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ABSTRACT The Internet of Things (IoT) has been envisioned as an enabler of the digital transformation
that can enhance different features of people’s daily lives, such as healthcare, home automation, and smart
transportation. The vast amount of data generated by a massive number of devices in an IoT system
could lead to a severe performance problem. Edge cloud computing and network function virtualization
(NFV) technologies are potential approaches to improve the efficiency of resource use and the flexibility of
responsive services in an IoT system. In this paper, we consider the joint optimization problem of gateway
placement and multihop routing in the IoT layer, the problem of service placement in the edge and cloud
layers of an NFV-enabled IoT system in edge cloud computing (NIoT). We propose three optimization
models (i.e., GMO, SP1O, SP2O) that allow an IoT service provider to find the optimal deployment of
gateways, the optimal resource allocation for service functions, and the optimal routing according to a cost
function with a performance constraint in a NIoT system. We then develop three approximation algorithms
(i.e., GMA, SP1A, SP2A) for tackling the problems in a large-scale NIoT system. The evaluation results
under a set of scenarios with various topologies and parameters show that the approximation algorithms
can obtain results close to the optimal solution with a significant reduction in computation time. We also
derive new insights into the strategy for an IoT provider to optimize its objectives. Specifically, the results
suggest that an IoT provider should select an appropriate service placement strategy with regard to a
charging agreement with an NFV infrastructure provider, and only deploy service functions with a strict
delay requirement on the edge of networks for optimizing its cost.

INDEX TERMS NIoT, resource management, optimization, NFV-enabled IoT systems, edge cloud
computing

I. INTRODUCTION

THE Internet of Things (IoT) as the interconnection of
a set of things (e.g., humans, actuators, sensors) over

the Internet has been envisioned as an enabler of the digital
transformation that can enhance different features of peo-
ple’s daily lives such as healthcare, home automation, and
smart transportation. For example, an IoT based smart trans-
portation system, which uses data collected from numerous
sensors and processed by several service functions deployed
in the cloud, can resolve many problems such as traffic
congestion, traffic accident prediction, and the scarcity of car
parking facilities. With an estimated number of 41.6 billion
devices interconnected by 2025, the enormous amount of

data created by those devices needs to be transmitted, stored,
and processed in a specific time requirement for providing
responsive applications [1]. Hence, the design of an IoT
system with the efficiency of resource use and the flexibility
of responsive services is strongly desired.

Edge cloud computing and network function virtualization
(NFV) technologies are potential approaches to improve
resource use efficiency and highly flexible services in an
IoT system by moving computing resources to the edge of
networks close to IoT nodes [2]–[4]. Further, the adoption
of NFV can provide a high degree of dynamic elasticity of
IoT services due to the high versatility in the location and
position of a particular service function composing an IoT
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service. This paper aims to develop optimization models and
algorithms to provide efficient usage of resources and energy
for an NFV-enabled IoT system in edge cloud computing
(NIoT).

More specifically, we consider a NIoT system composed
of three layers: the IoT layer, the edge layer, and the cloud
layer. Data generated by sensors at the IoT layer is routed
through an IoT gateway to the edge and cloud layers for
being processed by service functions. We take into account
the support of multihop routing at the IoT layer for efficient
data communication. In such a NIoT system, the challenging
questions are the following: What is the optimal location of
gateway nodes? What is a routing solution with a perfor-
mance guarantee in a NIoT system with the support of multi-
hop communication? What is the optimal location of service
functions at the edge and cloud layers to minimize the com-
puting and energy cost? We aim at addressing those questions
as an essential part of designing a high-performance, flexible,
and responsive NIoT system.

A detailed discussion of the literature on the use of NFV
for IoT in edge cloud computing has been provided in Section
II. As discussed in Section II, much of the existing work has
investigated the integration of IoT and edge cloud computing
[2], [4]–[10]. Some works have considered the performance
of an IoT system based on NFV and edge cloud computing
[3], [11]. However, none of these works have addressed
the optimization problem of resource management, taking
into account multihop routing and service functions chaining
for the energy efficiency, efficient resource use, and high
flexibility of a NIoT system.

The main contributions of the paper are as follows:
• We introduce two optimization problems of resource

management for NFV-enabled IoT systems in edge
cloud computing: the joint optimization problem of
gateway placement and multihop routing at the IoT
layer, the problem of service placement at the edge and
cloud layers. Our proposed optimization models (i.e.,
GMO, SP1O, SP2O) allow us to determine the opti-
mal location of gateways, optimal routing, and optimal
service placement according to a cost function with a
performance guarantee represented by the maximum
number of relays.

• We propose approximation algorithms for tackling the
problems in a large-scale system. The approximation so-
lutions for the gateway placement, routing, and service
placement are very close to the optimal solutions.

• The evaluation results present some useful insights into
the optimization of computing and energy costs re-
lated to IoT providers’ deployment strategy. Specifi-
cally, a charging agreement with an NFV infrastructure
provider has a significant impact on the IoT provider’s
optimization objective. An IoT provider should only
deploy service functions with a strict delay requirement
on the edge of networks for minimizing its cost.

The rest of this paper is organized as follows. Section II
presents an overview of related works. In Section III, we de-

scribe the evolution of IoT systems in resource management
from a physically isolated system to an NFV-enabled IoT
system in edge cloud computing. In Section IV, we present
the details of an IoT system based on NFV in edge cloud
computing and define the optimization problems of gateway
placement, routing, and service placement in the system. In
Section V and VI, we propose three mixed-integer linear
programming (MILP) models to obtain the optimal solutions
for the problems previously described. Section VII presents
our proposed approximation algorithms for addressing the
problems in a large-scale NIoT system. Section VIII shows
the evaluation results for the optimization models and ap-
proximation algorithms. Finally, we conclude the paper in
Section IX.

II. RELATED WORK
Massive data generated by multiple sensors need more pro-
cessing in remote server applications for a wide variety of
intelligent functions. An IoT system can gain the practically
infinite resources from the cloud to compensate its small
storage and limited processing capability when IoT functions
are implemented on the cloud. Resource management for
such a Cloud-IoT system has been studied extensively. For
example, Mitton et al. propose an infrastructure design of
a Cloud-IoT system for smart cities [12]. He et al. present
a cloud platform of IoT-based vehicular data for intelligent
parking and a vehicular data mining service [13]. In [14],
Botta et al. provide a survey of researches on the integration
of Cloud computing and IoT. While these proposals produce
a performance advantage in completion times and energy
costs, they cannot obtain the minimum energy consumption
and responsive time.

When we explore new IoT applications with big data
and real-time requirements, the virtues of proximity become
more critical. The edge computing paradigm provides a
promising solution to enhancing service quality and energy
consumption by offloading computation tasks to multiple
edge nodes close to consumers. Several recent studies have
been dedicated to resource management problems in edge
cloud computing for IoT by investigating various critical
problems. For instance, Lan et al. propose an IoT access
framework focused on edge computing that allows the ex-
posure of massive devices and resource capacity as a single
unified interface [2]. Xu et al. propose a computation offload-
ing method for dynamic task scheduling in an IoT system
based on cloud edge computing to improve the completion
time and save the energy consumption for mobile devices [5].
Kherraf et al. study optimization models and algorithms for
resource allocation and workload assignment in IoT networks
concentrated on mobile edge computing (MEC) [6]. Mehrabi
et al. show that device-to-device (D2D) communication can
be exploited in MEC for computation offloading and content
caching [15]. However, it requires an appropriate amount
of resources available at end nodes. In another direction,
some authors use machine learning techniques to improve
throughput and reduce the amount of transmitted data in an
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IoT system based on edge cloud computing [7], [8].
Recently, Zhao et al. propose an approximation algorithm

for the placement problem of IoT services, which concerns
the decision of where to place multiple IoT functions in edge
cloud computing according to their requirements of service
quality [9]. In [10], the authors investigate an optimiza-
tion model for addressing the service placement problem.
However, as the model is nonlinear, it is time-consuming
to find the optimal solution. These studies propose various
approaches for addressing different resource management
problems in an IoT system based on edge cloud computing.
While edge cloud computing enables responsive functions in
an IoT system by the virtues of proximity, it is not able to
provide a true service overlay, which can be supported by
NFV due to the capacity of chaining service functions.

NFV is a network architecture paradigm in which a com-
munication service can be created by chaining various blocks
of network functions (e.g., middle-box functions) scattered
over numerous data centers. Researchers have recently con-
sidered many problems in NFV, including resource allo-
cation, service function chaining (SFC), and routing opti-
mization [16]–[20]. Within the research literature, various
topics have also been explored, highlighting how future IoT
networks should use NFV. For example, Wang et al. suggest
NFV with multiflow transmissions in an IoT environment
to establish a network slice [11]. The same goals refer to
Mouradian et al. [3]. The aim, however, is to design the
distributed IoT gateway for on-the-fly disaster management
with NFV and SDN technologies. Differently, Fu et al. build
an NFV controlled IoT platform, which separates large VNFs
into simple VNF components and uses machine learning for
robust SFC integration [21].

However, no existing research has focused on the opti-
mization problem of resource management for NFV-enabled
IoT systems in edge cloud computing, which takes into
account the feature of service functions chaining for resource
use efficiency and flexibility of responsive services thanks to
virtualization techniques in NFV and edge cloud computing.
This paper is an extended version of our work presented at the
6th NAFOSTED Conference on Information and Computer
Science (NICS 2019) [4]. In [4], we consider the resource
management at the IoT layer for delivering data from sensors
to IoT gateways. In this work, we provide novel results of
optimization models and algorithms for resource manage-
ment in a NIoT system, taking into consideration optimal
resource allocation at both the edge and the cloud layers,
and the service function chaining for optimizing computing
cost and energy cost under various performance and resource
constraints.

III. EVOLUTION OF IOT SYSTEMS IN RESOURCE
MANAGEMENT
IoT is generally characterized by real-world small things,
widely distributed, with limited storage and processing ca-
pacity. Due to the availability of virtually unlimited storage
and processing capabilities at low cost in the cloud, many IoT

FIGURE 1: Evolution of IoT systems from a physically isolated system to a
Cloud-IoT system.

service providers widely adopted a cloud computing model
for delivering IoT services over the Internet. In this section,
we start by discussing resource management in the cloud for
IoT systems, including advantages, architectures, and issues.
We then analyze the characteristics of NFV, which support
edge cloud computing in IoT systems.

A. THE DEVELOPMENT OF IOT SYSTEMS FROM
PHYSICALLY ISOLATED SYSTEMS TO CLOUD
COMPUTING
IoT services have been offered in single domains, such as
car parking systems, smart ignition systems, and smart home
[22]. Domain-specific or project-specific specifications de-
fine the implementation of all components in these systems,
from sensors and actuators to smart service modules. While
this service delivery model based on single domains has
guided the development of providing IoT services over the
past several years, it leads to many geographically sepa-
rated vertical structures in which hardware, networks, and
application logics are tied directly. Cloud can offer an ef-
ficient resource management system for IoT infrastructure
as virtualized cloud resources can be rented on-demand and
delivered as general utilities.

The cloud infrastructure systems are usually available
for users in one of three service models, including Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). In particular, IaaS offers
computing resources as a service. PaaS contains operating
systems and application systems as well as other elements of
the system (e.g., database and file system). SaaS means that
the provider offers the software on the common platforms.
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IoT service providers may implement a domain-independent
PaaS framework that provides essential cloud infrastructure
for IoT services. In such a PaaS framework, an IoT service
in various application domains can be allocated without a
constraint on specific application logics (Fig. 1).

B. NFV SUPPORT FOR EDGE CLOUD COMPUTING IN
IOT SYSTEMS
When we explore new IoT applications with big data and
real-time requirements, the virtues of proximity become
critical. Edge computing, where resources are placed at
the network edge close to service consumers, has attracted
much attention in recent years. Edge cloud computing offers
highly responsive, scalable, and reliable services for IoT.
Specifically, the physical proximity of IoT services to service
consumers first allows the achievement of reduced end-to-
end delay and low bandwidth in cloud-based applications.
It is valuable for high responsive services such as smart
transportation, healthcare monitoring, and quality control in
factory automation that offload computation to the edge.
Second, when the raw data is analyzed at the edge, the
extracted information required to be transmitted to the cloud
is significantly lower. Third, a backup service at the edge
will adequately cover a failure if a cloud service becomes
inaccessible due to network failure or server collapse.

The use of edge cloud computing with NFV is a potential
approach to flexible, efficient, and responsive IoT services.
While edge computing allows the achievement of highly
responsive services, NFV supports a high degree of dynamic
elasticity of IoT services due to the high versatility in the
location and position of a particular service function compos-
ing the IoT service. By the support of SFC in NFV, we can
create a new service and update an existing service at rapid
rates. Those services can be allocated resources on the fly in
an automated fashion. In addition to the use of establishing
a service path from the service chain, an essential feature of
SFC is that it gives the provider a flexible approach for adding
missing functionality to the highly integrated solution set.

This work enforces the added values of NFV technology
in edge cloud computing for highly responsive IoT services,
and scalability and flexibility of service composition. In par-
ticular, the Network Functions Virtualization Infrastructure
as a Service (NFVIaaS) can support generic IaaS computing
loads, including cloud-based applications (IoT applications)
and network functions. It also allows us to establish connec-
tivity dynamically (e.g., NaaS) among virtual functions for
creating a new SFC. The services provided by the NFVIaaS
should be available across providers for cost-efficiency. Fig-
ure 2 shows an example of end-end IoT services in an NFV-
enabled IoT system across providers. In the figure, Provider 2
runs IoT functions on the NFVI of Provider 1 by a contractual
service agreement between them. Provider 2 can combine
its instances running on its own NFV infrastructure and its
instances running on Provider 1’s NFV Infrastructure into an
SFC to create an end-to-end service.

Our work considers the problem of resource management

FIGURE 2: End-end IoT services in an NFV-enabled IoT system across
providers.
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FIGURE 3: An edge cloud computing model in NFV-enabled IoT systems.

in an edge cloud computing model in NFV-enabled IoT
systems composed of three layers: the cloud layer, the edge
layer, and the IoT layer (Fig. 3). We aim to design models
and algorithms for coordinating the resources and networks
needed to set up cloud-based services and applications, which
can be located at the edge and cloud layers. The optimization
models and algorithms can be deployed as a component of
the NFV Orchestrator, a functional block of NFV MANO
developed by ETSI for the management and orchestration of
all virtual resources.
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TABLE 1: Summary of notations

Input parameters
G (V,E) A NIoT system where V is a set of nodes and E is a set of

directed links. V = VS ∪ VK ∪ VQ where VS is a set of
IoT devices, VK is a set of edge nodes, and VQ is a set of
cloud nodes.

η The maximum relays used in multihop routing
ςi The cost for deploying node i ∈ VS as an IoT gateway
eij If node i ∈ VS and node j ∈ VS have a direct link,

eij = 1, otherwise eij = 0

ekq The bandwidth capacity of link (k, q),
(k ∈ VK , q ∈ VQ)

FK A set of service functions deployed at edge nodes
FQ A set of service functions deployed at cloud nodes
ωf The number of computing resources required for

providing function f for one unit of traffic
τfi The cost of providing function f deployed at node i for

one unit of traffic
ck The computing capacity of edge node k, k ∈ VK

cq The computing capacity of cloud node q, q ∈ VQ

bg The total traffic passing IoT gateway g ∈ VS

Output variables
xi A binary variable that represents a solution for the

deployment of IoT gateways. If node i is an IoT gateway,
xi = 1, otherwise xi = 0

zvg A binary variable that represents a solution for the
gateway selection of end node v at the IoT layer. If data
generated by v are routed to gateway g, zvg = 1,
otherwise zvg = 0.

yvgij A binary variable that represents a routing solution at the
IoT layer. If a link from node i to node j is used for the
data flow from node v to node g, yvgij = 1, otherwise
yvgij = 0.

rgkq A binary variable that represents a solution to service
placement in cloud edge computing. If a data flow
generated by node g is processed by node k ∈ K and
node q ∈ Q, rgkq = 1, otherwise rgkq = 0.

uk A binary variable that represent the state of power
consumption of an edge node. If edge node k is active,
uk = 1, otherwise uk = 0.

uq A binary variable that represent the state of power
consumption of a cloud node. If cloud node q is active,
uq = 1, otherwise uq = 0.

IV. SYSTEM DESCRIPTION
In this section, we formally describe a NIoT system and state
the research problem. In a NIoT system, edge nodes and
cloud nodes are NFVI nodes deployed at the edge and the
cloud layers, respectively (Fig. 3). IoT nodes are nodes at-
tached to the IoT layer. We classify IoT nodes into two types:
end nodes and IoT gateways. End nodes are devices with
capacity limitations such as sensors and actuators typically
fitted with simple functions, i.e., collecting and delivering
data to their gateways. IoT gateways, called gateways for
short, are responsible for gathering data from end nodes
and maintaining a stable link to several service functions
deployed in the edge and cloud layers.

We represent a NIoT system by a directed graph G(V,E).
V = VS ∪ VK ∪ VQ is a set of nodes in the NIoT system,
where VS is a set of IoT devices, VK is a set of edge nodes,
and VQ is a set of cloud nodes. E = {eij} (i, j ∈ V ) is a

set of links in the NIoT system. Network congestion rarely
happens at the IoT layer but on the path from a gateway
to the cloud. It comes from the fact that an amount of data
increase significantly after the data are gathered at a gateway.
Hence, we only consider the bandwidth capacity of a link
among nodes among a gateway, an edge node, and a cloud
node. At the IoT layer, if node i and node j have a direct
link, eij = 1, otherwise eij = 0. In a NIoT system with
a massive number of sensors, it is crucial to consider the
hop-by-hop communication at the IoT layer for efficient
data transmission. Since we focus on optimizing resource
management at the software level rather than the physical
level, our system model does involve several physical factors
of IoT, such as wireless low-power technologies and data
transmission at the IoT embedded device’s hardware level.
We denote the maximum relays used in multihop routing at
the IoT layer by η. Let FK and FQ denote a set of service
functions deployed at the edge and cloud layers, respectively.
We define ck to be the computing capacity of edge node
k, k ∈ VK . cq is the computing capacity of cloud node q,
q ∈ VQ. We summarize the main mathematical notations in
Table 1.

In a NIoT system, data are collected from end nodes to
IoT gateways. The data then are routed to the edge layer
and the cloud layer, depending on services requested from
customers. We consider the resource management problems
in the planning and operating stages. In the first stage, a
provider wants to optimize the gateways’ location for min-
imizing the deployment cost while fulfilling system require-
ments. In the second stage, a provider aims at optimizing the
service placement for minimizing the operating cost while
satisfying customer requests.

In the first optimization problem, we assume that data gen-
erated by an end node are required to be routed to a gateway.
Given the support of multihop routing at the IoT layer, data
generated by end nodes might pass across multiple relay
nodes (i.e., end nodes) before entering a gateway. We suppose
that the delay (i.e., the routing performance) is represented by
a number of end nodes used as a relay along a routing path
from an end node to a gateway. The deployment cost of a
gateway node depends on where it is located. We denote by
ςi the cost for deploying node i ∈ VS as an IoT gateway. We
state the joint optimization of gateway placement and routing
as follows.
Problem 1 (Gateway placement and multihop routing (GM)):
Given a set of nodes VS , a set of links among these nodes, and
the maximum delay η, find a solution of gateway placement
and routing, satisfying constraints on routing and delay in
order to minimize the deployment cost.

In the second optimization problem, we assume that bg
is the total traffic passing IoT gateway g ∈ VS . Let ωf be
the number of computing resources required for providing
function f for one unit of traffic. We denote by τfi the cost for
providing function f deployed at node i for one unit of traffic.
We consider two optimization problems of service placement
with two different objectives: minimization of computing
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cost (SP1), minimization of energy cost (SP2). The problems
are stated as follows.
Problem 2 (Service placement (SP1, SP2)): Given G =
(V,E) and a set of service functions deployed at the edge and
cloud layers, find a solution of service placement, satisfying
constraints on system capacity and services requested in
order to minimize the computing cost (SP1) and the energy
cost (SP2).

We will develop our solution for solving the GM, SP1, and
SP2 problems in the next section.

V. OPTIMIZATION MODEL FOR GATEWAY PLACEMENT
AND MULTIHOP ROUTING
We formulate the GM problem as a MILP model, called
GMO (i.e., the GM optimization model) that enables us
to achieve the optimal gateway placement and routing for
minimizing the deployment cost in a NIoT system with the
support of multihop routing. The variables are as follows:
• xi is a binary variable that represents a solution for

the deployment of IoT gateways. If node i is an IoT
gateway, xi = 1, otherwise xi = 0.

• zvg is a binary variable that represents a solution for
the gateway selection of node v at the IoT layer. If
data generated by v are routed to gateway g, zvg = 1,
otherwise zvg = 0.

• yvgij is a binary variable that represents a routing solution
at the IoT layer. If a link from node i to node j is used for
the data flow from node v to node g, yvgij = 1, otherwise
yvgij = 0.

Definition 1 (Deployment cost): The formula for computing
the deployment cost is given by:

ΨGM =
∑

i∈VS

ςixi. (1)

The GMO model is as follows:

Minimize ΨGM

Subject to:
yvgij 6 zvg, ∀v, g, i, j ∈ VS (2)

yvgij 6 eij , ∀v, g, i, j ∈ VS (3)

zvg 6 1− xv, ∀v, g ∈ VS (4)
zvg 6 xg, ∀v, g ∈ VS (5)∑

g∈VS

zvg = 1− xv, ∀v ∈ VS (6)∑
i∈VS

yvgig 6 1, ∀v, g ∈ VS (7)∑
i∈VS

yvgig > zvg, ∀v, g ∈ VS (8)∑
i∈VS

yvgvi 6 1, ∀v, g ∈ VS (9)∑
i∈VS

yvgvi > zvg, ∀v, g ∈ VS (10)∑
j∈VS

yvgij =
∑

j∈VS

yvgji , ∀v, g, i ∈ VS , i 6= v, i 6= g

(11)∑
i,j∈VS

yvgij 6 η, ∀v, g ∈ VS . (12)

We aim at optimizing the cost of gateway deployment
while satisfying a requirement of routing performance rep-
resented by a maximum number of relays from an end node
to its gateway. Conditions (2) and (3) assure that link (i, j)
belongs to path from s to d (i.e., ysdij = 1) only if data
generated by end node s is routed through IoT gateway d
(i.e., zsd = 1) and link (i, j) exists (i.e., eij = 1). Conditions
(4) and (5) guarantee that data is routed from v to g only if
v is an end node (i.e., xv = 0) and g is an IoT gateway (i.e.,
xg = 1). Condition (6) assures that an end node sends data
to one gateway. Conditions (7), (8), (9) and (10) ensure that
the number of paths routing data from an IoT sensor to an
IoT gateway is one. The constraint on a flow conservation
guarantee for each routing path is given by (11). Condition
(12) is the delay constraint represented as the maximum
number of relays used to send data from an end node to a
gateway. The MILP model’s output is the optimal solution
for gateway placement and multihop routing represented by
xi and ysdij .

VI. OPTIMIZATION MODEL FOR SERVICE PLACEMENT

A. MINIMIZATION OF THE COMPUTING COST

We formulate the SP1 problem as a MILP model, namely
SP1O (i.e., the SP1 optimization model), to find the optimal
solution to service placement in edge cloud computing with
the objective of minimizing the computing cost. We represent
a solution to the problem by binary variable rgkq . If a data
flow generated by IoT gateway g is processed by node k in
the edge and node q in the cloud, rgkq = 1, otherwise rgkq =
0.

A number of computing resources required for providing
function f at the edge layer when data traffic is routed from
gateways to edge node k are given by:

ψfk = ωf

∑
g∈N,q∈Q

bgrgkq. (13)

A number of computing resources required for providing
function f at the cloud layer when data traffic is routed from
gateways to cloud node q are given by:

ψfq = ωf

∑
g∈N,k∈K

bgrgkq. (14)

Definition 2 (Computing cost): The formula for calculating
the computing cost is given by:

ΨSP1 =
∑

k∈VK ,f∈JK

τfkψfk +
∑

q∈VQ,f∈JQ

τfqψfq.

(15)

The SP1O model is as follows:
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Minimize ΨSP1

Subject to:∑
k∈VK ,q∈VQ

rgkq = 1, ∀g ∈ VS (16)∑
g∈VS

bgrgkq 6 ekq, ∀k ∈ VK , q ∈ VQ (17)∑
f∈JK

ψfk 6 ck, ∀k ∈ VK (18)∑
f∈JQ

ψfq 6 cq, ∀q ∈ VQ. (19)

The objective of SP1O is to minimize the usage cost
of computing resources for realizing service requirements.
Condition (16) assures that one edge node and one cloud
node are selected for processing data traffic collected at
an IoT gateway. Condition (17) guarantees that data traffic
routed through a link between edge node k and a cloud node
q is not more than link capacity ekq . Conditions (18) and (19)
present the constraints on the computing capacity of an edge
node and a cloud node.

B. MINIMIZATION OF THE ENERGY COST

We further develop the SP1O model for finding the optimal
solution to service placement in edge cloud computing with
the objective of minimizing the energy cost, called SP2O
(i.e., the SP2 optimization model). A solution to the SP2
problem is represented by a binary variable rgkq , which was
explained in the SP1O model. The energy usage depends on
the number of active nodes of the edge and cloud layers. If a
node of the edge and cloud layers provides a service function
for a data flow from the IoT layer, its state is active, otherwise
its state is inactive. We ignore the power consumption in the
inactive state as it is a negligible quantity, compared with that
in the active state. The objective of minimizing the energy
cost can be represented as the number of active nodes in the
edge and cloud layers. To represent the state of a node in the
edge and cloud layers, we introduce binary variables uk and
uq , respectively. If edge node k is active, uk = 1, otherwise
uk = 0. If cloud node q is active, uq = 1, otherwise uq = 0.
To describe constraints on uq and uk, we define θ as a large
integer number.

Definition 3 (Energy cost): The formula for computing the
energy cost is given by:

ΨSP2 =
∑

k∈VK

uk +
∑

q∈VQ

uq. (20)

The SP2O model is as follows:

Minimize ΨSP2

Subject to:
Condition (16), (17), (18), (19)∑

g∈VS ,q∈VQ

rgkq 6 θuk, ∀k ∈ VK (21)∑
g∈VS ,q∈VQ

rgkq > uk, ∀k ∈ VK (22)∑
g∈VS ,k∈VK

rgkq 6 θuq, ∀q ∈ VQ (23)∑
g∈VS ,k∈VK

rgkq > uq, ∀q ∈ VQ. (24)

In the SP2O model, the constraints on the fulfilment of
service requirement and the system capacity are similar to
those used in the SP1O model (i.e., Eq. (16), (17), (18), (19)).
Conditions (21) and (22) assure that edge node k will be
in the active state if k is selected for processing data traffic
collected at any gateway, otherwise k will be in the inactive
state. Conditions (23) and (24) guarantee that cloud node q
will be in the active state if q is selected for processing data
traffic collected at any gateway, otherwise q will be in the
inactive state.

VII. APPROXIMATION ALGORITHMS
In the previous section, we develop three MILP models for
finding the optimal location of IoT gateways, the optimal
routing, and the optimal placement of service functions in a
NIoT system. However, the MILP solvers often fail to solve
a large model with hundreds of gateways. For example, for a
scenario with 300 IoT devices, GMO has tens of billions of
variables, which is too large for CPLEX to handle. Hence,
we propose an approximation algorithm for a large-scale
NIoT system. We start by describing the primary steps of
the algorithm. We then present some adaptations for solving
the two optimization problems of resource management in a
NIoT system.

A. PRIMARY STEPS
The key concept of the algorithm approach is based on
the Simulated Annealing (SA) with the development of a
neighborhood function and a solution representation for the
resource management problems in a NIoT system. SA is
a heuristic approach to a search of the global optimum
for the optimization problem whose solution set contains a
local optimum [23]. It considers a worse scenario with a
certain probability in the searching procedure for the optimal
solution. This approach has the advantage of being simple
and effective due to the capacity for escaping from local
optimum.

The algorithm starts with a temperature parameter T de-
creasing after some steps in the searching procedure by a
cooling function C(T ). It loops until T is less than a stop
temperature Tf . We denote by M the number of iterations
for each T . Let S be an initial solution. The details of the
search procedure are as follows:
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• Step 1: Initialize a set of algorithm parameters including
T , Tf , and a counter variable n = 1 that represents a
number of iterations for T . Find an initial solution S.

• Step 2: Generate a neighborhood solution S
′

from the
current solution S. If the objective function value of
the neighborhood solution Φ(S′) is less than that of the
current solution Φ(S), move to a better solution S ← S′

and go to Step 4. Otherwise, go to Step 3.
• Step 3: Let ∆ = Φ(S′) − Φ(S). ε is a random

number uniformly distributed on the interval (0,1). If
ε < exp(−∆/T ), move to a new solution S ← S

′
and

go to Step 4.
• Step 4: Increase a number of iterations for T , n← n+1.

If n > M , go to Step 5. Otherwise, continue the loop
from Step 2.

• Step 5: Use C(T ) to update the current temperature:
T ← C(T ). If T ≥ Tf , n ← 1 and go to Step 2.
Otherwise, finish the searching procedure.

B. ALGORITHM FOR NEIGHBORHOOD GENERATION
OF GATEWAY PLACEMENT AND MULTIHOP ROUTING
We represent a solution of the gateway placement in a
NIoT system at the IoT layer by a set of integers (i.e.,
SGM = {g ∈ VS}). For example, SGM = {1, 2, 3} means
the positions of gateways are 1, 2, and 3 at the IoT layer, the
positions of end nodes are VS\SGM . We propose a neigh-
borhood function, namely GMA-N, to move from a solution
SGM to a neighborhood solution S

′

GM . The SA algorithm for
finding an approximation solution of the problem of gateway
placement and multihop routing, called GMA, follows the
necessary steps presented in Section VII-A and uses our
proposed neighborhood function GMA-N.

In GMA-N, we propose three moving operators that allow
us to change the current solution to a neighborhood solution:
• Add(v, S

′

GM ): The procedure adds a new gateway to
the current solution by inserting a new integer v ∈
VS\S

′

GM into S
′

GM .
• Remove(g, S

′

GM ): The procedure removes a gateway in
the current solution by deleting one integer g ∈ S

′

GM

from SGM .
• Exchange(g, v, S

′

GM ): The procedure moves one gate-
way to a new location by changing one integer g ∈ S′

GM

to another value that is not in SGM (i.e., v ∈ VS\S
′

GM ).
The details of the GMA-N algorithm for neighborhood

generation of gateway placement and multihop routing are
presented in Algorithm 1. The rules for selecting a moving
operator are as follows. If the number of gateways is one,
Add() or Exchange() is allowed to operate with a probability
depending on a probability parameter γ (i.e., line 7-10). If
all IoT nodes are selected as gateways (i.e.,

∣∣∣S′

GM

∣∣∣ = |VS |),
Remove() is selected (i.e., line 11-13). If the number of gate-
way is more than one and less than the number of IoT nodes
(i.e., 1 <

∣∣∣S′

GM

∣∣∣ < |VS |, one of three operators is selected
with a probability depending on probability parameters α and
β (i.e., line 14-18). Note that S

′

GM is a feasible solution if

Algorithm 1 Algorithm for neighborhood generation of gate-
way placement and multihop routing

1: function GMA-N(SGM )
2: S

′

GM ← SGM

3: ΣGM ← ∅
4: ΠGM ← all pairs of gateways and end nodes in

SGM × {VS\SGM}
5: for all (g, v) ∈ ΠGM do
6: ε← a random number in (0,1)

7: if
∣∣∣S′

GM

∣∣∣ = 1 then
8: S

′

GM ← EXCHANGE(g, v, S
′

GM ) if ε < γ

9: S
′

GM ← ADD(v, S
′

GM ) if ε ≥ γ
10: end if
11: if

∣∣∣S′

GM

∣∣∣ = |VS | then
12: S

′

GM ← REMOVE(g, S
′

GM )
13: end if
14: if 1 ≤

∣∣∣S′

GM

∣∣∣ ≤ |VS | then
15: S

′

GM ← EXCHANGE(g, v, S
′

GM ) if ε < α

16: S
′

GM ← ADD(v, S
′

GM ) if ε ∈ [α, β]

17: S
′

GM ← REMOVE(g, S
′

GM ) if ε > β
18: end if
19: if S

′

GM is feasible and S′ /∈ ΣGM then
20: ΣGM ← ΣGM ∪ S

′

GM

21: return S
′

GM

22: else
23: S

′

GM ← SGM

24: end if
25: end for
26: end function

there exists a routing solution for delivering data from all end
nodes to gateways. We use parameters α, β, γ to control the
priority of moving operators in generating a neighborhood
solution.

C. ALGORITHM FOR NEIGHBORHOOD GENERATION
OF SERVICE PLACEMENT
We represent a solution of service placement of a
NIoT system as a list of tuples composed of an edge
node and a cloud node, which is denoted by SSP =
((ki, qi) : i = 1 . . . |SGM |, ki ∈ VK , qi ∈ VQ). The solution
shows that a set of virtual service functions for gateway i
with a light workload is deployed at an edge node ki and that
with a heavy workload is deployed at a cloud node qi.

We propose the SA algorithms for the SP1 problem and
the SP2 problem, called SP1A and SP2A, respectively, which
use a similar neighborhood function, namely SPA-N. The
difference between SP1A and SP2A is in Step 2 and Step
3 presented in Section VII-A when we compute the objec-
tive value. In particular, the SP1A algorithm uses Eq. (15)
and the SP2A algorithm uses Eq. (20). The detail of the
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Algorithm 2 Algorithm for neighborhood generation of ser-
vice placement

1: function SPA-N(SSP )
2: S

′

SP ← SSP

3: ΣSP ← ∅
4: ΠSP ← all pairs of edge nodes and cloud nodes in

VK × VQ
5: for all (k, q) ∈ ΠSP do
6: i← a random number in [1, |SSP |]
7: S

′

SP ← REPLACE(k, q, i, S
′

SP )

8: if S
′

SP is feasible and S
′

SP /∈ ΣSP then
9: ΣSP ← ΣSP ∪ S

′

SP

10: return S
′

SP

11: else
12: S

′

SP ← SSP

13: end if
14: end for
15: end function

TABLE 2: Evaluation scenarios

Parameters Grid Barabasi-Albert
Network size (nodes) 16, 25, 36, 49 16, 25, 36, 49

Maximum relay 1, 2, 3, 4 1, 2, 3, 4

SPA-N algorithm for neighborhood generation of service
placement is presented in Algorithm 2. In SPA-N, we de-
note all pairs of edge nodes and cloud nodes by ΠSP =
((k, q) : k ∈ VK , q ∈ VQ). We define an operator for moving
from a solution to another solution. The Replace(k, q, i, SSP )
operator changes the edge node and cloud node associated
with gateway i in solution SSP by edge node k and cloud
node q. We use the Replace operator for a random gateway i
and each (k, q) of ΠSP in succession until we find a feasible
solution.

VIII. EVALUATION
This section presents an assessment of our optimization
models and algorithms for the two problems of resource
management in a NIoT system. We will start with a summary
of various evaluation scenarios and several parameter settings
for the algorithms. We then evaluate the performance of our
proposed solutions in terms of several primary performance
metrics. The evaluation also gives new insights into the
strategy for an IoT provider to optimize its objectives.

A. SCENARIOS AND PARAMETERS SETTING
The topologies of the IoT layer used in our evaluation are
the grid networks and synthetic topologies based on the
Barabasi-Albert model [24], which are illustrated in Fig. 4.
The parameters are summarized in Table 2. In the GMA algo-
rithm, we assign γ = 0.5 as we consider the same probability

(a) A grid network with 16 nodes

(b) Barabsi-Albert (16 nodes, 4 edges attached from a new
node to existing nodes, and 2 nodes initially attached to the
network)

FIGURE 4: The grid and Barabasi-Albert topologies.

for the Exchange and Add operators. We choose α = 0.4 and
β = 0.7 as we give a higher probability for the Exchange
operator when the number of gateways is larger than or equal
to one. A set of service functions required to be processed
at the edge layer and that provided by the cloud layer is five
functions. We define the basic unit of computing resources
in our evaluation as 103 cycles per second. The computing
resource required by a service function for processing one
unit of data traffic is a random number uniformly distributed
between 1 and 5. The computing resource of an edge node
and a cloud node is 50× 106. The capacity of a link between
an edge node and a cloud node is 50 Gbps. The capacity of
a link between a gateway and an edge node is 5 Gbps. The
cost of processing a traffic unit at an edge node is uniformly
distributed between 5 and 10. The cost of processing a traffic
unit at a cloud node is uniformly distributed between 1 and
5. The data volume generated by an end node is a random
number uniformly distributed between 10 and 1000. We use
CPLEX to solve the GMO, SP1O, and SP2O models for find-
ing the optimal results [25]. We carried out experiments in an
X86-based PC with a two-core 2.7 GHz Intel processor and 8
GB memory. We evaluate the performance of our proposed
solutions in terms of some primary metrics, including the
deployment cost, the computing cost, the energy cost (i.e., the
number of active nodes in the edge and cloud layers), and the
computation time, which are computed as the average value
in 50 runs.
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FIGURE 5: Comparison between the computation time of GMA and that of
GMO when varying network size.

B. PERFORMANCE EVALUATION OF GATEWAY
PLACEMENT AND MULTIHOP ROUTING

We begin by assessing the efficiency of GMA in comparison
with the optimal results produced by GMO for the problem
of resource management at the IoT layer of a NIoT system.
The maximum relay is three nodes for all topologies. We
vary the network size between 16 and 49. Fig. 5 depicts the
computation time of GMA and GMO. Note that the time
is plotted on a log-10 scale. The results show that GMA
is significantly faster than GMO in both grid and Barabasi-
Albert topologies. More specifically, the ratio between the
computation time of GMA and that of GMO increases from
3 times to 17 times when the number of nodes varies from 16
to 49 nodes.

Second, we evaluate the impact of the maximum relay on
the deployment cost of gateways at the IoT layer of a NIoT
system. We vary the maximum relay between one and four
in the grid and Barabasi-Albert topologies with 49 nodes. We
plot the deployment cost as a function of the maximum relay
in Fig. 6 and Fig. 7. Fig. 6a and Fig. 7a show that the results
produced by GMA are very close to the optimal results. We
observe that GMA is more efficient when the maximum relay
increases. We argue that the higher number of relays would
lead to more possibility to improve an approximate solution.
Both figures show that the deployment cost decreases when
the maximum relay increases. This occurs because a large
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FIGURE 6: Comparison between GMA and GMO when varying the maximum
relay with the grid topology.

number of the maximum relay could result in an increase
in the number of end nodes connected to one gateway, or a
decrease in the number of gateways. Therefore, the deploy-
ment cost reduces. Fig. 6b and Fig. 7b plot the computation
time in seconds. The results show that GMA’s computation
time is always significantly lower and more stable than
that of GMO. We note that the maximum relay should be
selected appropriately because of some performance issues
of multihop routing in the IoT layer [26]. We can control the
maximum relay used in multihop routing by parameter η.

Third, we investigate the impact of the network density
represented by the average node degree on the deployment
cost. Fig. 8 plots a comparison between GMA and GMO
regarding the deployment cost and the computation time in a
Barabasi-Albert topology with 36 nodes when the maximum
relay is three. The results show that the deployment cost of
the solution produced by GMA is very close to the optimal
solution, while the computation time of GMA is considerably
smaller than that of the optimization model. We also note
that the deployment cost rapidly reduces as the average node
degree grows. We argue that the improvement of the number
of potential connections in a high-density network leads to a
decrease in the number of gateways. As a result, the deploy-
ment cost decreases. To summarize, the GMA approximation
algorithm can find a feasible solution that is very close to the
optimal one with significantly reduced time.
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FIGURE 7: Comparison between GMA and GMO when varying the maximum
relay with the Barabasi-Albert topology.

Finally, we evaluate GMA in a large scenario with 400 IoT
nodes for demonstrating the scalability of GMA. We compare
GMA with a greedy algorithm because it is time-consuming
for GMO to obtain the optimal solution of gateway placement
in a large scenario. In the greedy algorithm, we sort a list of
IoT nodes first by their degree in descending order, then by
their cost in ascending order. After the list of IoT nodes is
sorted, the algorithm selects an IoT node as a gateway, then
connects the gateway to other IoT nodes that can deliver their
data through the gateway. The process of gateway selection
completes when all IoT nodes are linked to a gateway. Fig.
9 depicts the cost of gateway deployment in a large scenario
when the maximum relay varies between 1 and 5 hops. The
result shows that GMA is capable of finding an approxima-
tion solution for gateway placement and routing in a large
scenario.

C. PERFORMANCE EVALUATION OF SERVICE
PLACEMENT

In the performance evaluation of our proposed solution for
service placement, we consider a NIoT system composed of
30 edge nodes and 50 cloud nodes. We vary the number of
IoT gateways between 5 and 200 nodes. We compute three
metrics, including the computing cost of service placement,
the number of active nodes used for fulfilling the service re-
quirements, and the computation time for finding a solution.

 1
.9

4
 2

.9
4

 3
.5

0

 5
.0

6
 5

.9
4

 6
.6

1

 8
.1

7

 9
.7

2

11
.2

8
12

.0
6

13
.5

0
14

.7
8

15
.9

4
17

.1
1

17
.9

4

Average node degree

0

2

4

6

8

D
ep

lo
ym

en
t c

os
t

GMO
GMA

(a) Deployment cost

 1
.9

4
 2

.9
4

 3
.5

0

 5
.0

6
 5

.9
4

 6
.6

1

 8
.1

7

 9
.7

2

11
.2

8
12

.0
6

13
.5

0
14

.7
8

15
.9

4
17

.1
1

17
.9

4

Average node degree

10-1

100

101

102

103

C
om

pu
ta

tio
n 

tim
e 

(lo
g-

10
 s

ca
le

)

GMO
GMA

(b) Computation time

FIGURE 8: Comparison between GMA and GMO when varying the average
node degree with the Barabasi-Albert topology.

We first evaluate the performance of the SP1A and SP2A
algorithms in comparison with the SP1O and SP2O opti-
mization models solved by CPLEX. Fig. 10 shows that the
computing costs of the approximation solutions produced
SP1A and SP2A are very close to those solved by SP1O
and SP2O, respectively. We observe a trade-off between the
number of active nodes used at the edge and cloud layers
(i.e., the energy cost) and the computing cost. For example,
as shown in Fig. 10 and Fig. 11, SP1A is better than SP2A in
terms of the computing cost while it is worse than SP2A in
terms of the energy cost. We can infer that an IoT service
provider might need to select an appropriate optimization
strategy according to a charging agreement with an NFVIaaS
provider. Furthermore, Fig. 12 shows that the computation
time of the SP1A and SP2A algorithms are significantly
lower than the SP1O and SP2O model solved by CPLEX.
In summary, the SP1A and SP2A algorithms are efficient
approaches for finding an approximation solution of service
placement for a NIoT system.

Next, we study the impact of the location of service
functions in edge cloud computing. We consider two cases:
all service functions are deployed in the cloud layer (i.e., the
Cloud case), and service functions are deployed in both the
edge and the cloud layers (i.e., the Edge-Cloud case). In the
Cloud case, note that data traffic is still routed from a gateway
through an edge node to a cloud node. However, as we do
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FIGURE 9: The cost of gateway deployment in a large scenario with 400 IoT
nodes.
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FIGURE 10: Computing cost of a solution produced by SP1A, SP2A, SP1O
and SP2O.

not deploy any service function in the edge layer, the cost
related to edge nodes is not included in the cost functions
(i.e., Eq. (15), (20)). Fig. 13, 14, and 15 plot the computing
cost, the number of active nodes, and the computation time
in the two cases. We observe that the computing cost of
the Edge-Cloud case is higher than that of the Cloud case.
This was to be expected due to the high resource cost at
the edge. In other words, a customer is charged more for
responsive service functions. Furthermore, Fig. 14 shows that
the number of active nodes in the Cloud case is lower than
that in the Edge-Cloud case. Consequently, the Edge-Cloud
case requires more energy than the Cloud case. We argue
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FIGURE 11: Energy cost of a solution produced by SP1A, SP2A, SP1O and
SP2O.
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FIGURE 12: Computation time of SP1A, SP2A, SP1O and SP2O.
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FIGURE 13: Comparison between the computing cost of the Cloud case and
that of the Edge-Cloud case.

that it is the cost of highly responsive, scalable, and reliable
services offering by edge cloud computing. It implies that
an IoT service provider should only deploy service functions
with a strict delay requirement on the edge for optimizing its
cost.

IX. CONCLUSION
We addressed the joint optimization problem of gateway
placement and multihop routing in the IoT layer, the problem
of service placement in the edge and cloud layers for a NIoT
system. We proposed the GMO, SP1O, and SP2O models
for obtaining the optimal solutions. An IoT service provider
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FIGURE 14: Energy cost of the Cloud and Edge-Cloud cases.
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FIGURE 15: Computation time of SP1A and SP2A in the Cloud and
Cloud-Edge cases.

can exploit our solution for determining the optimal gateway
deployment, the optimal routing, and the optimal resource
allocation to service functions in a NIoT system. We then
developed the GMA, SP1A, SP2A algorithms for tackling
the problems in a large-scale NIoT system. The evaluation
results under diverse topologies show that the approxima-
tion algorithms can find the results close to the optimal
solution with significantly reduced time. We observed that
the deployment cost reduces as the maximum number of
relays and the network density increase. We can infer from
our evaluation that an IoT service provider might need to
select an appropriate optimization strategy according to a
charging agreement with an NFVIaaS provider. The results
also suggest that an IoT service provider should only deploy
service functions with a strict delay requirement on the edge
for optimizing its cost. Our future work will consider the
strict delay requirements of certain IoT services, the support
of D2D communication for computation offloading, and the
optimization of resource management at the physical level. It
would also be of interest to study the collaboration between
several IoT service providers for further improving the per-
formance, the flexibility, and efficiency of a highly responsive
NIoT system [19], [27].
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