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ABSTRACT The influence maximization problem is aimed at finding a small subset of nodes in a
social./network to maximize the expected number of nodes influenced by these nodes. Influence maxi-
mization plays an important role in viral marketing and information diffusion. However, some existing
algorithms for influence maximization in social networks perform badly in either efficiency or accuracy.
In this paper, we put forward an efficient algorithm, called a two-stage selection for influencemaximization in
social networks (TSIM). Moreover, a discount-degree descending technology and lazy-forward technology
are proposed, called DDLF, to select a certain number of influential nodes as candidate nodes. Firstly,
we utilize the strategy to select a certain number of nodes as candidate nodes. Secondly, this paper proposes
the maximum influence value function to estimate the marginal influence of each candidate node. Finally,
we select seed nodes from candidate nodes according to their maximum influence value. The experimental
results on six real-world social networks show that the proposed algorithm outperforms other contrast
algorithms while considering accuracy and efficiency comprehensively.

INDEX TERMS Social networks, influence maximization, DDLF, heuristic method, TSIM.

I. INTRODUCTION
With the development and popularity of the Internet, billions
of people are connected through online social networks,
such as Facebook, Twitter and YouTube. Due to connecting
billions of people, social networks generate tons of data every
day. The generation of massive data promotes the research of
social networks. Social networks are not only communica-
tion channels but also platforms for information propagation,
public services and marketing [1]–[3].

In recent years, with the popularity of social networks,
influence maximization problem has become one of the hot
issues in this field [27]. The research of influence maximiza-
tion problem stems from ‘‘viral marketing’’ [4]–[6]. Its initial
purpose is to obtain the maximum commercial value and
market return through ‘‘word-of-mouth’’ with the minimum
marketing cost [7], [28], [29].

Driven by the wide applications in marketing, influence
maximization was first regarded as an algorithmic problem
by Domingos and Richardson [8]. Kempe et al. [9], [10]
defined the influence maximization problem as a discrete
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optimization problem and proved that the problem
is NP-hard. Moreover, they proposed a classical greedy algo-
rithm to solve the problem and testified that the algorithm
could guarantee (1 − 1/e) to reach the optimal solution.
However, the greedy algorithm has two obvious drawbacks as
follows: (1) it needs to traverse all nodes in social networks;
(2) it requires tens of thousands of Monte Carlo simula-
tions to obtain an accurate result. Due to these limitations,
the efficiency of the algorithm is very low, especially for
the large social networks containing tons of nodes. In recent
years, numerous studies have been done to optimize the
efficiency of the naive greedy algorithm. Leskovec et al. [11]
proposed an optimization method of the greedy algorithm,
called Cost-effective Lazy Forward (CELF). The CELF
algorithm utilizes the sub-modular property of the influence
maximization objective function to greatly reduce the number
of assessments on the influence spread of nodes. Therefore,
the efficiency of CELF is 700 times faster than the naive
greedy algorithm. Moreover, the algorithm needs to repeat-
edly calculate themarginal influence spread of each candidate
node in the node selecting process. Therefore, in large social
networks, the efficiency of CELF is also poor. Based on the
greedy-based algorithms, aiming at solving the low efficiency
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of the algorithm, the subsequent heuristic algorithms were
presented. Chen et al. [12] proposed a representative heuristic
algorithm, called Degree Discount algorithm. The main idea
of the Degree Discount algorithm is that if a node is selected
as a seed node, the degree of the node’s neighbors should be
discounted. The efficiency of the Degree Discount algorithm
is better than the naive greedy algorithm. However, the algo-
rithm only considers the relationship between the degree of
nodes and neighbors, which ignores the structure of social
networks. As a result, the accuracy of the algorithm is lower
than other greedy algorithms.

In this paper, we propose an improved algorithm, called
TSIM (a two-stage selection algorithm for influence maxi-
mization in social networks). The TSIM algorithm focuses
on two aspects: Firstly, the TSIM algorithm utilizes the
discount-degree descending technology and lazy-forward
technology (called DDLF) search strategy to select 2k (where
k represents the size of the seed set S) influential nodes
as candidate nodes. After finishing the two-stage filtering
of candidate nodes, k nodes can be selected as seed nodes
from candidate nodes by themaximum influence value (MIV )
function proposed in this paper. The double selection of
candidate nodes ensures the influence of the final selection
node.

Our contributions are summarized as follows:
(1) The DDLF strategy utilizes the discount-degree descend-

ing technology to select a part of candidate nodes and
the lazy-forward technology to select another part of
candidate nodes excluding the influence of the nodes.

(2) A new objective function is presented in this paper, called
MIV , to select seed nodes, which improves the accuracy
of the TSIM algorithm. The TSIM algorithm is based
on the DDLF strategy for influence maximization in
the social network. Moreover, the proposed algorithm
first utilizes DDLF to select 2k candidate nodes. Then,
the algorithm uses MIV to select k nodes as seed nodes
from 2k candidate nodes.

(3) Extensive experimental results on six real-world social
networks demonstrate that the proposed algorithm out-
performs contrast algorithms when considering compre-
hensively efficiency and accuracy.

The structure of the paper is as follows. Section II
recommends the related work for the influence maximization
problem. Section III introduces the preliminaries about the
diffusion model and problem definition. Section IV presents
the main idea of the TSIM algorithm. Section V validates
TSIM algorithm is more accurate than other algorithms
through the experiment. Section VI concludes this paper.

II. RELATED WORKS
In 2001, Domingos and Richardson [8] investigated the influ-
ence maximization problem and defined it as an algorith-
mic problem. Since then, in 2003, Kempe et al. [9] studied
the influence maximization problem based on two influence
diffusion models, the Independent Cascade model [10], [13]
and the Linear Threshold model [14], [15], which described

how users of social networks spread their effects to their
friends. Meanwhile, they proposed a greedy algorithm to
solve the problem. Their experimental results show that the
greedy algorithm is better than the degree heuristic algorithm
and the centrality heuristic algorithm in terms of accuracy.
However, the greedy algorithm needs to spend long time on
the modern server machine, which cannot be widely used
in large-scale social networks. In [11], [16], researchers pre-
sented lazy-forward optimization that significantly speeds up
the greedy algorithm, but it still cannot scale to large net-
works with thousands of nodes and edges [17], [18]. In 2007,
Leskovec et al. [11] proposed the CELF algorithm, which
utilizes the sub-modularity to reduce the number of Monte
Carlo simulations in node-selecting process. In 2009,
Chen et al. [12] proposed a heuristic algorithm, called Degree
Discount algorithm. The idea of DegreeDiscount algorithm is
that if a neighbor node of a node is selected as the initial active
node, the degree of the node needs to be discounted quan-
titatively. Then in 2010, the new heuristic algorithm, called
PMIA [19], was presented by Chen et al. PMIA improves
computation efficiency and result accuracy by utilizing max-
imum influence arborescence (MIA) model. PMIA is an
algorithm based on the influence path, which adopts the MIA
model to estimate the influence spread of nodes. In this pro-
cess, it uses a threshold to prune unnecessary traveling, which
speed up the node-selecting process. This algorithm needs to
set the threshold factitiously. There is no uniform calculating
method for the threshold. In different graphs, the value of
the threshold should also be different. Hence, the method
of setting the threshold factitiously may decrease the result
accuracy. Moreover, in 2018, Cui et al. [20] posed the DDSE
algorithm (degree-descending search evolution). DDSE is
an evolutionary algorithm based on the degree descending
search strategy, which is divided into four steps: initialization,
mutation, crossover and selection. By simulating the biolog-
ical evolution process, this algorithm can obtain the global
optimal solutionwhen the iteration times is enough. Although
this algorithm can obtain the global optimal solution, it runs
too slow due to the defect of the evolutionary algorithm.
In addition, it may fall into the local optimal solution. And
this algorithm utilizes expected diffusion value (EDV) as the
evaluating standard, which saves running time, but sacrifices
a lot of accuracy.

We gain the experience from the above algorithm and pro-
pose an improved algorithm, called TSIM, which combines
the discount-degree technology with lazy-forward technol-
ogy to optimize the problem.

III. PRELIMINARY
In this section, we first briefly introduce the notations used in
this paper. The Independent Cascade (IC) model [10], [13] is
selected as the influence diffusionmodel. Then, the definition
of the influence maximization problem is formulated.

Given a graph G = (V ,E) and a number k , G represents a
directed graph for a social network and k denotes the size of
a seed set. In the graph G, V and E denote the nodes set and
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FIGURE 1. The diffusion process of the Independent Cascade model.

the edges set, respectively. Meanwhile, puv ∈ [0, 1] expresses
an active probability for each edge (u, v) ∈ E . A node in a
social network G has two states: active or inactive. An active
node u conveys an idea or innovation to its neighbor node v.
If the node v accepts it, the node v is activated. Otherwise,
the node v is inactive, and the node u can never attempt to
activate the node v again. The process of interaction between
nodes expresses the information propagation. To describe the
interaction process and behavior pattern of nodes, we need a
diffusion model.

A. THE INDEPENDENT CASCADE MODEL
In marketing research, Goldenberg et al. [21], [22] first
put forward the Independent Cascade model as a diffusion
model. The model was first proposed to solve the influence
maximization problem by Kempe et al. [9]. In this paper,
the Independent Cascade model is adopted to simulate the
process of influence diffusion. Next, the propagation process
of the Independent Cascade model is introduced as follows:

(1) Assume that the initial seed set S;
(2) At the time t(t ≥ 1), the active node u in the seed set S

activates the inactive neighbor node v with probability p;
(3) If the node v is activated by u, at the time t+1, the node v

becomes active and does the way as (1) to influence other
neighbor inactive nodes of it. Otherwise, the condition of
v will not change;

(4) The process of (1) and (2) will be repeated over and over
again until there are no influential active nodes in the
social network, the propagation process ends.

The diffusion process of the Independent Cascade model
is shown in Fig. 1.

As shown in Fig. 1, the set of all nodes in this graph is
{a, b, c, d, e, f , g}, and the weight of edges represents the
node activation probability. At the time t , assuming that node
a is the initial active node. At the time t + 1, node a tries to
activate node b and c with the activation probability shown in
Fig. 1. Supposing that node b is activated, node b activates its
neighbor nodes f and g in the same way as node a. If node f
is to be activated successfully, and then node f will attempt
to activate its neighbor node e. If the activation of node f
fails, node f has no chance to activate its neighbor nodes.

TABLE 1. Parameters of TSIM algorithm.

The diffusion process will stop when no more new nodes are
activated.

B. PROBLEM STATEMENT
Influence maximization problem [23]: the purpose of the
influence maximization problem is to find k nodes to max-
imize influence spread in the social network.

Given a social network G = (V ,E) and a number k , S is
a seed set and σ (S) denotes the influence spread of S in the
Independent Cascade model in this paper.
Definition 1: σ (S) is defined as the number of expected

nodes activated by the initial active set S at the end of the
information propagation [24], [26]. The formula for this is
shown in (1): {

S = argmax σ (S)
S ⊆ V , |S| = k

(1)

The parameters of the TSIM algorithm are shown in
TABLE 1.

IV. PROPOSED ALGORITHM
In this section, we introduce the framework of our improved
algorithm and its details. As described in the previous
section, some existing heuristic algorithms and greedy-based
algorithms have some disadvantages in efficiency or accu-
racy. Hence, we utilize some strategies to optimize the Degree
Discount algorithm and CELF algorithm. The Degree Dis-
count algorithm selects seed nodes according to the degree
of the node. However, the degree of a node cannot represent
the influence spread of a node completely. The method of
utilizing degree as the metric of the node-selecting process
is suitable for the networks whose average degree is large
but is not suitable for the networks whose average degree
is small. Hence, the method of node-selecting sometimes
neglects some influential nodes with a small degree. How-
ever, CELF calculates the influence of a node by tens of
thousands of Monte Carlo simulations, which is accurate
but time-consuming. In summary, the proposed algorithm is
inspired by the advantage of the two algorithms. Therefore,
a DDLF strategy combining the discount-degree descending
technology with lazy-forward technology search strategies is
proposed. Then, the proposed algorithm utilizes the strategy
to obtain a large amount of efficiency by sacrificing accept-
able accuracy.
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FIGURE 2. The framework of the TSIM algorithm.

A. FRAMEWORK OF TSIM ALGORITHM
The framework of our improved algorithm is given in Fig. 2.

From Fig. 2, we present the process of the TSIM algorithm.

(1) The TSIM algorithm sorts the nodes in the network G
by the DDLF strategy. This strategy can be described
as follows. First, the DDLF strategy sorts the nodes in
the network G according to the degree of each node
computed by the discount-degree descending technol-
ogy and selects top − k nodes as a part of candidate
nodes. Second, the DDLF strategy constructs a subgraph
Gnew of the graph G by removing the descendant nodes
of candidate nodes. Third, the DDLF strategy chooses
top− k nodes from the subgraph Gnew as another part of
candidate nodes by the lazy-forward technology. In the
end, the DDLF strategy selects 2k candidate nodes.

(2) The algorithm estimates the influence spread of every
candidate node by MIV and selects k nodes as seed
nodes from candidate nodes. Next, we describe the TSIM
algorithm by explaining the details of each step.

B. DDLF STRATEGY
In this paper, the discount-degree descending technology
and lazy-forward technology search strategy, called DDLF,
is proposed to select candidate nodes. The strategy has the
following three steps: firstly, the DDLF sorts all nodes by
discount degree of every node and selects top − k nodes as
a group of candidate nodes; secondly, construct a subgraph
of initial graph G by excluding candidate nodes that have
been selected; finally, the DDLF strategy selects another
group of candidate node from subgraph by the lazy-forward
technology. Hence, the TSIM algorithm not only improves
the efficiency of greedy-based algorithms but also guarantees
the accuracy of results.

1) DISCOUNT-DEGREE DESCENDING TECHNOLOGY
Discount-degree descending technology is a part of theDDLF
strategy. The part gets experience from the Degree Discount
algorithm. It utilizes the discount-degree as the influence of
nodes, which saves plenty of time. Specifically, the part sorts
all nodes in a network by their discount degree and selects
top− k nodes as a part of candidate nodes. Now, the Degree
Discount algorithm is introduced as follows:
Definition 2 (Degree Discount Algorithm): [12] Consider-

ing the selection of node v as the new seed according to the
degree of the node v, if the node u is selected as the seed node
in the first round, the edge

→
vu should not be calculated. There-

fore, the Degree Discount algorithm discounts the degree of
node v and makes the same discount on the degree of the
node v for other neighbor nodes of the node v that already
exist in the seed set.

Algorithm 1 Degree_Descend(G, k)
Input: Network G = (V ,E) and number k
Output: S (a part of candidate sets)
1: S = ∅
2: for each node v ∈ V do
3: compute the degree of v
4: ddv = dv
5: tv = 0
6: end for
7: for i = 1 to k do
8: u = argmaxv{ddv|v ∈ V S}
9: S = S ∪ {u}
10: for each neighbor v of u and v ∈ V S
11: tv = tv + 1
12: ddv = dv − 2tv − (dv − tv)tvp
13: end for
14: end for
15: return S

Algorithm 2 ConSubgraph(G,S,V’)
Input: Network G = (V ,E), S, and V ′

Output:Gnew
1: E ′ = []
2: for node v in S :
3: for node v′ in V ′ :
4: if exist edge (v, v′) in G:
5: E ′ = E ′ ∪ (v, v′)
6: end for
7: delete E ′ and V ′ from G generate Gnew
8:return Gnew

Next, this section introduces the Degree Discount algo-
rithm in detail by pseudo-code.

As shown in Algorithm 1, firstly, the Degree Discount
algorithm computes the degree of v in the set V (line 3-6).
Secondly, it selects the largest degree nodes and picks them
into the set S (line 7-8). According to the Degree Discount
algorithm, if the neighbor v of the node u is already in the
seed set, it does not need to consider the edge −→uv . Therefore,
it discounts the degree of the node u when selecting u as a
seed node (line 10 ∼ 12).
The Degree Discount algorithm ignores the structure and

actual operating effect, so that some nodes with the largest
influence spread are ignored. Therefore, discount-degree
descending technology is utilized to select the largest degree
node in the graph G. Then, to find the most influential
nodes ignored by discount-degree descending technology,
we reduce the size of the network G. In the end, the lazy-
forward strategy is applied to select nodes in the subgraph
of G.

2) CONSTRUCTING A SUBGRAPH OF G
In this framework, to reduce the running time of DDLF,
we make a new adjustment to the scale of the network graph
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FIGURE 3. The process of constructing a subgraph.

G = (V ,E). As shown inAlgorithm 2, S represents the subset
of nodes selected by the discount-degree descending technol-
ogy. The DDLF utilizes the Independent Cascade model to
compute the influence spread of S in the network G, and put
the activated nodes and nodes in S into a new node set V ′.
Meanwhile, the edges between S and V ′ are selected to form
a new edge set E ′(line 2 ∼ 5). Then, the activated nodes
and related edges in G are deleted (line 7).Other nodes and
edges in the network G to generate a new graph Gnew =
(Vnew,Enew), where the node v in Vnew belongs to the V , not
belongs to V ′. The edge e in Enew is a member of E instead
of E ′.

The operating steps are shown in Fig. 3, where blue nodes
and red nodes represent active nodes and inactive node,
respectively. We give an initial social network G whose node
set is {1,2,3,4,5,6,7,8,9}. The simple network G is shown
in Fig. 3(a). Assuming that the discount-degree descending
technology selects the initial active set is {1,4}, as shown
in Fig. 3(b), the blue node is the initial active node. Then,
the initial active nodes in {1,4} activate their neighbor nodes
under the Independent Cascade model. Supposing that the
nodes {2,3,5} are activated, at the same time, diffusion prop-
agation stops. The nodes {2,3,5} and the relation edges from

the network G is deleted to generate a new graph G, which is
shown in Fig. 3(d). The process shows the method can reduce
the scope of theG. The method can help to reduce the running
time of the node-selecting process.

3) LAZY-FORWARD TECHNOLOGY
The final step in the DDLF strategy is to utilize lazy-
forward technology to select another part of the candidate
nodes. To ensure that the seed set has the maximum influ-
ence spread, after selecting a group of candidate nodes
by degree-discount descending technology, the lazy-forward
technology is applied to select another group of candidate
nodes. Now, we introduce the lazy-forward strategy.
Definition 3 (Marginal Benefit) [25]: In the influence

maximization problem, the marginal benefit of the influence
value function σ (·) refers to the value that the σ (·) can
increase for each additional node on the basis of the original
node set S. The expression is as follows:

σvi (S) = σ (S ∪ {vi})− σ (S) (2)

In (2), σ (S) represents the influence value of initial
seed set S, σ (S ∪ {vi}) expresses the influence value of
node vi after adding the seed set S. σvi (S) is the added
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TABLE 2. Parameters of TSIM algorithm.

TABLE 3. Influence spread increment after the first round.

value of the node vi. Next, we introduce the lazy-forward
technology.

The process of lazy-forward technology is shown in
TABLE 2 and TABLE 3. The first column, the second col-
umn and the third column represents the nodes, each node’s
marginal benefit and the node’s round, respectively. At the
round t = 0, the marginal benefit of all nodes needs to
be computed (as shown in TABLE 2). Meanwhile, the node
with the largest marginal benefit is inserted into the seed
set S ′. Then, the marginal benefit of the node uB is the largest.
At the round t = 1, the lazy-forward technology calculates
the marginal benefit of uB. Recalculate the node where the
marginal return at the round t = 0 is larger than uB at the
round t = 1. If the value of the node is less than uB, it is
not necessary to calculate its value again. The node with
the largest marginal benefit is selected from TABLE 3 and
inserted into S ′ every time. The process will stop until the
size of the seed set S ′ gets to k . The above lazy-forward part
of the pseudo-code is shown as Algorithm 3.

C. OBJECTIVE FUNCTION
In this paper, the candidate nodes are selected by the discount-
degree descending technology and the lazy-forward technol-
ogy. To select the final seed set from the candidate set, this
paper proposes a function called maximum influence value
(MIV ) to select seed nodes from candidate nodes. The MIV
approximates the influence spread of a node in the seed set.

Algorithm 3 Lazy_Forward(G, k)
Input: GraphGnew = (Vnew,Enew); a number k; the number
of topic category, M; Node(v, iis): the 1iis of vertex v;
sis: the influence of present seed; nQueue: the queue of
Node(v, iis)
Output: another part of the candidate set S ′

1: initialize S ′ = ∅, nQueue = ∅, sis = 0
2: for v ∈ Vnew do:
3: Sv = 0
4: for j = 1 to R do:
5: |Sv+ = |S ′({v})|
6: end for
7: pop the first node v of the nQueue
8: S ′ = {node.v} and sis = node.iis
9: for i = 2 to k do:
10: while true:
11: pop the two element B, C
12: if Node(B, iis) >= C :
13: S ′ = S ′ ∪ {node.v}
14: sis+ = node.iis
15: break
16: end if
17: v = node.v
18: Sv = 0
19: for j = 1 to R do:
20: Sv+ = |S ′({v})|
21: end for
22: Sv = Sv/R− sis
23: push Node(v, Sv) into nQueue
24: end while
25: end for
26: return S ′

The function is shown as follows:

MIV = w ∗ Degree+ (1− w) ∗ Inf (3)

The Degree represents the degree of a node in a social
networkG. Inf represents the influence spread of single node
under a specific diffusion model in a social networkG, which
leads to a fact that the influence overlapping of a node in
a specific node set is neglected. Therefore, Inf in the MIV
function is larger than the influence provides by this node in
a specific node set. Considering above-mentioned problem,
we discount the simulation results of the single node under
the IC model to make sure that this value is close to the
marginal benefit of this node. However, this treatment is not
fair for some nodes, therefore, it is compensated according
to the degree(Degree) of each node. Hence, when utilizing
the influence of a node as the metric of node-selecting,
the MIV makes a discount for the influence of a node. And
the margin benefit of a node is related to its degree. Hence,
MIV utilizes them to make up a metric of the margin ben-
efit, which avoids the repeated computation of the marginal
influence spread of each candidate node to reduce the running
time in the node-selecting process. And we conduct a lot
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TABLE 4. The basic information of datasets.

Algorithm 4 TSIM Algorithm
Input: network G = (V ,E),number k
Output: S ′′

1. S = deg ree_descend(G, k), S ′′ = ∅, V ′ = ∅, E ′ = ∅,
w = 0.01

2. calculate the influence range of the set S in the graphG,
add the relation of the nodes in V ′, add the relation of
the edges in E ′

3. Gnew = ConSubgraph(G, S,V ′)
4. S ′ = Lazy_forward(Gnew, k)
5. Snew = S ∪ S ′

6. for v in Snew:
7. calculate the degree of v and the Inf of v
8. calculate v′s MIV = w ∗ Degree + (1 − w) ∗

Inf //MIVset [v] = MIV
9. sort MIVset the value of MIV in descending order

10. select k nodes with themaximum value to join the node
set S ′′

11. return S ′′

of experiments to obtain the two discount values. In the
MIV function, a large number of experimental data shows
that the parameter w is set to 0.01, the final selected seed
set has the best influence spread. We demonstrate the effect
of this value 0.01 in the experimental section below. The
value of Inf is calculated by the Independent Cascade model.
The experimental results demonstrate that the function is
effective.

D. TSIM ALGORITHM
The candidate nodes are selected through the introducing
method above. In this section, candidate nodes are added into
a set S ′. The size of S ′ is 2k . The TSIM algorithm utilizes
the objective function as (3) to select k nodes with maximum
influence spread in a social network G.
In this paper, the TSIM algorithm is shown in Algorithm 4.

G = (V ,E) is the input graph and the number k is the size of
the final seed set S ′′.
Lines 1 to 4 of Algorithm 4 represent our proposed

strategy DDLF. Firstly, TSIM uses the discount-degree
descending technology to select a part of candidate nodes in
a graph G. And the nodes are put into S(line 1). Secondly,
in line 2, the Independent Cascade model is used to cal-
culate the influence range of the set S in the graph G.

The activated nodes and associated edges are placed in a
set V ′ and E ′, respectively. Thirdly, in line 3, we construct
a new graph Gnew. Fourthly, the lazy-forward technology is
utilized to choose another part of candidate nodes from the
graph Gnew. The S ′ is another part of the candidate nodes set.
Then, in line 5, the Snew is the candidate nodes set, consisting
of S and S ′. Next, in line 6-9, the MIVs of all the nodes in
Snew need to be computed. Finally, we select k nodes with
the largest MIV in line 10. Meanwhile, we get the final seed
set S ′′.

E. COMPUTATION COMPLEXITY ANALYSIS
In this section, we analyze the time complexity of the
proposed algorithm according to its process described by
Algorithm 4. Firstly, we use the discount-degree technol-
ogy to select a part of candidate nodes and the procedure
needs O(k log n + m) [1] basic operations. Secondly,
in Algorithm 3, lazy-forward technology has a time complex-
ity of O(kRm′n′) [1] (line 4). Thirdly, the time complexity
of the MIV computation is O(k). Fourthly, the time com-
plexity of sorting the 2k nodes is O(2k log 2k). To sum up,
the overall time complexity of the algorithm is O(k log n +
m) + O(kRm′n′) + O(k) + O(2k log 2k). Therefore, the total
time complexity of TSIM is O(k log n + m) + O(kRm′n′).
(n′ < n,m′ < m).

V. EXPERIMENT
In this section, we evaluate our proposed algorithm on
six real-world social networks and compare it with other
approaches on the same social networks. Meanwhile,
we compare the running time and the influence spread of the
proposed algorithm with other approaches.

A. DATASETS AND EXPERIMENTAL SETTING
1) DATASETS
To ensure the authenticity of the experiment, we download six
real-world datasets from SNAP. In TABLE 4, we introduce
the characteristic of six social networks.

The first and second columns in the dataset represent
nodes, and the two nodes in the same row represent edges
between the two nodes. The third column in the dataset refers
to activation probability puv that puv = 1/Nin(v). Active
probability puv is expressed as one in-degree of the node
under the Independent Cascade model. AndNin(v) denotes the
incoming-degree of node v.
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FIGURE 4. The different parameters of w in different datasets.

2) EXPERIMENTAL SETTING
To better demonstrate the advantages of the proposed algo-
rithm, we compare the proposed algorithm with the other
algorithms. As follows, we briefly introduce the Degree Dis-
count algorithm, CELF, PMIA, and DDSE.

Degree Discount algorithm: the algorithm is introduced in
section IV;

CELF algorithm: it has been introduced in section IV.
In this algorithm, the number of Monte Carlo Simulation is
set to 100.

PMIA: it uses the local influence subtree to simulate the
influence of each node, so as to balance the accuracy and time
efficiency of the greedy algorithm and heuristic algorithm.
We set its influence threshold as θ = 1/10;

DDSE: the algorithm bases on the strategy of degree
descending search (DDS) and EDV. It overcomes the
efficiency issue of greedy approaches by avoiding repeated
simulations in the node selecting process. We set parameters:
gmax = 200, diversity = 0.6, f = 0.1, cr = 0.4.
All the algorithms in our paper are implemented by using

python. And the python runs on Windows 8.1 64-bit oper-
ating system with a CPU of 1.80GHz and 8G of memory.
The time of running DDSE and CELF algorithm on social
networks with large average degree is unacceptale. Therefore,
the DDSE algorithm is only run on the ca-cond network and
p2p-Gnutella31 network. Moreover, we don’t run the CELF
algorithm on the web-Stanford network and com-youtube
network.
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FIGURE 5. Influence spread.

B. EXPERIMENTAL
1) EXPERIMENT FOR THE PARAMETERS OF MIV
Before the comparison experiments, we conduct some exper-
iments for the parameters of MIV and find out the optimal
values of these parameters.

We utilize the above datasets to confirm the value of the
parameter w of the MIV function. To ensure the accuracy of
the experimental results, we set the size k of the final seed set
as 100. First, the DDLF strategy selects 2k candidate nodes.
Then, we set different values of w to select k seed nodes
among the candidate nodes. As shown in Fig. 4, in the case
of different w values, when w = 0.01, the influence of the
seed node selected byMIV is greater than that of other nodes.
It is easy to be known from this experiment that the proposed
algorithm can get the best results when w = 0.01.

2) EXPERIMENTAL RESULTS
In this section, we compare our proposed algorithm with
comparison algorithms in terms of running time and influence
spread.

(1) The influence spread for the real-world datasets: the
size of the seed set k is 10,20,30,40,50, and 60. Meanwhile,
the accuracy of the algorithm in different seed sizes is com-
pared. Fig. 5 (a)∼(f) shows the influence spread results of five
algorithms in six datasets.

As shown in Fig. 5, we can easily find the TSIM algo-
rithm is better than others, which shows that we can obtain
a better marketing effect. On the different datasets, the
influence spread results of PMIA, CELF, Degree Discount,
and DDSE algorithm perform differently. Compared with
the above algorithms, the seed set selected by the TSIM
algorithm has the largest influence spread. Fig. 5(a) shows
the experimental results of theWiki-Vote dataset, from which
we can find the influence spread of TSIM is 15.8% better
than the CELF algorithm in terms of accuracy. The TSIM
algorithm is superior to the CELF algorithm because it not
only considers the degree of nodes but also pays attention
to the propagation of each node in the seed set. Fig. 5(b)
shows that the influence spread of our proposed algorithm in
the ca-cond dataset is 5.7% better than the CELF algorithm.
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FIGURE 6. Running time.

On the soc-Epinions1 and p2p-Gnutella31 datasets, as shown
in Fig. 5(c)(d), TSIM is 3.6% and 7.5% better than PMIA
in terms of result accuracy. The TSIM is an algorithm based
on the degree and Monte Carlo simulation. Compared with
PMIA, the TSIM algorithm hasmore stable accuracy, because
PMIA needs to set threshold artificially. The experiment on
the Web-Stanford dataset shows that TSIM is 12.2% bet-
ter than PMIA. As shown in Fig. 5(f), our proposed algo-
rithm is best, 1.42% and 71.21% better than PMIA and the
Degree Discount algorithm, respectively. From the analysis,
we can prove that the influence spread of TSIM is better
than others. It can be explained as follows: TSIM utilizes
the DDLF strategy to improve the low efficiency and the low
accuracy of greedy-based algorithms. Specifically, discount-
degree technology can save a large amount of running time.
However, the approach of utilizing discount-degree as a met-
ric of estimating the influence has obvious limitations. The
discount-degree may neglect some nodes whose degree is

small, but the influence is large. The lazy-forward technology
makes up the drawback of discount-degree on social net-
works whose average degree is large in the node-selecting
process.

(2) Running time on the six real-world datasets: under the
condition of fixed seed set size, the comparison results of all
algorithms in running time are given.

From Fig. 6(a) ∼ (f), the running time of the Degree
Discount algorithm is faster than all the above algorithms.
Because it is more possible to quickly select the largest degree
node in graph G and specially tuned for the uniform IC
model. Meanwhile, the running time of the TSIM algorithm
is 58.82%, 88.84%, 32.17% and 92.09% faster than CELF
on the first four datasets, respectively. In Fig. 6(a), (c), (d)
and (e), the PMIA algorithm is superior in efficiency. PMIA
utilizes a threshold to prune unnecessary traveling, but this
pruning depends on the structure of social networks. The
efficiency of the DDSE algorithm is lower than our proposed

VOLUME 8, 2020 12093



Q. Liqing et al.: TSIM: Two-Stage Selection Algorithm for Influence Maximization in Social Networks

algorithm. Compared with DDSE, the TSIM algorithm can
guarantee better result accuracy and computation efficiency.
The local search of the DDSE algorithm takes a long time,
and thus, the efficiency is very low. As shown in Fig. 6(f),
the experimental results is clear. Degree Discount is best in
terms of computation efficiency, and our proposed algorithm
is only worse than Degree Discount algorithm. In detail,
Degree Discount is 95.62% and 99.82% faster than TSIM and
PMIA, respectively. The Degree Discount algorithm utilizes
the discount-degree to estimate the influence spread of single
node. The basic idea of this algorithm is that a node with a
larger discount-degree has a larger influence spread. But this
way of evaluating influence spread can not describe the influ-
ence spread of a node accurately. This method is suitable for
the networks with a large average degree, but is not suitable
for the social networks with a small average degree. In our
experiments, the average degree of these social networks are
relatively large, so the degree-discount algorithm performs
well. Our proposed algorithm improve the result accuracy by
sacrificing computation efficiency.

VI. CONCLUSION
In this paper, we tackle the influence maximization problem
by proposing a new algorithm called TSIM. TSIM overcomes
the low accuracy of the Degree Discount algorithm and the
low efficiency of the CELF algorithm by combining the
advantages of the two algorithms. The proposed algorithm
combines the discount-degree descending technology with
the lazy-forward technology, which utilizes the advantage
of the CELF algorithm to make up the drawback of the
Degree Discount algorithm and utilizes the advantage of
the Degree Discount algorithm to improve the efficiency of
the CELF algorithm. We conduct extensive experiments on
real-world social networks. Experimental results demonstrate
the proposed algorithm outperforms the other four compari-
son algorithms in efficiency and accuracy.

In the future, we will find a more accurate method to esti-
mate parameter w ofMIV and achieve the parallel processing
in node-selecting process. By two methods, we will improve
the computation efficiency and the result accuracy of our
proposed algorithm.
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