7 CONCLUSION

We achieved the acceleration of searchable encrypted DBMS
with an FPGA accelerator and Crypto Cache. According

to the evaluation using basic queries, the proposed system
achieved up to 110.7 times speed-up compared with CPU
processing of a single core without Crypto Cache. Moreover,
we show that the proposed system can process queries
faster than plaintext processing on a CPU when processing
large numbers of rows. Furthermore, we confirmed that two

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 12

queries in the TPC-H benchmark can be executed at almost
the same processing speed as that of plaintext processing.

Hence, storing sensitive data safely in a cloud DBMS
while minimizing performance degradation is possible with
our proposed system. Additionally, the energy efficiency of
the proposed FPGA ’s being higher than that of the multi-
threaded CPU is also an advantage of using FPGAs in the
cloud.

In the future, we plan to implement our system using
FPGA instances on cloud services and conduct evaluations.

REFERENCES

[1] Customer data leak deals blow to Benesse [On-
line], Available: https://asia.nikkei.com/Business/
Customer-data-leak-deals-blow-to-Benesse/

[2] Anthem’s stolen customer data not encrypted
[Online], Available: https://www.cnet.com/news/
anthems-hacked-customer-data-was-not-encrypted/

[3] Cyberattack exposes 10M records at Excellus [Online],
Available: https://www.computerworld.com/article/2983026/
cyberattack-exposes-10m-records-at-excellus.html/

[4] Always encrypted Microsoft [Online], Available: https:
//docs.microsoft.com/ja-jp/sql/relational-databases/security/
encryption/always-encrypted-database-engine/

[5] Oracle DBMS CRYPTO [Online], Available: https://docs.oracle.
com/database/121/ARPLS/d crypto.htm#ARPLS664/

[6] S. Bajaj and R. Sion, ”TrustedDB: A Trusted Hardware based
Database with Privacy and Data Confidentiality,” in Proc. ACM
SIGMOD Conference, pp. 205-216, 2011.

[7] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ra-
mamurthy and R. Venkatesan. ”Orthogonal Security With Ci-
pherbase,” 6th Biennial Conference on Innovative Data Systems
Research (CIDR’13).

[8] A. Gribov, D. Vinayagamurthy and S. Gorbunov, ”StealthDB: a
Scalable Encrypted Database with Full SQL Query Support,” In
arXiv:1711.02279 ,2017.

[9] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum and
A. Sadeghi, ”HardIDX: Practical and Secure Index with SGX,” In
arXiv:1703.04583, 2017.

[10] A. Moghimi, G. Irazoqui and T. Eisenbarth, ”CacheZoom: How
SGX Amplifies The Power of Cache Attacks,” In arXiv:1703.06986,
2017.

[11] R. A. Popa, C. M. S. Redfield, N. Zeldovich and H. Balakrishnan,
”CryptDB: Protecting Confidentiality with Encrypted Query Pro-
cessing,” Proceedings of the 23rd ACM Symposium on Operating
Systems Principles(SOSP ’11), pages 85-100, 2011.

[12] A. Papadimitriou1y, R. Bhagwan, N. Chandran, R. Ramjee,
A. Haeberleny, H. Singh, A. Modi and S. Badrinarayanan1z,
”Big Data Analytics over Encrypted Datasets with Seabed,” 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’16), 2016.

[13] R. Poddar, T. Boelter and R. A. Popa, ”Arx: A Strongly En-
crypted Database System,” Technical Report No. UCB/EECS-
2017-111 [Online], Available: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2017/EECS-2017-111.html/

[14] Amazon EC2 F1 Instances [Online], Available: https://aws.
amazon.com/ec2/instance-types/f1/

[15] IBM cloudFPGA [Online], Available: https://www.zurich.ibm.
com/cci/cloudFPGA/

[16] Microsoft Project Catapult Academic Program [Online],
Available: https://www.microsoft.com/en-us/research/
academic-program/project-catapult-academic-program/

[17] The Netezza FAST Engines Framework [Online], Available: http:
//www.monash.com/uploads/netezza-fpga.pdf/

[18] C. Dennl, D. Ziener, J. Teich, ”On-the-fly Composition of FPGA-
Based SQL Query Accelerators Using A Partially Reconfigurable
Module Library,” IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, pp. 45-52, 2012.

[19] S. Werner, S. Groppe, V. Linnemann and T. Pionteck, ”Hardware-
accelerated Join Processing in Large Semantic Web Databases
with FPGAs”, 2013 International Conference on High Performance
Computing & Simulation (HPCS), pp.131-138, 2013.

[20] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
S. Asaad, ”Accelerating Join Operation for Relational Databases
with FPGAs,” 21st Annual International IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 17-20,
2013.

[21] A. Becher, D. Ziener, K. M.-Wegener and J. Teich, ”A Co-Design
Approach for Accelerated SQL Query Processing via FPGA-
based Data Filtering,” 2015 International Conference on Field
Programmable Technology (FPT), 2015.

[22] B. Salami, O. A.-Abella, N. Sonmez, O. Unsal, A. C. Kestelman,
”Accelerating Hash-Based Query Processing Operations on FP-
GAs by a Hash Table Caching Technique,” Latin American High
Performance Computing Conference(CARLA 2016), pp. 131-145,
2016.

[23] S. Tu, M. F. Kaashoek, S. Madden and N. Zeldovich, ”Processing
Analytical Queries over Encrypted Data,” In Proc. of the 39th
international conference on Very Large Data Bases (PVLDB’13),
pp. 289-300, 2013.

[24] Y.-F. ZHUANG, C.-Z. WEI, J. LI and W.-G. LI, ”Performance
Enhanced for CryptDB Based on AES-NI Acceleration,” 2017 2nd
International Conference on Advances in Management Engineer-
ing and Information Technology (AMEIT 2017), pp. 357-361, 2017.

[25] Y. Liu, S. Xue, ”Accelerate the Paillier Cryptosystem in CryptDB
by Chinese Remainder Theorem,”International Conference on Ad-
vanced Communications Technology (ICACT 2018), pp. 74-77,
2018.

[26] S. Dawn, D. Wagner and A. Perrig, ”Practical Techniques for
Searches on Encrypted Data,” Proc. of IEEE Symposium on Se-
curity and Privacy (SP), pp. 44-55, 2000.

[27] E.-J. Goh, ”Secure indexes,” IDIMACS Workshop on Privacy Pre-
serving Data-Mining, 2004.

[28] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, ”Searchable sym-
metric encryption: improved definitions and efficient construc-
tions,” CCS ’06 Proc. of the 13th ACM conference on Computer
and communications security, pp. 79-88, 2006.

[29] M. Yoshino, K. Naganuma and H. Satoh, ”Symmetric Searchable
Encryption for Database Applications,” 2011 International Confer-
ence on Network-Based Information Systems, pp. 658-662, 2011.

[30] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Ros
and M. Steiner, ”Dynamic Searchable Encryption in Very-Large
Databases: Data Structures and Implementation,” NDSS Sympo-
sium 2014, 2014.

[31] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, ”Order preserving
encryption for numeric data,” In Proc. of the ACM International
Conference on Management of Data, SIGMOD, 2004.

[32] A. Boldyreva, N. Chenettey, Y. Leez, ”Order-Preserving Symmetric
Encryption,” EUROCRYPT 2009, pp. 224 241, 2009.

[33] N. Chenette1, K. Lewi, S. A. Weis and D. J. Wu, ”Practical Order-
Revealing Encryption with Limited Leakage,” In: Peyrin, T. (ed.)
FSE 2016. LNCS, vol. 9783, pp. 474-493. Springer, Heidelberg
(2016).

[34] K. Lewi, D. J. Wu, ”Order-Revealing Encryption: New Construc-
tions, Applications, and Lower Bounds,” CCS ’16 Proc. of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pp. 1167-1178, 2016.

[35] J. Dyer, M. Dyer, J. Xu, ”Order-Preserving Encryption Using Ap-
proximate Integer Common Divisors,” DPM 2017, CBT 2017: Data
Privacy Management, Cryptocurrencies and Blockchain Technol-
ogy, pp. 257-274, 2017.

[36] D. J. Wu, K. Lewi, ”An Implementation of Order-Revealing
Encryption,” [Online], Available: https://github.com/kevinlewi/
fastore/

[37] F. Sky, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu and
M. Steiner, ”Rich Queries on Encrypted Data: Beyond Exact
Matches,” Computer Security ESORICS 2015, Lecture Notes in
Computer Science, 9327, Springer-Verlag, pp. 123-145, 2015.

[38] C. Melissa and E. Shen, ”Substring-Searchable Symmetric Encryp-
tion,” Proceedings on Privacy Enhancing Technologies, pp. 263-
281, 2015.

[39] I. Leontiadis, M. Li, ”Storage Efficient Substring Searchable Sym-
metric Encryption,” Cryptology ePrint Archive, Report 2017/153
2017.

[40] F. Hahn, N. Loza, F. Kerschbaum, ”Practical and Secure Substring
Search,” Proc. of the 2018 International Conference on Manage-
ment of Data, pp. 163-176, 2018.

[41] OmniDB [Online], Available: https://omnidb.org/en/
[42] Postgresql [Online], Available: https://www.postgresql.org/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969655, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXX 2019 13

[43] MySQL [Online], Available: https://www.mysql.com/
[44] Intel FPGA for OpenCL [Online], Available: https://www.

intel.com/content/www/us/en/software/programmable/
sdk-for-opencl/overview.html/

[45] Faker [Online], Available: https://github.com/joke2k/faker/
[46] S. Duval and G. Leurent, ”MDS Matrices with Lightweight Cir-

cuits,”, Available: https://eprint.iacr.org/2018/260.pdf
[47] CryptDB source code [Online], Available: https://github.com/

CryptDB/
[48] mpz tstbit manual [Online], Available: https://gmplib.org/

manual/Integer-Logic-and-Bit-Fiddling.html
[49] TPC-H [Online], Available: http://www.tpc.org/tpch/
[50] V. Migliore, C. Seguin, M. M. Real, V. Lapotre, A. Tisserand,

C. Fontaine and G. Gogniat, ”A High-Speed Accelerator for Ho-
momorphic Encryption using the Karatsuba Algorithm,” ACM
Transactions on Embedded Computing Systems, Vol. 16, No. 5,
Article 138, 2017.

[51] A. Cilardo and D. Argenziano, ”Securing the Cloud with Reconfig-
urable Computing: An FPGA Accelerator for Homomorphic En-
cryption,” 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1622-1627, 2016.

[52] F. Boucenna, O. Nouali, A. Dabah and S. Kechid, ”Accelerated
Search over Encrypted Cloud Data,” 2017 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp.
170-177, 2017.

[53] Z. Wang, J. Paul, Hui Y. Cheah, B. He and W. Zhang, ”Relational
Query Processing on OpenCL-based FPGAs,” 2016 26th Interna-
tional Conference on Field Programmable Logic and Applications
(FPL), 2016.

[54] B. Salami, G. A. Malazgirt, O. A.-Abella, A. Yurdakul and N. Son-
mez, ”AxleDB: A novel programmable query processing platform
on FPGA,” Microprocessors and Microsystems Vol. 51, pp. 142-
164, 2017.

[55] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu
and Arvind, ”Bluedbm: An appliance for big data analytics,” 2015
ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), 2015.

[56] L. Woods, Z. István and G. Alonso, ”Ibex: an intelligent storage
engine with support for advanced SQL offloading,” Proceedings
of the VLDB Endowment Vol. 7, Issue 11, pp. 963-974, 2014.

[57] Early Power Estimators and Power Analyzer [Online], Available:
https://www.intel.com/content/www/us/en/programmable/
support/support-resources/operation-and-testing/power/
pow-powerplay.html

[58] 520N-MX PCIe FPGA Board [Online], Available: https://www.
bittware.com/wp-content/uploads/datasheets/ds-520n-mx.pdf

[59] Amazon EC2 F1 Instances [Online], Available: https://aws.
amazon.com/ec2/instance-types/f1

PLACE
PHOTO
HERE

Mitsuhiro Okada received the MS degree in
electrical engineering from Tokyo University of
Science, Japan, in 2006. He is currently a re-
searcher at Hitachi Ltd., with Research & Devel-
opment Group. His research interests include re-
configurable computing, high-performance com-
puting, human activity recognition and image
compression.

PLACE
PHOTO
HERE

Takayuki Suzuki received the ME degree in
electrical engineering and Information Science
from Osaka Prefecture University, Japan, in
2002. He is currently an engineer at Hitachi
Ltd., with Financial Institutions Business Unit.
His research interests include embedded sys-
tems, software development, computer security
and blockchain-related technology.

PLACE
PHOTO
HERE

Naoya Nishio received the MS degree in infor-
matics from Kyoto University, Japan, in 2015.
He is currently a researcher at Hitachi Ltd., with
Research & Development Group. His research
interests include machine learning, multi-agent
simulation, database management system and
cognitive science.

PLACE
PHOTO
HERE

Hasitha Muthumala Waidyasooriya received
the B.E. degree in information engineering, the
M.S. degree in information sciences, and the
Ph.D. degree in information sciences from To-
hoku University, Japan, in 2006, 2008, and 2010,
respectively, where he is currently an Assistant
Professor with the Graduate School of Informa-
tion Sciences. His research interests include re-
configurable computing, processor architectures
for big-data processing, and high-level design
methodology for VLSIs.

PLACE
PHOTO
HERE

Masanori Hariyama received the B.E. degree
in electronic engineering, the M.S. degree in
information sciences, and the Ph.D. degree in
information sciences from Tohoku University,
Sendai, Japan, in 1992, 1994, and 1997, re-
spectively, where he is currently a Professor with
the Graduate School of Information Sciences.
His research interests include real-world applica-
tions such as robotics and medical applications,
big data applications such as bio-informatics,
high-performance computing, VLSI computing

for real-world application, high-level design methodology for VLSIs, and
reconfigurable computing.

