
Received 12 February 2020; accepted 27 February 2020. Date of publication 16 March 2020; date of current version 16 April 2020.

Digital Object Identifier 10.1109/OJCOMS.2020.2979529

Transformation of Binary Linear Block Codes to
Polar Codes With Dynamic Frozen

CHIEN-YING LIN 1, YU-CHIH HUANG 1 (Member, IEEE), SHIN-LIN SHIEH 2,
AND PO-NING CHEN 1 (Senior Member, IEEE)

1Institute of Communications Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

2Department of Communications Engineering, National Taipei University, Taipei 23741, Taiwan

CORRESPONDING AUTHOR: C.-Y. LIN (e-mail: thisistt.cm05g@g2.nctu.edu.tw)

The work of Chien-Ying Lin and Po-Ning Chen was supported by the Ministry of Science and Technology of Taiwan under Grant MOST 106-2221-E-009-025-MY3.
The work of Yu-Chih Huang was supported by the Ministry of Science and Technology of Taiwan under Grant MOST 109-2636-E-009-021. The work

of Shin-Lin Shieh was supported in part by the Ministry of Science and Technology of Taiwan under Grant MOST 106-2221-E-009-025-MY3,
and in part by the Ministry of Science and Technology of Taiwan under Grant MOST 106-2221-E-305-006-MY3.

ABSTRACT In this paper, a general transformation of binary linear block codes (BLBCs) to (possibly,
multi-kernel) polar codes with dynamic frozen bits is proposed. Through a simple matrix permutation
operation, a one-to-one connection between the codewords of a BLBC and its transformed polar code can
be established. This transformation allows the usage of any decoding algorithm of polar codes for efficient
soft decoding of BLBCs, including the powerful successive cancellation list (SCL) decoding algorithm.
Simulations show that the soft SCL polar decoding of BLBCs can achieve a comparative performance to
the order statistic decoding (OSD), as well as the maximum-likelihood decoding (MLD) in certain cases,
with a much lower computational complexity.

INDEX TERMS Channel coding, Polar codes, binary linear block codes and soft decoding.

I. INTRODUCTION

THIS binary linear block codes (BLBC), as an important
subclass of error correcting codes, have played a piv-

otal role in modern communications [1]. In applications such
as communication systems with strict latency constraints,
codes with short blocklength are preferred. In these partic-
ular situations, algebraic coding theory provides a powerful
means to code construction with a good minimum pairwise
Hamming distance among codewords. In spite of their many
nice properties, most of algebraic codes suffer from a major
drawback that it is difficult to exploit soft information for
decoding [1], thereby lacking of soft decoding algorithms
with low complexity.
The main theme of this paper is to study the soft decoding

of BLBCs with a particular focus on algebraic codes with
short blocklength. A well-known soft decoding algorithm for
BLBCs is the order statistic decoding (OSD) algorithm [2].
Extensive simulations in the literature have confirmed that
OSD performs close to the maximum-likelihood decoding

(MLD) algorithm for many BLBCs. This exceptionally good
performance, however, can be obtained when OSD with high
order is used, which involves a relatively large computational
complexity and a high demand on memory.
In this paper, we tackle the soft decoding of BLBCs with

a different approach. By transforming a BLBC into a (pos-
sibly, multi-kernel) polar code with dynamic frozen bits, a
connection between codewords of the BLBC and codewords
of the polar code is built such that any soft decoding algo-
rithm of polar codes can be used for efficient soft decoding
of BLBCs.
Invented by Arikan [3], polar codes are the first prov-

ably capacity-achieving codes with explicit construction and
with low encoding and decoding complexity. With the estab-
lishment of their multi-kernel designs [4], polar codes of
arbitrary blocklength can be constructed. However, the small
minimum pairwise Hamming distance of polar codes with
short block length results in a limitation on their performance
in the short blocklength regime. A solution, as proposed by
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Trifonov and Miloslavskaya [5], is to dynamically generate
the frozen bits of polar codes according to the message bits,
as well as the generator matrix of an auxiliary linear code,
such that the minimum pairwise distance can be increased.
As polar codes have now been included in 5G new radio
standard, it can be expected that the development of efficient
decoding for polar codes will become an emerging subject
of practical interest.
In order to perform polar decoding on BLBCs, we identify

a permutation matrix that transforms a BLBC to a (possibly
multi-kernel) polar code with dynamic frozen bits. Since the
permutation matrix, to be identified and then employed, is
only a function of blocklength, the same permutation matrix
can be applied to build the required connection from code-
words of several BLBCs of the same length to codewords
of their corresponding polar code. This design simplifies
the implementation of the receiver when multiple codes of
equal length but different code rates are specified in the
system. Since the transformation does not alter the code
space, no adjustment on the encoding procedure of BLBCs
is required; in other words, only the receiver needs to be
replaced. Efficient soft decoding of BLBCs can thus be
implemented via soft decoding of their transformed polar
codes. Simulation results show that the proposed approach
can perform close to OSD, as well as MLD in certain cases,
with a much lower decoding complexity.
It should be mentioned that the idea of polar-decoding

specific BLBCs has been addressed in the literature.
In [6, Example 1], a polar subcode was constructed, and
was noted to be an extended Bose-Chaudhuri-Hocquenghem
(BCH) code [1] (see Example 1 in this paper). In [7], by
leveraging the specific structure of the extended (24, 12, 8)

Golay code, Bioglio and Land showed that the code can
be equivalently transformed to a polar code with (tradition-
ally static) frozen bits. It is also conjectured in [7] that
a similar transformation might be possible for many alge-
braic codes. This paper confirms the conjecture, and further
exploits and generalizes the notion by introducing a universal
matrix transformation of any BLBC of the same blocklenth
to a (multi-kernel) polar code with dynamic frozen bits. Due
to the close structural relation to polar codes [3], [8], [9],
Reed-Muller (RM) codes have been studied thoroughly from
the polar coding aspect and have been known to be effi-
ciently decodable by decoding algorithms of polar codes.
From this perspective, this paper serves as a continued effort
in expanding polar decoding to other classes of BLBCs.

II. BACKGROUND
In this section, we review the definitions of BLBCs and
polar codes with dynamic frozen bits.

A. BINARY LINEAR BLOCK CODES
An (n, k) BLBC codeword space C can be defined through
its generator matrix G ∈ F

k×n
2 as

C �
{
c = mG|m ∈ F

k
2

}
,

FIGURE 1. Basic transformation.

where m is called message. It can be alternatively defined
via a parity-check matrix H ∈ F

n×(n−k)
2 , which gives

C �
{
c ∈ F

n
2|cH = 0

}
.

A basic property of BLBCs is that the mapping between
messages and codewords is one-to-one; hence, a message
is successfully recovered if its corresponding codeword is
identified by the decoder.

B. CHANNEL POLARIZATION OF POLAR CODES
Consider W : X → Y a binary-input discrete memoryless
channel with input alphabet X = {0, 1}, output alphabet Y ,
and transition probability W(y|x) for x ∈ X and y ∈ Y . A
quality measure of W, which is particularly used for polar
codes, is the Bhattacharyya parameters [3] defined as

Z(W) �
∑
y∈Y

√
W(y|0)W(y|1).

The smaller the Bhattacharyya parameter Z(W), the better
the quality of the channel W.

Channel polarization of polar codes is done in two
phases [3]. The first channel combining phase combines n
uses of W into a vector channel Wn of length n in a recursive
manner. The recursion is based on the basic transformation
in Fig. 1, whose input-output relationship is given by

W2

(
y2

1|x2
1

)
� W(y1|u1 ⊕ u2)W(y2|x2).

The general construction of Wn can be characterized by the
so-called Arikan kernel:

F2 �
[

1 0
1 1

]
.

The second channel splitting phase splits Wn back to n
binary-input coordinate channels recursively via the follow-
ing manipulation from basic transformation:

{
W− : U1 → (Y1,Y2)

W+ : U2 → (Y1,Y2,U1)

It was shown in [3] that

Z
(
W+) ≤ Z(W) ≤ Z

(
W−)

and

Z
(
W−) + Z

(
W+) ≤ 2Z(W).

Hence, W+ is considered a better channel than W, while W−
is worse than W. The recursions at each phase are performed
� = log2(n) times.
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As a linear code, codewords cp of an (n = 2�, k) polar
code can also be obtained from the formula cp = uGp, where
u consists of k message bits and (n − k) frozen bits, and
Gp = F⊗�

2 is the �th Kronecker power of Arikan kernel F2.
The positions of the frozen bits are preferably those that are
associated with worse channels after channel polarization.
In order to construct polar codes of arbitrary blocklength

n (not necessarily a power of 2), a multi-kernel polarization
technique was proposed in [4]. As its name reveals, the
technique uses a combination of multiple kernels of possibly
different sizes for polarization. For example, a polar code of
blocklength n = 6 can be constructed by a combination of
the Arikan kernel and a kernel of size 3 as follows:

Gp �

⎡
⎣

1 1 1
1 0 1
0 1 1

⎤
⎦ ⊗

[
1 0
1 1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
1 1 1 1 1 1
1 0 0 0 1 0
1 1 0 0 1 1
0 0 1 0 1 0
0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As proposed originally by Arikan [3], successive cancel-
lation (SC) decoding is employed for polar codes, which
results in O(n log n) decoding complexity. The performance
can be substantially improved by adopting SC list (SCL)
decoding [10], [11], [12], [13], which accepts as many as L
paths, rather than just one path in SC decoding, and hence
its resultant computational complexity is L times larger than
SC decoding. In an extreme case with L = 2k, SCL can
achieve the performance of MLD.

C. POLAR CODES WITH DYNAMIC FROZEN BITS
The small minimum pairwise Hamming distance of polar
codes with small blocklength makes the design less attrac-
tive in the small blocklength regime. In order to resolve the
issue, a recent contribution from [5] proposed to dynam-
ically generate the frozen bits according to the message
bits in a way that can result in a large minimum pair-
wise distance. Specifically, by incorporating an auxiliary
linear code with specific k × n upper trapezoidal generator
matrix MDF, codewords of a polar code can be generated
via cp = uGp = mpMDF Gp, based on which the dynamic
frozen bits can be determined by its previous bits. An exam-
ple of dynamic frozen bits that are determined based on
an extended BCH code is provided in [5], which has been
shown to yield a large minimum distance and an excel-
lent performance. Another example is that in CRC-aided
polar codes, the CRC check bits are generated according to
previous message bits, which can also be regarded as a setup
of dynamic frozen bits [5].

III. TRANSFORMATION FROM BLBCS TO POLAR CODES
In this section, a procedure that transforms a BLBC to an
equivalent polar code with dynamic frozen bits is established,

based on which the soft decoding algorithms of polar codes
can be applied to decoding the BLBC.
Proposition 1: For an (n, k) BLBC C and a permutation

matrix P, there exists a polar code Cp with dynamic frozen
bits such that the one-to-one connection between codeword
c in C and codeword cp in Cp is given by c = cpP.

Proof: Let G be a generator matrix of BLBC C. Noting
that Gp is an n×n full rank matrix, we can rewrite the code
space of this (n, k) BLBC as

C �
{
c = mG|m ∈ F

k
2

}

=
{
c = m

(
E−1E

)
G

(
P−1G−1

p GpP
)
|m ∈ F

k
2

}
,

where E is the (invertible) elimination matrix that trans-
forms GP−1G−1

p into reduced row echelon form. Hence,
EGP−1G−1

p is upper-trapezoidal and can be regarded asMDF.
As a result, the code space C can be further rewritten as

C =
{
c =

(
mE−1

)(
EGP−1G−1

p

)
GpP|m ∈ F

k
2

}

=
{
c = (

mpMDF Gp
)
P|mp ∈ F

k
2

}

= {
c = cpP|cp ∈ Cp

}
,

where mp � mE−1 and cp � mpMDF Gp.1 The one-to-one
permutation-based connection between codeword c in C and
codeword cp in Cp is therefore established with Cp being the
transformed polar code with dynamic frozen bits.
With Proposition 1, we can transform the decoding space

from C to Cp by performing the inverse permutation P−1 onto
the noisy received vector at the receiver and then decode m̂p
using a decoder tailored for polar codes. The estimate of m
can then be recovered via m̂ = m̂pE. Note that for given G
and P (as well as Gp), the corresponding elimination matrix
E can be obtained from the Gauss-Jordan elimination with
amortized cost. One can thus focus on devising a suitable
permutation matrix P that facilitates the polar decoding of Cp.
A block diagram of the proposed polar decoding system

is given in Fig. 2. Although E−1,E,P−1,G−1
p ,Gp and P

are depicted in the encoding process in Fig. 2, only the
BLBC encoder is necessarily realized because E−1E and
P−1G−1

p GpP are both identity matrices. Hence, an advantage
of the proposed polar decoding system is that no adjustment
on the usual encoding procedure of BLBCs is needed. As a
result, the system in Fig. 2 still has the freedom to switch
back to a traditional BLBC decoder, as illustrated in the
upper path of the decoding process in Fig. 2.
On the other hand, the lower path of the decoding process

shows that we can alternatively perform P−1 at the receiver
and then use a polar code decoder to decode the BLBC. As

1. It is worth mentioning that since E is invertible, both generator
matrices G and G′ � EG generate the same BLBC, and both G and G′
fulfill GH = G′H (= EGH) = 0, where H is a parity-check matrix of this
BLBC. Therefore, E can be absorbed into the determination of MDF (=
EGP−1G−1

p ) = G′P−1G−1
p when the generator matrix G′ is assumed to

be adopted in the proof. Since a particular generator matrix G such as a
systematic one may be required in certain applications, a general proof for
arbitrary G is provided in Proposition 1.
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FIGURE 2. Block diagram of the proposed polar decoding. Note that only the BLBC encoding process in the solid box is required at the transmitter, and the operations in
dashed boxes are unnecessary because E−1E = P−1G−1

p GpP = I . At the decoder end, the proposed system offers an alternative path, where a soft-decoding algorithm that is
tailored for polar codes can be used.

long as the channel is memoryless, the statistical pattern of
the noise samples will not be affected by the permutation
operation; hence, the same recursive computations of soft
information for polar code decoder such as SCL can be
applied [10], [11], [12], [13], provided that the locations
and relations of information bits and dynamic frozen bits
can be correctly regained via the chosen P. The output m̂p
of the polar code decoder can then be used to recover an
estimate of the message via m̂ = m̂pE.

When the polar code decoder adopted guarantees a
maximum-likelihood (ML) decoding output, the proposed
transformation renders an ML decoding system for BLBCs,
regardless of the choice of P. Yet, when a suboptimal (or
even near-optimal) decoder for polar codes is employed, the
decoding performance varies with P. A question that follows
is how to find a permutation matrix P that guarantees a good
polar decoding performance with respect to a suboptimal
polar code decoder. To this end, the decoding performance
corresponding to a chosen P may be a straightforward crite-
rion for computer search of an acceptably good P. However,
since obtaining the decoding error probability via system
simulations for each candidate P is operationally intensive,
the next proposition provides an alternative criterion that is
much more numerically efficient and hence will be adopted
in this paper.
Proposition 2: When the locations of dynamic frozen bits

are decided viaMDF = EGP−1G−1
p after fixing a permutation

matrix P, the probability of block errors due to SC decoding
is upper-bounded by the sum of Bhattacharyya parameters
of the information bits.
Proof: This is a consequence of [3, Proposition 2].

IV. SOFT POLAR DECODING OF BCH CODES, GOLAY
CODES AND LDPC CODES
In this section, we examine the proposed transformation and
its respective polar decoding for BCH codes (Example 1),
Golay codes (Example 2) and LDPC codes (Example 3).
Example 1: Consider the (16, 7) extended BCH code with

parity check matrix given by

HeBCH

=
[ �1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 �0

�1 α3 α6 α9 α12 �1 α3 α6 α9 α12 �1 α3 α6 α9 α12 �0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]T
,

(1)

where in order to differentiate from 0 and 1 in F2, we
use �0 and �1 = α0 to denote respectively the additive and

multiplication identities in F24 . Here, α � [0 1 0 0]T =
2 [1, Tab. 2.8] is a primitive element of F24 . Set the
permutation matrix P as2:

Pi,j =
⎧
⎨
⎩

1, i = n− 1 − αj for 0 ≤ j ≤ n− 2
ori = j = n− 1;

0, otherwise.
(2)

With the above choice of P, we perform the Gauss-Jordan
elimination upon GP−1G−1

p for the systematic generator
matrix G and Gp = F⊗4

2 , and obtain

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1
0 0 0 0 1 1 0
0 0 0 1 0 0 1
0 0 1 0 0 1 1
0 1 0 0 1 1 0
1 0 0 0 1 0 0
1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can verify that

MDF = EGP−1G−1
p

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is an upper-trapezoidal matrix and can be used to define
the BLBC-equivalent polar code with dynamic frozen bits.
Specifically, mpMDF = u implies that u0, u1, u2, u4 and u8
must be zero frozen bits, and u3, u5, u7, u11, u13, u14 and
u15 are message bits because the 4th, 6th, 8th, 12th, 14th,
15th and 16th columns of MDF only consist of a single one.
The remaining bits are dynamic frozen bits whose values
are decided by the message bits with smaller indices.
Alternatively, we can define this BLBC-equivalent polar

code from the perspective of the parity-check matrix. For
a given parity-check matrix HeBCH of the (16, 7) extended
BCH code, the codeword c must satisfy

0 = cHeBCHF = mE−1 EGP−1G−1
p︸ ︷︷ ︸

MDF

GpPHeBCHF

2. Here we index the entries of permutation matrix P from 0 to n − 1
(rather than from 1 to n).
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= mpMDF︸ ︷︷ ︸
u

GpPHeBCHF

= u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 1 0 0
0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0
1 1 0 1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the (invertible) elimination matrix that transforms
GpPHeBCH into backward reduced row echelon form.3 The
polar code that has the same code space as the (16, 7)

extended BCH code is accordingly specified as follows. First,
we know from the 4th, 6th, 7th, 8th and 9th columns of
GpPHeBCHF that u0, u1, u2, u4 and u8 must be zero frozen
bits. Second, as the 8th, 12th, 14th, 15th, 16th rows of
GpPHeBCHF contain only zero entries, u7, u11, u13, u14 and
u15 can be arbitrary; so, they correspond to message bits.
Third, we have to comply with the 1st, 2nd, 3rd and 5th
columns of GpPHeBCHF, which dictates⎧⎪⎪⎨

⎪⎪⎩

u3 ⊕ u5 ⊕ u12 = 0
u3 ⊕ u5 ⊕ u10 = 0
u5 ⊕ u9 = 0
u3 ⊕ u6 = 0

(4)

Designating the one with the largest index in each of the
four equations in (4) to be the dynamic frozen bit, which
is guaranteed to be distinct for all four equations because
GpPHeBCHF is in backward row reduced echelon form, we
obtain that u3 and u5 are message bits and u6, u9, u10 and u12
are dynamic frozen bits. The BLBC-equivalent polar code
is therefore established.
Note that the same code has been used in [5] to demon-

strate how the dynamic frozen bits can be obtained. Here,

3. A matrix A is said to be in backward reduced row echelon form if AJ
is in reduced row echelon form, where J is the backward identity matrix.

we reuse it and show that through the identification of P,
the receiver can decode the extended BCH code by combin-
ing the operation of multiplying P−1 with a soft polar code
decoder (see Fig. 2).
In Section V, we will examine the polar decoding per-

formances with respect to the parity check matrix and
permutation matrix similarly specified as in (1) and (2) via
primitive element α = 2 for extended BCH codes of length
n = 64.
Complementing to the proof of Proposition 1, Eq. (3)

in Example 1 provides an alternative way to determine
the BLBC-equivalent polar code with dynamic frozen bits.
In other words, one can identify the BLBC-equivalent
polar code from the parity-check matrix H of the BLBC
according to

uGpPHF = 0,

where the indices of dynamic frozen bits are determined by
the last non-zero components of multiple-one columns of
GpPHF, and the zero frozen bits are those corresponding to
the non-zero component of single-one columns of GpPHF.

In the next two examples, we will take the parity-check
matrix perspective when devising the BLBC-equivalent polar
codes.
Example 2: We turn to the (24, 12) extended Golay code.

It comprises the (23, 12) Golay code with generator poly-
nomial x11 +x10 +x6 +x5 +x4 +x2 + 1 and with an extra
bit equal to the exclusive-or sum of all the previous bits. Its
parity check matrix is given by

HeGolay =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1 1 1 0 1 0 1
0 1 1 0 0 0 1 1 1 0 1 1
1 1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 1 0 1 1 0 1 0
1 1 0 1 1 0 0 1 1 0 0 1
0 1 1 0 1 1 0 0 1 1 0 1
0 0 1 1 0 1 1 0 0 1 1 1
1 1 0 1 1 1 0 0 0 1 1 0
1 0 1 0 1 0 0 1 0 1 1 1
1 0 0 1 0 0 1 1 1 1 1 0
1 0 0 0 1 1 1 0 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Consider the multi-kernel polar code with generator matrix:

Gp =
⎡
⎣

1 1 0
1 0 1
1 1 1

⎤
⎦ ⊗

[
1 0
1 1

]
⊗

[
1 0
1 1

]
⊗

[
1 0
1 1

]
,

and let the permutation matrix P be chosen as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The dynamic frozen bits can thus be determined by
uGpPHeGolayF = 0 with

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 1 1 1 1
0 1 0 1 0 0 0 0 1 1 0 1
1 0 0 1 1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1
0 0 1 1 0 0 0 0 1 0 0 1
0 1 0 1 1 1 0 1 0 0 0 0
0 1 1 1 0 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0 1 0 1 1
1 1 1 1 0 0 0 0 0 1 0 1
1 0 1 1 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that although targeting the same Golay code, the
proposed decoder in this work and the one proposed in [7]
are different.
Example 3: In [14], Gallager introduces the following

parity-check matrix to elucidate the design principle of

LDPC codes:

HLDPC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because HLDPC does not have full rank, it corresponds
actually to a (16, 7) code. For Gp = F⊗4

2 , we search over
107 permutation matrices that randomly drawn from 16! ≈
2 · 1013 possibilities, and adopt the one with the smallest
Bhattacharyya parameter sum of the information bits, which
is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the elimination matrix

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 1 1 1 0 0
1 0 1 0 1 1 1 0 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 0
0 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 1 1 0
0 0 1 0 1 0 0 0 0 1 0 1
0 1 1 1 0 1 1 0 0 1 1 0
1 0 0 1 0 0 0 1 0 1 0 1
1 0 0 0 0 1 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

338 VOLUME 1, 2020



FIGURE 3. FERs for the (64, 16) extended BCH code.

the LDPC-equivalent polar code is defined. This LDPC code
can thus be polar-decoded based on the proposed structure
in Fig. 2.
We close this section by remarking that although the

computation of the Bhattacharyya parameter sum of the
information bits for a given permutation matrix P is numer-
ically efficient, it is still operationally infeasible to examine
the Bhattacharyya parameter sums of the information bits
for all candidate permutation matrices for the above exam-
ples, except for the (16, 7) extended BCH code in Example 1.
Statistically brute-force searching was used instead (as stated
in Example 3). The decoding error performances of the per-
mutation matrices that result in the smallest Bhattacharyya
parameter sum among all tested ones will be examined in
the next section.

V. SIMULATION RESULTS
In this section, frame error rates (FERs), obtained by three
soft-decision decoders, i.e., MLD, OSD and the proposed
SCL polar decoder, for antipodally transmitting a BLBC
over the AWGN channel will be accounted via simulations.
In what follows, we will abbreviate OSD with order r and
SCL polar decoding with list size L as OSD_r and PD_L,
respectively. Also shown are the FERs of a hard-decision
bounded distance decoder, abbreviated as HD. As a refer-
ence, for an (n, k) BLBC, the decoding complexity of OSD_r
is O(nk2+2rnk) [2], while that of PD_L is O(Ln log(n)) [10],
[11], [12]. Furthermore, when performing PD_L, the survivor
path with the best metric in the L-list will be outputted as
the final decision [5].
Based on Example 1, we simulate three length-64 extended

BCH codes of rates 1
4 ,

9
16 and 51

64 in Figs. 3–5, respectively.
The same permutation matrix as specified in (2) is adopted
in their SCL polar decoding. This reflects a side benefit for

FIGURE 4. FERs for the (64, 36) extended BCH code.

FIGURE 5. FERs for the (64, 51) extended BCH code.

the proposed SCL polar decoding, namely, the same receiver
structure can be used for multiple codes of equal length but
of different rates. Notably, as the columns that participate
in the Gaussian elimination of OSD vary with the generator
matrices, which are apparently different for the three eBCH
codes of different rates, a code-by-code adjustment needs to
be performed for OSD.
Three observations are made from Figs. 3–5. First, it

can be observed from Fig. 3 that PD_32 performs bet-
ter than OSD_2, and both PD_64 and OSD_3 achieve
the MLD performance. Second, unable to obtain the MLD
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FIGURE 6. FERs for the (24, 12) extended Golay code.

performance due to its excessive complexity in Fig. 4, we
use the saturated performance of OSD_3 as a reference.
The Polyanskiy-Poor-Verdú meta converse of the ML decod-
ing [15] is also included as an alternative reference, where
the bi-awgn MATLAB code devised based on the normal
approximation in [16] is used. We observe that PD_64 has
already achieved the saturated performance of OSD_3, and
as inferred from the meta converse, is at most 0.5 dB
away from the MLD at FER = 10−4. Third, in Fig. 5,
we can no longer obtain the performance of OSD_3 due
to its intensive complexity. Noting that OSD_2 has a com-
parable (and hence saturated) performance to OSD_1, we
observe from Fig. 5 that PD_32 has achieved the saturated
performance of OSD_2, and the meta converse is much devi-
ated from the performances of both PD_32 and OSD_2 at
high rate.
Based on Example 2, FERs for the (24, 12) extended

Golay code are plotted in Fig. 6. Although both OSD_1 and
PD_64 achieve the MLD performance in this figure, OSD_1
requires extra effort to monitor its decoding flow according
to the sorting results of symbol reliabilities.
Finally, Fig. 7 illustrates FERs for the (16, 7) LDPC code

in Example 3. We observe that the performances of MLD,
OSD_1 and PD_4 coincide to each other, and all three
decoders significantly outperform the belief-propagation
(BP) and min-sum (MS) decoding algorithms with 100 iter-
ations, which are abbreviated respectively as BP_100 and
MS_100 in the figure. It should be pointed out that BP
and MS decodings are inherently unsuitable for a code with
such a short blocklength as the corresponding graph is not
sparse enough and contains a lot of short cycles. Hence, it
is not entirely fair to compare BP and MS decodings with
the proposed one here. The main purpose of this simulation

FIGURE 7. FERs for the (16, 7) LDPC code.

is to demonstrate that the proposed technique can be used
to transform codes other than BCH and Golay codes.

VI. CONCLUDING REMARK
For certain BLBCs, it could happen that none of the per-
mutation matrices can give a better sum of Bhattacharyya
parameters of the information bits than that before polariza-
tion. As an example, consider a (8, 3) code with generator
matrix:

G =
⎡
⎣

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1

⎤
⎦.

Under a target raw bit error rate (BER) of 0.01 over AWGN
channels, the sum of Bhattacharyya parameters of three
information bits before polarization is 0.198997 × 3 =
0.596991. However, among 8! = 40, 320 possible choices
of permutation matrices, the minimum Bhattacharyya-
parameter sum of the three information bits is 0.830539 +
0.149237 + 0.003134 = 0.98291, which is much larger
than 0.596991. In particular, all permutation matrices are
forced to include the bit corresponding to the first row of
Gp = F⊗4

2 into the set of information bits, of which the
Bhattacharyya parameter is already as large as 0.830539.
This brings up two future directions of this study: i) how
to devise a systematic and efficient approach for the selec-
tion of well-performed permutation matrices for codes of
larger sizes, and ii) for what class of BLBCs the proposed
transformation cannot be well applied from the aspect of hav-
ing a better Bhattacharyya-parameter sum than that before
polarization.
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